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Abstract: We explore the double copy of effective field theories (EFTs), in the recently

proposed generalized color-kinematics and Kawai–Lewellen–Tye (KLT) approaches. In the

former, we systematically construct scalar numerators satisfying the Jacobi identities from

simpler numerator seeds with trace-like permutation properties. This construction has the

advantage of being easily applicable to any multiplicity, which we exemplify up to 6-point.

It employs the linear map between color factors formed by single traces of generators and

by products of the structure constants, which also relates the generalized KLT and color-

kinematics formalisms, allowing to produce KLT kernels at arbitrary order in the EFT

expansion. At 4-point, we show that all EFT kernels are generated and that they only

yield double-copy amplitudes which can also be obtained from the traditional KLT kernel.

We perform initial checks suggesting that the same conclusions also hold at 5-point. We

focus on single-trace massless scalar EFTs which however also control the higher-derivative

corrections to gauge and gravity theories.
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1 Introduction

Gravity amplitudes can be obtained from Yang–Mills amplitudes through a squaring oper-

ation known as the double copy. This relation between theories has been studied through

different lenses, exhibiting a rich underlying mathematical structure. New elements of

understanding are however still being collected. The double copy was first discovered by

Kawai, Lewellen and Tye (KLT) from relations between tree-level open- and closed-string

amplitudes [1]. In the KLT formalism, (dilaton-axion-)gravity amplitudes are obtained

from products of the appropriate color-ordered on-shell amplitudes of a gauge theory, nor-

malized by a scalar factor dubbed the KLT kernel, which depends on the kinematics of the

process.

A different but equivalent product structure was discovered at the level of trivalent

graphs in field theory by Bern, Carrasco and Johansson (BCJ) [2, 3]. In this approach,

each Yang–Mills graph is expressed in terms of a color and a kinematic numerator multi-

plying propagators. It was found that both types of numerators can be chosen such that

they obey identical algebraic relations under particle permutations, e.g. Jacobi-like identi-

ties. This remarkable fact is known as the color-kinematics (CK) duality. Replacing the

color numerator by a second kinematic numerator then yields gravity amplitudes, in an

economical way. The double-copy structure was also observed using scattering equations

by Cachazo, He and Yuan [4–6], who identified the aforementioned KLT kernel with the

inverse matrix of color-ordered amplitudes computed in a bi-adjoint scalar theory.

In recent years, it has become clear that double-copy relations exist beyond the (grav-

ity) = (Yang–Mills)2 example, and that theories different from Yang–Mills can be used as

inputs, thereby double-copying to other theories than gravity. A web of theories connected

through double-copy relations was identified and further explorations are ongoing about

the space of theories it covers [6, 7]. It was for example found that gauge theories with

massive (scalar or fermionic) matter in the fundamental representation can also be double-

copied [8–14], and even theories with spontaneous symmetry breaking obey the CK duality

[15]. In addition, the double copy of massive gauge bosons has been considered in [16–20].

Besides gauge theories, a double-copy structure has been observed in pure scalar theories

such as the aforementioned bi-adjoint scalar theory and the non-linear sigma model [21, 22].

Furthermore, the double-copy product based on the CK duality has been found to extend

to the loop level in various examples. For a comprehensive review on the double copy, see

[23].

The above examples mostly correspond to renormalizable theories, however higher-

dimensional operators are also expected to take part in some form of the double copy.

Higher-derivative corrections to Yang–Mills theories were explicitly studied in [24] and

more recently in [25], while scalar effective field theories (EFTs) were studied in e.g. [26–

31]. Other heavy mass EFTs have also been considered in [32, 33].

Two more systematic approaches to study the range of higher-derivative operators that

can be double-copied have recently been proposed by Carrasco, Rodina, Yin, Zekioğlu [34,

35] and Chi, Elvang, Herderschee, Jones, Paranjape [36]. In the former, the color-kinematics

approach to the double copy is taken and extended by considering generalized numerators
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that may simultaneously depend on both color and kinematics, while still satisfying Jacobi-

like identities. A set of composition rules is defined to systematically build such numerators

at a given order in the EFT expansion. This approach can be extended from 4- to 5-point

amplitudes [35].

In the approach taken by [36], the KLT kernel is generalized. The initial observation

is that the map between open- and closed-string amplitudes involves a kernel with higher-

derivative corrections, which is the inverse matrix of the color-ordered amplitudes in a

bi-adjoint EFT with operator coefficients correlated in a specific way [37]. This notion

is generalized by allowing for more free parameters in the KLT kernel, arising from a

more general bi-adjoint EFT. A set of bootstrap equations on the KLT kernel and input

theories are proposed to guarantee a healthy analytical structure in the resulting double-

copy amplitudes. Solving the bootstrap then yields a systematic study of the operators

possibly involved in the double copy. Correct factorization properties for a theory with

fixed particle content need to be imposed as an additional constraint on both the kernel

and the input amplitudes.

In this paper, we aim to shed light on these two approaches to the double copy of EFTs

and on their relation, by introducing a new method to construct generalized numerators

at any multiplicity. The traditional color numerators, consisting of products of Lie-group

structure constants, can be written as linear combinations of the single traces of products

of group generators. In the same way, we show that all generalized numerators can be

constructed from simple numerator seeds, which satisfy the same permutation properties

as the single traces of generators.

The construction of numerators has previously been investigated from different per-

spectives. They have for instance been extracted from known amplitudes and the KLT

kernel [38, 39]. Dual trace factors, analogous to our numerator seeds but involving mo-

menta and polarization vectors, have also previously been identified in Yang–Mills ampli-

tudes [40–44]. In contrast, we use numerators to construct EFT amplitudes, and seeds

built out of color and momenta to construct generalized scalar numerators. Based on the

kinematic algebra, vector numerators for Yang–Mills and heavy-quark effective theories

have also recently been constructed from simpler “pre-numerators” [32, 45].

A further advantage of numerator seeds is that they can be directly related to KLT

kernels. This enables the study of the operators involved in the KLT double copy, through

a method that is alternative to the bootstrap of [36]. Numerator seeds thus provide further

insight into the relation between the double copy approaches of [34, 35] and [36], and

into the structure of the generalized KLT kernel. In particular, at 4-point, we show that

the double-copy amplitudes obtained with a generalized KLT kernel can equivalently be

achieved by the traditional kernel, multiplying healthy local input amplitudes including

higher-derivative corrections. As emphasized in [36], the generalized kernel does however

allow for more general EFT inputs to the double copy. We also report on various results

which indicate that this observation extends to higher multiplicities.

The structure of this paper is as follows. To be self-contained and set the notation, we

first provide in Sec. 2 a detailed review of the two aforementioned approaches to the double

copy of EFTs. The construction of generalized numerators from seeds at any multiplicity
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is then presented in Sec. 3. In this section, we also show how this construction facilitates

the reorganization of CK-dual representations of amplitudes in terms of color-ordered am-

plitudes, which are the building blocks of the KLT formalism. Moreover, for any input

amplitude that can be double-copied with a generalized kernel, we identify new objects

which yield the same double copy with the traditional kernel. This holds provided the

generalized kernel can be constructed from numerator seeds, and provided one can ensure

locality of the new objects in order to call them amplitudes. We discuss these two caveats

at 4- and 5-point in the subsequent sections. Restricting to 4-point amplitudes, Sec. 4 and

Sec. 5 illustrate our method and show that it generates all solutions to the KLT bootstrap.

We also analyse the double-copy structure in the KLT formalism, and the factorization

properties of the amplitudes involved. The two caveats above are successfully addressed

in this 4-point case. Moving on to 5-point amplitudes in Sec. 6, we demonstrate that the

lowest-order bootstrap solutions provided in [36], can be reproduced from our numerator

construction. We also present partial results suggesting that no new double copies are

generated by the generalized kernel at 5-point either.

2 The systematic double copy of EFTs

We start with a review on the generalized KLT method of [36] and the generalized numer-

ator method of [34, 35].

2.1 The generalized KLT approach

The KLT formula for an amplitude with n external particles in the adjoint representation

of SU(N) (or U(N)) symmetry groups is given by

Mn =

(n−3)!∑
α,β

ALn [α] Sn[α|β] ARn [β] . (2.1)

Here, ALn and ARn are the color-ordered amplitudes of potentially different theories, called

single copies, and Mn is the double-copy amplitude. Due to the Kleiss–Kuijf (KK) [46]

and BCJ [2] relations, the number of independent color-ordered amplitudes forming a BCJ

basis is (n− 3)!. The indices α, β in Eq. (2.1) refer to the color-orderings of the single-copy

amplitudes and the sums run over the elements of any two BCJ bases, while the KK and

BCJ relations ensure that the double-copy amplitude does not depend on the chosen bases.

The multiplication of the single copies is governed by Sn, the KLT kernel, which is

a scalar function of Lorentz invariants. Its form depends on the BCJ bases considered

in the sum. The kernel plays a crucial role in ensuring that the resulting double-copy

amplitude has a healthy analytical structure. It cancels poles that are present in both

ordered amplitudes, to prevent double poles in Mn, and provides missing poles so that

all physical factorization channels are generated. This requires the KLT kernel to have a

precise structure, which was found to be closely related to the amplitudes of the bi-adjoint

scalar theory (BAS) [6].
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The BAS Lagrangian is given by

LBAS = −1

2
(∂µφ

aã)2 −
gφ
6
fabcf̃ ãb̃c̃φaãφbb̃φcc̃ , (2.2)

where the scalar field has two adjoint color-group indices.1 We normalize the adjoint

generators and structure constants such that [T a, T b] = fabcT c and Tr
(
T aT b

)
= δab. Using

the decomposition of the structure constants, the full bi-adjoint n-point amplitude can be

written in terms of linearly independent traces of the generators,

Abas
n =

∑
α,β∈Sn−1

Tr(T aα1T aα2 · · ·T aαn ) mn[α|β] Tr(T̃ ãβ1 T̃ ãβ2 · · · T̃ ãβn ) . (2.3)

The objects mn[α|β] are called doubly color-ordered amplitudes. They can be computed by

summing over the trivalent graphs that contribute to the color orderings of both arguments,

with appropriate relative signs. For example, at 3-point we have m3[123|123] = gφ.

At 4-point, it is useful to define the vector of color factors,

c0 =
(

(1234), (1243), (1324), (1342), (1423), (1432)
)T
, (2.4)

where (1234) ≡ Tr(T a1T a2T a3T a4), etc. We define c̃0 similarly as c0 for the color factors

with tilded indices. The full BAS amplitude is then written compactly in matrix form as,2

Abas
4 = c0 ·m4 · c̃0 , (2.5)

with

m4=


m4[1234|1234] m4[1234|1243] · · · m4[1234|1432]

m4[1243|1234] m4[1243|1243] · · · m4[1243|1432]
...

...
. . .

...

m4[1432|1234] m4[1432|1243] · · · m4[1432|1432]

=g2φ


1
s + 1

u −1
s · · · 1

s + 1
u

−1
s

1
s + 1

t · · · −
1
s

...
...

. . .
...

1
s + 1

u −1
s · · · 1

s + 1
u

 .

where we use the conventions s = s12, t = s13 and u = s14 with sab = (pa + pb)
2 and all

momenta incoming.

Remarkably, the KLT kernel can be identified as the inverse matrix of doubly color-

ordered amplitudes [6],

Sn[α|β] = (mn[α|β])−1 , (2.6)

where the indices α and β should be restricted to any two BCJ bases (in which color-

ordered amplitudes are independent), such that the mn[α|β] sub-matrix is of full rank and

can be inverted. The rows and columns of mn all satisfy the KK and BCJ relations, and

the double copies of BAS amplitudes are trivial:

mn[α|δ] =

(n−3)!∑
β,γ

mn[α|β]Sn[β|γ]mn[γ|δ] , (2.7)

1We refer to these indices as color ones although they are associated to global symmetries.
2We will often omit vector arrows and transposes, writing for instance c0 ·m4 · c̃0 instead of ~c T

0 ·m4 · ~̃c0.
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where the uncontracted α, δ indices correspond to the color orderings that are left un-

touched in this relation.

