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Abstract: As SMEFT is a framework of growing importance to analyze high-energy data,
understanding its parameter space is crucial. The latter is commonly split into CP-even
and CP-odd parts, but this classification is obscured by the fact that CP violation is ac-
tually a collective effect that is best captured by considering flavor-invariant combinations
of Lagrangian parameters. First we show that fermion rephasing invariance imposes that
several coefficients associated to dimension-six operators can never interfere with operators
of dimension ≤ 4 and thus cannot appear in any physical observable at O(1/Λ2). For those
that can, instead, we establish a one-to-one correspondence with CP-odd flavor invariants,
all linear with respect to SMEFT coefficients. We explicitly present complete lists of such
linear CP-odd invariants, and carefully examine their relationship to CP breaking through-
out the parameter space of coefficients of dimension ≤ 4. Requiring that these invariants all
vanish, together with the Jarlskog invariant, the strong-CP phase, and the 6 CP-violating
dimension-6 bosonic operators, provides 699(+1 + 1 + 6) conditions for CP conservation to
hold in any observable at leading order, O (1/Λ2).
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1 Introduction

The predictions of the SU(3)C×SU(2)L×U(1)Y gauge-invariant operators of dimension four
or less built with the field content of the Standard Model, which we denote SM4, have been
remarkably confirmed by experiments. In particular, the observed pattern of CP-violation
(CPV) [1] remarkably confirms the Cabibbo–Kobayashi–Maskawa (CKM) description of
three fermionic generations of matter [2, 3]. Especially, two key aspects of CPV as we know
it, namely the facts that it is quite suppressed despite an O(1) phase and that it demands
the existence of at least three generations, are explained in the CKM formalism by its
collective origin: CPV arises in the SM4 from the interplay between the gauge and Yukawa
sectors [4, 5]. In other words, CP is broken by the simultaneous presence of non-vanishing
physical parameters, which makes the breaking accidentally small in the SM4. The notion
of collective breaking has application beyond CPV, for instance in little Higgs models [6–8].

The two notions of “simultaneous presence” and “physical parameter” in the previous
paragraph suggest that a measure of CPV should be carefully defined, in particular when
expressed in terms of Lagrangian parameters. An efficient way to do this is to use flavor-
invariants, namely quantities which do not depend on the precise labeling of each fermion
generation. As we will review below, a single quantity suffices to describe CPV in the
fermionic sector of the SM4,

J4 ≡ Im Tr [YuY
†
u , YdY

†
d ]

3
= 3 Im Det [YuY

†
u , YdY

†
d ] . (1.1)

where Yu,d are the 3 × 3 up and down quark Yukawa matrices in the SM4 Lagrangian.
The quantity J4 goes under the name of Jarlskog invariant [9–11], and vanishes iff CP is
conserved. The structure of J4 is such that it is not modified by unitary reshuffling of
the quark fields, which means that it corresponds to a physical quantity. In addition, its
expression shows that CPV in the SM4 is not a feature of Yu or Yd alone, but a feature of
the whole model which can only be assessed with the knowledge of both matrices (and in
particular, of the fact whether they can be simultaneously diagonalized). This “collective”
property of CPV, namely the fact that it depends on several Lagrangian parameters at
once, is a key property of the SM4, as well as of its extensions. This also holds for strong
CPV, whose order parameter is given by θQCD − arg det (YuYd), and resides simultaneously
within the θ-term of QCD and within the quark Yukawa matrices (see appendix F for more
details).

While J4 is the only order parameter of CPV in the fermionic sector of the SM4,
additional ones need to be specified whenever the SM4 is extended, see e.g. Ref. [12–15]
for two Higgs doublet models, Ref. [16–18] for the case of supersymmetric extensions of the
SM4, Ref. [11, 19–21] for the case of additional generations of matter, Ref. [22–28] for the
inclusion of neutrino masses, Ref. [29] for vector-like extensions, Ref. [30] for CP-violating
ALP EFTs or Ref. [31] for models of spontaneous CP breaking. In this paper, we assume
that there are no new light degrees of freedom (d.o.f.) below, or close to, the weak scale,
but we remain agnostic about the presence of heavy states. In that case, the SM4 should
be understood as the low-energy approximation of some fundamental UV dynamics, i.e. it
becomes necessary to extend it into an effective field theory (EFT). Under the assumption
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that a decoupling limit can be consistently taken, the adequate description is the so-called
Standard Model Effective Field Theory (SMEFT) [32]. There, the dynamics of the SM4

d.o.f. are derived from the SM4 Lagrangian supplemented by a tower of higher-dimensional
operators,

L = LSM4 +∑
i

Ci
Λdi−4

Oi , (1.2)

where Oi is a local operator of dimension di > 4, Ci a complex coefficient (sometimes called
Wilson coefficient) generically of order one (modulo possible selection rules and after taking
h̵ dimensions into account) and Λ is a dimensionful scale associated to heavy new physics.
If large enough, Λ allows for a power expansion of any phenomenological prediction in
inverse powers of itself. Complete bases of operators up to dimension 8 can be found in
Refs. [33–35].

The coefficients Ci are generically complex and introduce a large number of new sources
of CPV in SMEFT (see the counting in Ref. [36] at dimension di ≤ 6). In this paper, we are
interested in CPV associated to flavorful Wilson coefficients, whose analysis requires the
careful extraction of basis-independent physical parameters, which account for the collective
properties of CPV. Therefore, the new CPV phases should be captured by CP-odd flavor-
invariants, similar to J4. We focus here on the CPV phases found in the fermionic sector,
since the bosonic sources of CPV in the dimension-six SMEFT are trivially flavor-invariant.1

Moreover, we focus on the limit of vanishing neutrino masses throughout the whole work.
One could ask: why do we need invariant quantities? For instance, it is common

to associate a complex top-quark Yukawa coupling with a new source of CPV, without
referring to invariants. However a complex top Yukawa only signals CPV if one works in
a given flavor basis where the top is a mass eigenstate of real mass. One may wonder how
to describe CPV in SMEFT, without any specific reference to the IR physics, such as the
masses or the electroweak vacuum. This picture is for instance justified if one cares about
new sources of CPV which arise from the matching to a given UV model, which should
be analyzed at an energy scale above the electroweak vacuum expectation value (vev) and
should not depend on the details of the IR dynamics, such as specific flavor bases motivated
by low energy considerations. Flavor-invariants are well-suited to answer such questions,
as they allow one to capture physical and collective properties of the model, to parametrize
CP-odd observables in a basis-independent way, and also to make the matching with UV
models and their properties easier, by decorrelating the parametrization of CPV quantities
from flavor bases connected to the IR properties of SM4 particles.

Let us use the aforementioned example of the top-quark complex Yukawa coupling to
offer a preview of the flavor-invariants considered in this paper. As said above, a top-Higgs
Lagrangian with a complex Yukawa coupling

L ⊃mtt̄t +
mt

v
t̄(κt + iκ̃tγ5)th =mtt̄LtR +

mt

v
t̄L(κt + iκ̃t)tRh + h.c. , (1.3)

1For the 6 CP-odd bosonic operators appearing in the basis in Ref. [33], indeed, the condition for CP
conservation is simply for their coefficient to vanish.
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violates CP. It can originate in SMEFT from the dimension-four and six Yukawa couplings,2

L ⊃ ytQ̄LtRH̃ +
CtH
Λ2

Q̄LtRH̃ ∣H ∣
2
+ h.c. . (1.5)

The above expression generalizes to three generations of matter in SMEFT upon replac-
ing QL, tR, yt,CtH → QL,i, tR,j , Yu,ij ,CuH,ij . Focusing on the diagonal entries of CuH in
a basis where Yu is diagonal and real (with non-degenerate entries, as is experimentally
relevant), their three imaginary parts ImCuH,ii violate CP. They can be captured by three
independent flavor-invariants, whose expressions read

Lk=1,2,3 = ImTr(Xk−1
u CuHY

†
u ) (1.6)

where Xu ≡ YuY
†
u . In the basis where Yu = diag yu,i is diagonal and real, one has Lk=1,2,3 =

y2k−1
u,i Im CuH,ii, with an implicit sum over i. Therefore, at fixed, non-vanishing and non-
degenerate yu,i, the set of three Lk=1,2,3 maps to that of three CuH,ii=1,2,3 in a bijective
fashion, hence those three invariants capture the three new sources of CPV associated to
up quark complex Yukawa couplings, as in Eq. (1.3). In the generic case however, CuH has
off-diagonal entries even in the basis where Yu is diagonal, all of which can be complex,
such that one needs nine flavor-invariants to capture the nine new sources of CPV in CuH .
Although there is no unique choice, one possible set of invariants reads

Lk=1,...,9 =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

ImTr (CuHY
†
u ) ImTr (XuXdCuHY

†
u ) ImTr (X2

dX
2
uCuHY

†
u )

ImTr (XuCuHY
†
u ) ImTr (XdXuCuHY

†
u ) ImTr (XuX

2
dX

2
uCuHY

†
u )

ImTr (XdCuHY
†
u ) ImTr (X2

uX
2
dCuHY

†
u ) ImTr (XdX

2
uX

2
dCuHY

†
u )

⎫⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎭

(1.7)

where Xd ≡ YdY
†
d .

3

Naively, the number of new flavor-invariants should match that of the new sources of
CPV. However, observables in SMEFT are truncated at a given order in inverse powers of
Λ, according to the SMEFT power counting, and it happens that not all sources of CPV
contribute to physical observables at this given order as a result of non-interference. In
this paper, we illustrate this fact by discussing CPV observables truncated at the leading
1/Λ2 order, to which several of the new sources of CPV at dimension-six cannot con-
tribute.4 We therefore carefully differentiate between the power counting for observables,

2At order 1/Λ2 (and for one generation only) the correspondence between the different coefficients reads
[37, 38]

mt =
ytv
√

2
(1 +

1

2

ReCuHv2

ytΛ2
) , κt + iκ̃t = 1 +

ReCuH
yt

v2

Λ2
+ i

ImCuH
yt

v2

Λ2
(1.4)

provided we start in a basis where yt is already real.
3The careful reader may note that the former L3 in Eq. (1.6) does not appear anymore in Eq. (1.7).

We have removed L3 because it is not independent of the first two L’s when two up-type quark masses are
degenerate. This does not happen for any of the invariants in Eq. (1.7), which are therefore preferred (see
the following sections for a systematic treatment).

4Such CP-odd observables are at most linear in the dimension-six SMEFT coefficients, and correspond
to the interference between the SM4 and the leading SMEFT contributions to a given amplitude. A more
thorough characterization of the observables we consider can be found in section 3.1.
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which we truncate at order 1/Λ2, and that of SMEFT operators, which we only include up
to dimension-six, i.e. also up to order 1/Λ2. As we will explain, not all associated SMEFT
coefficients can interfere with the SM4 contribution to a given observable, and therefore they
cannot all contribute at leading 1/Λ2 order to observables. We dub those which can primary
coefficients, while we refer to the others as secondary coefficients. We perform the counting
of the number of (both CP-even and CP-odd) SMEFT primary coefficients. Among those,
the CP-odd fermionic ones, whose number is 699, are captured by flavor-invariants linear
with respect to the dimension-six SMEFT coefficients, and an explicit and complete set of
such flavor invariants is built. Consequently, we present a necessary and sufficient set of
flavor-invariants, such that CP is conserved at O(1/Λ2) iff they vanish, together with J4,
the strong-CP phase, and the 6 CP-violating dimension-6 bosonic operators, so that they
form a set of 699(+1 + 1 + 6) order parameters of CPV.

The rest of this paper is organized as follows. In section 2, we review the collective
nature of CP breaking in the SM4 (in particular the structure of the aforementioned Jarl-
skog invariant), introducing concepts useful for the following, such as flavor bases and flavor
invariants. We additionally emphasize that collective effects also arise beyond the SM4, in
SMEFT in particular. In section 3, we refine the counting of dimension-six parameters of
SMEFT, taking into account the interplay between the SMEFT power counting and the
requirement of rephasing invariance of physical quantities. This reduces the relevant param-
eters to the primary ones. Focusing on new sources of CPV, we then present our strategy
to capture them thanks to flavor-invariants linear in the SMEFT dimension-six coefficients.
That this can be achieved is shown explicitly in section 4, where we discuss explicit sets of
CP-odd invariants for SMEFT at dimension-six. We emphasize that they need to be care-
fully chosen to capture all new sources of CPV for all parts of the SM4 parameter space,
ignoring for conciseness the case of vanishing quark masses which is subsequently treated in
an appendix. We finally present conclusions and future directions in section 5. Appendix
A discusses flavor symmetries of the SM4 in all relevant parts of its parameter space, which
is important to determine adequate sets of CP-odd invariants as discussed in section 4.
The case of vanishing quark masses is discussed at the end of this appendix. In appendix
B, we consider generic properties of flavor-invariants with three generations, in particular
algebraic relations between them which are consistent with the counting of primary param-
eters. In appendix C, the counting of primary parameters, performed in section 3 for three
generations of matter, is generalized to any number of generations. Appendices D and E
then contain a full list of linear CP-odd invariants (for operators respectively bilinear and
quartic in fermion fields), which map to all independent primary Lagrangian parameters.
Finally, appendix F includes θQCD, which allows one to build flavor-invariants with new
algebraic structures, but does not suffice to increase the number of primary coefficients.

2 The collective nature of CP breaking in the SM(EFT)

In order to motivate why we define CP-odd invariants, it is useful to review first one
important and interesting aspect of CP breaking in SMEFT: it is collective. Indeed, it relies
on the simultaneous presence of several complex parameters in the Lagrangian, which cannot
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all be made simultaneously real, even using the freedom to redefine fields (or equivalently,
to define appropriately the CP transformation). In this section we review CP violation in
SM4, in order to establish our conventions and present several of the claims related to CP
violation which will be repeatedly encountered in this paper.

2.1 CP-violation and complex parameters

The usual lore is that complex parameters in the Lagrangian violate CP. At the level
of the fermionic Lagrangian, this claim leaves implicit crucial subtleties related to field
redefinitions. The correct statement is instead that the Lagrangian is CP-symmetric iff one
can redefine the fields so as to make all couplings real.5 In the SM4, this explains why only
one phase out of the six naively contained in the CKM matrix is physical and breaks CP.
For instance, were the CKM matrix equal to the following unitary matrix

VCKM =

⎛
⎜
⎜
⎜
⎜
⎝

72−21i
325

4
13 −12i

13

−12
13

576+168i
1625

49−168i
1625

−96−28i
325 −57

65 −24i
65

⎞
⎟
⎟
⎟
⎟
⎠

, (2.1)

it would not violate CP, although it is explicitly complex. Indeed, one can write

⎛
⎜
⎜
⎜
⎜
⎝

72−21i
325

4
13 −12i

13

−12
13

576+168i
1625

49−168i
1625

−96−28i
325 −57

65 −24i
65

⎞
⎟
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎜
⎝

3−4i
5 0 0

0 4−3i
5 0

0 0 3−4i
5

⎞
⎟
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎜
⎝

3
13

4
13

12
13

−12
13

24
65

7
65

− 4
13 −

57
65

24
65

⎞
⎟
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎜
⎝

4+3i
5 0 0

0 3+4i
5 0

0 0 4−3i
5

⎞
⎟
⎟
⎟
⎟
⎠

, (2.2)

and absorb all the factorized diagonal phases into the fermion fields, in order to obtain a
real orthogonal CKM matrix. Such a manipulation cannot be done for the following matrix,

VCKM =

⎛
⎜
⎜
⎜
⎜
⎝

2172−5004i
8125 −1784+432i

8125 −2427+5196i
8125

−3747+3996i
8125

3324+912i
8125

4772−1164i
8125

−308+144i
1105 −4389+2052i

5525
1848+864i

5525

⎞
⎟
⎟
⎟
⎟
⎠

. (2.3)

However, whether it yields a CPV SM4 depends on the fermion spectrum. Indeed, were two
quark masses equal, the kinetic Lagrangian would have a U(2) flavor symmetry, allowing
for more general fermion field redefinitions. For instance, if mu = mc, we can redefine the
first two flavors of up-type quarks in order to absorb the 2×2 unitary matrix which appears
at the top left of the first factor on the right-hand-side of the following equality:

⎛
⎜
⎜
⎜
⎜
⎝

2172−5004i
8125 −1784+432i

8125 −2427+5196i
8125

−3747+3996i
8125

3324+912i
8125

4772−1164i
8125

−308+144i
1105 −4389+2052i

5525
1848+864i

5525

⎞
⎟
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎜
⎝

−176+468i
625 −9−12i

25 0

351−132i
625

16+12i
25 0

0 0 77+36i
85

⎞
⎟
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎜
⎝

3
13

4
13

12
13

−12
13

24
65

7
65

− 4
13 −

57
65

24
65

⎞
⎟
⎟
⎟
⎟
⎠

, (2.4)

5In the SM(EFT), this is strictly speaking only true for non-degenerate spectra, as there exists the
possibility that the couplings are pseudo-real, namely related to their complex conjugates via flavor trans-
formations. Then one would get a CP-symmetric Lagrangian iff there exists a flavor transformation which
sends all couplings to their complex conjugates at once. In this text, we focus mainly on non-degenerate
spectra where the statement holds, see section 4.2, appendix A, and Ref. [4] for more details.
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obtaining again a real orthogonal CKM matrix.
As is clear from these numerical examples, and as we will repeatedly illustrate, it is

more convenient to phrase the condition for CP-violation in a way which does not require
scanning over all possible field redefinitions. If the theory preserves CP, the following CP
transformation of the (non-degenerate) fermionic mass eigenstates ψ (together with those
of bosonic fields [4]) leaves the Lagrangian invariant in some field basis

(CP)ψ(t, x⃗)(CP)−1
= γ0Cψ

T
(t,−x⃗) , (2.5)

where C is the (antisymmetric) charge conjugation matrix such that γµC = −C(γµ)T . As
we anticipated, this implies that the Lagrangian couplings are real (in this field basis). For
instance, if we assume that there exists the following coupling in the theory,

L ⊃ c1212 (ψ1γ
µψ2) (ψ1γµψ2) + h.c. , (2.6)

we learn from the invariance under the CP transformation in Eq. (2.5) that c1212 is real.
However, the opposite statement is that the theory violates CP iff the transformation in
Eq. (2.5) is never a symmetry, whatever the field basis chosen. This is not equivalent to
saying that c1212 is complex in some basis, but that whatever the basis chosen, there exists at
least one Lagrangian parameter which is genuinely complex6 (which usually depends on the
basis). Therefore, the condition for CPV which we look for takes the following schematic
form

CPV ⇐⇒ Im (something independent of the field basis) ≠ 0 .

