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Abstract

We study the effect of a tangled sub-fG level intergalactic magnetic field (IGMF) on the electrostatic
instability of a blazar-induced pair beam. Sufficiently strong IGMF may significantly deflect the TeV
pair beams, which would reduce the flux of secondary cascade emission below the observational limits.
A similar flux reduction may result from the electrostatic beam-plasma instability, which operates
the best in the absence of IGMF. Considering IGMF with correlation lengths smaller than a kpc, we
find that weak magnetic fields increase the transverse momentum of the pair beam particles, which
dramatically reduces the linear growth rate of the electrostatic instability and hence the energy-loss
rate of the pair beam. We show that the beam-plasma instability is eliminated as an effective energy-
loss agent at a field strength three orders of magnitude below that needed to suppress the secondary
cascade emission by magnetic deflection. For intermediate-strength IGMF, we do not know a viable
process to explain the observed absence of GeV-scale cascade emission.

Keywords: gamma rays: general – instabilities – magnetic fields – relativistic processes – waves

1. INTRODUCTION

GeV-TeV gamma-ray signals from various blazars
(z > 0.024) have been observed by the Fermi-LAT
telescope and the imaging atmospheric Cerenkov tele-
scopes (i.e VERITAS, MAGIC and HESS) (Albert et al.
2008; H. E. S. S. Collaboration et al. 2010). Very high
energy gamma rays annihilate with the extra-galactic
background light (EBL), producing a collimated beam
of electron-positron pairs, that are expected to quickly
lose their energies via the inverse Compton scattering
on the cosmic microwave background (CMB) (Gould &
Schréder 1967; Blumenthal & Gould 1970). Primary
gamma rays of a few TeV would produce an electromag-
netic cascade in the GeV energy band, but that emission
appears to be absent in the gamma-ray spectra from
some blazars (Neronov & Semikoz 2009).

mahmoud.s.a.alawashra@uni-potsdam.de

martin.pohl@desy.de

One possible explanation for the absence of the GeV
cascade emission is significant magnetic deflection of the
electrons and the positrons of the beam (Elyiv et al.
2009; Neronov & Semikoz 2009; Neronov & Vovk 2010;
Taylor et al. 2011; Takahashi et al. 2011; Vovk et al.
2012). This deflection results in an extended emission
or/and a time delay of the cascade emission. The field
strength required to suppress the cascade emission due
to the time delay is around BIGM > 10−16 G for IGMF
with a correlation length similar to or larger than the en-
ergy loss length of the beam, λB � 10 kpc, and stronger
than that for a small correlation length, for which the
beam sees a fluctuating magnetic field and the deflec-
tion becomes diffusive (Ackermann et al. 2018). Those
fields might be the original form of seed fields that may
be amplified to stronger magnetic fields in the galaxies
and galaxy clusters (Durrer & Neronov 2013; Vachaspati
2021; Batista & Saveliev 2021).
If the magnetic field is strong enough to deflect by a

radian or more, then the cascade emission from active
galactic nuclei (AGN) with oblique jets (jets more than
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30◦ off of our line of sight) should become visible (Brod-
erick et al. 2016; Tiede et al. 2020), but corresponding
emission has not been found (Tiede et al. 2017; Broder-
ick et al. 2018; Ackermann et al. 2018).

Another possibility are beam-plasma instabilities that
work as an alternative energy loss mechanism to the in-
verse Compton scattering of the pair beam (Broderick
et al. 2012; Schlickeiser et al. 2012; Miniati & Elyiv 2013;
Schlickeiser et al. 2013; Broderick et al. 2014; Sironi &
Giannios 2014; Chang et al. 2014; Supsar & Schlickeiser
2014; Chang et al. 2016; Kempf et al. 2016; Rafighi et al.
2017; Vafin et al. 2018, 2019; Alves Batista et al. 2019;
Shalaby et al. 2020). The beam-plasma instabilities
involve both electrostatic and electromagnetic modes,
the two stream-instability- (k × E1 = 0 where E1 is
the perturbed electric field) and transverse Weibel and
filamentation modes (k · E1 = 0) (Bret et al. 2010).
However, for the blazar-induced TeV pair beams the
electrostatic modes dominate the wave spectrum (Bret