The BAS theory can also be double-copied with another single-copy theory, in which

case the KLT product encodes the KK and BCJ relations. This is simple to illustrate at

4-point, where m4[α|β] has rank 1 and the kernel is simply the inverse of a number for

fixed α, β. In this case, Eq. (2.6) implies that there are choices of BCJ bases that render

the KLT relation trivial, such as in

A4[α] = m4[α|β] S4[β|γ] A4[γ] or A4[α] = A4[γ] S4[γ|β] m4[β|α] , (2.8)

when α = γ. However, because of the KK and BCJ relations, the left-hand side does not

depend on the β, γ bases chosen in the product. For example, (note α 6= γ, but arbitrary

β)

A4[1234] = m4[1234|β] S4[β|1243] A4[1243] =
t

u
A4[1243] , (2.9)

is exactly a BCJ relation, while one of the KK relations is given by

A4[1234] = m4[1234|β]S4[β|1432]A4[1432] = A4[1432] . (2.10)

It was emphasized in [36] that the BAS behaves like an identity element in the KLT product,

which is why it is also referred to as the zeroth copy.

The identification of the BAS as the identity element of the KLT product leads to

generalizations of this product associated to modifications of the BAS theory. This is

exactly the case for the field theory form of the KLT relation between the open- and

closed- string amplitudes [37]. However, not all modifications of the BAS theory result in

acceptable KLT kernels. It was found that these corrections should preserve the rank of

the matrix of doubly color-ordered amplitudes, which is (n − 3)! [36]. This is called the

minimal rank condition. In this paper, we will focus on higher-derivative (h.d.) corrections

suppressed by powers of an EFT cutoff scale Λ, i.e. mh.d.
n = mn+O(1/Λ). In the decoupling

limit, Λ→∞, one therefore recovers the traditional KLT product.

In the generalized KLT formalism, the kernel Sh.d.
n is the inverse of a full-rank sub-

matrix of mh.d.
n and satisfies

mh.d.
n [α|δ] =

∑
β,γ

mh.d.
n [α|β] Sh.d.

n [β|γ] mh.d.
n [γ|δ] . (2.11)

The consistency conditions that follow from products of the identity element (BAS) with

another theory are called the generalized KKBCJ relations. For single-copy color-ordered

amplitudes, A′n,l/r, they have the form

A′n,r[α] =
∑
β,γ

mh.d.
n [α|β] Sh.d.

n [β|γ] A′n,r[γ] ,

A′n,l[α] =
∑
β,γ

A′n,l[γ] Sh.d.
n [γ|β] mh.d.

n [β|α] , (2.12)
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and allow to bootstrap the single-copy amplitudes A′n,l/r that can take part in the double

copy,

M′n =
∑
α,β

A′n,l[α] Sh.d.
n [α|β] A′n,r[β] . (2.13)

Depending on the form of mh.d.
n and Sh.d.

n , the generalized KKBCJ relations for A′n,r and

A′n,l may be different. We emphasize that both An,l/r and A′n,l/r may in principle contain

higher-derivative corrections. The prime indicates that the amplitudes satisfy generalized

KKBCJ relations, which allow for more operators.

That Eq. (2.13) produces a healthy amplitude when mh.d.
n has minimal rank is a non-

trivial empirical result [36]. The generalized KLT formalism allows for a systematic study

of the space of theories that can appear as input and output of the double-copy procedure.

Although the bootstrap equations strongly constrain the higher-derivative corrections that

are allowed in the input (single-copy) amplitudes, the generalized KLT formalism allows

for more independent operators in the single copies than its traditional version. However,

up to the orders checked explicitly in [36], it was found that the space of generalized

output (double-copy) amplitudes M′n is the same as Mn. At 4-point, where the double-

copy relation contains a single term, ‘similarity transformations’ were proposed in [36] to

explain this fact (see also [47]). We aim to shed further light on this observation in Sec. 3

and Sec. 5.

As an example, the 4-point amplitude of the BAS theory with higher-derivative cor-

rections is

Abas+h.d.
4 = c0 ·mh.d.

4 · c̃0 . (2.14)

Solving the minimal rank condition, the mh.d.
4 matrix of doubly color-ordered amplitudes

corresponding to BAS+h.d. can be written as [36]

mh.d.
4 =



f1(s, t) f2(s, t) f2(u, t) f2(s, t) f2(u, t) f1(s, t)

f2(s, u) f1(s, u) f2(t, u) f1(s, u) f2(t, u) f2(s, u)

f2(u, s) f2(t, s) f1(t, s) f2(t, s) f1(t, s) f2(u, s)

f2(s, u) f1(t, u) f2(t, u) f1(t, u) f2(t, u) f2(s, u)

f2(u, s) f2(t, s) f1(u, s) f2(t, s) f1(u, s) f2(u, s)

f1(s, t) f2(s, t) f2(u, t) f2(s, t) f2(u, t) f1(s, t)


, (2.15)

where

f1(s, t) = f1(u, t) ≡
f2(s, t)f2(u, s)

f2(t, s)
, (2.16)

and f2 satisfies the bootstrap equation

f2(s, t)f2(t, u)f2(u, s) = f2(t, s)f2(s, u)f2(u, t) . (2.17)

Furthermore, the aforementioned assumption mh.d.
4 = m4 + O(g2φ/Λ

2) requires f2(s, t) =

−g2φ/s + O(g2φ/Λ
2). Additional constraints on f2 arise if we forbid extra particles in the

BAS+h.d. theory.
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For later reference, we note that the alternative ordering of the single traces, c0 =(
(1324), (1234), (1243), (1423), (1432), (1342)

)T
, exposes a block matrix structure,

mh.d.
4 =

(
m̃h.d.

4 m̃h.d.
4

m̃h.d.
4 m̃h.d.

4

)
, with m̃h.d.

4 ≡

 f1(t, s) f2(u, s) f2(t, s)

f2(u, t) f1(s, t) f2(s, t)

f2(t, u) f2(s, u) f1(s, u)

 . (2.18)

This structure also exists if we turn off the higher-derivative corrections, with

m̃4 = g2φ


1
t + 1

u − 1
u −1

t

− 1
u

1
s + 1

u −1
s

−1
t −1

s
1
s + 1

t

 . (2.19)

Restricting to the smaller m̃h.d.
4 and m̃4 matrices will prove useful in the following sections.

We will actually only use these hereafter and drop the tildes for convenience. However,

such a block matrix structure generally only exists at lowest derivative order for n > 4

particles. The 4-point case is special because the kinematics is invariant under reversal of

the particle labels: f̃(1, 2, 3, 4) ≡ f(s12, s13) = f(s43, s42) ≡ f̃(4, 3, 2, 1), for any function f

of the Mandelstam invariants.

2.2 The generalized numerators approach

Another approach to the double copy is based on the color-kinematics (CK) duality [2, 3].

The basic idea is to use the decomposition of an on-shell n-point amplitude An on trivalent

graphs g,

An =
∑
g

cgng
dg

, (2.20)

where dg is the product of the (inverse) propagators it involves; cg traditionally correspond

to color factors associated to that same graph (i.e. combinations of generators of the gauge

algebra); while ng are the kinematic numerators that depend on Lorentz invariants and

possibly on polarization vectors. Given an amplitude An, the numerators ng are not unique.

CK duality is then a property of amplitudes for which there exists a choice of numerators

ng which verify the same algebraic relations as those of the color factors cg, inherited from

the gauge algebra. In certain theories, such as Yang–Mills, all tree-level amplitudes satisfy

the CK duality. In particular, the SU(N) color factors of 4-point amplitudes obey Jacobi

identities of the form3

cga + cgb + cgc = 0 , (2.21)

and antisymmetry relations upon interchanging two legs on one vertex in the ga, gb, gc
graphs. Any numerator satisfying these adjoint algebraic relations will be called an adjoint

numerator.

In gauge theories, the color relations ensure the gauge invariance of the amplitude

under shifts of the polarization vectors contained in ng, A|εi→pi = 0, for any particle label

3The signs in the Jacobi relation are fixed by the cs, ct, cu conventions. We use cs = fabefecd,

ct = facefedb and cu = fadefebc.
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i. This implies, in turn, that cg can be replaced by any expression which satisfies the same

relations without spoiling gauge invariance, and the latter applies in particular to another

copy of a CK-dual ng. The BCJ double-copy procedure [2, 3] is thus schematically

An =
∑
g

cgng
dg

, Ãn =
∑
g

cgñg
dg

−→ Mn =
∑
g

ñgng
dg

, (2.22)

whereMn is the double-copy amplitude. The numerator ñg is not necessarily the same as

ng, but both are CK-dual to the same cg color factors.4 For two copies of Yang–Mills, the

resulting amplitude describes the scattering of gravitons (as well as scalars).

Let us illustrate this approach at 4-point with the well-known case of Yang–Mills

theories. There are three trivalent diagrams associated to the s, t, u channels, and the

amplitude reads

Aym
4 (1+a 2+b 3−c 4−d ) = g2ym [12]2 〈34〉2

(
facef edb

st
− fadef ebc

su

)
=
csns
s

+
ctnt
t

+
cunu
u

, (2.23)

where we defined

cadj ≡

csct
cu

 ≡
fabef ecdfacef edb

fadef ebc

 , n ≡

nsnt
nu

 ≡ g2ym [12]2 〈34〉2


1−2α
u − α

t

α
s −

1−2α
u

α
t −

α
s

 , (2.24)

with an arbitrary function α. Square and angle brackets denote spinor-helicity variables

(for pedagogical introductions see e.g. [48, 49]). The Jacobi identity reads cs + ct + cu = 0

and the explicit formulæ above allow to check that ns + nt + nu = 0 for any α. The

color factors also satisfy antisymmetry relations such as cs|1↔2 = cs|a↔b = −cs. For

α = 1/3, the numerators are antisymmetric too: e.g. ns|1↔2 = ns|t↔u = −ns. This shows

the CK duality of the 4-point YM amplitude. The double-copy method then leads to a

diffeomorphism-invariant four-gravitons amplitude,

Mgr
4 (1+22+23−24−2) =

n2s
s

+
n2t
t

+
n2u
u
. (2.25)

The bi-adjoint scalar theory considered in the previous subsection also plays the role

of a zeroth copy in the CK approach. It has a (color-color) dual structure,

Abas
n = gn−2φ

∑
g

cg c̃g
dg

, (2.26)

where the two color groups lead to cg and c̃g. Being both color factors in the adjoint

representation, they verify Jacobi and antisymmetry relations and any of the two can be

treated as a CK-dual numerator ng. Moreover, replacing cg in Eq. (2.22) by one of the

BAS color factors has a trivial effect.

4The CK duality has to be manifest in at least one numerator. Notice, however, that a manifest CK

duality can be achieved through so-called generalized gauge transformations, which are not always trivial

to perform.
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Higher-derivative effects in the BAS theory can be included, while preserving the dual

CK structure, by building generalized numerators, ch.d.(c, sab) [34, 35] (see also [31]). These

verify the same adjoint algebraic relations as the cg, but may depend on both the Mandel-

stam invariants sab and color factors c. The color factors are themselves not necessarily of

adjoint type, but more generally built from products of traces of group generators. Only

their combination with Mandelstams is required to satisfy the adjoint algebraic relations.

In this paper, we focus on single traces and do for instance not consider generalizations in

the form of double traces (see e.g. [31]).

Choosing ch.d. = cg +O(sab/Λ
2), the generalized numerators result in EFT amplitudes

for the bi-adjoint scalar theory that retains the CK-duality,

Abas+h.d.
n = gn−2φ

∑
g

ch.d.g c̃ h.d.g

dg
. (2.27)

Similarly, higher-order corrections in a gauge theory that preserve the CK-duality can be

obtained by replacing the color factors by generalized numerators,

Aym+h.d.
n =

∑
g

ch.d.g ng

dg
, (2.28)

for unmodified ng. This can also be interpreted as the double copy between Aym
n and

Abas+h.d.
n amplitudes. The gauge invariance of the amplitude is maintained because the

ch.d.g satisfy the same relations as the cg. This is the approach taken in [34, 35] to extend

the CK double-copy method to higher-derivative EFT amplitudes.