Such a basis-independent object precisely defines a CP-odd flavor invariant. Within the
framework of SMEFT, we can define flavor invariants order-by-order in the power counting.
At leading order, the condition for CPV reads:

CPV at O(1/Λ2) ⇐⇒ Im (something of O(1/Λ2) independent of the field basis) ≠ 0 .

2.2 Flavor transformations and flavor bases

As we just discussed, a meaningful statement about CP violation in the SM(EFT) must
account for the possibility of field redefinitions. In addition, the SM(EFT) Lagrangian is
naturally written in the unbroken electroweak phase, which does not differentiate between
the three fermionic generations. Therefore, it should be possible to characterize CP violation
without referring to any specific flavor labeling, in particular without identifying which
combinations correspond to the mass eigenstates.

When the Lagrangian is written in terms of the gauge multiplets relevant in the unbro-
ken phase, the kinetic Lagrangian in the fermion sector (including the gauge couplings) is
invariant under a U(3)5 = U(3)QL ×U(3)uR ×U(3)dR ×U(3)LL ×U(3)eR flavor group, where
each factor acts on the flavor indices of the associated fermion field (we drop the chirality
indices in what follows). This group is the largest under which all SMEFT coefficients

6For pseudo-real couplings, the statement is rather that all complex couplings cannot be turned simul-
taneously into their conjugates via the same change of basis.
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can be assigned a spurious transformation so as to leave the full SM(EFT) Lagrangian
unchanged.

Similarly to our conclusion in the previous section, the Lagrangian is CP-symmetric iff
one can redefine the fields so as to make all couplings real. When redefining the fermion
fields by means of a U(3)5 flavor transformation, the precise values of all flavored couplings
in SMEFT are mixed up, with the real and imaginary parts scrambled. Consequently,
any order parameter of CP breaking cannot correspond to the imaginary part of a given
coefficient, but instead should map to the imaginary part of a flavor-invariant combination
of coefficients.

In order to build such invariants, it is useful to notice that the flavored SMEFT cou-
plings transform under the flavor group as spurions with transformation properties which de-
pend on the operator they couple to. For the Yukawa couplings at dimension-four, the trans-
formations are as listed in Table 1, and each (anti)fundamental representation has a charge
(−)1 under the associated abelian group in the decomposition U(3)X = SU(3)X × U(1)X ,
where X = Q,u, d,L, e.7 Performing field redefinitions which belong to the flavor group, this
set of spurious charges allows one to easily compute the couplings in the redefined theory,
and to easily identify objects which are independent of such redefinitions.

SU(3)Q SU(3)u SU(3)d SU(3)L SU(3)e

Yu 3 3̄ 1 1 1

Yd 3 1 3̄ 1 1

Ye 1 1 1 3 3̄

Table 1: flavor transformation properties of the Yukawa matrices treated as spurions

Using flavor transformations, one can reach flavor bases where the Yukawa matrices
have a specific form, and which we will sometimes use to explicitly evaluate invariants. For
instance, using the singular value decomposition, we can choose that

Yu = diag(yu, yc, yt) , Yd = VCKM ⋅ diag(yd, ys, yb) , Ye = diag(ye, yµ, yτ) , (2.7)

where all y’s are real and positive and VCKM is the Cabibbo–Kobayashi–Maskawa (CKM)
matrix. We refer to this flavor basis as the up basis. Similarly, there exists a down basis
where

Yu = V
†
CKM ⋅ diag(yu, yc, yt) , Yd = diag(yd, ys, yb) , Ye = diag(ye, yµ, yτ) . (2.8)

Fixing this shape for the Yukawa couplings exhausts all flavor transformations but some
diagonal ones.8 If, in addition, a phase choice is made on the CKM matrix (for instance
imposing that all its phases are given in terms of a single one as in usual parameterizations),

7Out of the 5 U(1) factors only the gauged U(1)Y and the combinations U(1)B−L are conserved at the
quantum level, while the other are broken by anomalies.

8Their precise form depends on the basis. In the down basis, they are of the form diag(eiα
1
X , eiα

2
X , eiα

3
X ),

such that αiQ = α
i
d, α

i
L = α

i
e (RH up-quark phases are unconstrained).
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no flavor freedom remains but the conserved baryon and lepton number symmetries U(1)B×
U(1)L. When we make such a choice below, we use the following parametrization of the
CKM matrix [39],

VCKM =

⎛
⎜
⎜
⎝

c12c13 c13s12 s13e
−iδCKM

−c23s12 − c12s13s23e
iδCKM c12c23 − s12s13s23e

iδCKM c13s23

s12s23 − c12c23s13e
iδCKM −c12s23 − c23s12s13e

iδCKM c13c23

⎞
⎟
⎟
⎠

, (2.9)

where cX , sX = cos(θX), sin(θX).

2.3 The collective nature of CP breaking in the SM4

We now review in some detail the (well known) collective nature of CP breaking in the
SM4, which is useful for our purpose.

The fact that CP breaking is collective in the SM4 can be understood from the fact
that it preserves CP with up to two fermionic generations [2, 3], so that one needs the
simultaneous presence of three generations to be sensitive to CP violation. A question is
then: what is the order parameter of CP-breaking in the SM4?

In order to answer this question unambiguously, one needs to mod out the impact of
flavor transformations. Besides the use of invariants, a way to exhaust all flavor transfor-
mations is to work in a well-defined flavor basis, for instance in the up or down basis defined
previously. Using the remaining phase rotations allowed in such bases removes all complex
parameters but one, which fully specifies the flavor basis. The only leftover complex quan-
tity can be written in a way which is independent of the phase rotations [9–11, 19, 40, 41],

J = Im (VCKM,usVCKM,cbV
∗
CKM,ubV

∗
CKM,cs) = s12c12s13c

2
13s23c23 sin(δCKM) , (2.10)

where the last equality uses Eq. (2.9). It is straightforward to check that J = 0 for the
matrix in Eq. (2.1).

As we saw in section 2.1, when two masses (of same-type quarks) are degenerate,
there is a larger degeneracy of up or down bases, and one can further remove the leftover
complex parameter from the SM4 Lagrangian. Therefore, the genuine order parameter of
CP breaking in the SM, J4, is proportional to9

J4 ∝ (m
2
t −m

2
c)(m

2
t −m

2
u)(m

2
c −m

2
u)(m

2
b −m

2
s)(m

2
b −m

2
d)(m

2
s −m

2
d)J . (2.11)

One can show that there are no additional factors to J4 [9].
We have constructed J4 in a specific flavor basis, but it is useful to have expressions

valid in all bases. In that respect, instead of looking for complex quantities invariant under
mere phase rotations, one would rather consider invariants under the full flavor group. As

9This expression depends on differences of squared masses and not, e.g., on mt −mu. This is due to
the fact that only the modulus of a fermion mass is physical: any quark mass can be made complex by
an appropriate rephasing of the associated RH field without changing other SM4 couplings, hence we must
consider the rephasing-invariant quantity mψm

∗
ψ = ∣mψ ∣

2 for any fermion ψ, which reduces to the mass
squared in field bases where the mass is real.
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we anticipated in the introduction, J4, which goes under the name of Jarlskog invariant,
then corresponds to [9]

J4 ≡ Im Tr [YuY
†
u , YdY

†
d ]

3
= 3 Im Det [YuY

†
u , YdY

†
d ] . (2.12)

Defined as above, J4 is independent of the choice of flavor basis, as can be checked from
the transformations in Table 1. Evaluating Eq. (2.12) for instance in the up or down basis,
the connection with Eq. (2.11) is made obvious,

J4 = 6(y2
t − y

2
c )(y

2
t − y

2
u)(y

2
c − y

2
u)(y

2
b − y

2
s)(y

2
b − y

2
d)(y

2
s − y

2
d)J . (2.13)

It can be shown that the statement that CP is broken in the SM4 is equivalent to saying
that J4 does not vanish [9], therefore it corresponds to the genuine order parameter for CP
breaking in the SM4.

2.4 The collective nature of CP breaking beyond the SM4

The search for flavor-invariant order parameters for CP breaking beyond the SM4 is subject
to very similar discussions. As an example, let us consider the SM4 with a single generation
of fermions, extended by a dimension-six Yukawa coupling for the up-type quark:

L = LSM4 +
CuH
Λ2
∣H ∣2QLuRH̃ + h.c. (2.14)

It is well known that such a coupling can generate a two-loop contribution to the electron
EDM, a CPV observable, which reads at O(1/Λ2) [42–44]

de
e
= −

1

48π2

vmemu

m2
h

Im(CuH)
Λ2

F1 (
m2
u

m2
h

,0) , (2.15)

where for conciseness we only kept the dominant contribution due to photons in the loop,
where mh and v are the Higgs mass and vev, respectively, and where

F1 (a,0) = ∫
1

0
dx

ln( a
x(x−1))

a − x(x − 1)
. (2.16)

The result in Eq. (2.15) may suggest that Im(CuH) acts as an order parameter of CP
breaking in this theory.10 However, this imaginary part could be rotated away by a chiral
transformation of the up quark field (for instance by redefining uR → e−iarg(CuH)uR), so one
could wonder if there remains an observable electron EDM. The resolution to this puzzle
is due to the implicit assumption that the computation is performed in a basis where the
up quark has a real mass. In a generic flavor basis, the mass is complex,

L ⊃ −muuLuR −m
∗
uuRuL +

v2CuH
√

2Λ2
uLuRh +

v2C∗uH√
2Λ2

uRuLh , (2.18)

10In the SM4, the electron EDM arises at four-loop order and scales as follows with respect to the flavored
quantities [45],

de
e
∝m2

cm
2
sJ . (2.17)

The presence of J is consistent with the collective nature of CP breaking in the SM4.
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where we wrote the Lagrangian in the broken phase, and a careful evaluation of the two-loop
diagram (i.e. using propagators featuring complex fermion matrices) yields

de
e
= −

1

48π2

vme

m2
h

Im(m∗uCuH)
Λ2

F1 (
∣mu∣

2

m2
h

,0) , (2.19)

which matches Eq. (2.15) when mu is real, as it should. This expression allows us to identify
a more satisfactory order parameter of CP-breaking, Im(m∗uCuH), which does not depend
on the phase convention for the up quark. Similarly to what was discussed for the SM4

previously, what matters here for CP breaking is not that the Yukawa coupling has an
imaginary part, but that there is an irreducible imaginary part due to the simultaneous
presence of both the coupling to the Higgs of the up quark and its non-zero mass. This
provides also a qualitative argument for why the result in Eq. (2.15) had to be explicitly
proportional to mu.

The take-away message of this section is that real or imaginary parts of coefficients are
only meaningful with respect to CP breaking when the flavor basis is completely determined.
In a general basis, what matters are the imaginary parts of invariant combinations of
coefficients.11 CP-odd invariants in SMEFT, especially with three flavors, are the subject
of this paper.

3 Characterizing CP violation at dimension six

In this section, we discuss the number of primary parameters in SMEFT, as well as the
parametrization of those which are CP-odd.

3.1 Primary parameters in the SMEFT

First, we count the number of flavorful primary SMEFT parameters. We remind that they
are defined to be the dimension-six SMEFT parameters which generate BSM amplitudes
which can interfere with SM4 amplitudes (other parameters being called secondary). Indeed,
observables computed in SMEFT are subject to a power expansion, with respect to which
we focus on the leading BSM order, i.e. we include contributions to observables up to order
1/Λ2. For instance, in cross-section computations, we only consider the SM4 amplitude
squared and the interference with the leading BSM amplitude. Schematically, we can
express a generic amplitude as

A = A
(4)
+A

(6)
+ . . . (3.1)

11Examples of this also exist in the SM4. The quantity ε, which encodes indirect CP violation in kaon
decays, is sometimes written [1]

ε ≈
eiπ/4
√

2

Im(M12)

∆m
, (2.20)

where M12 is associated to K0
↔K0 mixing and ∆m is the mass difference between kaon mass eigenstates.

This formula actually assumes that λu ≡ VudV ∗us is real. The expression which is valid independently of the
phase conventions reads [4]

ε ≈
eiπ/4
√

2

Im(M12λ
2
u)

∆m ∣λu∣
2

. (2.21)
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where A(4) is the leading order amplitude built with renormalizable operators, A(6) is the
next-to-leading order one, accompanied by a 1/Λ2 suppression, and the dots indicate higher
order terms that we ignore. Then, observables such as cross sections, which are proportional
to the amplitude squared, will receive contributions by

∣A∣
2
= ∣A

(4)
∣
2
+ 2Re (A(4)A(6)∗) + . . . (3.2)

Our goal in this section is then to determine the primary parameter space that characterizes
the first two terms in Eq. (3.2).

This counting does not lead to a mere repetition of that of Ref. [36], which counts
primary and secondary parameters indifferently and whose results are reviewed in the first
double column of Table 2, due to the fact that several of the dimension-six parameters are
charged under lepton numbers, unlike SM4 parameters. Given that physical observables
cannot be charged, such parameters can only interfere with themselves (or other charged
BSM parameters) to form a neutral object, and are therefore secondary according to our
classification.

More precisely, the free fermionic Lagrangian in the broken phase of the SMEFT has
abelian flavor symmetries U(1)ui,di,Li . By definition, those do not affect the spectrum of
asymptotic states and therefore do not affect physical predictions. They simply correspond
to irreducible flavor ambiguities in a basis where mass matrices are diagonal and real,
which must be fixed by further specifications (for instance, phase prescriptions in the CKM
matrix). A consequence is that any observable must be expressed in terms of quantities
which are invariant under these U(1) phase rotations,12 and therefore, any coefficient which
is not invariant on its own must enter observables multiplied by another U(1)-charged
coefficient in order to form a neutral object. This story is known to readers familiar with
the notion of rephasing-invariants of the CKM matrix [46]: VCKM,ij being charged under
U(1)dj −U(1)ui , physical predictions can only depend on the moduli and quartets,13

∣VCKM,ij ∣
2
, VCKM,ijVCKM,klV

∗
CKM,ilV

∗
CKM,kj . (3.3)

For the SMEFT at leading order, that implies that U(1)-charged dimension-six coefficients
must multiply U(1)-charged dimension-four coefficients. In the quark sector, the CKM
matrix is the only such object, and there does not exist any in the lepton sector, since
U(1)Li is a symmetry of the SM4 Lagrangian for each i (remember that we work in the limit
of vanishing neutrino masses). Therefore, all “off-diagonal” lepton coefficients in the first
double column of Table 2, i.e. those which are charged under U(1)Li −U(1)Lj , correspond
to secondary parameters. This requirement reduces the number of parameters to the ones
in the second double column of Table 2.

A similar reasoning explains why adequate entries of the CKM matrix must multiply
dimension-six coefficients charged under U(1)ui and/or U(1)di . Those coefficients must

12This is a slightly different statement than the one that CP violation should be characterized in a
flavor-invariant way. Although they are restricted by flavor-invariant statements, amplitudes squared with
flavored external states are not flavor-invariant, but they are always invariant under phase rotations.

13Notice that sextets and monomial with more entries of the CKM matrix can be expressed in terms of
moduli and quartets using the unitarity of VCKM.
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therefore contribute to observables with an additional suppression due to the smallness of
the off-diagonal CKM entries. For instance, CuB,13 (expressed in the up basis) can only
enter observables as

V ∗CKM,11VCKM,31CuB,13 or V ∗CKM,12VCKM,32CuB,13 , (3.4)

where the unitarity of the CKM matrix allows us to not consider V ∗CKM,13VCKM,33CuB,13.
Due to the gauge anomalies of the abelian symmetries U(1)ui,di,Li , the θ-angles of the
different gauge factors of the SM are also charged parameters, which can interfere (non-
perturbatively) with appropriate SMEFT coefficients (see appendix F for a discussion of
θQCD). Nevertheless, U(1)Li −U(1)Lj is anomaly-free in the SM, therefore the statements
made previously about SMEFT coefficients in the lepton sector also hold non-perturbatively.