et al. 2005), and Weibel-type modes are likely sup-
pressed (Rafighi et al. 2017). Hence considering only
the electrostatic oblique modes (wave vectors with fi-
nite angle to the beam propagation direction) recovers

the essential physics Chang et al. (2016).
Through their nonlinear feedback these electrostatic

waves transfer energy from the beam particles to heat

in the intergalactic medium. Cosmological simulations
including this heating process can successfully reproduce
the observed IGM temperature and the effective optical

depth as a function of redshift as well with several other
observations (Puchwein et al. 2012). Perry & Lyubarsky
(2021) argued otherwise, namely that the back reaction
of the unstable waves on the pair beam particles distri-

bution moderately scatters the beam particles and does
not impose a significant energy loss. We do not discuss
the particulars of the nonlinear feedback here and leave

this issue for future studies.
The beam-plasma electrostatic instability operates

best in the absence of a magnetic field. Noting that
magnetic deflection needs more than a femto-Gauss field
amplitude, here we address the effect on the electrostatic
instability that would be imposed by much weaker inter-
galactic magnetic fields with a correlation length much
smaller than the beam energy loss length. In particu-
lar, we investigate whether the plasma instability still is
the dominant energy-loss process and how strongly the

cascade emission is suppressed (Yan et al. 2019).
In this work, we consider an IGMF with small cor-

relation length far below the energy-loss length of the
pair beam, λB << λe, which deflects the electrons and
positrons equivalently. Note that this condition im-
plies that we assume the intergalactic magnetic fields

to have no large-scale (� kpc) or homogeneous com-
ponent. We only consider the fluctuation component.
Magnetic fields with strengths of BIGM � 10−12 Gauss
do not modify the linear dispersion relation of the beam-
plasma instability obtained by the electrostatic approxi-
mation. However, those fields may impact the instability
linear growth rate by their effect on the beam distribu-
tion function. The case of large magnetic-field correla-
tion lengths involves a net current in the beam and will
be the considered in a future publication.

Our IGMF model is the same as that widely used in
the analysis of deflection and time-delay limits (Elyiv
et al. 2009; Neronov & Semikoz 2009; Neronov & Vovk
2010; Taylor et al. 2011; Takahashi et al. 2011; Vovk
et al. 2012). The focus lies on a weaker field strength
and on small correlation lengths. In such magnetic fields
the electrons and the positrons of the blazar-induced

pair beam perform a random walk passing through many
regions with different field orientations, resulting in an
increased angular spread of the pair beam that scales

with the mean field strength and the square root of the
correlation length (Durrer & Neronov 2013).

We showed that this widening of the beam signifi-
cantly slows the electrostatic instability, which decreases

the energy loss rate of the beam particles. At a certain
limit in the parameter space (BIGM, λB), driving the
waves becomes less effective than inverse-Compton scat-

tering the CMB, and the GeV cascade emission can no
longer be suppressed. For the plasma instability model
in Vafin et al. (2018), this limit is found to be around

three orders of magnitude below the one that by mag-
netic deflection would impose a time delay of the cascade
emission by 10 years (Ackermann et al. 2018).

The structure of this paper is as follows. In section 2,

we present the linear growth rate spectrum of the elec-
trostatic instability of a realistic pair beam distributions
without and with weak intergalactic magnetic fields. In

section 3, we present the nonlinear instability saturation
of the unstable electrostatic waves. Finally, we demon-
strate our results in section 4 and conclude in section
5.