To find the most general allowed numerators, one could construct an ansatz for ch.d. at

each order in the Mandelstams and impose the adjoint algebraic relations. Exploiting the

underlying structure instead, [34] demonstrated that all purely kinematic adjoint 4-point

numerators can be built using a simple composition rule acting on existing lower-order

adjoint kinematic numerators j and k (vectors),

n(j, k) =

jtkt − jukujuku − jsks
jsks − jtkt

 . (2.29)

This requires only one building block made out of kinematic invariants,

n(ss) =

t− uu− s
s− t

 . (2.30)

Furthermore, all adjoint 4-point numerators involving one factor of color can be generated

using Eq. (2.29) with one of the two input numerators containing color, and the additional

rule

c (j, d) = d j , (2.31)
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where d is the color factor that is fully symmetric under external particle permutations,

d(abcd) ≡ 1

3!

∑
σ∈S3

Tr(T aT σ(b)T σ(c)T σ(d)) . (2.32)

The only other color structures required as primary building blocks are the adjoint ones,

cs = fabef ecd, etc. encountered in Eq. (2.24). All possible adjoint structures at 4-point can

then be obtained by successive applications of these composition rules, and linear combi-

nations of these yield the most general ch.d. [34]. At 5-point, the situation is complicated

by the presence of more composition rules and algebraic structures [35].

In the next section, instead of constructing adjoint numerators from lower-order ad-

joint numerators and applying composition rules, we will build all of them from simpler

non-adjoint objects. This alternative construction procedure can be extended to higher

multiplicities without much complication.

3 Numerator construction from seeds at any multiplicity

We now propose an alternative method to construct generalized adjoint numerators of

the SU(N) (or U(N)) unitary group. At this stage, we are only interested in the adjoint

numerators themselves, without regard to the factorization properties and particle content

of amplitudes in which they enter. Section 5 discusses which extra constraints are imposed

by such considerations. The current section applies to any number of particles, while the

construction is repeated explicitly in the next section at 4-point.

3.1 Numerator seeds

The main observation is that the adjoint color factor, cadj, consisting of products of the

structure constants, can be written in terms of linear combinations of single traces of the

group generators (see also [44]),

cadj = J · c0 , (3.1)

where

c0 =
(
(123...n), all permutations of {2, 3, ..., n}

)T
, (3.2)

The matrix J contains only {±1, 0} entries and will play a central role in our construc-

tion. Its entries are determined by decomposing the structure constants in terms of traces

through

fabc = (abc)− (acb) . (3.3)

Products of traces can then be combined using the SU(N) completeness relation,∑
a

T aij T
a
kl = δilδkj −

1

N
δijδkl , (3.4)

and one can show that the 1/N terms cancel for products of structure constants.

In this way, the matrix J relates the simple algebraic structure of single traces (con-

tained in the c0 vector) to the more involved adjoint algebraic properties. It encodes
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the Jacobi identities, and the antisymmetry relations which follow from the permutation

properties of the single traces. The matrix J can be decomposed as follows:

J = A ·B (3.5)

where B is the (n− 2)!× (n− 1)! matrix of rank (n− 2)! that relates c0 to the color factors

in a Del Duca–Dixon–Maltoni (DDM) basis [50], and A is the (2n− 5)!!× (n− 2)! matrix

of rank (n − 2)! that relates the DDM basis to cadj. Conventions can also be chosen such

that both A and B are sub-matrices of J, see [44].

Therefore, any object n0 that satisfies the same algebraic properties as the single traces

will be mapped to an adjoint numerator under multiplication by J. The vector of single

traces has linearly independent entries that are given in terms of permutations of one

functional form, which is cyclically invariant in its arguments,

(ab...c) = (b...ca) . (3.6)

In matrix notation, the algebraic properties can be summarized as follows. Under a rela-

beling σ of the particles, c0 transforms as

c0 −→
σ
Mc0,σ · c0 , (3.7)

where Mc0,σ is a permutation matrix. We shall call objects that obey the algebraic prop-

erties of the single traces,

n0 −→
σ
Mc0,σ · n0 , (3.8)

numerator seeds, or seeds for short, as they can be used to generate adjoint numerators. We

shall use both n0 and ch.d.0 to refer to numerator seeds. The latter notation emphasizes that

the cyclically invariant functional form of the seeds depends on both Mandelstam invariants

and color factors. Such seeds generate the generalized adjoint numerators discussed in

Sec. 2.2.

In App. A, we prove that any adjoint numerator can be constructed from a numerator

seed, i.e.

nadj = J · n0 . (3.9)

Since the seeds are straightforwardly constructed, this provides an efficient way to explore

the space of possible (generalized) adjoint numerators. A similar result was proven for

kinematic numerators in renormalizable Yang–Mills theory using a different method [42].

A set of linearly independent numerator seeds generally maps to a redundant set of

adjoint numerators, namely J · n0 = J · n′0 could happen even for n0 6= n′0. Therefore,

identifying a set of seeds which generates independent adjoint numerators requires an extra

step of reduction. This can be done by directly inspecting the general expression of n0,

or by relying on a construction which removes redundancies. We give explicit examples

of the former below, while the latter can be achieved using the Moore–Penrose pseudo-

inverse of J, called J+ (see App. A): it also follows from the argument of App. A that

J+ · J · n0 = J+ · J · n′0 is a valid numerator seed.5 A complete and independent set of
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k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

4-pt 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5

5-pt 0 0 1 2 5 8 14 21 32 45 63 84 112 144 185

6-pt 1 3 9 23 54 120 243 469 861 1509 2546 4158 · · · · · · · · ·

Table 1. Number of independent scalar kinematic numerators at O(1/Λ2k) in the EFT expansion.

The Gram determinant constraints relevant in 4 spacetime dimensions have been accounted for.

The counting at 4- and 5-point was achieved in [34] while the 6-point one is provided here for

the first time. Although straightforward in principle, the numerically intensive reduction of the

overcomplete set of numerators was not pushed beyond k = 12 at 6-point.

numerator seeds can thus be obtained by projecting with J+ · J on all cyclically invariant

functions.

As an example of redundancies, permutation invariant functional forms result in valid

numerator seeds, but they are mapped to zero and thus do not give rise to independent

adjoint numerators. In addition, J always combines seed entries with reversed ordering of

particle labels, since cadj → (−1)ncadj under reversal, at n-point. The entries in a numerator

seed can thus be ordered such that J has a block matrix structure, schematically: Ja×b =(
Ja×(b/2) , (−1)nJa×(b/2)

)
. Therefore, the general numerator seed

n0 =
(
n0(1, 2, ..., n), ... , n0(n, ..., 2, 1), ...

)
, (3.10)

and the seed on which we impose (anti)symmetry under reversal on the functional form,

n̄0 =
1

2

(
n0(1, 2, ..., n) + (−1)n n0(n, ..., 2, 1), ... ,

n0(n, ..., 2, 1) + (−1)n n0(1, 2, ..., n), ...
)
, (3.11)

result in the same adjoint numerator. At 4-point, these are the only sources of redundancy

in the construction of adjoint numerators. There are further redundancies in the construc-

tion of CK-dual amplitudes, called generalized gauge transformations that will be addressed

in section Sec. 4.3. At higher multiplicity, redundancies can take a more complicated form,

to be exemplified at 5-point in Sec. 6.

Even without identifying the specific algebraic origin of the redundancies, it is straight-

forward to just build the overcomplete set of seeds and identify numerically a basis of

independent adjoint numerators. We provide the counting of the latter in Table 1, for

numerators taking the form of polynomials of Mandelstam invariants. This table can be

compared with Table 2 in App. B, listing the number of independent seeds, which grows

faster with n than the number of independent numerators. The construction of adjoint

numerators at 4-point agrees with the observation made in [34], namely that higher-order

5It is also interesting to note that the projection by J+ ·J is equivalent to imposing the KK relations on
the seeds. As shown in [44], a vector ~v satisfies the KK relations if and only if ~ri · ~v = 0, where ri are the

right null-vectors of J. Since the right null-space of J is captured by 1−J+ ·J, and (1−J+ ·J)·J+ ·J·n0 = 0,

the seed J+ · J · n0 satisfies the KK relations.
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adjoint numerators can be obtained from lower order ones by multiplication with a permu-

tation invariant function. The results at 5-point also agree with the number of independent

numerators listed in Table 2 of [35] and we have constructed all the adjoint kinematic scalar

numerators up to 6-point and O(1/Λ24).6 We also provide explicit examples of numerator

seeds and adjoint numerators of lowest orders in App. B.

3.2 Double copy and color-ordered amplitudes from numerators

The matrix J is also useful to obtain color-ordered amplitudes from adjoint numerators.

This approach was previously taken in [7], with a similar definition for J.7 For instance,

writing the full bi-adjoint scalar amplitude of Eq. (2.26) in matrix form and using the fact

that cadj and c0 are related by J through Eq. (3.1) yields

Abas = cadj ·P · c̃adj = c0 · JT ·P · J · c̃0 , (3.12)

where P contains the propagators (and coupling constants) of the trivalent graphs on its

diagonal. By definition, this produces the BAS matrix of doubly ordered amplitudes (see

also [44]),

m = JT ·P · J . (3.13)

Similarly, one can write the single-copy (color-ordered) amplitudes in terms of a numerator

seed (replacing c̃adj by nadj = J · n0,r),

Ar = m · n0,r . (3.14)

These single-copy amplitudes satisfy the traditional KK and BCJ relations as a consequence

of the explicit factor of m and of the relation in Eq. (2.7). The double-copy amplitude can

be obtained in the CK way,

M = nadj,l ·P · nadj,r = n0,l ·m · n0,r , (3.15)

or equivalently through the KLT relations,

M =

(n−3)!∑
α,β

Al[α]S[α|β]Ar[β]

=

(n−1)!∑
α,δ

(n−3)!∑
β,γ

n0,l[α]m[α|β]S[β|γ]m[γ|δ]n0,r[δ]

= n0,l ·m · n0,r . (3.16)

This exposes the special role played by the BAS matrix of color-ordered amplitudes to

ensure the correct propagator structure of the double-copy amplitude.

6We thank the authors of [51] for private communications which lead us to correct our enumeration of

6-point numerators.
7For us, J relates the adjoint color factors to the single traces while, in [7], they are instead related to a

subset of adjoint color factors (which are independent under the Jacobi identities).
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The same method can be applied to obtain color-ordered amplitudes from generalized

numerators. Defining a matrix Hh.d., which depends only on Lorentz invariants, one can

decompose the numerator seeds (which, for simplicity, we build using only single traces)

as ch.d.0 = Hh.d. · c0 .8 This allows Eq. (2.27) to be rewritten as

Abas+h.d. = ch.d.0 ·m · c̃ h.d.0 = c0 ·Hh.d.
r ·m ·Hh.d.

l · c̃0 . (3.17)

It follows that the higher-derivative color-ordered amplitudes can be constructed by left-

and right-multiplication of the lowest order matrix m,

mh.d. = Hh.d.
r ·m ·Hh.d.

l . (3.18)

Similarly, starting from Eq. (2.28), one can write the higher-derivative single-copy (full)

amplitude as

A′r = ch.d.0 · JT ·P · J · n0,r , (3.19)

and color-ordered amplitudes as

A′r = Hh.d.
r · JT ·P · J · n0,r , (3.20)

where we defined n0,r such that nadj = J · n0,r. Assuming that Hh.d.
l is of full rank, which

always holds for an EFT expansion of the form Hh.d.
l = 1 + O(sab/Λ

2), we can further

define n′0,r such that n0,r ≡ Hh.d.
l · n′0,r, and we obtain

A′r = Hh.d.
r ·m ·Hh.d.

l · n′0,r = mh.d. · n′0,r . (3.21)

Note that n′0,r also satisfies the properties of numerator seeds, and A′r satisfies the gener-

alized KKBCJ relations.