In this discussion, we ignored the specific cases of observables in the neutrino sector
since we work in the limit of vanishing neutrino masses. Examples of observables which we
allow include electric dipole moments (EDMs) [38, 43, 44, 47] or the CPV parameters εK
and ε′ in kaon physics [48–50]. We also assume that the leading BSM contribution indeed
corresponds to the interference at O(1/Λ2), and not to a dimension-six contribution squared
(or the interference between the SM4 and a dimension-eight coefficient, etc) due to some
accidental suppression of the O(1/Λ2) term. Below, we will also study the SM4 parameter
space as a whole (i.e., beyond values relevant for phenomenology), which includes points
where several entries of the CKM matrix become unphysical and can be redefined away,
turning additional dimension-six coefficients in the quark sector into secondary ones. This
would for instance happen if all down-type quarks were massless: barring observables which
are ill-defined whenmd → 0 within our leading order observables, we find a further reduction
of the relevant dimension-six coefficients, displayed in the last column of Table 2. Ref. [51]
performs a similar counting of primary parameters (focusing on the kinematic situation
where all fermions masses, but the top and bottom quark, are neglected).

3.2 CP conservation at leading order and minimal sets of CP-odd invariants

We now turn to the characterization of CP violation in SMEFT at leading order using
flavor-invariants. Specifically, in the spirit of the discussion which leads to the introduction
of J4, we ask

Which flavor invariants vanish iff CP is conserved at leading order in SMEFT? We
call such a set of CP-odd invariants of minimal cardinality a minimal set.

The notion of minimal cardinality implies that there are no redundancy: the vanishing
of each invariant in a minimal set provides an independent condition. The number of
invariants in a minimal set must be larger or equal than the number of new sources of
CPV. In the case of the SMEFT at O(1/Λ2), we find the non-trivial result that the two
numbers agree for all operators (see below).

Before going further, let us discuss one subtlety associated to our definition of a minimal
set of CP-odd flavor-invariants, which has to do with the parameter space considered. In
the way our definition is stated, it suggests that one aims at characterizing CP-conserving
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inv. under U(1)Li −U(1)Lj when md → 0

Type of op. # of ops # real # im. # real # im. # real # im.
bi
lin

ea
rs Yukawa 3 27 27 21 21 6 6

Dipoles 8 72 72 60 60 15 15

current-current 8 51 30 42 21 18 0

all bilinears 19 150 129 123 102 39 21

4-
Fe

rm
i

LLLL 5 171 126 99 54 45 0

RRRR 7 255 195 186 126 24 0

LLRR 8 360 288 246 174 36 9

LRRL 1 81 81 27 27 0 0

LRLR 4 324 324 216 216 18 18

all 4-Fermi 25 1191 1014 774 597 123 27

all 1341 1143 897 699 162 48

Table 2: Number of flavorful real and imaginary parameters in SMEFT at dimension-six (see Tables 7
and 8 for the explicit forms of the operators). The first double column counts the number of physical

parameters, the second one (highlighted in gray) counts those which are also primary (see the text). The
last column shows how the number of primary parameters reduces when all dimension-4 down-type

Yukawa couplings vanish, assuming generic and non-zero entries in Yu.

points for all possible choices of parameters, i.e. quark masses as well as mixing angles and
the CKM phase δCKM. However, one could also try to characterize CP-conserving points
within a given parameter subspace, for instance for values of the quark masses which are
non-vanishing. This is the choice we make in the main body of this paper: we build flavor
invariants which vanish iff CP is conserved at leading order in SMEFT under the assumption
that quark masses are non-vanishing. Our methods also allow one to identify minimal sets
of flavor-invariants when one considers vanishing quark masses, but since the expression of
the required invariants is more intricate than for the simpler case of non-vanishing quark
masses, we leave the resolution of this question to appendix A. One could finally restrict to
characterizing CP-conservation for a smaller set of parameters, e.g. fixing the values of the
quark masses or taking them non-degenerate. Our sets of invariants work in such restricted
cases, but there usually exist simpler ones (which do not correspond to minimal sets on
larger sets of parameters). We will encounter explicit examples in the next section.

Due to the SMEFT power counting, the conservation of CP at zeroth order first de-
mands that J4 = 0, so that the J4 is part of any minimal set. Then, in order to build the
rest of the minimal set, we look for invariants which are linear with respect to the SMEFT
dimension-six coefficients, consistently with the goal of characterizing CPV in observables
up to the first non-leading order, i.e. up to the O(1/Λ2) interference term in the R.H.S.
of Eq. (3.2). This linearity is also valuable to check that we indeed have a necessary and
sufficient condition for CP conservation, as it does not suffer from subtleties associated to
non-linear invariants, found e.g. in neutrino physics [26]. Indeed, the question of whether
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vanishing invariants really implies vanishing CP phases is trivially answered here. We
found that there does exist a minimal set of invariants linear with respect to the SMEFT
dimension-six coefficients. This set is presented in subsequent sections, and represents our
main result.

The linearity implies that the minimal sets are decomposed in minimal sets of invariants
Ia(C

(6)), defined for each SMEFT dimension-six operator O(6) and its associated matrix-
valued coefficient C(6) independently, and where the index a labels the new primary sources
of CPV present in C(6). Therefore, we can define the notion of minimal set at the level of
each SMEFT operator independently. The invariants have the following form:

Ia(C
(6)
) = Im (flavor-invariant linear in C(6)) = TRai (ReC

(6)
)
i
+ T Iai (ImC

(6)
)
i
≡ Tai

Ð→
C
(6)
i ,

(3.5)
where the last equality describes the result of evaluating the invariant in a given flavor
basis. Here we define

Ð→
C
(6)
i ≡ ((ReC

(6)
)

1
, (ReC(6))

2
, ..., (ImC(6))

1
, ...) (3.6)

as the vector in flavor space composed by the vectors Re/ImC(6), not necessarily of same
length, while the transfer matrix Tai is defined to take the block form

T = (TR T I) . (3.7)

By linearity, TRai is the imaginary part of a linear combination of products of entries of
dimension-four Yukawas (which are the only flavored objects at dimension-four), while T Iai
is the real part of a similar, albeit generically different, combination. Those matrices TR

and T I depend explicitly on the operator O(6) considered. A very convenient feature of such
invariants is that they automatically project out any secondary coefficient, which cannot
be arranged into invariants in a linear fashion by definition.

Showing that the set of invariants is minimal can be phrased as a condition on the
matrices TR/I :

A set of flavor invariants is a minimal set iff the rank of the transfer matrix T equals
the number of new primary sources of CPV in C(6) when J4 = 0 and never does for
all sets with strictly smaller cardinality.

Note that the last part of this characterization is automatic when the number of in-
variants, the number of primary sources of CPV and the rank are all equal. We use this
condition below to check that the sets of invariants we present below are indeed minimal.
We stress that the meaning of “when J4 = 0” encompasses a large subset of the whole pa-
rameter space spanned by the masses and the mixing angles, as seen from the expression
in Eq. (2.11): it is achieved when θij = 0 or π/2, or when mu,i = mu,j or md,i = md,j , for
any pair i, j. In addition, setting J4 = 0 via one of these choices still leaves a large freedom
for the remaining parameters. For instance, one may have θij = 0 and mu,k =mu,l for some
i, j, k, l = 1, ..., 3. A set of flavor invariants is a minimal set only if the rank of its trans-
fer matrix corresponds to the number of new sources of CPV within the whole parameter
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space where J4 = 0 (up to the restriction of non-vanishing quark masses which we adopt in
the main text of this paper and relax in appendix A). We will come back to this point in
section 4.

The transfer matrix T acts on the flavor-space vector made out of real and imaginary
entries of C(6) (the precise order in the labeling as well as the order between real and
imaginary part is unimportant). Note that the rank does not change under the action of
flavor transformations (which reshuffle real and imaginary parts, as well as the entries of
TR/I).

4 Minimal set of CP-odd invariants

In this section, we present the minimal set of leading order CP-odd invariants in SMEFT
at dimension-six, under the aforementioned assumption that all fermion masses are non-
vanishing, which has an impact on how many sources of CPV are expected and which
invariants correctly capture them. We treat the cases of vanishing masses in appendix A.

4.1 Examples

Let us present some parts of our minimal set of invariants for SMEFT at dimension-six.
As we explained previously, the linearity with respect to the Wilson coefficients of the
dimension-six CP-odd observables allows one to treat the different SMEFT operators inde-
pendently. The study of all SMEFT operators proceeds along identical lines, and the full
set of invariants is presented in appendices D and E.

We begin by considering SMEFT operators which are bilinear in fermion fields and
hermitian, and therefore have the simplest non-trivial flavor structure. Invariants under
unitary groups with bi-fundamental representations must feature the invariant tensor δab ,
therefore they correspond to linear combinations of traces of products of matrices, arranged
so that indices of a given fundamental representation and its conjugate are contracted in
the trace, as seen for instance in Eqs. (1.6)-(1.7). In addition, there are relations between
powers of 3 × 3 matrices, and/or between their traces, derived from the Cayley–Hamilton
theorem, which reduce the candidate invariants to a finite set. We explicitly present such
properties in appendix B. For convenience we define: Xu ≡ YuY

†
u and Xd ≡ YdY

†
d . The

relevant single-trace invariants linear with respect to a SMEFT coefficient C, for a fermion
bilinear operator, take the universal form14

Labcd(C̃) ≡ ImTr(Xa
uX

b
dX

c
uX

d
d C̃) , with a, b, c, d = 0,1,2 and a ≠ c, b ≠ d , (4.1)

where C̃ = C,CY †
f=u,d,e or YfCY

†
f , depending on the chiral structure of the operator under

study (see below for explicit formulae). We first choose C = CHu for definiteness, and we
find that the following property holds:

14As we will see, those structures are also the only ones needed for 4-Fermi operators.
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L = LSM4 +
CHu,ij

Λ2 (iH†←→DµH)ui,Rγ
µuj,R

preserves CP at O(1/Λ2) iff

J4 = L1100 (YuCHuY
†
u ) = L2200 (YuCHuY

†
u ) = L1122 (YuCHuY

†
u ) = 0 (4.2)

Indeed, J4 = 0 is necessary so that the leading order SM4 contribution to any CP-odd
observable vanishes. Once enforced, this makes the SM4 Lagrangian CP-symmetric, and
there remains generically three new primary sources of CPV in CHu. Indeed, CHu is a (3×3)
hermitian matrix (which transforms as a 3 ⊗ 3̄ representation of U(3)u). Therefore, the
minimal set for CHu should at least contain three invariants. As we explained in section 3.2,
in order to show that the three invariants in Eq. (4.2) capture the three necessary conditions,
it is sufficient to compute the transfer matrix T such that,

⎛
⎜
⎜
⎝

L1100

L2200

L1122

⎞
⎟
⎟
⎠

= (TR T I)

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

ReCHu,11

ReCHu,12

...

ImCHu,12

ImCHu,13

ImCHu,23

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (4.3)

and show that it has rank 3. Parametrically, and in some basis, the generic case corresponds
to taking δCKM → 0 in Eq. (2.9) while holding all mixing angles different from 0, π/2 and
all quark masses non-denegerate, which is what we assume in the current section (we treat
more general cases below). Then, TR = 03×6 and the determinant of T I is found to be
non-vanishing. Therefore, L1100 = L2200 = L1122 = 0 implies that ImCHu,ij = 0 in the basis
of Eq. (2.9) (or any other basis where the Yukawa matrices are real), i.e. CP is conserved.
Conversely, the conservation of CP, or equivalently ImCHu,ij = 0, implies that all L’s vanish
since TR = 0. This proves the equivalence announced above.

One may be surprised by the fact that some simple invariants, in the sense that they
feature low powers of the Yukawa matrices, are not parts of the set in Eq. (4.2). For instance,
for CHu, the set formed by

L1100 (YuCHuY
†
u ) , L1200 (YuCHuY

†
u ) , L2100 (YuCHuY

†
u ) (4.4)

would pass the test performed in this section, namely the associated transfer matrix would
generically have rank 3. Such invariants have been studied beyond SMEFT, and exist
generally for any set of three hermitian matrices in the same adjoint representation, as
explained in Ref. [17]. However, they would not be a valid choice of invariants, since they
would not correspond to sufficient conditions whatever the values of the fermion masses
and the CKM matrix. For instance, mt = mc is another way to get J4 = 0 other than
that discussed above. In this situation, there remains three conditions necessary for CP
to be conserved (see section 4.2 for details). Therefore, imposing that a given minimal set
vanishes should be equivalent to three independent conditions also when mt =mc. However
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(when mt =mc) we find that

(m2
u +m

2
c)L1100 = L2100 , (4.5)

where the mass-dependent factor can be expressed in terms of invariant quantities,

m2
u +m

2
c =

18 detXu − 3 (TrXu)
3
+ 7 TrXuTrX2

u

6 TrX2
u − 2 (TrXu)

2
. (4.6)

Therefore, imposing that the set in Eq. (4.4) vanishes only amounts to two conditions.
Instead, one can check that the vanishing of the set in Eq. (4.2) yields three independent
conditions, even when mt = mc. We expand on what happens however J4 = 0 is taken in
section 4.2, and show that the set in Eq. (4.2) above yields a satisfactory minimal set in all
cases (as long as all quark masses are non-vanishing).

Similar reasoning applies to all SMEFT operators. Let us present the results in two
more cases with slightly more complicated flavor structures, the non-hermitian bilinear
operator OuH and the hermitian symmetric 4-Fermi operator Ouu. The Wilson coeffi-
cient CuH contains nine new primary sources of CPV, since it is an arbitrary (3 × 3) com-
plex matrix (which transforms as a (3, 3̄) representation of U(3)Q ×U(3)u). Cuu contains
eighteen new CPV parameters (Cuu,ijkl is “hermitian”, i.e. C∗uu,ijkl = Cuu,jilk, symmetric,
Cuu,ijkl = Cuu,klij , and it transforms in the (3⊗ 3̄)2 of U(3)u).

For OuH , we find that

L = LSM4 +
CuH,ij

Λ2 Qi,LH̃uj,R∣H ∣
2
+ h.c.

preserves CP at O(1/Λ2) iff

J4 = L0000 (CuHY
†
u ) = L1000 (CuHY

†
u ) = L0100 (CuHY

†
u )

= L1100 (CuHY
†
u ) = L0110 (CuHY

†
u ) = L2200 (CuHY

†
u )

= L0220 (CuHY
†
u ) = L1220 (CuHY

†
u ) = L0122 (CuHY

†
u ) = 0 .

(4.7)

We now turn to Ouu. For 4-Fermi operators, we generically define

TrA (M
(1),M (2),C) ≡M (1)

ji M
(2)
lk Cijkl , TrB (M

(1),M (2),C) ≡M (1)
li M

(2)
jk Cijkl , (4.8)

and
Aabcdefgh(C) =TrA (X

a
uX

b
dX

c
uX

d
d ,X

e
uX

f
dX

g
uX

h
d ,C) ,

Babcd
efgh(C) =TrB (X

a
uX

b
dX

c
uX

d
d ,X

e
uX

f
dX

g
uX

h
d ,C) .

(4.9)

We further define
Cũũuu,ijkl ≡ ∑

m,n

Yu,imY
†
u,njCuu,mnkl , (4.10)

and similarly for Cũuuũ,Cuũũu,Cuuũũ, Cũũũũ, and for the down quark versions. We then
find that
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L = LSM4 +
Cuu,ijkl

Λ2 ui,Rγ
µuj,R uk,Rγµul,R

preserves CP at O(1/Λ2) iff

J4 = A
0000
1100 (Cuuũũ) = A

1000
1100 (Cũũũũ) = A

0100
1100 (Cũũũũ)

= A0000
2200 (Cuuũũ) = A

1100
1100 (Cũũũũ) = A

0200
1100 (Cũũũũ)

= A0100
2200 (Cũũũũ) = A

0000
1122 (Cuuũũ) = A

1100
2200 (Cũũũũ)

= A1000
1122 (Cũũũũ) = A

0100
1122 (Cũũũũ) = A

1100
0122 (Cũũũũ)

= A1200
2200 (Cũũũũ) = B

0000
1100 (Cuũũu) = B

0100
1100 (Cũũũũ)

= B0200
2100 (Cũũũũ) = A

1200
1122 (Cũũũũ) = B

1000
1200 (Cũũũũ) = 0 .

(4.11)

The proofs of these equivalences follow from the same logic as for CHu: compute T I

and check that it has maximal rank, which means that the origin in invariant space is
uniquely mapped to the origin in imaginary-coefficient space. Therefore, the vanishing of
the invariants is equivalent to the conservation of CP (at leading order).

Finally, let us consider the leptonic case. As we argued in section 3.1, the fact that
the SM4 Lagrangian is symmetric under the lepton numbers U(1)Li makes several SMEFT
dimension-six coefficients in the lepton sector secondary. For the specific example of CeH ,
this means that all off-diagonal entries are secondary, since they are charged under U(1)Li−
U(1)Lj for suitable i, j. Therefore, although all imaginary parts of the nine entries of
CeH violate CP when the full SMEFT expansion is considered, the only ones which can
contribute to CP-odd observables at O(1/Λ2) are the diagonal ones. The same reasoning
applies to CHe, which therefore does not violate CP at O(1/Λ2). Consequently, a minimal
set for CeH contains three invariants, and is empty for CHe. Indeed, we find that (defining
Xe ≡ YeY

†
e )

L = LSM4 +
CHe,ij

Λ2 (iH
†←→DµH) ei,Rγ

µej,R + (
CeH,ij

Λ2 Li,LHej,R∣H ∣
2
+ h.c. )

preserves CP at O(1/Λ2) iff

J4 = ImTr (CeHY
†
e ) = ImTr (XeCeHY

†
e ) = ImTr (X2

eCeHY
†
e ) = 0 . (4.12)

Let us end this preview by saying that the above invariant sets are not unique: there
are different sets of invariants which would equally well capture the necessary and sufficient
conditions for CP-conservations at order 1/Λ2. Our construction of the above sets requires
that the invariants have the lowest possible degree with respect to Yukawa matrices, and
that they be as large as possible when the observed values of the fermion masses and CKM
entries are plugged in.