2. LINEAR GROWTH RATE OF THE
ELECTROSTATIC INSTABILITY

In this section, we present the linear growth rate of
electrostatic waves for a realistic blazar-induced pair
beam with finite angular spread (kinetic instability)
moving in an unmagnetized intergalactic medium. Then
we consider the magnetic fields in the intergalactic

medium and find their impact on the beam distribu-
tion function and the implications for the growth rate
of electrostatic waves.
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As we mentioned in the introduction, the electrostatic
approximation is valid for the blazar-induced pair beam
for which the electrostatic modes grow far more quickly
than do the electromagnetic modes (Bret et al. 2010;
Chang et al. 2016). A comparison of the Weibel growth
rate for blazar-induced pair beams using a cold-beam
distribution Schlickeiser et al. (2012) and a Waterbag
distribution (Rafighi et al. 2017) shows that the Weibel
instability is suppressed for a realistic blazar-induced
pair beam. Therefore, we will proceed with the electro-
static approximation in our analysis.

Linearizing the Vlasov–Maxwell equations for electro-
static waves leads to the following dispersion relation
(Breizman 1990)

1−
ω2
p

ω2
−
∑
b

4πnbe
2
b

k2

∫
d3p

k · ∂fb(p)∂p

k · v − ω
= 0, (1)

where fb(p) = fb(p,x)/nb is the normalized momen-

tum distribution function of the beam, nb is the total
number density of the beam, ωp = (4πnee

2/me)
1/2 is

the plasma frequency of the intergalactic background

plasma with density ne. The wave vector is chosen as
k = (k⊥, 0, k||), and the beam propagates along the z
axis with cylindrical symmetry.

In our analysis we consider the kinetic instability

for which the beam temperature plays a significant
role. The kinetic instability is applicable, if the velocity
spread times the wave vector of the unstable waves is

larger than the growth rate of the reactive instability
(Chang et al. 2016)

|k ·∆v| >> ωi,r. (2)

The peak reactive growth rate is (Bret et al. 2010)

ωi,r =

√
3

24/3
ωp

(
nb
γbne

)1/3
((

k⊥
k

)2

+
1

γ2b

(
k||

k

)2
)1/3

,

(3)
where γb is the beam Lorentz factor, and the parallel
wave number is fixed at the resonance, k|| = ωp/c. For
a relativistic beam the perpendicular velocity spread is
∆v⊥ ≈ c

γb
, and the parallel velocity spread is ∆v|| &

c
γ2
b
,

resulting from the Lorentz boost of the beam from the
COM to the lab frame (Miniati & Elyiv 2013). For
realistic blazar-induced pair beam with Lorentz factor
γb ∼ 105 − 106, condition (eq(2)) is satisfied for essen-
tially all oblique waves, meaning that we should consider

the kinetic regime and not the reactive one (cold-limit).
For a relativistic electron beam (γb >> 1) with a small

angular spread (∆θ << 1 rad) traveling in a homoge-
neous background plasma with a number density ne, the
dispersion relation, eq. 1, in the kinetic regime yields

the following linear growth rate of electrostatic waves
(Breizman 1990)

ωi(k) =πωp
nb
ne

(ωp
kc

)3 ∫ θ2

θ1

dθ
∂g(θ)

∂θ

×
−2g(θ) sin θ + (cos θ − kc

ωp
cos θ′)

[(cos θ1 − cos θ)(cos θ − cos θ2)]1/2
,

(4)

where

g(θ) = mec

∫ ∞
0

dp pfb(p, θ), (5)

and

cos θ1,2 =
ωp
kc

cos θ′ ± sin θ′

√(
kc

ωp

)2

− 1

 , (6)

where k =
√
k2⊥ + k2|| is the module of the unstable elec-

trostatic waves wave-number vector (k⊥ and k|| are the

perpendicular and the parallel components to the beam
propagation direction respectively), θ′ is the angle be-
tween the wave vector and the beam propagation direc-
tion, and θ is the angle between the particle momentum

and the beam direction axis (z-axis). The beam is az-
imuthally symmetric around the propagation axis.

The momentum distribution function, fb(p, θ), of the

beam is normalized as follows

2π

∫ ∞
0

dp p2
∫ π

0

dθ sin θfb(p, θ) = 1, (7)

and can be factorized into parallel and perpendicular
components

fb(p, θ) = fb,p(p)fb,θ(p, θ), (8)

where for the parallel momentum distribution fb,p(p) we
used eq. 26 and eq. 56 in Vafin et al. (2018) that are ob-
tained for a realistic pair beam at a distance of 50 Mpc
from the blazar. The angular distribution, fb,θ(p, θ), de-
pends on whether or not we have intergalactic magnetic
fields.