The naive procedure for obtaining a double-copy amplitude in the generalized CK

formalism is to replace ch.d.0 in Eq. (3.19) by a kinematic seed n0,l (or equivalently replace

ch.d.adj = J · ch.d.0 by nadj,l). This results in the same double-copy amplitude M as one could

have been obtained without generalized numerators (Eq. (3.15)). The same occurs in the

generalized KLT formalism:

M′ =
(n−3)!∑
α,β

A′l[α]Sh.d.[α|β]A′r[β]

=

(n−1)!∑
α,δ

(n−3)!∑
β,γ

n′0,r[α]mh.d.[α|β]Sh.d.[β|γ]mh.d.[γ|δ]n′0,r[δ]

= n′0,l ·mh.d. · n′0,r = n0,l ·m · n0,r =M , (3.22)

where we distinguish sums over all (n− 1)! color factors and sums over BCJ bases.

We have thus derived that the double-copy amplitudes obtained by the generalized KLT

relations can equivalently be obtained through the traditional KLT double copy. However,

8At 4-point, the form of the matrix Hh.d. will be derived in Sec. 4, where it will be shown to be diagonal.

This is not generally true at higher multiplicity.
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there are two caveats to this statement. First, we derived this statement assuming that

mh.d. is constructed via generalized numerators. It is unclear whether it then reproduces

all solutions to the KLT bootstrap. In Sec. 5, we prove that this is the case at 4-point,

and we have performed initial checks at 5-point presented in Sec. 6. Second, while the

double-copy amplitude obtained by A′l/r and a generalized kernel is the same as the one

obtained by Al/r = (Hh.d.
l/r )−1 · A′l/r and a traditional kernel, it is unclear whether Al/r

are physical amplitudes and what is their particle content. In Sec. 5, we show at 4-point

that the assumption that Hh.d.
l/r does not affect the BAS particle content implies that this

is also the case for Al/r.

4 Seeds and generalized numerators at 4-point

In this section, we will work out the 4-point construction of scalar adjoint numerators from

their seeds. This serves as an illustration of the method, and prepares for a comparison

with the generalized KLT formalism in the next section.

A product of structure constants can be written in terms of single traces as follows,

fabxfxcd =
[
(abcd) + (dcba)

]
−
[
(abdc) + (cdba)

]
. (4.1)

As noted before, the traces appear together with their reversed ordering in this relation.

The adjoint color numerator can thus be written compactly in terms of traces as

cadj =

f12xfx34f13xfx42

f14xfx23

 =

 0 1 −1

−1 0 1

1 −1 0

 ·
(1324) + (4231)

(1234) + (4321)

(1243) + (3421)

 = J4 · c0 . (4.2)

This defines the matrix J4 with {±1, 0} entries, which encodes the Jacobi identity as

the vanishing sum of its rows. Notice that we redefined the vector of traces c0 shown in

Eq. (2.4), combining traces and their reversed orderings such that

c0 =
(
c0(1, 3, 2, 4), c0(1, 2, 3, 4), c0(1, 2, 4, 3)

)T
, c0(a, b, c, d) = (abcd) + (dcba) . (4.3)

We have conventionally chosen the ordering in the arguments of c0 entries such that the

s, t, u Mandelstams are invariant under the cyclic permutation of the (1,3,2,4), (1,2,3,4),

(1,2,4,3), respectively. For instance, s|1→3→2→4 = s.

The 4-point BAS amplitude can now be rewritten as

Abas
4 = g2φ

(
csc̃s
s

+
ctc̃t
t

+
cuc̃u
u

)
= cadj ·P4 · c̃adj

= c0 · JT
4 ·P4 · J4 · c̃0 = c0 ·m4 · c̃0 , (4.4)

with

P4 ≡ g2φ

 1
s 0 0

0 1
t 0

0 0 1
u

 , (4.5)

and m̃4 defined in Eq. (2.19).
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It is clear that J4 multiplying any numerator seed that satisfies the same algebraic

relations9 as c0 results in an adjoint numerator. However, it is not immediately clear

that all adjoint numerators can be constructed in this way. In the following, we prove

that indeed the construction via numerators seeds leads to the complete set of adjoint

numerators. For the general proof at any multiplicity, see App. A. First, notice that JT
4/3

satisfies J4 ·JT
4/3 ·J4 = J4, and thus (since J4 encodes the Jacobi identities as the sum of its

rows) J4 ·JT
4/3·nadj = nadj for any vector nadj that satisfies the Jacobi identities. Therefore,

JT
4 · nadj/3 is the pre-image of any nadj. Importantly JT

4 · nadj/3 is also a numerator seed:

[JT
4 · nadj](1, 3, 2, 4) = −nadj,t + nadj,u (4.6)

is invariant under cyclic permutations of its arguments and the reversal of their order,

thanks to the algebraic properties of nadj. This completes the proof. As an example,

consider multiplying the adjoint color factor by JT
4 ,

[JT
4 · cadj](1, 3, 2, 4) = −f13xfx42 + f14xfx23 = 3 [(1324) + (4231)]−

∑
σ∈S3

(1σ(234)) . (4.7)

The resulting seed is equivalent to the usual c0 up to the addition of a fully permutation-

invariant quantity (mapped to zero by J4), as it should since they generate the same adjoint

color numerator.

It is illustrative to compare the construction via numerator seeds with the composition

method to construct adjoint numerators [34], reviewed in Sec. 2.2. Both the composition

rule of Eq. (2.29) and the basic kinematic building block of Eq. (2.30) can be rewritten as

a numerator seed multiplied by J4,

n(j, k) = J4 ·

js ksjt kt
ju ku

 , n(ss) = J4 ·

st
u

 . (4.8)

The composition rule of Eq. (2.31) can similarly be rewritten,

n(j, d) = ~n(J4 · j0 , d) = J4 · (d j0) , (4.9)

where j0 is in fact a numerator seed (vector). This last composition rule encodes the simple

statement that a fully symmetric object, such as d, takes an adjoint numerator to another

one. This means that, at 4-point, there is a direct correspondence between the construction

of adjoint numerators from seeds and by composition. This is however not the case at 5-

point, where the composition rules [35] are not equivalent to a simple multiplication by

J5.

9Since the 4-point c0 of Eq. (4.3) is invariant under cyclic permutations and the reversal of its arguments,

numerator seeds for example transform as n0 −→
σ
Mc0,σ · n0, with Mc0,σ =

(
1 0 0

0 0 1

0 1 0

)
for σ = {1→3→2→4→1}

and Mc0,σ =

(
1 0 0

0 1 0

0 0 1

)
for σ = {1↔ 4, 2↔ 3}.
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4.1 Kinematic numerator seeds

Analogous to Eq. (4.3), purely kinematic numerator seeds for a scalar theory have the form

n0 =
(
n0(1, 3, 2, 4), n0(1, 2, 3, 4), n0(1, 2, 4, 3)

)T
, n0(a, b, c, d) = g(sac, sab) , (4.10)

where g is a function of the Mandelstam invariants sab ≡ (pa + pb)
2. Invariance under

reversal is automatic at 4-point, while cyclic invariance requires g(s, t) = g(s,−s − t) =

g(s, u). A general polynomial expansion of g(s, t) can then be written as10

g(s, t) =
∑
i,j=0

ai,j s
i
(
t [−s− t]

)j
Λ2i+4j

= a0,0 +
a1,0s

Λ2
+
a2,0s

2 + a0,1tu

Λ4
+
a3,0s

3 + a1,1stu

Λ6
+ · · · .

(4.11)

Consistent factorization on the poles and assumptions on the particle spectrum of a theory

can impose further restrictions on the ai,j coefficients. From this numerator seed, a single-

copy scalar amplitude can be constructed following Eq. (3.14), which leads to

Ar = m4 · n0,r = −g2φ
(
s g(s, t) + t g(t, s) + u g(u, s)

)1/tu

1/us

1/st

 , (4.12)

where we note that the function g(s, t) only appears through a permutation-invariant overall

factor (so that it does not affect the traditional KK and BCJ relations).

4.2 Generalized numerator seeds

At zeroth order in Mandelstam invariants, one can verify that there is only one linear

combination of single traces (cadj defined in Eq. (4.2)) that satisfies the adjoint algebraic

properties. Therefore, the only necessary numerator seed containing only color information

is given by the c0 vector defined in Eq. (4.3). At this order, any other seed is related to c0
by the addition of a permutation invariant combination of traces. Such seeds also map to

cadj because permutation invariant combination of traces map to zero under multiplication

by J.

At higher orders in the kinematics, the most general functional form that is cyclically

and reversal invariant is

c̄ h.d.0 (1, 2, 3, 4) = g(t, s) c0(1, 2, 3, 4) + h(u, t) c0(1, 2, 4, 3) + h(s, t) c0(1, 3, 2, 4) , (4.13)

from which one defines the generalized seed vector

c̄ h.d.0 =
(
c̄h.d.0 (1, 3, 2, 4), c̄h.d.0 (1, 2, 3, 4), c̄h.d.(1, 2, 4, 3)

)T
, (4.14)

10To see this, first express g(s, t) in term of t+u and t−u. The requirement that g(s, t) = g(s,−s− t) =

g(s, u) imposes a symmetry under t ↔ u exchange which requires that t − u only arises in even powers.

However, since (t− u)2 = s2 − 4 t u, one concludes that g(s, t) can be written as an expansion in powers of

just s and t u, as claimed.
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analogously to Eq. (4.3). Here g(s, t) = g(s,−s− t) = g(s, u) which is the same constraint

as before (Eq. (4.10)), and h(s, t) is a priori a general function. Notice that it is not trivial

that we can write the equation above in terms of the vector c0 instead of the single traces

separately. This is a feature of the 4-point kinematics, which is invariant under reversal of

particle labels: f ′(1, 2, 3, 4) ≡ f(s12, s13) = f(s43, s42) ≡ f ′(4, 3, 2, 1), for any function f of

the Mandelstam invariants.11

While c̄h.d.0 is the most general numerator seed, for the purpose of constructing inde-

pendent adjoint numerators, the g(t, s) c0(1, 2, 3, 4) term is redundant. It can be canceled

by adding a permutation invariant function and redefining the arbitrary h(s, t). This means

that we can restrict to the numerator seed

c̄ h.d.0 =

 0 h(t, s) h(u, s)

h(s, t) 0 h(u, t)

h(s, u) h(t, u) 0

 · c0 ≡ Hh.d. · c0 , (4.15)

and still generate all possible adjoint numerators with color. We could have reached the

same conclusion regarding the fact that the function g can be absorbed in h using the

systematic algorithm which makes use of J+ which we discussed in Sec. 3.

4.3 Generalized gauge transformations

Up to this point, we have considered numerators independently from the amplitudes they

generate. There does exist a freedom to shift a numerator without affecting the amplitude,

if the other numerators they multiply satisfy Jacobi identities. For instance, at 4-point,

the redefinition ns → ns + s∆, nt → nt + t∆, nu → nu + u∆, for any function ∆, results

in

A4 =
cs ns
s

+
ct nt
t

+
cu nu
u
→ A4 + (cs + ct + cu)∆ , (4.16)

which is just A4 if the color vector ~c satisfies the Jacobi identity. In matrix notation, any

shifts in the vector ~n proportional to (s, t, u)T leave the amplitude A = c ·P4 · n invariant.

Here (s, t, u)T is the null vector of JT
4 ·P4, where JT

4 arises if ~c satisfies the Jacobi identity.

Such shifts are called generalized gauge transformations because an actual gauge trans-

formation, εi → εi + pi for any particle label i, results in a similar vanishing shift of the

amplitude. Nevertheless, generalized gauge transformations are also present in non-gauge

theories.