4.2 Expected ranks when J4 = 0

We now discuss the rank of the transfer matrices, related to the validity of the minimal sets
presented above, in non-generic cases, namely when some fermion masses are degenerate
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and/or when there are texture zeros in the CKM matrix (which happens when some mixing
angles take special values).

To apply consistently the definition of minimal sets from section 3.2, we need to carefully
determine how many new primary sources of CPV there are when J4 = 0, or equivalently
what is the expected rank of the transfer matrix T , irrespective of how we take J4 → 0.
In our generic situation of the previous section, J4 → 0 meant δCKM → 0 in Eq. (2.9)
while holding all mixing angles different from 0, π/2 and the quark masses non-degenerate.
This ensures that there are no texture zeros in the CKM matrix, so that the number of CP-
breaking quantities were identified with the number of imaginary parts (in the quark sector).
However, that is not the only situation captured by the ambiguous “J4 = 0” condition, as
we anticipated in section 3.2. Indeed, mass degeneracies and/or texture zeros in the CKM
matrix may lead to a conserved flavor symmetry of the SM4 Lagrangian larger than U(1)B,
which has an impact on the number of CP-odd quantities at order 1/Λ2.

The reason is identical to that discussed in section 3.1: observables should be invariant
under any symmetry of the spectrum of asymptotic states. Consequently, at order 1/Λ2,
SMEFT coefficients must combine with SM4 parameters to form invariant objects, and in
particular, when the SM4 Lagrangian has a flavor symmetry (which is therefore part of
the symmetry group of the spectrum), only SMEFT coefficients invariant under this flavor
symmetry can generate amplitudes which interfere with SM4 ones.

In the generic case of a CP-preserving SM4 Lagrangian (i.e. taking δCKM → 0 in
Eq. (2.9) with generic values of mixing angles and quark masses, or said differently for a real
CKM matrix without texture zeros), there is no flavor symmetry beyond the baryon and
lepton numbers U(1)B × U(1)Li . Therefore, any additional B- and Li-preserving SMEFT
coupling in the Lagrangian is primary, and its imaginary part is a primary source of CPV.
We leave to appendix A the systematic discussion of all flavor symmetries of the SM4 and
their relation to mass degeneracies and/or texture zeros in the CKM matrix, but, for the
sake of illustration, we discuss here two specific cases.

In the first one, the CKM matrix is non-generic and has texture zeros:

VCKM =

⎛
⎜
⎜
⎝

∗ 0 ∗

0 ∗ 0

∗ 0 ∗

⎞
⎟
⎟
⎠

. (4.13)

This texture can be achieved from Eq. (2.9) by taking s23 = s12 = 0 (in particular, J4 = 0

for such a texture). The flavor symmetry of the dimension-four action is now enlarged to
U(1)2, corresponding to two independent abelian transformations of (Q1,Q3, u1, u3, d1, d3)

and (Q2, u2, d2) respectively (in the up or down basis), acting as follows:

ui,R → eiξqiui,R , (4.14)

with ξq1 = ξq3 , and similarly for other quarks.
The second example is that of a degenerate fermion spectrum. We take for definiteness

mt = mc (which again implies J4 = 0). With this degeneracy, the symmetry of the mass
terms becomes non-abelian, while the phase in the CKM matrix, as well as one mixing
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angle, is no longer physical. Indeed, we can perform a flavor transformation (here in the up
basis),

QL →

⎛
⎜
⎜
⎝

1 0 0

0 c23 s23

0 −s23 c23

⎞
⎟
⎟
⎠

QL , uR →

⎛
⎜
⎜
⎝

1 0 0

0 c23 s23

0 −s23 c23

⎞
⎟
⎟
⎠

uR , (4.15)

such that

VCKM →

⎛
⎜
⎜
⎝

c13 0 s13

0 1 0

−s13 0 c13

⎞
⎟
⎟
⎠

⎛
⎜
⎜
⎝

c12 s12 0

−s12 c12 0

0 0 1

⎞
⎟
⎟
⎠

. (4.16)

Therefore, the values of θ23 and δCKM have no physical impact. For generic values of θ12

and θ13, the CKM matrix in Eq. (4.16) has no texture zeros, and the flavor symmetry of
the SM4 Lagrangian in the quark sector still corresponds to the baryon number.

All possible cases are treated similarly, and the full discussion is presented in ap-
pendix A. The summary of this analysis (assuming no vanishing mass, see appendix A for
the more general case) is presented in Table 3 where, for each non-generic case of interest,
we present the flavor symmetry group. The discussion in the lepton sector is similar, but
features at least a U(1)3 flavor freedom in the SM4, since the PMNS matrix is given by the
identity. When two or three charged lepton masses are degenerate, this U(1)3 increases to
U(2) ×U(1) and U(3), respectively.

This discussion allows us to work out the number of new primary sources of CPV at
order O(1/Λ2), in each (non-)generic case for the CKM matrix. Let us focus again on the
two previous examples, which generalize easily to all.

When the baryon or lepton numbers are the only flavor symmetries at dimension-four
(in the up or down basis), all imaginary parts of the Wilson coefficients at dimension-six
in the quark sector (and in the lepton sector, all imaginary parts which are not charged
under the lepton numbers) can interfere with the SM4. Instead, when the flavor symme-
try increases to U(1)2, several SMEFT coefficients become secondary. For instance, CHu
transforms as (in the up or down bases)

CHu,ij → e
i(ξqj−ξqi)CHu,ij , (4.17)

where ξq1 = ξq3 and arbitrary ξq2 for the texture of Eq. (4.13), and similarly for other
textures. Therefore, for the texture of Eq. (4.13), only CHu,13 is primary and CHu only
provides one primary source of CPV, ImCHu,13.15 Thus, in this case, a single invariant in
the minimal set for CHu is sufficient.

This exercise can be performed for all non-generic cases for the CKM matrix and for
all Wilson coefficients. This results in a set of conditions for CP conservation at leading
order, whose number is in one-to-one correspondence to the number of independent CP-odd
invariants in a minimal set. As we just saw, those numbers depend on the flavor symmetry
of the SM4 Lagrangian, and are given for all SMEFT operators in Table 4.

15One can construct non-linear invariant quantities from CHu,12/23, an example being CHu,12C∗Hu,23. At
leading order, however, CHu,12/23 cannot contribute linearly to observables.
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Parameter values
Flavor symmetries of
the SM4 Lagrangian

mu ≠mc ≠mt

md ≠ms ≠mb

Generic VCKM U(1)B

∣VCKM,i0j0 ∣ = 1 , VCKM,ij0 = VCKM,i0j = 0

i ≠ i0, j ≠ j0
U(1)2

∣VCKM,i1j1 ∣ = ∣VCKM,i2j2 ∣ = ∣VCKM,i3j3 ∣ = 1 for
i1 ≠ i2 ≠ i3

j1 ≠ j2 ≠ j3

VCKM,ij = 0 elsewhere

U(1)3

mu ≠mc =mt

md ≠ms ≠mb

Generic VCKM (see Eq. (4.16)) U(1)B

∣VCKM,i0j0 ∣ = 1 , VCKM,ij0 = VCKM,i0j = 0

i ≠ i0, j ≠ j0
U(1)2

∣VCKM,i1j1 ∣ = ∣VCKM,i2j2 ∣ = ∣VCKM,i3j3 ∣ = 1 for
i1 ≠ i2 ≠ i3

j1 ≠ j2 ≠ j3

VCKM,ij = 0 elsewhere

U(1)3

mu ≠mc ≠mt

md =ms ≠mb

Same as the previous case with VCKM ↔ V †
CKM

mu ≠mc =mt

md =ms ≠mb

Generic VCKM U(1)2

∣VCKM,11∣ = ∣VCKM,22∣ = ∣VCKM,33∣ = 1

VCKM,ij = 0 elsewhere
U(1)3

∣VCKM,13∣ = ∣VCKM,22∣ = ∣VCKM,31∣ = 1

VCKM,ij = 0 elsewhere
U(2) ×U(1)

mu =mc =mt

md ≠ms ≠mb U(1)3

md =ms ≠mb U(2) ×U(1)

md =ms =mb U(3)

md =ms =mb

mu ≠mc ≠mt U(1)3

mu ≠mc =mt U(2) ×U(1)

mu =mc =mt U(3)

Table 3: Flavor symmetry of the SM4 Lagrangian as a function of special values for quark masses
(assumed to be non-vanishing, see appendix A for the general case) and entries of the CKM matrix.

Conditions on the right are understood to be imposed on top of those on their left. Here only some of the
possible combinations of mass degeneracies are treated. The other mass degeneracies lead to the same
flavor symmetries provided the corresponding non-generic VCKM are multiplied by appropriate matrices

exchanging flavor labels (see footnote 16).

We can now come back to the statement that the set of invariants in Eq. (4.4) is not
a satisfying one for CHu. As seen in Table 4, all its off-diagonal entries are primary when
mt =mc, and all their imaginary parts violate CP (in an appropriate basis), hence we need
three independent invariants to capture the conditions for CP conservation.

Let us stress again at this point that the fact that we found a set of invariants of
minimal size (i.e. three invariants for the case of CHu) which captures the necessary and
sufficient conditions for CP conservation in all non-generic cases listed in Table 3 is a non-
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Bilinears 4-Fermi

Flavour symmetries

of the quark sector of the SM

CeH

CeW

CeB

CuH

CuG

CuW

CuB

CdH

CdG

CdW

CdB

CHud

C1,3
HL

CHe

C1,3
HQ

CHu

CHd

CLL

Cee

CLe

C1,3
QQ

Cuu

Cdd

C1,3
LQ

CQe

CLu

Ceu

CLd

Ced

C1,8
ud

C1,8
Qu

C1,8
Qd

CLedQ

C1,3
LeQu

C1,8
QuQd

U(1)B 3 9 0 3 0 3 18 9 36 27 81

U(1)2 3 5 0 1 0 3 5 3 12 15 33

U(1)3 3 3 0 0 0 3 0 0 3 9 15

U(2) ×U(1) 3 2 0 0 0 3 0 0 2 6 6

U(3) 3 1 0 0 0 3 0 0 1 3 2

Two degenerate electron-type leptons × 2
3

×1 ×1 × 2
3

×1 × 2
3

×1 × 2
3

×1

All electron-type leptons degenerate × 1
3

×1 ×1 × 1
3

×1 × 1
3

×1 × 1
3

×1

Table 4: Numbers of new primary sources of CPV contained in each dimension-six SMEFT coefficient, for
each of the possible flavor groups of the quark sector of the SM4 at dimension-4 (restricting to situations
where fermion masses are non-vanishing). The last two rows indicate which multiplicative coefficient

should be applied to all numbers of the same column for special values of the electron-type lepton masses.

trivial result. Nevertheless, it turns out that it can be done for all SMEFT coefficients at
dimension-six, as we explicitly showed.

5 Conclusions and future directions

In this paper, we have investigated the collective properties of SMEFT at dimension-six.
Their first implication which we have discussed is that only a subset of Lagrangian param-
eters (dubbed primary parameters) can contribute linearly to observables upon interfering
with the dimension-four SM4 amplitude. This is due to the existence of flavor transforma-
tions which leave the SM spectrum and thus any observable invariant, thereby demanding
that covariant Lagrangian parameters combine to form invariant objects. This applies for
instance to field-rephasings associated to mass-eigenstates, implying that Lagrangian coef-
ficients must combine into rephasing-invariant objects. Associated to the SMEFT power
counting, this implies that several coefficients related to dimension-six SMEFT operators
cannot contribute to observables at order 1/Λ2, since they are charged under individual lep-
ton numbers unlike all SM4 parameters (in the limit of zero neutrino mass). We therefore
refined the usual counting of dimension-six SMEFT parameters so as to include this effect,
which resulted in the counting of primary parameters in Table 2.

Then, we focused on collective effects related to new sources of CP violation in the
dimension-six SMEFT, both of which are captured thanks to CP-odd flavor-invariants. To
respect the SMEFT power counting, we restricted to invariants linear in dimension-six
coefficients, and we presented minimal sets of invariants which map in a one-to-one basis to
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all new primary sources of CPV. We proved this by showing that the points in parameter
space where CP is conserved (at leading BSM order) are exactly the points where our new
invariants vanish. This holds for all parts of the SM4 parameter space, including degenerate
cases. A complete list of CP-odd linear invariants can be found in Appendices D and E.
We remind the reader that this list is not unique.

There are several directions along which our work can be extended [52]. The first
one concerns parameterizations of leading order CP-odd observables. Indeed, although our
characterization of new primary sources of CPV is complete, it does not necessarily describe
all the relevant parameter space of those observables. The reason is that, CP being broken
at dimension-four already, the source of its breaking in the SM4 can interfere with CP-even
dimension-six parameters of SMEFT. On the other hand, remembering that physics should
not depend on a specific field basis, a CPV observable can always be expressed in terms of
CPV flavor-invariants. Taking all this into account suggests that one should study larger
sets of CP-odd invariants than our minimal ones. In such sets, only a subset of invariants
capture new primary sources of CPV, but each invariant captures a new, independent
primary dimension-six quantity which corresponds to, or can interfere with, a source of
CPV. We call such a set a maximal set. Given an invariant I in such a set, one can always
write

I =∑
i

ciIi + J4Ĩ , (5.1)

where {Ii}i forms a minimal set in the sense described in this paper, and Ĩ is a CP-even
expression built as a ratio of polynomial flavor-invariants. Indeed, given our definition of
minimal sets, all CPV observables (in particular I) must vanish at order O(1/Λ2) when
J4 = Ii = 0. Nevertheless, one can check that all (CP-odd or -even) primary parameters
can be captured by CP-odd invariants, thanks to a rank analysis similar to that presented
in section 3.2, and consistent with the fact that all primary parameters can contribute to
CPV observables, either directly or via interference with the SM4 CP phase.

Relatedly, one can numerically evaluate the invariants, which encode collective effects
and the suppression they induce, using the observed values of the SM4 parameters. This
illustrates how accidentally small the absolute strength of each new source of CPV is, or if
there are hierarchies among them, etc. This in turn explains (part of) the suppression in
CPV observables [53–56]. One can also similarly probe the effects of specific UV hypotheses
on the SMEFT coefficients, such as textures derived from flavor symmetries. A given UV
model may have its own CP-odd flavor invariants, and these can be matched onto our IR
invariants, inducing possible correlations amongst the IR invariants. In other directions, it
would be interesting to consider other operator bases than the Warsaw basis we use in this
work, and to check which expressions our invariants map to, given that the overall number
of independent sources of CPV must be conserved. One could also extend our construc-
tion beyond O(1/Λ2), e.g. to capture squared dimension-six or interfering dimension-eight
SMEFT contributions. Finally, one could consider the RG evolution of invariants [27].
We anticipate that flavor invariants, at dimension-six and beyond, are essential tools for
illuminating the rich CP structure of SMEFT.
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A Flavor symmetries of the SM4

In this appendix, we present the details behind Table 3, and identify the possible flavor
symmetries of the SM4 Lagrangian in terms of textures in the CKM matrix. We remind
that the flavor symmetries acts on the quark fields as follows:

uR → UuuR , (A.1)

where Uu ∈ U(3)u, and similarly for all other fermionic fields d,Q,L, e. Which matrices U
lead to genuine symmetries of the SM4 Lagrangian depends on the values of the masses and
of the entries of the CKM matrix. In all cases of non-trivial flavor symmetries, we find that
J4 = 0, so that there exists at least one combination of CP and flavor symmetries which
yield a symmetry of the SM4 Lagrangian in any basis.

In what follows, we work for definiteness in the up basis of Eq. (2.7).

A.1 Non-vanishing quark masses

The condition for the flavor invariance of Yu and Yd reads

Yu = U
†
QYuUu , Yd = U

†
QYdUd . (A.2)

For non-vanishing quark masses, the Yukawa matrices are full rank and one can use Eq. (A.2)
to solve for Uu,d as a function of UQ and the Yukawa matrices:

Uu = Y
−1
u UQYu , Ud = Y

−1
d UQYd . (A.3)

Therefore, only one matrix determines the two others, and the flavor symmetry group is at
most U(3). Imposing that U †

uUu = U
†
dUd = 1 implies (in the up basis) that

[UQ,mum
†
u] = [V

†
CKMUQVCKM,mdm

†
d] = 0 , (A.4)

where mu/d ≡ diag(mu/di). In the up basis, quark masses are positive and real, therefore

[UQ,mu] = [V
†
CKMUQVCKM,md] = 0 (A.5)

and (using the explicit expression of the Yukawa matrices in the up basis)

Uu = UQ , Ud = V
†
CKMUQVCKM . (A.6)

The commutation relations in Eq. (A.5) are additional constraints to fulfil which depend on
the spectrum, as we now explore.
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A.1.1 Non-degenerate quark masses

If all up-type quarks are non-degenerate, the first condition in Eq. (A.5) implies that UQ =

diag (eiξi) and the second that UQ = VCKMdiag (eiξ̃i)V †
CKM, therefore

VCKM,ij = e
i(ξi−ξ̃j)VCKM,ij .