2.1. Electrostatic instability for a pair beam in

non-magnetized intergalactic medium

In the case of a non-magnetized intergalactic medium,
the angular spread of the beam is due to the angular
energy spread only. In this case, the angular distribution
function of the beam, fb,θ(p, θ), can be approximated by
a Gaussian (Miniati & Elyiv 2013)

fb,θ(p, θ) ≈
1

π∆θ2s
exp

{
− θ2

∆θ2s

}
, (9)
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Figure 1. Normalized electrostatic growth rate in the ab-
sence of an external magnetic field.

where the angular energy spread approximated as

(Broderick et al. 2012)

∆θs ≈
mec

p
(10)

Substituting eq(9) into eq(8) and eq(4) we found the nu-

merical solution for the linear electrostatic growth rate
as shown in Fig.1, we see that most of the unstable
modes are in the oblique and the parallel directions. The
maximum linear growth rate is found to be

ωi,max = (3.83× 10−7)ωp
nb20
ne7

,

= (1.15× 10−8)ωp,
(11)

where ωp = 17.8 Hz is the plasma frequency of the

intergalactic background electrons for the unit density
ne = ne710−7cm−3 = 10−7cm−3. For the fiducial pair
beam parameters, the number density of the pair beam

is nb = nb2010−20cm−3 = 3 × 10−22cm−3. Note that
the maximum growth rate we found here is twice that
reported in Vafin et al. (2018), because the maximum
growth rate in Vafin et al. (2018) was computed for the
parallel wave numbers down to (k‖c/ωp − 1) ≈ 10−7,
however we found that smaller parallel wave numbers
down to (k‖c/ωp − 1) ≈ 10−14 have a larger growth
rates, as shown in Fig.1.

Vafin et al. (2018) demonstrated that for a blazar with
a redshift z = 0.2 those unstable waves drain the pair
beam energy around a hundred times faster than does
inverse-Compton scattering on the CMB, taking into ac-
count the modulation instability as a damping process.
The main uncertainties in that work are the assumptions

on the spectrum and gamma-ray flux from the blazar
and the approximation of the nonlinear saturation level.

The growth rate is calculated for a pure electron beam
moving in a background plasma of electrons and ions.

Schlickeiser et al. (2012) demonstrated that having sepa-
rate distribution functions for electrons and for positrons
yields the same growth rate as do calculations that as-
sume only an electron beam (Broderick et al. 2012).

2.2. Electrostatic instability for a pair beam with a
weak intergalactic magnetic field

We address in this section the effects of weak inter-
galactic magnetic fields on the electrostatic plasma in-
stability. If the electron gyromagnetic frequency, ωB =
eBIGM/me, is much smaller than their plasma frequency,
ωB � ωp, then an external magnetic field doesn’t
change the electrostatic dispersion relation used to de-
rive the linear growth rate (Fainberg 1961). The corre-
sponding upper limit for the strength of the intergalactic
magnetic field is BIGM . 10−9 Gauss, where we again
assumed the number density to be ne = 10−7 cm−3.

The magnetic-field correlation lengths we consider,

λB ∼ 103 − 10−5 pc, are much larger than the inter-
galactic plasma skin length, λD ∼ 5×10−10 pc, meaning
that even the variations of the IGMF have no direct im-

pact on the beam plasma dispersion relation. However,
the directional changes of the magnetic field affect the
equilibrium beam distribution function, which in turn
impacts on the linear electrostatic growth rate eq(4).

In other words, the blazar-induced pair beam that trig-
gers the instability travels through many correlations
lengths in the IGMF. For example, the blazar-induced

pair beam distribution function we are considering is
this work is calculated at distance 50 Mpc in the IGM
from the blazar (Vafin et al. 2018), whereas the pair pro-

duction starts at distances smaller than 1 Mpc (Miniati
& Elyiv 2013).