At the level of the numerator seeds, the generalized gauge transformations allow for

shifts proportional to the null-vectors of m̃4 = JT
4 · P4 · J4, which are (u, 0,−s)T and

(t,−s, 0)T. This includes the permutation invariant shift proportional to (1, 1, 1)T (the

null-vector of J4) that was used before and does not affect the constructed adjoint nu-

merator. Other shifts are possible that change the permutation properties of the seed

and, in turn, may correspond to a non-adjoint numerator. A particular generalized gauge

11At higher multiplicity n, this is not generally true. While generalized numerator seeds can always

be organized in terms of an (n − 1)!/2 dimensional vector, factorizing out the color from the kinematic

dependence generally requires all (n− 1)! single traces separately.
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transformation, given by

c̄ h.d.0 → ch.d.0 = c̄ h.d.0 +


t h(s,t)+uh(s,u)

s −h(t, s) −h(u, s)

−h(s, t) uh(t,u)+s h(t,s)
t −h(u, t)

−h(s, u) −h(t, u) s h(u,s)+t h(u,t)
u

 · c0 , (4.17)

has the property that the shift is itself a numerator seed and, therefore, maps into a valid

seed ch.d.0 . Hence, to capture all amplitudes in a CK-dual theory, c̄ h.d.0 in Eq. (4.15) can be

replaced by

ch.d.0 =

g(s, t) 0 0

0 g(t, s) 0

0 0 g(u, s)

 · c0 ≡ Gh.d. · c0, (4.18)

with the redefinition

g(s, t) = g(s, u) =
t h(s, t) + uh(s, u)

s
. (4.19)

This defines the diagonal matrix Gh.d. for future reference. We thus find that one can

restrict to the functional form

ch.d.0 (1, 2, 3, 4) = g(t, s) c0(1, 2, 3, 4) (4.20)

(if g(s, t) is allowed to have simple poles). We stress that this is not the most general

numerator seed, nor does it construct the most general adjoint numerator, but it constructs

the most general amplitude.

5 Seeds and the generalized KLT bootstrap at 4-point

The constructive approach to generalized adjoint numerators presented in the previous sec-

tion enables a straightforward comparison with the generalized KLT approach by explicitly

building BAS+h.d. amplitudes. Restricting to 4-point in this section, we show that the

generalized CK and KLT formalisms are equivalent, and we study what this means for the

possible double-copy amplitudes.

The matrix mh.d.
4 has the general form shown in Eq. (3.18) but generalized gauge

transformations allow us to write

mh.d.
4 = Gh.d.

r ·m4 ·Gh.d.
l

= g2φ


− s gr(s,t) gl(s,t)

t u −gr(s,t) gl(t,s)
u −gr(s,t) gl(u,s)

t

−gr(t,s) gl(s,t)
u − t gr(t,s) gl(t,s)

s u −gr(t,s) gl(u,s)
s

−gr(u,s) gl(s,t)
t −gr(u,s) gl(t,s)

s −u gr(u,s) gl(u,s)
s t

 , (5.1)

where Gl/r is defined as in Eq. (4.18) with gl/r(s, t) instead of g(s, t). In fact, this corre-

sponds to a generalized KLT matrix showed in Eq. (2.18), with the solution to the minimal-

rank bootstrap Eqs. (2.16, 2.17) given by

f2(s, t) = −
g2φ
s
gr(t, s) gl(u, s) . (5.2)
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Another way to see that mh.d.
4 has minimal rank, is that the diagonal matrices Gh.d.

l/r have

full rank and therefore preserve the rank of the matrix m4. Conversely, the relation above

can be inverted to express gl/r in terms of f2 (not uniquely), which means that they

encompass any EFT solution f2 of the bootstrap equations. One can for instance take

gr(s, t) =

(
f(t, s) f(u, s)2 f(t, u)

f(s, u)

)1/3

, gl(s, t) =

(
f(t, u) f(u, t)

f(s, t) f(s, u)

)1/3

, (5.3)

with f(s, t) ≡ −s f2(s, t)/g2φ. Thanks to the bootstrap condition for f2, these satisfy the

constraint g(s, t) = g(s,−s − t) = g(s, u), as required for numerator seeds. This shows

that the generalized numerator seed of Eq. (4.20) generates any matrix of doubly ordered

amplitudes that appears in the generalized KLT formalism. The choice above is not unique

since mh.d.
4 only depends on the product of gl and gr.

To illustrate how Eq. (5.3) works in an EFT expansion, let us consider the lowest-order

terms in the bootstrap solution for a pure scalar theory [36],

f2(s, t)

g2φ
= −1

s
+

1

Λ4
(a1,0 t+ a1,1 s) +

a2,0
Λ6

t (s+ t) +O
(
s3ab
Λ8

)
, (5.4)

which determines the generalized matrix of doubly ordered amplitudes. Besides the boot-

strap equation (Eq. (2.17)), further constraints have been imposed on this function, which

ensure correct locality properties of the resulting BAS+h.d. theory. From Eq. (5.3), it

follows that the matrix determined by f2 is equivalently obtained through Eq. (5.1) with

gr(s, t) = 1 +
4a1,1 − a1,0

3Λ4
t (−t− s) +

a1,0 − a1,1
3Λ4

s2 +
a2,0
Λ6

s t (−s− t) +O
(
s4ab
Λ8

)
,

gl(s, t) = 1− a1,0 − a1,1
3Λ4

(s2 + 2 t (−s− t)) +O
(
s4ab
Λ8

)
. (5.5)

These functions give rise to the numerator seeds and the associated adjoint numerators of

the BAS+h.d. theory.

The minimal-rank bootstrap equations also allow for solutions that are not of the

BAS+h.d. form. However, modifications to the lowest-order 4-point kernel were found to

increase the rank at higher multiplicities and lead to unhealthy double-copy structures [36].

5.1 Generalized single and double copies

From Eq. (5.1), it is now straightforward to obtain the generalized KLT kernel Sh.d.
4 in

terms of the traditional BAS one, S4[α|β] = 1/m4[β|α] :

Sh.d.
4 [α|β] =

1

Gh.d.
l [α|α]

S4[α|β]
1

Gh.d.
r [β|β]

. (5.6)

Due to the diagonal structure of Gh.d.
l/r , each entry of the generalized kernel only depends

on that of the BAS kernel with the same color ordering. Since the rank of both m4 and

mh.d.
4 is one, this relation holds for any choice of single color orderings α and β. One can

explicitly check that this kernel obeys the KLT relation of Eq. (2.11),

mh.d.
4 [α|β] Sh.d.

4 [β|γ] mh.d.
4 [γ|δ] = Gh.d.

r [α|α] m4[α|β] S4[β|γ] m4[γ|δ] Gh.d.
l [δ|δ]
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= Gh.d.
r [α|α] m4[α|δ] Gh.d.

l [δ|δ]
= mh.d.

4 [α|δ] , (5.7)

and the generalized KKBCJ relations for color-ordered amplitudes are given in Eq. (3.21),

Gh.d.
r [α|α] m4[α|β]S4[β|γ]

1

Gh.d.
r [γ|γ]

A′r[γ] = A′r[α] ,

A′l[α]
1

Gh.d.
l [α|α]

S4[α|β]m4[β|γ] Gh.d.
l [γ|γ] = A′l[γ] . (5.8)

For example, Eq. (2.9) is generalized to

A′r[1234] =
t gr(t, s)

u gr(u, s)
A′r[1243] , (5.9)

which reduces to the traditional BCJ relation for gr(s, t) = 1. It is worth remarking that

the KKBCJ relations for A′r (A′l) depend only on Gh.d.
r (Gh.d.

l ).

Interestingly, the explicit form of the generalized KKBCJ relations points to an object

Ar[α] ≡ A′r[α]

Gh.d.
r [α|α]

, (5.10)

which obeys the traditional KK and BCJ relations, and similarly for Al. Although the

notation suggests otherwise, Ar may still contain higher-derivative corrections, but they

are such that they do not affect the form of the traditional KK and BCJ relations. If

Ar can be argued to be a valid amplitude, this could be an efficient method to construct

generalized single copies. In addition, it would imply that the generalized KLT formalism

does not lead to double copies with additional higher-derivative corrections besides the

ones which can be obtained with the usual KLT kernel. Indeed,

M′ = A′l[α]Sh.d.
4 [α|β]A′r[β] = Al[α]S4[α|β]Ar[β] =M , (5.11)

where we stress that both primed and unprimed amplitudes may contain higher-derivative

corrections and S4 stands for the traditional BAS KLT kernel.

However, as it stands, Ar[α] cannot be interpreted as a physical amplitude, since it

does not necessarily factorize properly on all channels, whose associated residues can be

affected by Gh.d.
r . We will study the functional form of Gh.d.

l/r , under the assumption of a

fixed BAS particle content in Sec. 5.2. This will lead to a slightly adapted but equivalent

form for Eq. (5.10), such that Ar[α] and A′r[α] have the same residues on all poles.

Leaving momentarily aside the question of physical residues, Eq. (5.10) also provides a

means to construct generalized single copies. They can be obtained by multiplying ampli-

tudes that satisfy the traditional KK and BCJ relations with Gh.d.
l/r . The same conclusion is

reached in the numerator formalism (see Eq. (3.21)). Explicitly, comparing with Eq. (4.12),

we have that

A′r = Gh.d.
r ·m4 · n0 = −g2φ

(
s g(s, t) + t g(t, s) + u g(u, s)

)gr(s, t)/tu

gr(t, s)/us

gr(u, s)/st

 , (5.12)
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where n0 =
(
g(s, t), g(t, s), g(u, s)

)T
. All generalized amplitudes can be constructed in this

way, showing that one can associate a generalized color numerator to any amplitude ob-

tained from the generalized KKBCJ relations. The first equality in Eq. (5.12) also applies

to gauge theories in which case n0 contains polarization vectors. Imposing particular lo-

cality properties on this amplitude restricts the coefficients inside g(s, t) and gr(s, t). We

note that such constraints may be less restrictive than the constraints on gl/r coming from

imposing a fixed particle content on mh.d.
4 . We will get back to this point in the following.

5.2 Factorization properties and particle spectrum

So far, we have not been concerned with the particle content (and factorization properties)

of the BAS+h.d. amplitudes constructed through Eq. (5.1). Following [36], we now impose

that mh.d.
4 reduces to the BAS matrix m4 at lowest order and that the particle content

of the theory is fixed to one bi-adjoint scalar. This implies that f(s, t) = −s f2(s, t)/g2φ in

Eq. (5.3) is a polynomial of the form 1 + O(sab/Λ
2). Interpreting Eq. (5.3) up to a fixed

order in the 1/Λ expansion, the functions gl/r(s, t) are then also of the same form.