Consequently, all ξ’s are equal and opposite to the ξ̃’s (i.e. the flavor symmetry is given
by the baryon number U(1)B) unless the CKM matrix has some vanishing entries. For
instance, one finds a U(1)2 flavor symmetry when the CKM matrix has the following
texture:

VCKM =

⎛
⎜
⎜
⎝

∗ 0 0

0 ∗ ∗

0 ∗ ∗

⎞
⎟
⎟
⎠

, (A.7)

corresponding to the constraints ξ2 = ξ3 = ξ̃2 = ξ̃3, for arbitrary ξ1 = ξ̃1. More generally, a
U(1)2 flavor symmetry is obtained for any texture such that, given two integers (i0, j0),
∣VCKM,i0j0 ∣ = 1 and VCKM,ij = 0 for i = i0 or j = j0. By comparing with the explicit
parametrization in Eq. (2.9), one finds that a mixing angle has to be equal to 0 or π/2 in
all those cases, hence J4 = 0 and there exists a basis where all SM4 couplings are real.

A flavor symmetry U(1)3 is obtained for all textures of VCKM such that there is a single
number of unit modulus in each row and column, such as e.g. VCKM = 1 or

VCKM =

⎛
⎜
⎜
⎝

∗ 0 0

0 0 ∗

0 ∗ 0

⎞
⎟
⎟
⎠

. (A.8)

A.1.2 Degenerate quark masses

In cases with quark mass degeneracies, J4 = 0 automatically and there exists a basis where
all SM4 couplings are real.

mt =mc Let us start with the case of two degenerate quarks of the same type, which we
take to be mt =mc for definiteness, all other masses being non-degenerate.16

The first relation in Eq. (A.5) implies that

UQ =
⎛

⎝

eiξ1 0

0 U
(2)
u

⎞

⎠
with U (2)u ∈ U(2) , (A.9)

16The equivalent case where down quark masses are degenerate is treated identically after the exchange
VCKM ↔ V †

CKM. We also consider the specific case mt =mc (and ms =md in the case of down quarks later
on), since the formulae are simpler given our parametrization of VCKM. Nevertheless, the discussion (and
the parametrization) can be adapted to any other quark mass degeneracy. In particular, the remarkable
textures V (ji)CKM leading to a given flavor symmetry when muj =mui , i < j are related to those when mt =mc

by
V (ji)CKM = Ri2Rj3V

(tc)
CKM ,

where Rab is the matrix which exchanges rows (or columns) a and b. Similarly, textures obtained when
mdj =mdi , i < j are related to those when ms =md by

V (ji)CKM = V
(sd)
CKMRi1Rj2 .
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while the second implies that UQ = VCKMe
iξ̃iV †

CKM, therefore

VCKM =
⎛

⎝

eiξ1 0

0 U
(2)
u

⎞

⎠
⋅ VCKM ⋅ diag (e

−iξ̃i) . (A.10)

Upon solving this equation, one finds that, similarly to the case of non-degenerate masses,
one can only obtain the flavor groups U(1)B, U(1)2, and U(1)3. Flavor symmetries beyond
baryon numbers are obtained for the textures discussed above, but the generic case for the
CKM matrix when mt =mc is given in Eq. (4.16) and does not have a specific texture.

mt =mc and ms =md Let us now turn to the case where mt = mc and ms = md, all
other masses being non-degenerate. The relations in Eq. (A.5) imply that

UQ =
⎛

⎝

eiξ1 0

0 U
(2)
u

⎞

⎠
= VCKM ⋅

⎛

⎝

U
(2)
d 0

0 eiξ̃3

⎞

⎠
⋅ V †

CKM with U (2)u , U
(2)
d ∈ U(2) , (A.11)

hence

VCKM =
⎛

⎝

eiξ1 0

0 U
(2)
u

⎞

⎠
⋅ VCKM,kj ⋅

⎛

⎝

U
(2)
d

† 0

0 e−iξ̃3
⎞

⎠
. (A.12)

Starting from the CKM matrix in Eq. (4.16), which is generic when mt =mc, we can further
rotate θ12 away by performing (recall that we work in the up basis)

dR →

⎛
⎜
⎜
⎝

c12 −s12 0

s12 c12 0

0 0 1

⎞
⎟
⎟
⎠

dR , (A.13)

such that

VCKM →

⎛
⎜
⎜
⎝

c13 0 s13

0 1 0

−s13 0 c13

⎞
⎟
⎟
⎠

, i.e. with a texture
⎛
⎜
⎜
⎝

∗ 0 ∗

0 ∗ 0

∗ 0 ∗

⎞
⎟
⎟
⎠

. (A.14)

Therefore, the generic CKM matrix for the present case has a texture which allows for a
flavor symmetry at least as large as U(1)2. Possible larger flavor symmetries are U(1)3 or
U(2) ×U(1), obtained for the following respective textures,17

⎛
⎜
⎜
⎝

∗ 0 0

0 ∗ 0

0 0 ∗

⎞
⎟
⎟
⎠

and
⎛
⎜
⎜
⎝

0 0 ∗

0 ∗ 0

∗ 0 0

⎞
⎟
⎟
⎠

. (A.15)

For instance, the texture which leads to a flavor symmetry U(2) × U(1) (see below) for muj = mui , i < j

and mdl =mdk , k < l is

VCKM = Ri2Rj3 ⋅

⎛
⎜
⎜
⎝

0 0 ∗

0 ∗ 0

∗ 0 0

⎞
⎟
⎟
⎠

⋅Rk1Rl2 .

17Let us present some details regarding the second case to illustrate the derivation. With such a texture,
one can phase-rotate the fields so as to get

VCKM =

⎛
⎜
⎜
⎝

0 0 1

0 1 0

1 0 0

⎞
⎟
⎟
⎠

,
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mu =mc =mt When the degeneracy is maximal, the CKM matrix can be fully absorbed
by a redefinition of the RH up-quarks:

uR → VCKMuR , VCKM → 1 . (A.16)

The flavor symmetry is therefore at least as large as U(1)3. With such a CKM matrix, one
gets that UQ = Uu = Ud and the flavor group is determined by the relations in Eq. (A.5):
the flavor symmetry group is U(1)3, U(2) × U(1), or U(3), respectively when no, two, or
three down-quark masses are degenerate.

A.2 Vanishing masses at dimension-four

When some masses vanish at dimension-four, the flavor symmetry can contain axial phases.
This case complicates the power-counting, since dimension-six Yukawa couplings now yield
the leading contribution to the masses, but it can be treated as suggested in section 3.1 for
the case of neutrino masses or vanishing Yd.

Whenever a quark mass goes to zero, the flavor symmetry is enlarged since the LH and
RH components now describe independent particles. A flavor symmetry U(1)B would then
be ugraded to U(1)B × U(1)uR,1 when mu → 0, all other parameters being kept fixed. For
non-degenerate quark masses, the flavor symmetry is always abelian, and taking one mass
to zero simply adds a RH U(1) factor to the flavor symmetry, as discussed just above. On
the other hand, when two or three masses are degenerate, taking them to zero together
adds a RH factor U(2) or U(3) to the flavor symmetry (even if it was abelian for non-zero
masses due to some structure in the CKM matrix which distinguishes the different flavors
of LH quarks). We list in Table 5 the relevant cases, and present in Table 6 the associated
numbers of new primary sources of CPV. Those new sources of CPV can still be captured
by flavor invariants, however there are subtleties to take into account when masses vanish.
Namely, the sets of invariants we present in the main text and in appendices D and E have
transfer matrices that do not maintain maximal rank in the limit of vanishing masses. Let
us illustrate what we mean by this with an example. From Table 6, one learns that the three
phases in C(1,3)HQ remain primary when mu = mc = 0. However, the invariants presented in

the associated set in Table 10 are of the form ImTr(XuMC
(1,3)
HQ ) for some matrix M built

out of the Yukawas. Working in the up basis with a vanishing CKM phase, and focusing on
the contribution proportional to C(1,3)HQ,12, we find

ImTr(XuMC
(1,3)
HQ ) ⊃ Im (C

(1,3)
HQ,12) (m

2
uM21 −m

2
cM12) (A.17)

which vanishes when mu = mc = 0. Therefore, the set of invariants we consider does not
allow us to capture the three phases in C

(1,3)
HQ in such limits. Another example is that of

and one finds from Eq. (A.12) that

1 =
⎛

⎝

OU
(2)
u OU

(2)
d

† 0

0 ei(ξ1−ξ̃3)
⎞

⎠
,

with O ≡ (
0 1

1 0
). Therefore, one obtains U (2)d = OU (2)u O, ξ̃3 = ξ1 and no further constraint, hence the group

is U(2) ×U(1).
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If in addition to the values in Table 3: Add to the flavor group the factor:
mu = 0 U(1)uR
mu =md = 0 U(1)uR ×U(1)dR
mu =mc = 0 U(2)uR
mu =mc =md = 0 U(2)uR ×U(1)dR
mu =mc =md =ms = 0 U(2)uR ×U(2)dR
mu =mc =mt = 0 U(3)uR
mu =mc =mt =md = 0 U(3)uR ×U(1)dR
mu =mc =mt =md =ms = 0 U(3)uR ×U(2)dR
mu =mc =mt =md =ms =mb = 0 U(3)uR ×U(3)dR

Table 5: Additional factor to the flavor symmetry of the SM4 Lagrangian when quark masses vanish.

CuH . When Yd = 0, one finds only two invariants in the associated set in Table 10, whereas
three sources of CPV remain as shown in Table 6. One could therefore conclude that one
of the invariants in the set should be replaced by the missing

ImTr (X2
uCuHY

†
u ) . (A.18)

However, this choice would not allow us to retain a sufficient rank for the set, as one finds

ImTr (X2
uCuHY

†
u ) = (m

2
u +m

2
t )ImTr (XuCuHY

†
u ) −m

2
um

2
t ImTr (CuHY

†
u ) (A.19)

when mu = mc (one can use formulae like Eq. (4.6) to express the mass factors in terms of
invariants), whereas all nine sources of CPV in CuH remain primary and independent in this
case, as per Tables 3 and 4. Therefore, it may seem that one needs strictly more than nine
invariants to capture the nine CPV phases in CuH , and more generally that the necessary
and sufficient conditions presented in section 4.1 are not sufficient anymore when masses can
vanish. However, this is a consequence of our assumption that invariants should correspond
to traces of a monomial of degree one in SMEFT coefficients, and arbitrary degree in Yukawa
matrices. Instead, one could enlarge the set of invariants and include traces of sums over
monomials of various degrees. For instance, defining instead Xu ≡ 1 + YuY

†
u , and similarly

for other fermions, without changing the expression of the invariants, is sufficient to ensure
that the vanishing of our sets is a necessary and sufficient condition for the conservation of
CP at leading order.

B Generalities about invariants

B.1 Properties of 3 × 3 matrices

Here we discuss some properties of generic 3 × 3 matrices, which we use throughout the
paper and will refer to later on. We will follow mostly Ref. [25]. The starting point is the
Cayley–Hamilton theorem, which allows one to rewrite the n-th power of a n×n matrix A
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Bilinears 4-Fermi

Flavour symmetries

of the quark sector of the SM

CeH

CeW

CeB

CuH

CuG

CuW

CuB

CdH

CdG

CdW

CdB

CHud

C1,3
HL

CHe

C1,3
HQ

CHu

CHd

CLL

Cee

CLe

C1,3
QQ

Cuu

Cdd

C1,3
LQ

CQe

CLu

Ceu

CLd

Ced

C1,8
ud

C1,8
Qu

C1,8
Qd

CLedQ

C1,3
LeQu

C1,8
QuQd

U(1)B 3 9 0 3 0 3 18 9 36 27 81

U(1)B ×U(1)uR
3 64,94,6 0 3,1,3 0 3 18,6,18 92,32,92 182,36 27,18 54

U(1)B ×U(1)uR
×U(1)dR

3 68,4 0 3,12 0 3 18,62 92,34 8,182 182 36

U(1)B ×U(2)uR
3 34,94,3 0 3,0,3 0 3 18,0,18 92,02,92 62,36 27,9 27

U(1)B ×U(2)uR
×U(1)dR

3 34,64,2 0 3,0,1 0 3 18,0,6 92,02,32 2,6,18 18,9 18

U(1)2 3 5 0 1 0 3 5 3 12 15 33

U(1)2 ×U(1)uR
3 (3 or 4)4,54,3 or 4 0 1,0 or 1,1 0 3 5,0 or 5,5 32,(0 or 3)2,32 (5 or 8)2,12 15,9 or 12 21 or 24

U(1)2 ×U(1)uR
×U(1)dR 3 (3 or 4)8,2 or 4 0 1,(0 or 1)2 0 3 5,(0 or 5)2 32,(0 or 3)4 1 or 3 or 8,(5 or 8)2 9 or 12 12 or 13 or 16

U(1)2 ×U(2)uR 3 (1 or 2)4,5,1 or 2 0 1,0,1 0 3 5,0,5 32,02,32 22,12 15,3 12

U(1)2 ×U(2)uR
×U(1)dR

3 (1 or 2)4,(3 or 4)4,0 or 1 or 2 0 1,0,0 or 1 0 3 5,0,0 or 5 32,02,(0 or 3)2 0 or 2,2,5 or 8 9 or 12,3 8

U(1)2 ×U(2)uR
×U(2)dR

3 (1 or 2)8,0 or 1 0 1,02 0 3 5,02 32,04 0,22 3 or 6 4

U(1)3 3 3 0 0 0 3 0 0 3 9 15

U(1)3 ×U(1)uR
3 24,34,2 0 0 0 3 0 0 12,3 9,6 10

U(1)3 ×U(1)uR
×U(1)dR

3 28,1 or 2 0 0 0 3 0 0 0 or 1,12 6 7 or 8

U(1)3 ×U(2)uR
3 14,34,1 0 0 0 3 0 0 02,3 9,3 5

U(1)3 ×U(2)uR
×U(1)dR

3 14,24,0 or 1 0 0 0 3 0 0 02,1 6,3 3 or 4

U(1)3 ×U(2)uR
×U(2)dR

3 18,0 or 1 0 0 0 3 0 0 0 3 2

U(1)3 ×U(3)uR
3 04,34,0 0 0 0 3 0 0 02,3 9,0 0

U(1)3 ×U(3)uR
×U(1)dR

3 04,24,0 0 0 0 3 0 0 02,1 6,0 0

U(2) ×U(1) 3 2 0 0 0 3 0 0 1 6 7

U(2) ×U(1) ×U(1)uR
3 14,24,1 0 0 0 3 0 0 02,1 6,3 3

U(2) ×U(1) ×U(1)uR
×U(1)dR

3 1 0 0 0 3 0 0 0 3 1 or 2

U(2) ×U(1) ×U(2)uR
3 14,24,1 0 0 0 3 0 0 02,1 6,3 3

U(2) ×U(1) ×U(2)uR
×U(1)dR

3 18,0 0 0 0 3 0 0 0 3 2

U(2) ×U(1) ×U(2)uR
×U(2)dR

3 1 0 0 0 3 0 0 0 3 1

U(2) ×U(1) ×U(3)uR
3 04,24,0 0 0 0 3 0 0 02,1 6,0 0

U(2) ×U(1) ×U(3)uR
×U(1)dR

3 04,14,0 0 0 0 3 0 0 0 3,0 0

U(2) ×U(1) ×U(3)uR
×U(2)dR

3 04,14,0 0 0 0 3 0 0 0 3,0 0

U(3) 3 1 0 0 0 3 0 0 0 3 2

U(3) ×U(3)uR
3 04,14,0 0 0 0 3 0 0 0 3,0 0

U(3) ×U(3)uR
×U(3)dR

3 0 0 0 0 3 0 0 0 0 0

Two degenerate electron-type leptons × 2
3

×1 ×1 × 2
3

×1 × 2
3

×1 × 2
3

×1

All electron-type leptons degenerate × 1
3

×1 ×1 × 1
3

×1 × 1
3

×1 × 1
3

×1

One vanishing electron-type mass × 2
3

×1 ×1 × 1
3

×1 ×1 ×1 × 2
3

×1

Two vanishing electron-type masses × 1
3

×1 ×1 0 ×1 × 2
3

×1 × 1
3

×1

All electron-type masses vanishing 0 ×1 ×1 0 ×1 × 1
3

×1 0 ×1

Table 6: Numbers of new primary sources of CPV contained in each dimension-six SMEFT coefficient.
When a single number appears, it applies to all operators at the top of the concerned column. When

several numbers are needed, they appear as a list, where the integer power refers to the multiplicity of a
given number. An entry “i or j” means that the answer depends on the details of the flavor charges. The

last five rows indicate which multiplicative coefficient should be applied to all numbers of the same
column for remarkable values of the electron-type lepton masses.

in terms of the powers < n, and that for n = 3 takes the form

A3
= A2 Tr(A) −

1

2
A [Tr(A)2 −Tr(A2)] +

1

6
[Tr(A)3 − 3 Tr(A2)Tr(A) + 2 Tr(A3)]13×3 .