More importantly, we can take the inverse Compton
scattering length, λIC ≈ 75 kpc

(
107/γb

)
, as an upper

limit on the energy loss length of the beam particles,
which gives around 188 kpc for a Lorentz factor of
γb = 4 × 106. This means that the pair beam distri-
bution function carries the effects of the magnetic fields
over a large number of directional changes, since most
of the particles in the beam have traveled many corre-
lation lengths at least, λIC >> λB. This propagation of

the pair beam over many correlation length imposes an
additional angular spread on its momentum distribution
which in turn significantly affects the linear electrostatic
growth rate.

Those fields lead to stochastic deflections of the elec-
trons and positrons that diffusively widen the angu-
lar distribution function of the pair beam as shown in
appendix A. Adding in quadrature the energy angular
spread ∆θs (eq. 10) and the magnetic widening ∆θIGMF

(eq. A8) gives the following distribution of the angular
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Figure 2a. BIGM = 10−18 Gauss and λB = 1 pc Figure 2b. BIGM = 10−17 Gauss and λB = 1 pc

Figure 2c. BIGM = 10−16 Gauss and λB = 1 pc. Figure 2d. BIGM = 10−15 Gauss and λB = 1 pc.

Figure 2. The longtime of the normalized electrostatic growth rate (log10(ωi/(πωp,e(nb/ne)))) for different intergalactic
magnetic field strength values, we see that as the intergalactic magnetic fields strength increases the linear growth rate of
the instability growth rate decreases.

spread of the pair beam after travelling many correlation
lengths in the IGM

fb,θ(θ, p) =
1

π∆θ2
exp

{
−
( θ

∆θ

)2}
, 0 ≤ θ ≤ π, (12)

where

∆θ =
mec

p

√
1 +

2

3
λBλIC

(
eBIGM

mec

)2

. (13)

Note that the result in appendix A for the magnetic
deflection, ∆θIGMF, is consistent with the diffusion angle
used in the IGMF deflection analyses, e.g. eq. 31 in
Neronov & Semikoz (2009).

Finally, substituting eq(12) into eq(8) and eq(4) we
numerically found the linear growth rate spectrum for a

few values of the IGMF strength, BIGM, and the corre-
lation length, λB , and displayed it in Fig.2. The main
impact of the IGMF is a general reduction of the growth
rate. Fig.3 shows the peak growth rate as a function
of BIGM and λB . To be noted from the figure is that
specific values of the peak growth rate are found on a
characteristic BIGM ∝ λ−0.5B . The reduction of the insta-
bility growth rate increases the energy loss time due to
the plasma instability as we will see in the next section.

3. NONLINEAR INSTABILITY SATURATION

The unstable electrostatic waves grow exponentially
with the linear growth rate, accumulating at the reso-
nant parallel wave number k|| ≈ ωp/c. Depending on
their nonlinear interactions, the waves could drain the
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Figure 3. The logarithm of the maximum normalized
growth rate, log10(ωi,max/(πωp,e(nb/ne))).

kinetic energy of the pair beam and heat the IGM. The
first type of those nonlinear interactions is the scatter-
ing of the electrostatic waves on the background plasma,

known as nonlinear Landau interactions. The second
nonlinear interaction is a wave-wave interaction between
the electrostatic waves known as the modulation insta-

bility. The first process operates at any wave intensity,
whereas the second occurs only above a certain thresh-
old.

Simulations of the evolution of the beam/plasma sys-

tem are impossible right now for realistic parameters.
However, there are various analytical estimates in the
literature concerning the energy density that the waves

reach in an equilibrium state (Miniati & Elyiv 2013;
Schlickeiser et al. 2012; Broderick et al. 2012; Vafin et al.
2018). The inverse energy loss time of the pair beam due
to the electrostatic instability is given by (Vafin et al.