While double or spurious poles are avoided in the construction of mh.d.
4 with polynomial

gl/r(s, t), the residues might be modified. Such modifications are either non-physical or

can be interpreted as new particles appearing in the factorization channels. However, at 4-

point, only contact-term higher-derivative corrections are allowed with a fixed single scalar

particle content (since the 3-point amplitudes are not modified in the solution to the KLT

bootstrap [36]). Imposing such conditions yields the following constraints:

m4[1324|1324] =
gr(s, t)gl(s, t)

t
+
gr(s, t)gl(s, t)

u
∼
t→0

1

t
=⇒ gr(s, 0)gl(s, 0) = 1 ,

m4[1324|1234] = −gr(s, t)gl(t, s)

u
∼
u→0
−1

u
=⇒ gr(−t, t)gl(t,−t) = 1 ,

(5.13)

which enforce in particular the consistency conditions

gl/r(s, 0) = gl/r(−s, 0) , (5.14)

when using gl/r(s, t) = gl/r(s,−s − t). This implies that, on the t and u poles, the

first variable of g(s, t) necessarily appears in even powers. The lowest order terms in the

solutions are then

gl(s, t) = 1 +
al2,0 s

2 + al0,1 t u

Λ4
+
al1,1 s t u

Λ6
,

gr(s, t) = 1 +
−al2,0 s2 + ar0,1 t u

Λ4
+
ar1,1 s t u

Λ6
, (5.15)

where we emphasize that the same coefficient al2,0 appears in both expansions. These

solutions are fully consistent with the expansions in Eq. (5.5), which were obtained from the

bootstrap solution f2(s, t), assuming a fixed particle content [36].12 With these solutions,

12The consistency conditions also imply that f2(s, t) does not contain even powers of just s. Since

gl/r(s, t) = gl/r(s,−s − t) takes f2(s, 0) ∝ gr(0, s) gl(−s, s)/s to gr(0,−s)gl(−s, 0)/s, the conditions of

Eq. (5.14) indeed constrain f2(s, 0) to be an odd function of s.
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one of the generalized KKBCJ relations, showed in Eq. (5.9), is given by[
1 +

(al2,0 − ar0,1) s(t− u)

Λ4
+O

(
s4ab
Λ8

)]
t

u
A′r[1243] = A′r[1234] . (5.16)

Now let us turn our attention to the object Ar[α] ≡ A′r[α]/Gh.d.
r [α|α] that appeared

in Eq. (5.10). Given that the functions gr in Gh.d.
r [α|α] are polynomials, the Ar[α] and

A′r[α] functions have the same poles. However, it is not guaranteed that the residues

on these poles are consistent. In particular, on any of the poles of Ar[α], the function

Gh.d.
r [α|α] contributes a non-trivial inverse factor of gr(s, 0) (or gr(t, 0)). On the poles,

these factors can also be obtained from the function gr(
√

(s2 + t2 + u2)/2, 0)|t→0 = gr(s, 0),

where the square root always appears in even powers in the Taylor expansion over the first

variable thanks to the consistency condition of Eq. (5.14). Since gr(
√

(s2 + t2 + u2)/2, 0)

is permutation invariant, we can redefine the amplitude Ar[α] as

Ar[α] ≡
gr

(√
s2+t2+u2

2 , 0

)
Gh.d.

r [α|α]
A′r[α] (5.17)

which still satisfies the traditional KK and BCJ relations while also having the same poles

and residues as A′r[α]. Defining simultaneously

Al[α] ≡
gl

(√
s2+t2+u2

2 , 0

)
Gh.d.

l [α|α]
A′l[α] , (5.18)

it follows from Eq. (5.13) that gl

(√
(s2 + t2 + u2)/2, 0

)
= 1/gr

(√
(s2 + t2 + u2)/2, 0

)
,

which leads to the conclusion that the double-copy amplitude remains unchanged. In other

words, there is an interplay between the left and right amplitudes and the generalized kernel

that allows for the cancellation of any correction to the kernel, in a manner that does not

affect the residues and poles of the amplitudes.

We therefore conclude that a double-copy amplitude obtained with a generalized kernel

can equivalently be generated with the traditional BAS kernel (c.f. Eq. (5.11)). The single-

copy amplitudes may then still include higher-derivative corrections, but only those that

do not spoil the usual KK and BCJ relations. To prove this statement, we assumed that no

extra particles are added to the BAS spectrum. At 4-point, the generalization of the KLT

formalism does thus not enlarge the space of possible double copies, but it does enlarge the

space of single copies that can be used as input.

In our derivation, it is also clear that Eqs (5.17, 5.18) can be used to obtain amplitudes

that satisfy generalized KKBCJ relations (A′l/r) from amplitudes satisfying the usual KK

and BCJ relations (Al/r), with the same particle content. This, indeed, has exactly the

same form in the generalized numerators approach shown in Eq. (5.12).

6 Results at 5-point

Here, we use the numerator seeds described in Sec. 3 to construct adjoint numerators

at 5-point. We also discuss the seed redundancies, previously described at 4-point in

– 24 –



Sec. 4. The statement that the generalized KLT formalism does not enlarge the space of

double-copy amplitudes had two caveats, see Sec. 3.2. While these were fully addressed

at 4-point in the previous sections, we only provide partial results at 5-point. We check

explicitly that the generalized numerators generate all the leading-order KLT kernels of

[36]. Furthermore, we study the factorization properties and the particle spectrum of the

objects Al/r = (Hh.d.
l/r )−1 ·A′l/r for a restricted set of higher-derivative corrections. For the

corresponding generalized kernels, we achieve the same conclusion as at 4-point, namely

that the double-copy amplitudes it produces can equally be obtained with the traditional

BAS kernel and physical single-copy amplitudes.

6.1 Numerator seeds

At 5-point, the kinematic numerator seeds have the functional form

n0(1, 2, 3, 4, 5) =
(
g(s12, s23, s34, s45, s51)− g(s51, s45, s34, s23, s12)

)
+ cyclic , (6.1)

where we have demanded invariance under cyclic permutations and antisymmetry under

reversal. Imposing this antisymmetry is however optional, as the components symmetric

under reversal are mapped to zero by the J-matrix. We do not consider the parity-odd

fully antisymmetric contraction of four independent momenta, which may lead to additional

numerators. The numerator seed vector is then given by

n0 =
(
n0(1, 2, 3, 4, 5), all permutations of {2, 3, ..., n}

)T
, (6.2)

and all scalar adjoint numerators are easily built from nadj = J5 · n0. The explicit form of

J5 is given in Sec. C.1. We chose a cyclic basis of Mandelstam invariants, which is possible

at any multiplicity (see e.g. [52]) and simplifies the particle permutation properties.

In addition, there are two independent adjoint numerators containing only color infor-

mation. These are obtained from the following single-trace seeds,

c0,1 =
(
(12345), all permutations of {2, 3, ..., n}

)T
,

c0,2 =
(
(13524), all permutations of {2, 3, ..., n}

)T
.

(6.3)

As before, it is not necessary to impose antisymmetry under reversal. Any other allowed

single-trace color numerator maps to a linear combination of J5 · c0,1 and J5 · c0,2. For

instance, the two independent adjoint numerators ca,1,2 of [35] are13

ca,1 = J5 · c0,1, ca,2 =
1

6
J5 · (3c0,2 − c0,1) . (6.4)

Besides numerator seeds featuring only kinematic and color information, we study

generalized seeds that contain both, i.e.

ch.d.0 (1, 2, 3, 4, 5) = f(1, 2, 3, 4, 5) + cyclic, (6.5)

13The original definitions of these two objects are ca,1(1, 2, 3, 4, 5) ≡ f12xfx3yfy45 and ca,2(1, 2, 3, 4, 5) ≡
2 d123xfx45 + d124xfx35 − d125xfx34 + 2 d234xfx15 − 2 d235xfx14 [35].
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where f(...) is a function of Mandelstam invariants and color structures. Independent

numerator seeds can give rise to redundant adjoint numerators, as discussed in the 4-

point case. For example, if g(...) is cyclic in its arguments (just like a single trace), then

choosing f(1, 2, 3, 4, 5) = g(1, 2, 3, 5, 4) generates the same adjoint numerator as a linear

combination of ch.d.0,1 (1, 2, 3, 4, 5) = g(1, 2, 3, 4, 5) and ch.d.0,2 (1, 2, 3, 4, 5) = g(1, 3, 5, 2, 4). This

can be established a priori, in analogy with the fact that c̄0(1, 2, 3, 4, 5) = (12354) + cyclic

is redundant with the two pure color seeds of Eq. (6.3). We leave the exploration of the

independent basis of seeds for future work. In practice, it is straightforward to identify the

independent numerators from the over-complete set built from seeds.

6.2 BAS+h.d. amplitudes

At any multiplicity, the BAS matrix of doubly color-ordered amplitudes that derives from

the generalized numerators can be written as (see Eq. (3.18))

mh.d.
n = Hh.d.

r ·mn ·Hh.d.
l . (6.6)

At 4-point, using generalized gauge transformations, we have previously shown that Hh.d.
l/r

can be taken to be diagonal matrices, and that these capture all solutions to the KLT

bootstrap. At 5-point, the generalized gauge transformations can reduce any single-trace

numerator seed to the linear combination

ch.d.0 (1, 2, 3, 4, 5) = g1(1, 2, 3, 4, 5) (12345) + g2(1, 2, 3, 4, 5) (13524), (6.7)

for independent g1 and g2 functions of the Mandelstam invariants that are cyclically sym-

metric. Even if an original seed is free of poles, capturing the same amplitude with ch.d.0

may introduce poles. For example, the amplitudes constructed from

c̄ h.d.0 (1, 2, 3, 4, 5) = h(1, 2, 3, 4, 5) (12354) + cyclic , (6.8)

for any function h depending only on the Mandelstam invariants, may equivalently be

constructed from

g1(1, 2, 3, 4, 5) =
−h(3, 4, 5, 2, 1)− h(5, 1, 2, 4, 3)

s12s34 m5[12345|12345]
+ cyclic , (6.9)

and

g2(1, 2, 3, 4, 5) =
h(3, 5, 2, 1, 4)

s12s34 m5[12345|12345]
+ cyclic , (6.10)

where m5[12345|12345] = 1/s12s34 + cyclic, showing that the functions g1 and g2 are in

general likely to have poles. This means that an amplitude built with ch.d.0 for those special

values of g1,2 is equal to an amplitude built with c̄h.d.0 , because both seeds are related by a

generalized gauge transformation (nevertheless, the adjoint numerators obtained via these

seeds are linearly independent). Therefore any 5-point BAS matrix of doubly color-ordered

amplitudes can be written as

mh.d.
5 =

(
Gh.d.

1,r + Gh.d.
2,r

)
·m5 ·

(
Gh.d.

1,l + Gh.d.
2,l

)
, (6.11)
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where Gh.d.
1,2 follow from the numerator seed defined by Eq. (6.7) by stripping off the single

traces. The Gh.d.
1 is diagonal and Gh.d.

2 is non-diagonal, with only one non-zero entry

on each row/column, as can be seen in Sec. C.1. The non-diagonal matrix is necessary

because the 5-point BAS matrix m5 contains zero entries, which may become non-zero

when higher-derivative corrections are included.

It is non-trivial to verify whether Eq. (6.11) covers all solutions to the KLT bootstrap

of [36]. As argued in general in Sec. 3.2, mh.d.
5 has minimal rank just as m5 since Gh.d.

1,r/l +

Gh.d.
2,r/l has full rank. We have reproduced the solution of the KLT bootstrap for all orders

explicitly provided in [36] and the forms of the necessary functions are listed in Sec. C.2.

Going beyond this, we also checked that the numerator seeds reproduce the lowest-order

5-point contact terms, which are cubic in the Mandelstam invariants. These are captured

by Eq. (6.11) with

g1,l(1, 2, 3, 4, 5) = 1 +
c1

Λ10
s5cyclic , g2,l(1, 2, 3, 4, 5) =

c2
Λ10

s5cyclic ,

g1,r(1, 2, 3, 4, 5) = 1 +
c3

Λ10
s5cyclic , g2,r(1, 2, 3, 4, 5) =

c4
Λ10

s5cyclic , (6.12)

where s5cyclic ≡ s12s23s34s45s51 and ci are free parameters. Recall that m5 is O(1/s2ab) so

that the resulting mh.d.
5 is of third order in the Mandelstam invariants. This exposes a

simple structure of higher-order corrections.

6.3 Factorization properties and particle spectrum

As discussed in Sec. 3.2, given a single-copy amplitude A′ that satisfies the generalized

KKBCJ relation, the object A = (Hh.d.)−1 · A′ satisfies the usual KK and BCJ relations

(where we momentarily omitted the subscript L/R, for simplicity). Moreover, the same

double copy can be constructed using either of these two single copies. However, it is

not immediately clear that A and A′ share the same analytic properties. At 4-point, we

showed that this is indeed the case. At 5-point, achieving a fully general proof seems far

more challenging. Therefore, we start the exploration of this question with simplifying

assumptions.

Since one can write Hh.d. = (G1 + G2) at 5-point, it follows that A′ = (G1 + G2) ·A.