(B.1)

Multiplying by A and taking the trace results in

Tr(A4) =
1

6
Tr(A)4 −Tr(A2)Tr(A)2 +

4

3
Tr(A3)Tr(A) +

1

2
Tr(A2)

2
. (B.2)
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Shifting A → A + B + C in Eq. (B.2), with B and C some other generic 3 matrices, and
taking the terms of order A2BC, one obtains

0 = Tr(A)2 Tr(B)Tr(C) −Tr(BC)Tr(A)2 − 2 Tr(AB)Tr(A)Tr(C)+

+ 2 Tr(AC)Tr(A)Tr(B) + 2 Tr(ABC)Tr(A) + 2 Tr(ACB)Tr(A)+

−Tr(A2)Tr(B)Tr(C) + 2 Tr(AB)Tr(AC) +Tr(A2)Tr(BC)+

+ 2 Tr(C)Tr(A2B) + 2 Tr(B)Tr(A2C) − 2 Tr(A2BC) − 2 Tr(A2CB) − 2 Tr(ABAC) .

(B.3)

This property is useful for our purpose of building sets of invariants, as it implies that we
only need to draw from a finite set. Let us focus on invariants relevant for this paper, such as
those related to bi-fermion SMEFT operators, which are single-trace and linear with respect
to the associated Wilson coefficient. To build such invariants, flavor-invariance imposes that
we only use Xu,Xd and C, where Xq=u,d ≡ YqY

†
q and C is the Wilson coefficient under study

(up to a specific multiplication by a Yukawa matrix for operators of LR chiral structure).
In principle, any invariant of the form

Tr(Xa1
u X

b1
d X

a2
u X

b2
d . . .C) (B.4)

is allowed. However, the formulae above imply that one cannot find third or higher powers
of Xq in the trace, and that one can find at most one occurrence of Xq and another of X2

q .
These conditions reduce the possible single-trace invariants to a finite set (see appendix B.4
for explicit examples).

Finally, we mention that the Cayley–Hamilton theorem also allows us to write the
determinant of a 3 × 3 matrix as

Det(A) =
1

6
(Tr(A)3 − 3 Tr(A)Tr(A2) + 2 Tr(A3)) . (B.5)

B.2 Different types of invariants

In Ref. [17], the author presents a discussion of CP-violating invariants in supersymmetric
models, in order to find basis independent conditions for CP violation, as done here. In
that context, three types of invariants that can be built using three 3 × 3 matrices A, B,
and C are proposed, namely

JAB = ImTr ([A,B]3) , KABC(p, q, r) = ImTr ([Ap,Bq
]Cr) ,

LC(p) = ImTr (Cp − h.c.) , (B.6)

where A and B are hermitian and C generic. These are dubbed J−, K− and L−invariants
respectively. In this work we adopted a similar notation, but we only employed L-invariants
for our set. However, we can show that this choice is general, as the remaining two types
can be written in terms of the last one.18 To prove this, let us start from JAB. First of all,

18also notice that JAB would not suit our scopes as it is not linear in any of the two matrices in the
argument.
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using Eq. (B.5), it can be shown to be equivalent to a Jarlskog-like invariant, i.e.

ImDet ([A,B]) =
1

6
Im (Tr ([A,B])3 − 3 Tr ([A,B])Tr ([A,B]2) + 2 Tr ([A,B]3))+

=
1

3
ImTr ([A,B]3) , (B.7)

as the trace of a commutator vanishes. This also proves Eq. (1.1). Then, by expanding
[A,B]3 and using the cyclic property of the trace we can show

ImTr ([A,B]3) = 3ImTr (A2B2AB −BAB2A2) = LA2B2AB . (B.8)

Finally, we prove that any to K-invariant can also be expressed in terms of the L ones. To
do this, it is enough to prove it for KABC(1,1,1) as the other cases can be obtained by
redefining A, B or C. Then, we split C in its hermitian and anti-hermitian parts, i.e.

Ch ≡
C +C†

2
Ca ≡

C −C†

2
. (B.9)

and

KABC(1,1,1) = ImTr ([A,B]C) = ImTr ([A,B]Ch) + ImTr ([A,B]Ca) , (B.10)

where

ImTr ([A,B]Ch) =ImTr (ABCh −BACh) =

=
1

2i
[Tr (ABCh) −Tr (ABCh)

∗
−Tr (BACh) +Tr (BACh)

∗
] =

=
1

2i
[Tr (ABCh) −Tr (ChBA) −Tr (BACh) +Tr (ChAB)] =

=
1

i
[Tr (ABCh) −Tr (ChBA)] = 2LABCh = 2LABC . (B.11)

With similar steps, one can see that the piece proportional to Ca vanishes, so that

KABC(1,1,1) = 2LABC . (B.12)

B.3 Invariant ring and the Hilbert series

The problem of finding a minimal set of invariants we face in this paper is reminiscent of
the so called Plethystic Program [57–61], (see also Ref. [27] and references therein). This
has been the attempt to apply tools which originate from the study of polynomial rings to
physics, and in particular where representation and group theory come into play. The most
remarkable success of this program has perhaps been the addition of the Hilbert Series and
its Plethystic Logarithm to the theoretical physicist’s toolbox. In seeing how these tools
apply to this case, we will adopt the logic followed in Ref. [27]. Concretely, given a set of
parameters x⃗ and a symmetry group G that acts on x⃗ as some representation, i.e. ∀g ∈ G,
∃R(g) such that x⃗→ R(g)x⃗, one can define invariants I(x⃗) as the quantities that obey

I(x⃗) = I(R(g)x⃗) . (B.13)
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As the sum and products of invariants still form an invariant, from an algebraic point of view
we talk about a ring. Within this ring, one can find the set of invariants {I1, I2, . . . , Im}

such that any additional invariant I ′ can be expressed as a polynomial of those of the set,

I ′ = P ′ (I1, I2, . . . , Im) . (B.14)

The invariants in {I1, I2, . . . , Im} are called generators, and it can be shown that, at least
for all the groups relevant to physics, their number is finite. By construction, no relation like
Eq. (B.14) can exist between the generators. Nevertheless, there could exist a polynomial
P such that

P (I1, I2, . . . , Im) = 0 . (B.15)

Relations of this kind are called syzygies in the literature, and the invariants that obey a
syzygy are algebraically dependent. Taking all syzygies into account we can successively
remove invariants until we get to the set of algebraically independent ones. In this setting,
the Hilbert series provides a helping hand in finding both the generators and the basic
invariants [25]. It is defined as a generating function for the linearly-independent invariants:

H(q) =
∞
∑
k=1

ckq
k , (B.16)

where c0 = 1. ck denotes precisely the number of linearly-independent invariants at dimen-
sion k, and q is an arbitrary spurionic variable satisfying ∣q∣ < 1, and represents a placeholder
for the building blocks of the invariants. Let us make an example. Consider a theory with
a coupling m transforming under a U(1) symmetry as

m→ eiφmm . (B.17)

Then the basic invariant is obviously I =mm∗, which has dimension 2, and all the invariants
of this theory will have the form In. Hilbert series will thus have the form

H(q) = 1 + q2
+ q4
+ ⋅ ⋅ ⋅ =

1

1 − q2
, (B.18)

where q2 corresponds to I, q4 to I2, and so on. It can be shown that, in the general case of
a semi-simple Lie algebra, the Hilbert series has the form

H(q) =
N(q)

D(q)
. (B.19)

The numerator N(q) is a polynomial of degree dN with non-negative coefficients and with
the property of being palindromic, i.e.

N(q) = 1 + c1q + c2q
2
+ ⋅ ⋅ ⋅ + cdN−1q

dN−1
+ qdN , (B.20)

with ci = cdN−i. The denominator takes the form

D(q) =
p

∏
r=1
(1 − qdr) , (B.21)
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and is thus of degree dD = ∑r dr. The number of factors is equal to the number of parame-
ters, i.e. of physical observables, and coincides with the number of algebraically independent
invariants. Moreover, the denominator provides information on what the algebraically in-
dependent invariants look like: a factor (1−qdr)l corresponds to l algebraically independent
invariants of degree dr. In the previous example, only one factor is present, corresponding
to a single basic (and algebraically independent) invariant mm∗. Indeed, we start with a
complex variable m, and we can remove its phase using the U(1), bringing the observables
down to 1. If we enlarged our toy-model to have two parameters, m1 and m2, transforming
under the U(1) symmetry as

m1 → eiφ1m1 m2 → eiφ2m2 , (B.22)

we can build an example of the so called multi-graded Hilbert series by assigning different
spurions to m1 and m2, say q1 and q2. The invariants in this case are built as all possible
products of all possible powers of I1,2 ≡m1,2m

∗
1,2, which means that the multi-graded Hilbert

series is

h(q1, q2) = (1 + q
2
1 + q

4
1 + . . . )(1 + q

2
2 + q

4
2 + . . . ) =

1

(1 − q2
1)(1 − q

2
2)

. (B.23)

The multi-graded Hilbert series can give more information about the structure of the in-
variants, but does not have in general the properties for the numerator and denominator
cited for its ungraded version. The latter can here be easily obtained by setting q1 = q2 = q,
i.e. H(q) = h(q, q). In the examples we showed until now, the numerator has always taken
the trivial form N(q) = 1, and the set of generators coincided with the algebraically inde-
pendent invariants. When this happens, the invariant ring is said to be free. However, this
turns out not to be always the case for more complicated groups and representations.

As one would expect, the computation we could perform straightforwardly by hand in
the simple cases above quickly becomes unfeasible when larger groups are involved. Thus a
general formula to compute the Hilbert series is called for. The solution is provided by the
so called Molien–Weyl formula, which, for a compact, simple Lie group G takes the form:

H(q) = ∫ [dµ]G
1

det(1 − qR(g))
, (B.24)

where [dµ]G denotes the Haar measure of the group G. If G is connected, the integral
can be reduced to an integral over the maximal torus of the group, i.e. its largest abelian
subgroup, which is just the direct product of r0 copies of the S1 unit circle, with r0 the
rank of the group (see e.g. Ref. [62]). Thus, the integral is reduced to the computation of
residues inside said circles. The integrand [det(1 − qR(g))]−1 can be rewritten as

1

det(1 − qR(g))
= exp(

∞
∑
k=1

qkχR(z
k
1 , . . . , z

k
d)

k
) ≡ PE [χR(z1, . . . , zd)q] , (B.25)

where χR(z1, . . . , zd) = ∑
d
j=1 zj is the character function of G in the representation R, d

is the dimension of the representation, and zj (with j = 1, . . . , d) are the eigenvalues of

– 34 –



R(g). Eq. (B.25) makes use of the definition of the Plethystic Exponential (PE), which for
an arbitrary function f(x1, . . . , xn) looks like

PE [f(x1, . . . , xn)] = exp(
∞
∑
i

f(xk1, . . . , x
k
n)

k
) . (B.26)

The generalization to a multi-graded Hilbert series is then straightforward:

h(q1, . . . , qn) = ∫ [dµ]G

n

∏
i=1

PE(z1, . . . , zd; qi) . (B.27)

An important role in this context is played by the inverse of the PE, quite fittingly called
plethystic logarithm (PL) and defined so that

f(x1, . . . , xn) = PE [g(x1, . . . , xn)]⇔ g(x1, . . . , xn) = PL [f(x1, . . . , xn)] . (B.28)

It can be proved that

PL [f(x1, . . . , xn)] =
∞
∑
k=1

µ(k)

k
ln [f(xk1, . . . , x

k
n)] . (B.29)

The value of the PL lies in the following fact: the PL of a Hilbert series is a polynomial whose
leading positive terms correspond to the basic invariants, i.e. to the generators, and whose
leading negative terms correspond to the syzygies between them. Remarkably, when the
invariant ring is free, this polynomial has a finite number of terms. Some complications arise
when the groups and the representations that appear become increasingly non-trivial19 [27,
58]. Equipped with these outstanding tools, we wish to see them applied to our case, which
is the main scope of the next section.

B.4 Finding polynomial relations between invariants

In the main body of this work, the logic we have followed to build invariants stemmed
from knowing that the relative Wilson coefficient C(6), in a given basis, has a certain
number of phases. Then we found as many independent invariants as possible, in order to
obtain a transfer matrix whose rank matched the new sources of CPV in C(6) when J4 = 0.
Now, however, we could be tempted to pursue a different line of reasoning and find the
relevant invariants by applying to our case the power of the Hilbert series and its Plethystic
logarithm. Let us restrict to the case of quark bilinear operators. Their Wilson coefficients
are generic 3 × 3 complex matrices that we can multiply by an appropriate number of Y (†)u,d

to retrofit them into a 3 ⊗ 3̄ representation of SU(3)Q. We refer to this combination as
C(6) here. Then, the building blocks of our invariants are

C(6), (C(6))†,Xu,d ∈ 3⊗ 3̄ . (B.30)

19In Ref. [63] the author argues that some of the assumptions in Ref. [27] are imprecise, as the finiteness
of the generating set of invariants is a consequence of the group being reductive, which is supposedly not
the case for U(n). However, as explained there and clarified by the same authors of Ref. [27] in Ref. [64],
the final result is nonetheless correct, as at least the ring of invariants of U(n) is isomorphic to that of
GL(n,C), which is itself reductive.

– 35 –



and we can build the multi-graded Hilbert series

h(c, c†, xu, xd) = ∫ [dµ]SU(3) ∏
i={c,c†,xu,xd}

PE(z⃗; c) , (B.31)

with obvious associations between a spurion and the corresponding building block. The
resulting expression is quite long and not particularly illuminating, so we will refrain from
presenting it here. However, we can look at its ungraded version

H(q) = h(q, q, q, q) =
N(q)

D(q)
, (B.32)

with

N(q) = + q34
+ 14q31

+ 31q30
+ 56q29

+ 165q28
+ 354q27

+ 660q26
+ 1256q25

+ 2097q24
+

+ 3184q23
+ 4720q22

+ 6404q21
+ 7992q20

+ 9536q19
+ 10510q18

+ 10744q17
+

+ 10510q16
+ 9536q15

+ 7992q14
+ 6404q13

+ 4720q12
+ 3184q11

+ 2097q10
+

+ 1256q9
+ 660q8

+ 354q7
+ 165q6

+ 56q5
+ 31q4

+ 14q3
+ 1 , (B.33)

and

D(q) = (1 − q)4(1 − q2
)

10
(1 − q3

)
10
(1 − q4

)
4 . (B.34)

We can see that the numerator has the correct palindromic structure we expected, and more
importantly the denominators contain 28 factors, correctly matching the 10 observables
from the Standard Model and the 18 new (9 real + 9 imaginary) observables contained in
C(6). This is already quite remarkable. However, to this point we have neither an idea
of how the algebraically independent invariants look like, nor a way to extract the ones
that are linear in C(6), which is the subset we are really interested in. To gain some more
insight, let us look at the Plethystic logarithm of the multi-graded Hilbert series:

PL [h(c, c†, xu, xd)] =(xu + xd) + (x
2
u + xdxu + x

2
d) + (x

3
u + x

2
uxd + xux

2
d + x

3
d) + x

2
ux

2
d+

+ x3
ux

3
d − x

6
ux

6
d+

+ (c + c†) [1 + xu + xd + (x
2
u + x

2
d + 2xuxd) + (2x

2
uxd + 2xux

2
d)+

+(x3
uxd + 2x2

ux
2
d + x

3
dxu) + (x

3
ux

2
d + x

2
ux

3
d)]+

+O(c2, (c†)2, (c + c†)x3
ux

4
d, (c + c

†
)x4

ux
3
d) . (B.35)

Since we are interested in invariants that are linear in C(6), we stopped the expansion at
O(c, c†). The O(c0(c†)0) terms in this expansion correspond to the invariants one can
obtained in the quark sector of the Standard Model. This case has been treated in Ref. [25],
and the resulting algebraically independent invariants are

I1,0 = Tr(Xu) I0,1 = Tr(Xd)

I2,0 = Tr (X2
u) I1,1 = Tr(XuXd)

I0,2 = Tr (X2
d) I3,0 = Tr (X3

u)

I2,1 = Tr (X2
uXd) I1,2 = Tr (XuX

2
d)

I0,3 = Tr (X3
d) I2,2 = Tr (X2

uX
2
d) ,

(B.36)
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Notice their number is 10, correctly matching the 6 masses + 3 angles + 1 phase of the
Standard Model. The generating set contain one additional invariant,

I
(−)
3,3 = Tr (X2

uX
2
dXuXd) −Tr (X2

dX
2
uXdXu) , (B.37)

corresponding to the x3
ux

3
d term in Eq. (B.35) and which is nothing but J4. In the language

adopted here, this invariant does not contain any additional observable, and is just needed
to capture the sign of the SM4 phase δ. The negative term −x6

ux
6
d at the end signals that

there is a syzygy at degree 12, which in this case corresponds to the fact that (I(−)3,3 )
2
can

be expressed in terms of the remaining 10 invariants, as expected.
The part linear in c and c† of Eq. (B.35) points us at the basic invariants linear in C(6).