2018; Miniati & Elyiv 2013)

τ−1loss = 2δωi,max, (14)

where ωi,max is the peak linear growth rate and δ =
UES/Ubeam is the normalized wave energy density at the
equilibrium level. The reduction of the linear growth
rate due to the IGMF translates into an increase of the
energy loss time. At some limit the beam-plasma insta-
bility becomes less relevant than the inverse Compton

scattering. We will find this limit in the next section.
The wave intensity, δ, depends on the non-linear evo-

lution of the electrostatic waves, for which have different
estimates. In the next section, we are going to include
first the result given in Vafin et al. (2018) and then dis-
cuss the implications of changing the value of the in-
tensity of the waves to that found by Broderick et al.
(2012).

4. RESULTS

We found the maximum linear growth rate of the un-
stable electrostatic 2D spectrum for each intergalactic
magnetic field strength, BIGM, and correlation length,
λB , as shown in Fig.3. Then we calculated the approxi-
mated energy loss time of the beam based on the maxi-
mum linear growth rate as in eq(14), using the intensity
of the waves given in Vafin et al. (2018), δ = 10−5.
This time should be smaller than the inverse Compton
scattering energy loss time, otherwise the beam-plasma
instability cannot suppress the secondary cascade. The
energy loss time of the inverse Compton scattering is
given by

τIC =
(
7.7× 1013 s

)
(1 + z)−4

(
106

γb

)
, (15)

which at redshift z = 0.2 and for a pair-beam Lorentz

factor γb = 4×106 gives the following ratio for the beam-
plasma instability loss time given in Vafin et al. (2018)

τloss
τIC

= 0.026, (16)

if the intergalactic magnetic field is zero.
Using eq. 14, we infer that a reduction by a factor 40

of the instability growth rate is sufficient to render it
inefficient. The dependence of the growth rate on BIGM

and λB (cf. Fig. 3) can then be turned into a limit in the

BIGM-λB parameter space, above which inverse Comp-
ton scattering provides the dominant energy loss of the
pair beam. We show this limit in Fig.4. It is at the
same time an exclusion limit, because the then unavoid-

able inverse-Compton emission is not seen, and so the
cyan-shaded are in the figure is excluded for the IGMF.
For weaker field, the oblique instability may drain the

beam energy sufficiently quickly, and for stronger fields
the time delay of the cascade emission causes substan-
tial uncertainty in the interpretation of the Fermi-LAT
data of GeV-scale cascade emission.

We see in Fig.4 that the beam-plasma instability sup-
pression limit (the purple line) is three orders of magni-
tude lower than the lower limit on the IGMF strength
needed to impose a significant time delay of the cascade
emission flux due to the magnetic deflection (the green
line) (Finke et al. 2015; Ackermann et al. 2018; Taylor
et al. 2011). We follow Ackermann et al. (2018) in as-
suming an time period of 10 years as sufficient for the
suppression of the cascade signal. The actual deflection

angle would be well below one minute of arc.
Finally, to account for the uncertainty of the non-

linear saturation level of the waves, we consider also the
beam-plasma instability model presented in Broderick
et al. (2012) with δ = 0.2 and check how the plasma
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Figure 4. The excluded region of the IGMF, for which
neither magnetic deflection nor the oblique instability can
explain the absence of cascade emission. The gray region is
the upper limit on the intergalactic magnetic fields strength
due to the MHD turbulent decay (Banerjee & Jedamzik 2004;
Durrer & Neronov 2013).

instability suppression limit changes for a certain corre-
lation length. For λB = 10−11 Mpc, the instability limit
would shift for Broderick et al. (2012) to BIGM = 10−12.5