Restricting to the two independent 12345 and 13524 color orderings, we have that

A′[12345] = g1(1, 2, 3, 4, 5)A[12345] + g2(1, 2, 3, 4, 5)A[13524] ,

A′[13524] = g1(1, 3, 5, 2, 4)A[13524] + g2(1, 3, 5, 2, 4)A[15432] .
(6.13)

This is a simple choice of BCJ basis since the amplitudes do not share any poles (see

Sec. C.3 for more details). The full set of ordered amplitudes can be reconstructed using

the KKBCJ relations. The fact that A[15432] satisfies the traditional KK reflection relation

A[15432] = −A[12345] allows to write(
A[12345]

A[13524]

)
=

(
g1(1, 2, 3, 4, 5) g2(1, 2, 3, 4, 5)

−g2(1, 3, 5, 2, 4) g1(1, 3, 5, 2, 4)

)−1
·

(
A′[12345]

A′[13524]

)
. (6.14)
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Therefore, the unprimed amplitude can be written as

A[12345] =
A′[12345]g1(1, 3, 5, 2, 4) +A′[13524]g2(1, 3, 5, 2, 4)

g1(1, 2, 3, 4, 5)g1(1, 3, 5, 2, 4) + g2(1, 2, 3, 4, 5)g2(1, 3, 5, 2, 4)
. (6.15)

Studying the analytic properties of the amplitude A is challenging for two main reasons.

First, as discussed in Sec. 6.2 and in contrast to the 4-point case, the functions g1 and g2
may contain poles. So a general parametrization has a complicated form and studying

whether the poles of A and A′ agree is non-trivial. Second, even if we take analytic g1, g2
so that A and A′ poles are identical, a suitable redefinition of A may be necessary to

guarantee that its residues match those of A′ (similarly to the 4-point case presented in

Eq. (5.17)).

Working out such a redefinition at 5-point, or even proving that one always exists, is

beyond the scope of this paper. However, in the simplest setup, namely that of a kernel

whose first EFT correction is a 5-point contact term constructed from a vanishing g2 and a

polynomial g1, we can identify a suitable redefinition of Al/r such that their residues agree

with those of A′l/r while leaving the double copy unchanged (we checked this property

up to order O(1/Λ10)). Explicitly, we found that the locality properties of the kernel at

5-point impose that (for seeds up to order O(1/Λ10))

g1,l/r(1, 2, 3, 4, 5) = pl/r(1, 2, 3, 4, 5) +
cl/r

Λ10
s12s23s34s45s51 , (6.16)

where cl/r are free constants and pl/r(1, 2, 3, 4, 5) = pl/r are permutation-invariant func-

tions such that plpr = 1 whenever a Mandelstam invariant vanishes. Consequently,

plAl[α] and
Ar[α]

pl
, (6.17)

have the same residues on the poles as A′l and A′r, respectively. Therefore, the double-

copy amplitudes associated to the kernel obtained from the seeds of Eq. (6.16) can also

be obtained with the traditional KLT kernel and single-copy amplitudes which verify the

usual KKBCJ relations. Whether such manipulations can be performed in full generality

at 5-point is a question left for future investigation.

7 Conclusions and outlook

In this paper, we revisited recent proposals for the systematic double copy of effective

field theories. Inspired by the decomposition of adjoint color factors into single traces of

Lie algebra generators, we proposed a method to construct generalized adjoint numera-

tors. These satisfy Jacobi-like and antisymmetry relations, while depending on both color

and kinematics. Starting from numerator seeds satisfying the permutation properties of

single traces, we proved that all adjoint numerators can be obtained through the linear

map J between single-trace and adjoint color factors. While generalized numerators have

previously been constructed up to 5-point in [34, 35], the construction from numerator

seeds is advantageous because the algebraic properties of single traces are simpler than

the adjoint algebraic relations. We showed that this method works for any multiplicity
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and it is convenient to explore the higher-derivative corrections that allow for a color-dual

representation.

The matrix J is also instrumental in relating the amplitudes represented with trivalent

graphs involving (generalized) adjoint numerators to color-ordered ones. The construction

of generalized adjoint numerators therefore facilitates the comparison between the gener-

alized numerators construction of [34, 35] and the generalized KLT formalism of [36]. At

4-point, we showed that the generalized adjoint numerators encode all the KLT bootstrap

solutions, to any order in the EFT expansion. The two approaches therefore allow for

exactly the same higher-derivative corrections to the bi-adjoint scalar amplitudes. The

single-copy amplitudes are also the same in the two formalisms. This insight consequently

exposed the structure of double-copy amplitudes. While the generalized KLT formalism

does expand the range of operators in the single-copy amplitudes, we find (at 4-point)

that any resulting double copy can also be obtained with the traditional KLT kernel. We

provide partial 5-point results suggesting that these conclusions may extend to higher mul-

tiplicity. However, due to the more complicated KLT bootstrap and structures involved,

further investigations on higher multiplicities are left to future work.

There are several directions that deserve further attention. For example, we have

focused on the construction of scalar numerators, as opposed to gauge-theory numerators

involving polarization vectors. The relevant purely kinematic numerator seeds have been

considered for Yang–Mills theory in [40–44], but not in the EFT context or for generalized

numerators. Gauge invariance must hold at the level of amplitudes (i.e. A|εi→pi = 0), and

individual entries in a numerator are typically not gauge invariant. The necessary extra

constraint on numerator seeds may therefore take a complicated form, especially beyond 4-

point. Methods proposed to identify the possible gauge-invariant structures in Yang–Mills

theories [52, 53] could be useful. In particular, a basis of cyclically invariant structures

which can be used as numerator seeds was provided in [53].

Furthermore, we have only considered color factors consisting of single traces of Lie

algebra generators. However, the construction of adjoint numerators from numerator seeds

does apply more generally. For instance, at 4-point there exist theories with double traces,

which can be combined into the seed c0(1, 3, 2, 4) = Tr(T a1T a2)Tr(T a3T a4) = δ12δ34. The

resulting generalized adjoint numerator was previously identified in [31]. Constructing

generalized color factors involving products of traces may lead to interesting new single or

double copies, which would also be worth studying in the generalized KLT formalism.

Besides the assumption of single traces, we have not included the possibility of extra

particles beyond the bi-adjoint scalar discussed in Sec. 5. For the double copy of a gauge

theory with matter in the fundamental representation, the KLT kernel is for instance

constructed from a bicolor theory containing two scalars [10, 12]. Including new particles

in factorization channels, or even externally, in the generalized KLT formalism would allow

for a larger space of single-copy amplitudes. It would then be worthwhile to extend the

numerator seeds to amplitudes with a more complicated particle spectrum.

Altogether, the simple construction of adjoint numerators from numerator seeds has

been useful to explore the structures in the generalized CK and KLT double-copy for-

malisms. Still, the double copy of effective field theories retains various unexplored aspects
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which promise exciting new findings for the years to come.
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A Proof: numerator seeds construct all adjoint numerators

In this appendix, we prove that any adjoint numerator can be constructed from a numerator

seed, as in Eq. (3.9). For any (not necessarily square) matrix J, there exists a unique

pseudoinverse J+ (see for instance [54]) satisfying

J · J+ · J = J (A.1)

(together with J+ · J · J+ = J+, (J · J+)T = J · J+, and (J+ · J)T = J+ · J for real J,

which will be of less importance in the following) That is, J · J+ maps all columns of J

to themselves. Another word for pseudoinverse is the Moore–Penrose inverse. It can be

obtained, for example, by the rank decomposition as in Eq. (3.5). Here (2n − 5)!! is the

number of trivalent graphs. We then have

J+ = BT · (B ·BT)−1 · (AT ·A)−1 ·AT . (A.2)

At 4- and 5-point, the pseudoinverse takes a particularly simple form: J+
4 = JT

4/6 and

J+
5 = JT

5/20. At 6-point, the pseudoinverse is not proportional to JT
6 , but can still be

obtained algorithmically.

Since the adjoint color factor cadj is constructed by J, Eq. (A.1) allows to express the

Jacobi identities in matrix form,

(1− J · J+) · ~cadj = 0 . (A.3)

By definition, (generalized) color-kinematics duality states that adjoint numerators should

obey the same algebraic relations as cadj. In other words, as pointed out in e.g. [18, 44], it

implies that all adjoint numerators should live in the null-space of 1 − J · J+. Therefore,

any adjoint numerator ~n (with only kinematics or both color and kinematics) that satisfies

the Jacobi relations obeys

J · J+ · ~n = ~n . (A.4)

This crucially implies that any adjoint numerator at any multiplicity can be written as the

J-matrix multiplying a vector,

~n0 = J+ · ~n . (A.5)

Below, we show that ~n0 constructed in this way transforms in the same way as c0 under

permutations of the particle labels. It is thus a numerator seed. Therefore, all adjoint

numerators can be constructed from numerator seeds by multiplication with J.
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~n0 = J+ · ~n is a numerator seed. In this subsection, we prove that the numerator

seeds constructed through Eq. (A.5), transform according to the same rule as the color

factor c0,

c0 −→
σ
Mc0,σ · c0 , (A.6)

under a permutation of the particle labels, σ.

First, note that adjoint numerators transform analogously under σ,

nadj −→
σ
Mcadj,σ · nadj . (A.7)

with the same Mcadj,σ (6= Mc0,σ) for any adjoint numerator. Since the entries of c0 are

linearly independent,

cadj = J · c0 −→
σ

Mcadj,σ · J · c0 = J ·Mc0,σ · c0

=⇒ Mcadj,σ · J = J ·Mc0,σ . (A.8)

The numerator seeds transform as

n0 = J+ · nadj −→
σ

J+ ·Mcadj,σ · nadj , (A.9)

which we want to show is the same as J+ · nadj
?−→
σ

Mc0,σ · J+ · nadj. We will prove this by

showing that [J+J,Mc0,σ] = 0.

Each row and each column of the matrix Mc0,σ contains exactly one 1 and the rest 0’s.

Such matrices are orthogonal, MT
c0,σ = M−1c0,σ. In addition, any permutation can be written

as a product of transpositions (the interchange of two labels, σ = a ↔ b). Therefore, it

will be enough to prove that [J+J,Mc0,a↔b] = 0. Performing the same transposition twice

is the same as doing nothing. That is, transpositions are their own inverse,

Mc0,a↔b = M−1c0,a↔b = MT
c0,a↔b . (A.10)

As in Eq. (3.5), J can be decomposed as J = A ·B, where B is the matrix that relates

c0 to some choice of DDM basis, cddm = B · c0. This implies

J+ · J = BT · (B ·BT)−1 ·B . (A.11)

The entries in the DDM basis correspond to all half-ladder graphs with fixed endpoints. If

a, b are not those endpoints, then σ = a↔ b maps entries of the DDM basis to other entries

of the same DDM basis, so cddm −→
σ
Mcddm,a↔b · cddm. Therefore for each transposition there

exists a choice of B such that

B · c0 −→
σ
Mcddm,a↔b ·B · c0 = B ·Mc0,a↔b · c0

=⇒ Mcddm,a↔b ·B = B ·Mc0,a↔b . (A.12)

Now, using Eq. (A.10) and Eq. (A.12), it is straightforward to show that

Mc0,a↔b ·BT · (B ·BT)−1 ·B = BT · (B ·BT)−1 ·B ·Mc0,a↔b . (A.13)
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k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

4-pt 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8

5-pt 0 0 2 4 10 16 28 42 64 90 126 168 224 288 370

6-pt 2 8 22 58 133 298 600 1166 2132 3754 6324 10351 16368 25266 38004

Table 2. Counting of scalar kinematic numerator seeds up to 6-point and at O(1/Λ2k) for k ≤ 15

in the EFT expansion. The Gram determinant constraints relevant in 4 spacetime dimensions have

been accounted for.