We see that in this case the set of basic invariants is composed by 34 element, 17 each for
C(6) and (C(6))†, which is larger than the basic set. Indeed, the latter is expected to have
18 elements, corresponding to the 9 new complex observables contained in C(6). To try
and build the invariants in the generating set, we will make use of the relations showed in
section B.1. Given a generic matrix C(6) ∈ 3⊗ 3̄ of SU(3)Q, we want to contract it with as
many Xu,d’s as needed to form all the possible independent invariants. Using Eq.(B.1) on
Xu,d, we can show that all invariants written using Xn

u,d, with n ≥ 3, are redundant, and we
only need X2

u,d and Xu,d as building blocks. Moreover, using Eq. (B.3), one can eliminate
any invariant where a matrix is repeated. Taking into account these simplifications, one
can see that the set of possible invariants is finite, and is formed by these 29 objects:

Tr(C(6)) Tr(XuC
(6)) Tr(XdC

(6))
Tr (X2

uC
(6)) Tr (X2

dC
(6)) Tr (XuXdC

(6))
Tr (XuX

2
dC
(6)) Tr (XdXuC

(6)) Tr (X2
dXuC

(6))
Tr (XdX

2
uC
(6)) Tr (X2

uXdC
(6)) Tr (X2

uX
2
dC
(6))

Tr (X2
dX

2
uC
(6)) Tr (XuXdX

2
uC
(6)) Tr (XdXuX

2
dC
(6))

Tr (X2
uXdXuC

(6)) Tr (X2
dXuXdC

(6)) Tr (XuX
2
dX

2
uC
(6))

Tr (X2
uX

2
dXuC

(6)) Tr (XdX
2
uX

2
dC
(6)) Tr (X2

dX
2
uXdC

(6))
Tr (XuXdX

2
uX

2
dC
(6)) Tr (XuX

2
dX

2
uXdC

(6)) Tr (XdXuX
2
dX

2
uC
(6))

Tr (XdX
2
uX

2
dXuC

(6)) Tr (X2
uXdXuX

2
dC
(6)) Tr (X2

uX
2
dXuXdC

(6))
Tr (X2

dXuXdX
2
uC
(6)) Tr (X2

dX
2
uXdXuC

(6)) ,

(B.38)

and the same for C(6) → (C(6))†. Now, since the generating set only includes 17 elements,
this means that 12 invariants of Eq. (B.38) can be expressed as polynomials of the remaining
ones and can thus be eliminated. To do this, we employ a numerical algorithm adapted
from Appendix C of Ref. [27]. The logic is as follows: by assigning a dummy dimension to
the building blocks, i.e. [Xu,d] = 1 and [C(6)] = 1, we can assign a dimension to all the
invariants listed above. Then, we fix some given dimension n. Picking one of the invariants
in Eq. (B.38), one can then take its product with as many traces from Eq. (B.36) as needed
to form a monomial Mi of dimension n. Repeating this for all instances of Eq. (B.38), we
find the set {Mi} of all the possible monomials that are dimension n and linear in C6. For
example, at dimension n = 2 one can obtain the monomials

{Mi} = {Tr (C(6)) I1,0,Tr (C(6)) I0,1,Tr (XuC
(6)
) ,Tr (XdC

(6)
)} . (B.39)
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Then we set a linear combination of these monomials to zero, i.e.

∑
i

aiMi = 0 , (B.40)

where the ai’s are integer coefficients. We then plug random integer values for the entries
of the matrices Xu,d and C6. This produces a linear equation for the ai’s. Repeating
this last step as many times as there are Mi’s, one builds a linear system for the ai’s
with zero constant term. The number of independent directions of the null space of the
corresponding matrix matches the number of possible relations between the Mi’s. The first
nontrivial result is found at dimension 5, where we get the two relations

Tr (XdXuX
2
dC
(6)
) +Tr (X2

dXuXdC
(6)
) + I0,1 (Tr (X

2
dXuC

(6)
) +Tr (XuX

2
dC
(6)
))+

+ (−I0,1I1,0 − I1,1)Tr (X
2
dC
(6)
) − I2

0,1(Tr (XdXuC
(6)
) +Tr (XuXdC

(6)
)+

+
1

3
(2I3

0,1 − 3I0,2I0,1 + I0,3)Tr (XuC
(6)
) + (I2

0,1I1,0 − I1,2)Tr (XdC
(6)
)+

+Tr(C(6)) (−
2

3
I3

0,1I1,0 + I
2
0,1I1,1 + I0,2I0,1I1,0 − I0,1I1,2 −

1

3
I0,3I1,0) = 0 , (B.41)

and the same with Xu ↔Xd, which we can use to remove Tr (XdXuX
2
dC
(6)) and

Tr (XuXdX
2
uC
(6)) from the set. At dimension 6 we obtain two more relations, and 8 more

are obtained at dimension 7. With these 12 expressions, we can reduce the set to

Tr (C(6)) Tr (XuC
(6)) Tr (XdC

(6))
Tr (X2

uC
(6)) Tr (X2

dC
(6)) Tr (XuXdC

(6))
Tr (XuX

2
dC
(6)) Tr (XdXuC

(6)) Tr (X2
dXuC

(6))
Tr (XdX

2
uC
(6)) Tr (X2

uXdC
(6)) Tr (X2

uX
2
dC
(6))

Tr (X2
dX

2
uC
(6)) Tr (XuXdX

2
uC
(6)) Tr (XdXuX

2
dC
(6))

Tr (XuX
2
dX

2
uC
(6)) Tr (XdX

2
uX

2
dC
(6)) .

(B.42)

The same can be repeated for (C(6))†. These are, quite remarkably, exactly in correspon-
dence with the relative terms in Eq. (B.35). However, we now wish to find the additional
relations that help us express the 8 too many (complex) invariants we have in Eq (B.42) in
terms of the 9 ones we know are sufficient to express all the physical observables, i.e. the
algebraically independent ones. If we expand a bit further in Eq. (B.35), we see that the
next two terms are degree 8 and are negative, −(c + c†)x4

ux
3
d − (c + c

†)x3
ux

4
d. They should

then correspond to the number of syzygies at dimension 8. To obtain them explicitly, we
just run again the described algorithm at dimension 8, obtaining indeed two syzygies of
the expected degree. They include 107 terms out of the possible 808 one can build at this
dimension, and allow us to remove Tr (XuX

2
dX

2
uC
(6)) and Tr (XdX

2
uX

2
dC
(6)). Running

this argument at degree 9, however, we run into a mismatch. Indeed, even though the next
term in Eq. (B.35) would call for 4 syzygies, we only find 1, symmetric under the exchange
Xu ↔ Xd. This is probably due to the complications that arise when the groups and rep-
resentations one has to deal with start becoming less and less trivial, as in our case, and
that forbid us from reading the syzygies from the negative terms directly. For a deeper
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discussion of this topic, see in particular Ref. [27, 58] and references therein. One thing to
notice, in addition, is that requiring the building blocks to be linear in (C(6)), although
justified from a physical point of view, breaks the ring structure of the invariant ring, as
obviously the set we consider is no longer closed under multiplications.

In any case, even without the Plethystic logarithm as a guide, we can just run our
algorithm at increasingly higher dimensions, until no more relations are found. Indeed,
upon going up to dimension n = 13, one manages to reduce the set down to 9 independent
invariants, which we can pick to be

Tr(C(6)) Tr (XuC
(6)) Tr (XdC

(6))
Tr (XuXdC

(6)) Tr (XdXuC
(6)) Tr (X2

dX
2
uC
(6))

Tr (X2
uX

2
dC
(6)) Tr (XdX

2
uX

2
dC
(6)) Tr (XuX

2
dX

2
uC
(6)) ,

(B.43)

which, upon taking its imaginary parts, matches the minimal set in for a non-hermitian
fermion bilinear operator Table 10.

C List of dimension-6 fermionic operators and parameter counting with
generic Nf

In Tables 7 and 8 we reproduce the subset of operators from Ref. [33] we are interested in
in this work, namely dimension-6 operators in SMEFT containing fermions, split between
bilinear and 4-Fermi operators. For each of the considered operators we list the number
of real and imaginary entries and compare them with the number of (primary) real and
imaginary parameters that can appear in observables at order 1/Λ2, as explained in the
main text.

In Table 9 the counting of independent primary parameters is generalized to an arbitrary
number of flavors N .

D Complete minimal set of invariants for 2-Fermi operators

We list in Table 10 a valid choice of minimal sets of CP-odd flavor invariants for all
dimension-six Wilson coefficients associated to operators that are bilinear in fermion fields.
It can be shown that they provide independent conditions matching the numbers presented
in Table 4, in the generic and non-generic cases listed in Table 3.

E Complete minimal set of 4-Fermi invariants

We list in Tables 11, 12, and 13 a valid choice of minimal sets of CP-odd flavor invariants
for all dimension-six Wilson coefficients associated to operators quartic in fermion fields. It
can be shown that they provide independent conditions matching the numbers presented
in Table 4, in the generic and non-generic cases listed in Table 3.
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Bilinears

Label Operator
# real
entries

# imaginary
entries

# primary
real entries

# primary
imaginary entries

M
od

ifi
ed

Y
uk

aw
as

QeH (H†H)(L̄iejH) + h.c. 9 9 3 3

QuH (H†H)(Q̄iujH̃) + h.c. 9 9 9 9

QdH (H†H)(Q̄idjH) + h.c. 9 9 9 9

D
ip
ol
e

QeW (L̄iσ
µνej)τ

IHW I
µν + h.c. 9 9 3 3

QeB (L̄iσ
µνej)HBµν + h.c. 9 9 3 3

QuG (Q̄iσ
µνTAuj)H̃ GAµν + h.c. 9 9 9 9

QuW (Q̄iσ
µνuj)τ

IH̃ W I
µν + h.c. 9 9 9 9

QuB (Q̄iσ
µνuj)H̃ Bµν + h.c. 9 9 9 9

QdG (Q̄iσ
µνTAdj)HGAµν + h.c. 9 9 9 9

QdW (Q̄iσ
µνdj)τ

IHW I
µν + h.c. 9 9 9 9

QdB (Q̄iσ
µνdj)HBµν + h.c. 9 9 9 9

C
ur
re
nt
-

cu
rr
en
t

Q
(1)
HL (H†i

←→
DµH)(L̄iγ

µLj) 6 3 3 0

Q
(3)
HL (H†i

←→
DI
µH)(L̄iτ

IγµLj) 6 3 3 0

QHe (H†i
←→
DµH)(ēiγ

µej) 6 3 3 0

Q
(1)
HQ (H†i

←→
DµH)(Q̄iγ

µQj) 6 3 6 3

Q
(3)
HQ (H†i

←→
DI
µH)(Q̄iτ

IγµQj) 6 3 6 3

QHu (H†i
←→
DµH)(ūiγ

µuj) 6 3 6 3

QHd (H†i
←→
DµH)(d̄iγ

µdj) 6 3 6 3

QHud i(H̃†DµH)(ūiγ
µdj) + h.c. 9 9 9 9

Table 7: The list of dimension-6 fermionic bilinear operators of SMEFT, as given in Ref. [33], together
with the number of real and imaginary entries they each contain, as well as the number of primary

parameters (highlighted in gray, see the text for more details). When +h.c. is specified, the hermitian
conjugate of the operator must be included, too. We indicate with i, j, k, l the flavor indices and with a, b
indices in the fundamental of SU(2)L. TA, A = 1, . . . , 8 are the generators of the gauge SU(3)c, while

τ I = σI

2
, I = 1,2,3 are the generators of SU(2)L, with σI the Pauli matrices.

F Invariants featuring θQCD

In the main text of the paper, we focused on quantities which matter for perturbative
computations in SMEFT. However, this left out an important contribution to CPV in the
SM, the θ-parameter of QCD, associated to the following topological term,

LQCD ⊃ −θQCD
g2
s

16π2
Tr(GG̃) . (F.1)

θQCD has the following flavor charges (and no lepton-type charge),

SU(3)QL U(1)QL SU(3)uR U(1)uR SU(3)dR U(1)dR

eiθQCD 1 6 1 -3 1 -3
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4-Fermi

Label Operator
# real
entries

# imaginary
entries

# primary
real entries

# primary
imaginary entries

LL
LL

QLL (L̄iγµLj)(L̄kγ
µLl) 27 18 9 0

Q
(1)
QQ (Q̄iγµQj)(Q̄kγ

µQl) 27 18 27 18

Q
(3)
QQ (Q̄iγµτ

IQj)(Q̄kγ
µτ IQl) 27 18 27 18

Q
(1)
LQ (L̄iγµLj)(Q̄kγ

µQl) 45 36 18 9

Q
(3)
LQ (L̄iγµτ

ILj)(Q̄kγ
µτ IQl) 45 36 18 9

R
R
R
R

Qee (ēiγµej)(ēkγ
µel) 21 15 6 0

Quu (ūiγµuj)(ūkγ
µul) 27 18 27 18

Qdd (d̄iγµdj)(d̄kγ
µdl) 27 18 27 18

Qeu (ēiγµej)(ūkγ
µul) 45 36 18 9

Qed (ēiγµej)(d̄kγ
µdl) 45 36 18 9

Q
(1)
ud (ūiγµuj)(d̄kγ

µdl) 45 36 45 36

Q
(8)
ud (ūiγµT

Auj)(d̄kγ
µTAdl) 45 36 45 36

LL
R
R

QLe (L̄iγµLj)(ēkγ
µel) 45 36 12 3

QLu (L̄iγµLj)(ūkγ
µul) 45 36 18 9

QLd (L̄iγµLj)(d̄kγ
µdl) 45 36 18 9

QQe (Q̄iγµQj)(ēkγ
µel) 45 36 18 9

Q
(1)
Qu (Q̄iγµQj)(ūkγ

µul) 45 36 45 36

Q
(8)
Qu (Q̄iγµT

AQj)(ūkγ
µTAul) 45 36 45 36

Q
(1)
Qd (Q̄iγµQj)(d̄kγ

µdl) 45 36 45 36

Q
(8)
Qd (Q̄iγµT

AQj)(d̄kγ
µTAdl) 45 36 45 36

LR
R
L

QLedQ (L̄ai ej)(d̄kQla) + h.c. 81 81 27 27

LR
LR

Q
(1)
QuQd (Q̄ai uj)εab(Q̄

b
kdl) + h.c. 81 81 81 81

Q
(8)
QuQd (Q̄ai T

Auj)εab(Q̄
b
kT

Adl) + h.c. 81 81 81 81

Q
(1)
LeQu (L̄ai ej)εab(Q̄

b
kul) + h.c. 81 81 27 27

Q
(3)
LeQu (L̄ai σµνej)εab(Q̄

k
sσ

µνut) + h.c. 81 81 27 27

Table 8: The list of dimension-6 4-Fermi operators of SMEFT, as given in Ref. [33], together with the
number of real and imaginary entries they each contain, as well as the number of primary parameters

(highlighted in gray, see the text for more details). When +h.c. is specified, the hermitian conjugate of the
operator must be included, too. We indicate with i, j, k, l the flavor indices and with a, b indices in the

fundamental of SU(2)L. TA, A = 1, . . . , 8 are the generators of the gauge SU(3)c, while τ I = σI

2
, I = 1,2,3

are the generators of SU(2)L, with σI the Pauli matrices.

These charges allow us to build the usual flavor-invariant, physical θ̄-angle, defined as
follows,

e−iθQCD detYu detYd = ∣det (YuYd)∣e
−i[θQCD−arg det(YuYd)] = ∣det (YuYd)∣e

−iθ̄ . (F.2)

As θQCD provides a dimension-four flavor-charged quantity, one can wonder whether its
presence makes new SMEFT coefficients primary, which would mean that new invariants
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Type of op.
#
ops # real # im.

bi
lin

ea
rs

Yuk. 3

# of entries at O(1/Λ2)

3N2 3N2

# of primary parameters entering observables at O(1/Λ2)

2N2 +N 2N2 +N

Dipole
.

8
8N2 8N2

6N2 + 2N 6N2 + 2N

curr-curr 8
1
2
N(9N + 7) 1

2
N(9N − 7)

N(3N + 5) N(3N − 2)

all bilinears 19
1
2
N(31N + 7) 1

2
N(31N − 7)

N(11N + 8) N(11N + 1)

4-
Fe

rm
i

LLLL 5
1
4
N2 (7N2 + 13) 7

4
N2 (N2 − 1)

1
2
N2 (N2 + 2N + 7) 1

2
N2 (N2 + 2N − 3)

RRRR 7
1
8
N (21N3 + 2N2 + 31N + 2) 1

8
N(21N + 2)(N2 − 1)

1
2
N (3N3 + 2N2 + 8N + 1) 1

2
N2 (3N2 + 2N − 5)

LLRR 8
4 N2 (N2 + 1) 4N2 (N2 − 1)

1
2
N (4N3 + 3N2 + 9N + 2) 1

2
N (4N3 + 3N2 − 6N − 1)

LRRL 1
N4 N4

N3 N3

LRLR 4
4N4 4N4

2N3(N + 1) 2N3(N + 1)

all 4-Fermi 25
1
8
N (107N3 + 2N2 + 89N + 2) 1

8
N (107N3 + 2N2 − 67N − 2)

1
2
N (12N3 + 13N2 + 24N + 3) 1

2
N (12N3 + 13N2 − 14N − 1)

all 44
1
8
N (107N3 + 2N2 + 213N + 30) 1

8
N (107N3 + 2N2 + 57N − 30)

1
2
N (12N3 + 13N2 + 46N + 19) 1

2
N (12N3 + 13N2 + 8N + 1)

Table 9: Number of flavorful real and imaginary parameters in SMEFT at dimension-six with N flavors.
For each type of operator, the first line (in white) counts the number of physical parameters, while the

second one (highlighted in gray) counts those which are also primary.

featuring explicitly θQCD should be included in the minimal sets. The answer is however
negative: the secondary sources of CPV from the dimension-six Wilson coefficients are all
charged under unbroken vector-like flavor symmetries of the dimension-four Lagrangian,
under which θQCD is neutral. Indeed, as the anomalous angle of a vector-like gauge theory,
it only shifts under chiral transformations.