Gauss which is two orders of magnitude higher than that
based on Vafin et al. (2018) but still below the Fermi
time delay lower limit. This shift applies also to all the
instability suppression limit points in Fig.4, since the
correlation length and the intergalactic magnetic field
strength determine together the angular spread eq.13
that plays the key role in determining the linear growth
rate.
Although the nonlinear saturation level had changed

by four orders of magnitudes between the models of
Vafin et al. (2018) and Broderick et al. (2012), the mag-
netic field limit had changed by only two orders of mag-
nitude. This is due to the dependence of the energy loss
time on the angular spread as τloss ∝ (∆θ)2, which is
a result of the maximum linear growth rate dependence
on the angular spread as ωi,max ∝ (∆θ)−2 Vafin et al.
(2019), and the energy loss time relation with the linear
growth rate as τloss ∝ ω−1

i,max eq(14).
For a generic beam-plasma instability model with

plasma instability energy loss time τloss,0 in the ab-
sence of the IGMF, the energy loss time increases as
τloss ∝ (∆θ)2 when the angular spread increases with the
IGMF strength and correlation length as in eq.13 reach-
ing the inverse Compton scattering energy loss time at
the following intergalactic magnetic field strength

log

(
BIGM,lim

Gauss

)
=− 17.92− 1

2
log

(
λB

pc

)

+ log

(√
Myr

τloss,0
−
√

Myr

τIC

)
.

(17)

Eq(17) provides the intergalactic magnetic fields
strength that is sufficient to suppress a general plasma
instability, with energy loss time τloss,0 in the absence
of the IGMF, against the inverse Compton scattering of
the blazar-induced pair beam on the CMB. For Vafin’s
model, the last logarithmic term on the right-hand side
of eq. 17 has a value very close to unity.

5. CONCLUSION

We investigated the effects of tangled weak intergalac-
tic magnetic fields with small correlation lengths on the
electrostatic instability driven by blazar-induced pair
beams. The weak fields increase the angular spread of
the pair beam which decreases the linear growth rate of
the electrostatic beam-plasma instability, which in turn
reduces the associated energy loss rate.
In a certain region in the BIGM-λB parameter space,

neither the beam-plasma instability nor the intergalactic
magnetic field deflection can explain the absence of cas-
cade emission in the spectra of some TeV blazars, and
so this parameter space region can be excluded, unless
there is a third mechanism that suppresses the GeV-
band cascade.
Considering the beam-plasma instability model of

Vafin et al. (2018), we can exclude an IGMF strength
within the three orders of magnitude below the limit
above which magnetic deflection imposes a significant
time delay of the cascade (ten years). Even for the non-
linear evolution model of Broderick et al. (2012), we can
exclude a range a values that is one order of magnitude
wide.
Although the parameter space below the beam-plasma

instability suppression limit is not excluded by the cas-
cade observations, part of this region (at λB � 10−8 Mpc
and shaded in gray in Fig.4) is constrained by MHD
turbulent decay (Banerjee & Jedamzik 2004; Durrer &
Neronov 2013). In conclusion, the allowed region for the
IGMF lies below 10−16 Gauss at λB ≈ 10−8 Mpc, and
the constraint on the IGMF strength is tighter than that
for both larger correlation lengths (due to the instability
suppression) and smaller correlation lengths (due to the
MHD turbulent decay).
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APPENDIX

A. BEAM DISTRIBUTION FUNCTION WITH IGMF

Consider a magnetic field with a constant magnitude that arbitrarily and abruptly changes its direction every
correlation length, λB , along the beam propagation line. In Cartesian coordinates with the z axis aligned with the
beam, the magnetic-field component in the x − y plane deflects the beam every λB interval in a different direction.
We will include first the deflection due to the magnetic field component along the x axis then we will generalize to the
x− y plane. At the end we find that the angular distribution function is a Gaussian with azimuthal symmetry, hence
the electrons and positrons distribution functions are equivalent, and it is sufficient to consider only one species.

At a given correlation-length interval denoted by i, the component of the magnetic field in the x direction (Bx,i =
BIGM sin θ′ cosϕ′) deflects the beam positrons along the y direction with a deflection angle

∆θi(θ
′, ϕ′) =

λBeBIGM sin θ′ cosϕ′

p
, (A1)

where p is the momentum of the beam particle and e is the elementary electric charge. ∆θi is a random variable that
depends on the random variables θ′ and ϕ′. Since all the possible magnetic field orientation have the same probability,
the mean deflection is

µ =
1

4π

∫ π

0

sin θ′dθ′
∫ 2π

0

dϕ′∆θi(θ
′, ϕ′)P (∆θi(θ

′, ϕ′))

=
λBeBIGM

4πp

∫ π

0

dθ′
∫ 2π

0

dϕ′ sin2 θ′ cosϕ′ = 0,

(A2)

and the variance is

σ2 =
1

4π

(λBeBIGM

p

)2 ∫ π

0

dθ′
∫ 2π

0

dϕ′ sin3 θ′ cos2 ϕ′

=
1

3

(λBeBIGM

p

)2
.