Nevertheless, some SMEFT coefficients can be arranged with θQCD to form flavor-
invariants (albeit redundant in terms of primary parameter counting at dimension-six),
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Wilson coefficient Number of phases Minimal set

Ce ≡

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

CeH

CeW

CeB

3 { L0 (CeY
†
e ) L1 (CeY

†
e ) L2 (CeY

†
e ) }

Cu ≡

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

CuH

CuG

CuW

CuB

9

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

L0000 (CuY
†
u ) L1000 (CuY

†
u ) L0100 (CuY

†
u )

L1100 (CuY
†
u ) L0110 (CuY

†
u ) L2200 (CuY

†
u )

L0220 (CuY
†
u ) L1220 (CuY

†
u ) L0122 (CuY

†
u )

⎫⎪⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪⎪⎭

Cd ≡

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

CdH

CdG

CdW

CdB

Same with CuY
†
u → CdY

†
d

CHud Same with CuY
†
u → YuCHudY

†
d

C
(1,3)
HL , CHe 0 ∅

C
(1,3)
HQ

3

{ L1100 (C
(1,3)
HQ ) L2200 (C

(1,3)
HQ ) L1122 (C

(1,3)
HQ )

}

CHu Same with C(1,3)HQ → YuCHuY
†
u

CHd Same with C(1,3)HQ → YdCHdY
†
d

Table 10: Minimal sets of CP-odd flavor invariants for all SMEFT dimension-six Wilson coefficients
associated to operators bilinear in fermion fields. We recall that Xu ≡ YuY †

u , and similarly for down quarks
or electrons. We also recall the definition in Eq. (4.1). We also defined for the leptons

La(C̃) ≡ ImTr(Xa
e C̃) , with a = 1,2 .

which may yield a more natural description of some non-perturbative contributions of the
strong interactions to CP-odd observables.20 Those invariants would not have the single
trace structure which we used to build our sets of invariants, since δnm is U(3)5-invariant,
while θQCD is charged under some abelian parts of the flavor group. Therefore, it will
rather offset the abelian charges of determinant-like SU(3)5-invariants. For instance, for

20In the perturbative phase of QCD, the magnitude of such invariants is expected to be suppressed by an
additional non-perturbative factor e−8π

2/g2s . For low-energy observables, such as the EDMs of the neutron
[65] and of the electron [66, 67], no further suppression would be needed.
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Wilson coefficient Number of phases Minimal set

CLL, Cee 0 ∅

CLe 3 { B0
0 (CLLẽẽ) B

1
0 (CLLẽẽ) B

2
0 (CLLẽẽ) }

CQe

9

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

A1100
0 (CQQee) A1100

1 (CQQee) A1100
2 (CQQee)

A2200
0 (CQQee) A2200

1 (CQQee) A2200
2 (CQQee)

A1122
0 (CQQee) A1122

1 (CQQee) A1122
2 (CQQee)

⎫⎪⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪⎪⎭

Ced
Same with CQQee → Ceed̃d̃ (exchanging upper
with lower indices and with Ye ↔ Y †

e )

Ceu
Same with CQQee → Ceeũũ (exchanging upper
with lower indices and with Ye ↔ Y †

e )

C
(1,3)
LQ

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

A0
1100 (C

(1,3)
LQ ) A1

1100 (C
(1,3)
LQ ) A2

1100 (C
(1,3)
LQ )

A0
2200 (C

(1,3)
LQ ) A1

2200 (C
(1,3)
LQ ) A2

2200 (C
(1,3)
LQ )

A0
1122 (C

(1,3)
LQ ) A1

1122 (C
(1,3)
LQ ) A2

1122 (C
(1,3)
LQ )

⎫⎪⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪⎪⎭

CLd Same with C(1,3)LQ → CLLd̃d̃

CLu Same with C(1,3)LQ → CLLũũ

C
(1,3)
LeQu

27

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A0
0000 (CLẽQũ) A1

0000 (CLẽQũ) A2
0000 (CLẽQũ)

A0
1000 (CLẽQũ) A1

1000 (CLẽQũ) A2
1000 (CLẽQũ)

A0
0100 (CLẽQũ) A1

0100 (CLẽQũ) A2
0100 (CLẽQũ)

A0
1100 (CLẽQũ) A1

1100 (CLẽQũ) A2
1100 (CLẽQũ)

A0
0110 (CLẽQũ) A1

0110 (CLẽQũ) A2
0110 (CLẽQũ)

A0
2200 (CLẽQũ) A1

2200 (CLẽQũ) A2
2200 (CLẽQũ)

A0
0220 (CLẽQũ) A1

0220 (CLẽQũ) A2
0220 (CLẽQũ)

A0
1220 (CLẽQũ) A1

1220 (CLẽQũ) A2
1220 (CLẽQũ)

A0
0122 (CLẽQũ) A1

0122 (CLẽQũ) A2
0122 (CLẽQũ)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

CLedQ Same with CLẽQũ → CLẽd̃Q and Aabcde → Aaedcb

Table 11: Minimal sets of CP-odd flavor invariants for all the SMEFT dimension-six Wilson coefficients
associated to operators quartic in fermion fields (continued in Tables 12, 13). We recall that Xu ≡ YuY †

u ,
and similarly for down quarks or electrons. We use the generalized traces introduced in Eq. (4.8), as well
as the compact notations in Eqs. (4.9)-(4.10). We also defined for the leptons Aab (C) ≡ TrA (X

a
e ,X

b
e ,C),

Bab (C) ≡ TrB (X
a
e ,X

b
e ,C) with a, b = 1,2 , Afbcde(C) ≡ TrA (X

f
e ,X

b
uX

c
dX

d
uX

e
d ,C),

Aabcdf (C) ≡ TrA (X
a
uX

b
dX

c
uX

d
d , (Y

†
e Ye)

f ,C) and Bfbcde(C) ≡ TrB (X
f
e ,X

b
uX

c
dX

d
uX

e
d ,C)

the operator CQuQd, we can form

Im (e−iθQCDεABCεabcεDEF εdefYu,AaYu,BbCQuQd,CcDdYd,EeYd,Ff) =

= ∣up basis4ybysytycImCQuQd,1111 + ... .
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Wilson coefficient Number of phases Minimal set

C
(1,3)
QQ 18

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A0000
1100 (CQQQQ) A

1000
1100 (CQQQQ) A

0100
1100 (CQQQQ)

A0000
2200 (CQQQQ) A

1100
1100 (CQQQQ) A

1000
2200 (CQQQQ)

A0100
2200 (CQQQQ) A

0000
1122 (CQQQQ) A

1100
2200 (CQQQQ)

A1200
2100 (CQQQQ) A

1000
1122 (CQQQQ) A

0100
1122 (CQQQQ)

A1100
1122 (CQQQQ) A

2200
2200 (CQQQQ) B

0000
1100 (CQQQQ)

B0000
2200 (CQQQQ) B

0000
1122 (CQQQQ) A

2200
1122 (CQQQQ)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Cuu 18

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A0000
1100 (Cuuũũ) A

1000
1100 (Cũũũũ) A

0100
1100 (Cũũũũ)

A0000
2200 (Cuuũũ) A

1100
1100 (Cũũũũ) A

0200
1100 (Cũũũũ)

A0100
2200 (Cũũũũ) A

0000
1122 (Cuuũũ) A

1100
2200 (Cũũũũ)

A1000
1122 (Cũũũũ) A

0100
1122 (Cũũũũ) A

1100
0122 (Cũũũũ)

A1200
2200 (Cũũũũ) B

0000
1100 (Cuũũu) B

0100
1100 (Cũũũũ)

B0200
2100 (Cũũũũ) A

1200
1122 (Cũũũũ) B

1000
1200 (Cũũũũ)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Cdd 18

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A0000
1100 (Cddd̃d̃) A

1000
1100 (Cd̃d̃d̃d̃) A

0000
2200 (Cddd̃d̃)

A1100
2000 (Cd̃d̃d̃d̃) A

0100
1100 (Cd̃d̃d̃d̃) A

1100
1100 (Cd̃d̃d̃d̃)

A1000
2200 (Cd̃d̃d̃d̃) A

0000
1122 (Cddd̃d̃) A

1100
2200 (Cd̃d̃d̃d̃)

A1000
1122 (Cd̃d̃d̃d̃) A

1100
1220 (Cd̃d̃d̃d̃) A

1200
2110 (Cd̃d̃d̃d̃)

A2100
0122 (Cd̃d̃d̃d̃) A

2200
1220 (Cd̃d̃d̃d̃) B

0000
1100 (Cdd̃d̃d)

B0100
2100 (Cd̃d̃d̃d̃) B

1000
1100 (Cd̃d̃d̃d̃) B

1200
2000 (Cd̃d̃d̃d̃)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

C
(1,8)
Qu 36

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A1100
0000 (CQQuu) A

0000
1100 (CQQũũ) A

1000
1100 (CQQũũ)

A1100
0100 (CQQũũ) A

1100
1100 (CQQũũ) A

1100
0110 (CQQũũ)

A1200
1000 (CQQũũ) A

2200
0000 (CQQuu) A

1100
2200 (CQQũũ)

A1100
0220 (CQQũũ) A

2200
0110 (CQQũũ) A

1100
1122 (CQQũũ)

A1200
1220 (CQQũũ) A

2200
1122 (CQQũũ) B

0000
0100 (CQQũũ)

B0000
1000 (CQQũũ) B

0000
0110 (CQQũũ) B

0000
0220 (CQQũũ)

B0000
1100 (CQQũũ) B

0000
0221 (CQQũũ) B

0100
1000 (CQQũũ)

B0100
1100 (CQQũũ) B

0100
2200 (CQQũũ) B

0100
2110 (CQQũũ)

B0200
2000 (CQQũũ) B

0200
2100 (CQQũũ) B

0200
2110 (CQQũũ)

B1000
0110 (CQQũũ) B

1000
0220 (CQQũũ) B

1000
0221 (CQQũũ)

B1100
1100 (CQQũũ) B

1100
2200 (CQQũũ) B

1200
2100 (CQQũũ)

B1200
2210 (CQQũũ) B

2100
1200 (CQQũũ) B

0110
0221 (CQQũũ)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

C
(1,8)
Qd 36

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A1100
0000 (CQQdd) A

0000
1100 (CQQd̃d̃) A

1000
1100 (CQQd̃d̃)

A1100
1000 (CQQd̃d̃) A

2200
0000 (CQQdd) A

0100
1100 (CQQd̃d̃)

A0000
2200 (CQQd̃d̃) A

1100
1100 (CQQd̃d̃) A

1100
2100 (CQQd̃d̃)

A1122
0000 (CQQdd) A

0000
1122 (CQQd̃d̃) A

1100
2200 (CQQd̃d̃)

A1100
0220 (CQQd̃d̃) A

1000
1122 (CQQd̃d̃) A

1100
1122 (CQQd̃d̃)

A2100
0122 (CQQd̃d̃) B

0000
0100 (CQQd̃d̃) B

0000
1000 (CQQd̃d̃)

B0000
0110 (CQQd̃d̃) B

0000
0220 (CQQd̃d̃) B

0000
1100 (CQQd̃d̃)

B0000
0221 (CQQd̃d̃) B

0000
2200 (CQQd̃d̃) B

0000
2210 (CQQd̃d̃)

B0100
1000 (CQQd̃d̃) B

0100
0120 (CQQd̃d̃) B

0100
1100 (CQQd̃d̃)

B0100
2210 (CQQd̃d̃) B

1000
0110 (CQQd̃d̃) B

1000
0220 (CQQd̃d̃)

B1000
0221 (CQQd̃d̃) B

1000
1200 (CQQd̃d̃) B

1100
2200 (CQQd̃d̃)

B1100
2210 (CQQd̃d̃) B

1200
2100 (CQQd̃d̃) B

2100
2211 (CQQd̃d̃)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Table 12: Continuation of Table 11
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Wilson coefficient Number of phases Minimal set

C
(1,8)
ud 36

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A1100
0000 (Cũũdd) A

0000
1100 (Cuud̃d̃) A

1000
1100 (Cũũd̃d̃)

A1100
1000 (Cũũd̃d̃) A

2200
0000 (Cũũdd) A

0100
1100 (Cũũd̃d̃)

A0000
2200 (Cuud̃d̃) A

1100
1100 (Cũũd̃d̃) A

1100
0110 (Cũũd̃d̃)

A1000
2200 (Cũũd̃d̃) A

1100
2100 (Cũũd̃d̃) A

1122
0000 (Cũũdd)

A0100
2200 (Cũũd̃d̃) A

0000
1122 (Cuud̃d̃) A

1100
2200 (Cũũd̃d̃)

A1000
1122 (Cũũd̃d̃) A

0100
1122 (Cũũd̃d̃) A

1100
1122 (Cũũd̃d̃)

B0000
0100 (Cũũd̃d̃) B

0000
1000 (Cũũd̃d̃) B

0000
0110 (Cũũd̃d̃)

B0000
1100 (Cũũd̃d̃) B

0000
0221 (Cũũd̃d̃) B

0000
2200 (Cũũd̃d̃)

B0100
1000 (Cũũd̃d̃) B

0100
0110 (Cũũd̃d̃) B

0100
2110 (Cũũd̃d̃)

B0200
2000 (Cũũd̃d̃) B

0200
2110 (Cũũd̃d̃) B

1000
0110 (Cũũd̃d̃)

B1000
0221 (Cũũd̃d̃) B

1000
1200 (Cũũd̃d̃) B

1100
2200 (Cũũd̃d̃)

B1100
2211 (Cũũd̃d̃) B

1200
2100 (Cũũd̃d̃) B

2100
1200 (Cũũd̃d̃)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

C
(1,8)
QuQd 81

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A0000
0000 (CQũQd̃) A

0000
1000 (CQũQd̃) A

1000
0000 (CQũQd̃)

A1000
1000 (CQũQd̃) A

0000
0100 (CQũQd̃) A

0100
0000 (CQũQd̃)

A0000
1100 (CQũQd̃) A

0000
0110 (CQũQd̃) A

0100
1000 (CQũQd̃)

A1000
0100 (CQũQd̃) A

1100
0000 (CQũQd̃) A

0110
0000 (CQũQd̃)

A1000
1100 (CQũQd̃) A

1000
0110 (CQũQd̃) A

1100
1000 (CQũQd̃)

A0100
0100 (CQũQd̃) A

0100
1100 (CQũQd̃) A

0100
0110 (CQũQd̃)

A0110
0100 (CQũQd̃) A

0000
2200 (CQũQd̃) A

0000
0220 (CQũQd̃)

A0200
2000 (CQũQd̃) A

1100
1100 (CQũQd̃) A

1100
0110 (CQũQd̃)

A2000
0200 (CQũQd̃) A

2100
0100 (CQũQd̃) A

0110
1100 (CQũQd̃)

A0110
0110 (CQũQd̃) A

0210
1000 (CQũQd̃) A

0000
1220 (CQũQd̃)

A1200
2000 (CQũQd̃) A

0000
0122 (CQũQd̃) A

0100
1220 (CQũQd̃)

A1000
0122 (CQũQd̃) A

1100
2200 (CQũQd̃) A

1100
0220 (CQũQd̃)

A1200
2100 (CQũQd̃) A

2100
1200 (CQũQd̃) A

2100
0210 (CQũQd̃)

A2200
0110 (CQũQd̃) A

0110
2200 (CQũQd̃) A

0110
0220 (CQũQd̃)

A0112
2000 (CQũQd̃) A

1100
1220 (CQũQd̃) A

2100
0112 (CQũQd̃)

A1200
1220 (CQũQd̃) A

2200
2200 (CQũQd̃) A

0110
1122 (CQũQd̃)

A0122
2100 (CQũQd̃) A

0220
0220 (CQũQd̃) B

0000
0000 (CQũQd̃)

B0000
0100 (CQũQd̃) B

0000
1000 (CQũQd̃) B

0000
1100 (CQũQd̃)

B0000
2200 (CQũQd̃) B

0000
0110 (CQũQd̃) B

0000
0122 (CQũQd̃)

B0000
0220 (CQũQd̃) B

0100
0000 (CQũQd̃) B

0100
1000 (CQũQd̃)

B0100
1100 (CQũQd̃) B

0100
2100 (CQũQd̃) B

0100
0120 (CQũQd̃)

B0100
1220 (CQũQd̃) B

0200
1120 (CQũQd̃) B

1000
0000 (CQũQd̃)

B1000
0100 (CQũQd̃) B

1000
1200 (CQũQd̃) B

1000
0110 (CQũQd̃)

B1000
0122 (CQũQd̃) B

1000
0210 (CQũQd̃) B

1100
0000 (CQũQd̃)

B1100
1100 (CQũQd̃) B

1100
2200 (CQũQd̃) B

1100
0110 (CQũQd̃)

B1100
0220 (CQũQd̃) B

1100
1122 (CQũQd̃) B

1200
2100 (CQũQd̃)

B2100
0122 (CQũQd̃) B

2200
0000 (CQũQd̃) A

2200
1122 (CQũQd̃)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Table 13: Continuation of Tables 11 and 12
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