(A3)

The total deflection of the beam is computed as

∆θ =
n∑
i=0

∆θi, (A4)

where n = λIC/λB is the total number of the correlation lengths crossed by the beam during the its energy loss length

(substituted here by the inverse Compton scattering length). Since n is very large in our case, λIC >> λB , we can use
the central limit theorem with n −→∞ to find the distribution function of the total deflection,

fb,θy (θy, p) =
1√

2π nσ
exp

{
−1

2

(
θy√
nσ

)2
}
, − π ≤ θy ≤ π, (A5)

which is a normal distribution with dispersion
√
nσ. For the magnetic-field component By = BIGM sin θ′ cosϕ′, we get

the same distribution for fb,θx(θx, p),

fb,θx(θx, p) =
1√

2π nσ
exp

{
−1

2

(
θx√
nσ

)2
}
, − π ≤ θx ≤ π. (A6)

Note that by definition n = λIC/λB. Combining the two distributions in eq.A5 and eq.A6 using the result in appendix
B we get the full angular distribution of the pair beam

fb,θ(θ, p) =
1

∆θ2IGMFπ
exp

{
−
( θ

∆θIGMF

)2}
; 0 ≤ θ ≤ π, 0 ≤ ϕ ≤ 2π, (A7)
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Figure 5. The two systems of coordinate for the angular discretion; the first one uses spherical coordinates, (θ, ϕ), and the
second one is involves (θx, θy), where θy is the angle between the z axis and the projection on the y− z plane and θx is the angle
between the z axis and the projection on the x− z plane.

where

∆θIGMF =
eBIGMF

p

√
2

3
λICλB. (A8)

What we have considered here is a fixed IGMF amplitude. Considering a IGMF with different amplitudes leads to

the same result in terms of the root-mean-square IGMF with a numerical factor.

B. TRANSFORMATION OF FX(θX)FY (θY ) TO F (θ, ϕ)

Combining the distributions fx(θx) and fy(θy) to the distribution f(θ, ϕ) by

f(θ, ϕ) sin θdθdϕ = fx(θx)fy(θy)dθxdθy, (B9)

where θ and ϕ are the spherical coordinate and θx and θy are defined in Fig.5. We rewrite eq.B9 using the Jacobian
determinant

f(θ, ϕ) = fx(θx(θ, ϕ))fy(θy(θ, ϕ))
1

sin θ
|J(θ, ϕ)|. (B10)

The relations between (θx, θy) and (θ, ϕ) can be found as follows; the Cartesian coordinates of a unit vector with
(θ, ϕ) are x = sin θ cosϕ, y = sin θ sinϕ and z = cos θ, then using the definitions of θx and θy in Fig.5

tan θx =
x

z
= tan θ cosϕ, (B11)

and
tan θy =

y

z
= tan θ sinϕ. (B12)

The Jacobian determinant is given by

|J(θ, ϕ)| =
∣∣∣∣∂θx∂θ ∂θy∂ϕ − ∂θx

∂ϕ

∂θy
∂θ

∣∣∣∣
=

∣∣∣∣ 4 tan θ

4 + sin2 θ tan2 θ sin2 2ϕ

∣∣∣∣ ≈ | tan θ|,
(B13)

for a small θ. Putting this in eq.B10 gives

f(θ, ϕ) = fx(θx(θ, ϕ))fy(θy(θ, ϕ))
| tan θ|
sin θ

≈ fx(θx(θ, ϕ))fy(θy(θ, ϕ)), (B14)

for a small θ.
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