Therefore

Mc0,σ · J+ · J = J+·J ·Mc0,σ = J+ ·Mcadj,σ · J

=⇒ J+ ·Mcadj,σ · nadj = J+ ·Mcadj,σ · J · J
+ · nadj

= Mc0,σ · J+ · J · J+ · nadj
= Mc0,σ · J+ · nadj . (A.14)

Thus, as we wanted to show, the numerator seed n0 = J+ ·nadj (which exists for any adjoint

numerator) transforms as

n0 −→
σ

Mc0,σ · n0 . (A.15)

B Examples of seeds and adjoint numerators

In this appendix, we present the construction of kinematic adjoint numerators from numer-

ator seeds. In general, a numerator seed can be obtained from any function f(1, 2, ..., n)

through

n0(1, 2, ..., n) =
(
f(1, 2, ..., n) + (−1)n f(n, ..., 2, 1)

)
+ cyclic . (B.1)

The number of independent numerator seeds built using this equation, up to 6-point and

dimension 30, is provided in Table 2. After multiplying them by J, one needs to explic-

itly verify the linear independence of the resulting adjoint numerators. To determine the

counting provided in Table 1, we first construct vectors by evaluating the numerators nu-

merically for different values of the momenta. The rank of the matrix formed with these

vectors as columns is the number of independent adjoint numerators.

A systematic correspondence can be established between the entries of Table 1 and

Table 2. At 5-point, the number of independent numerators is, for instance, exactly half of

that of independent seeds. This can be understood from the algebraic properties of color

factors decomposed into structure constants fabc and symmetric dabc..., as discussed in [35]

up to 5-point. The 4- and 5-point cases are detailed below.

4-point. At 4-point, the numerator seeds are given by Eq. (4.11). At lowest orders, we

have
n0(1, 3, 2, 4) = s =⇒ nadj,s = t− u ,
n0(1, 3, 2, 4) = s2 =⇒ nadj,s = t2 − u2 = s(u− t) .

(B.2)
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The other valid numerator seed at second order, n0(1, 2, 3, 4) = t u maps to the same

adjoint numerator, because the permutation invariant s2 + t2 + u2 = 2(s2 − t u) maps

to zero. At third order (and any higher order), the adjoint numerators are permutation

invariant functions multiplying the lowest two orders [34]:

n0(1, 3, 2, 4) = s3 =⇒ nadj,s = t3 − u3 = (t− u)(s2 + t2 + u2)/2 . (B.3)

Upon comparing Table 1 and Table 2, one can identify the difference between the numbers

of independent seeds and numerators at 4-point as being the number of permutation-

invariant functions of the Mandelstam invariants. The latter are combinations of terms of

the form (s2 + t2 +u2)m(stu)n for integer m,n. Indeed, the seeds at 4-point are symmetric

under reversal symmetry, hence they capture all expressions which are combinations of

reversal-symmetric terms of the form

f(σ(a), σ(b), σ(c), σ(d)) + f(σ(d), σ(c), σ(b), σ(a)) (B.4)

for some permutation σ and some function f , consistently with Eq. (B.1). They do how-

ever not capture expressions that are antisymmetric under the reversal of particle labels.

To understand what algebraic structures appear in the symmetric combinations, one can

consider the permutation properties of color structures generated by single traces of group

generators, which are identical to those of f(1, 2, ..., n)+cyclic in Eq. (B.1). At 4-point, the

relevant color structures are dabxfxcd, fabxfxcd and dabcd [35]. The first one is expressed in

terms of antisymmetric combinations of traces only, whereas the other two are expressed

in terms of symmetric combinations. Therefore, the seeds generate expressions with the

same algebraic properties as the two last color structures, which are respectively adjoint

and permutation-invariant.

5-point. At the lowest two orders in the Mandelstam invariants, there are no numerator

seeds. For example, the candidate function f(1, 2, 3, 4, 5) = s12 + s23 + s34 + s45 + s51 is

invariant under cyclic permutations, but symmetric instead of antisymmetric under revers-

ing the order of its arguments, therefore it is mapped to zero under the action of J. At

third order in the Mandelstams, there exists

n0(1, 2, 3, 4, 5) =
1

2
(s212 s34 − s245 s23) + cyclic , (B.5)

which is mapped to the adjoint numerator

nadj,s12s45 =
(
n0(1, 2, 3, 4, 5)− n0(1, 5, 4, 3, 2)

)
+
(
n0(1, 4, 5, 3, 2)− n0(1, 2, 3, 5, 4)

)
+
(
n0(1, 2, 5, 4, 3)− n0(1, 3, 4, 5, 2)

)
+
(
n0(1, 3, 5, 4, 2)− n0(1, 2, 4, 5, 3)

)
= (s24s

2
35 − s24s213) +

(
s224s13 − s224s35

)
+
(
s25s

2
13 − s14s235

)
+
(
s214s35 − s225s13

)
+
(
s14s

2
23 − s25s234

)
+
(
s225s34 − s214s23

)
+
(
s15s

2
34 − s15s223

)
+
(
s215s23 − s215s34

)
. (B.6)
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Here, the subscript s12s45 indicates the pole structure of the trivalent graph to which this

entry belongs, i.e. cadj,s12s45 = f12xfx3yfy45. The first line in Eq. (B.6) is analogous to

f12xfx3yfy45 =
(
(12345)− (15432)

)
+
(
(14532)− (12354)

)
+
(
(12543)− (13452)

)
+
(
(13542)− (12453)

)
.

(B.7)

(recall (12...5) ≡ Tr(T a1T a2 ...T a5), etc.).

The comparison between Table 1 and Table 2 shows that the number of independent

adjoint numerators is exactly half that of independent seeds. As in the 4-point case, this

can be understood from the algebraic properties of the color factors which are generated

by combinations of single traces of group generators with the same behavior under reversal

symmetry as the seeds. At 5-point, the seeds are antisymmetric under reversal, while the

color factors which can be decomposed onto antisymmetric combinations of single traces

can be identified from the classification in [35]. In the language of this reference, they

correspond to adjoint and hybrid structures, which correspond to combinations of color

factors of the form fabxfxcyfyde and dabcxfxde. Therefore, antisymmetric seeds generate

all expressions having the algebraic properties of these two kinds. In addition, there ex-

ists a bijection between adjoint and hybrid structures [35]. Namely, for each expression

with adjoint properties, there exists one with hybrid properties, and reciprocally. It then

follows that the number of independent seeds is exactly twice that of independent adjoint

numerators.

6-point. At lowest order, there exist two functional forms that are cyclically invariant

and symmetric under argument reversal,

n0(1, 2, 3, 4, 5, 6) = s12 + s23 + s34 + s45 + s56 + s16 ,

n0(1, 2, 3, 4, 5, 6) = s123 + s234 + s345 ,
(B.8)

where sabc = (pa + pb + pc)
2. These map to one independent adjoint numerator after

multiplication by J. At second order, there are three independent adjoint numerators.

Out of the eight independent seeds, these can for instance be constructed from

n0(1, 2, 3, 4, 5, 6) = s123 (s234 + s345) + s234 s345 ,

n0(1, 2, 3, 4, 5, 6) = s16s34 + s12s45 + s23s56 ,

n0(1, 2, 3, 4, 5, 6) = s123(s16 + s34) + s345(s23 + s56) + s234(s12 + s45) .

(B.9)

The adjoint numerator then has the form

nadj,s12s34s56 =
[
n0(1, 2, 3, 4, 5, 6)− n0(1, 2, 3, 4, 6, 5)− n0(1, 2, 4, 3, 5, 6) + n0(1, 2, 4, 3, 6, 5)

− n0(1, 2, 5, 6, 3, 4) + n0(1, 2, 5, 6, 4, 3) + n0(1, 2, 6, 5, 3, 4)− n0(1, 2, 6, 5, 4, 3)
]

+ reversed orderings , (B.10)

for the adjoint entry corresponding to cadj,s12s34s56 = f12xf34yf56zfxyz, and

nadj,s12s123s56 =
[
n0(1, 2, 3, 4, 5, 6)− n0(1, 2, 3, 4, 6, 5)− n0(1, 2, 3, 5, 6, 4) + n0(1, 2, 3, 6, 5, 4)
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− n0(1, 2, 4, 5, 6, 3) + n0(1, 2, 4, 6, 5, 3) + n0(1, 2, 5, 6, 4, 3)− n0(1, 2, 6, 5, 4, 3)
]

+ reversed orderings , (B.11)

for the adjoint entry corresponding to cadj,s12s123s56 = f12xfx3yfy4zfz56. At third order,

there are nine independent adjoint numerators. They can be constructed from, for example,

n0(1, 2, 3, 4, 5, 6) = s12s34s56 + s23s45s16 , (B.12)

n0(1, 2, 3, 4, 5, 6) = s123s234s345 ,

n0(1, 2, 3, 4, 5, 6) = s12s23s34 + s12s23s16 + s23s34s45 + s12s16s56 + s16s45s56 + s34s45s56 ,

n0(1, 2, 3, 4, 5, 6) = (s56s
2
12 + s234s12 + s16s

2
23 + s23s

2
45 + s34s

2
56 + s216s45)

+ (1↔ 6, 2↔ 5, 3↔ 4) ,

n0(1, 2, 3, 4, 5, 6) = s234(s
2
12 + s245) + s123(s

2
16 + s234) + s345(s

2
23 + s256) ,

n0(1, 2, 3, 4, 5, 6) = s123s345(s12 + s45) + s123s234(s23 + s56) + s234s345(s16 + s34) ,

n0(1, 2, 3, 4, 5, 6) = s2123 (s234 + s345) + s2234 (s123 + s345) + s2345 (s123 + s234) ,

n0(1, 2, 3, 4, 5, 6) = (s123 + s234 + s345)
3 ,

n0(1, 2, 3, 4, 5, 6) = (s12 + s23 + s34 + s45 + s56 + s16)
3 .

We leave the detailed comparison between the entries of Table 1 and Table 2 at 6-point

(and higher) to future work.

C Details at 5-point

C.1 Matrices

At 5-point, for the trace ordering given by

c0 =
(

(12345), (12354), (12435), (12453), (12534), (12543), (13245), (13254),

(13425), (13524), (14235), (14325), (15432), (14532), (15342), (13542),

(14352), (13452), (15423), (14523), (15243), (14253), (15324), (15234)
)T
,

(C.1)

and the adjoint color numerators by

cadj =
(
f12xf34yf5xy, f12xf35yf4xy, f12xf45yf3xy, f13xf24yf5xy,

f13xf25yf4xy, f13xf45yf2xy, f14xf23yf5xy, f14xf25yf3xy,

f14xf35yf2xy, f15xf23yf4xy, f15xf24yf3xy, f15xf34yf2xy,

f23xf45yf1xy, f24xf35yf1xy, f25xf34yf1xy
)T
,

(C.2)
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the matrix J5 =
(
J15×12,−J15×12

)T
with

J15×12 =



1 0 −1 0 −1 1 0 0 0 0 0 0

0 1 −1 1 −1 0 0 0 0 0 0 0

−1 1 0 1 0 −1 0 0 0 0 0 0

0 0 0 −1 0 0 1 0 −1 −1 0 0

0 0 0 0 0 −1 0 1 −1 −1 0 0

0 0 0 1 0 −1 −1 1 0 0 0 0

0 −1 0 0 0 0 0 1 0 0 1 −1

0 0 0 0 −1 0 0 1 0 −1 0 −1

0 1 0 0 −1 0 0 0 0 −1 −1 0

−1 0 0 0 0 0 1 0 0 0 1 −1

0 0 −1 0 0 0 1 0 −1 0 1 0

1 0 −1 0 0 0 0 0 −1 0 0 1

1 −1 0 0 0 0 −1 1 0 0 0 0

0 0 1 −1 0 0 0 0 0 −1 −1 0

0 0 0 0 1 −1 0 0 −1 0 0 1



. (C.3)

A block structure in J5 has been made manifest by ordering c0 into the schematic form:

c0 = (c012, reversed(c012))
T, where c012 contains 12 entries of c0 that are not related by

reversing the order of the particle labels.

The matrix G2, which can be obtained from the numerator seed Eq. (6.7) by stripping

of the single traces, for g̃12345 ≡ g2(1, 2, 3, 4, 5), is

G2 =



0 0 0 0 0 0 0 0 0 g̃12345 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 g̃12354 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 g̃12435 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 g̃12453 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 g̃12534 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 g̃12543 0

0 0 0 0 g̃13245 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 g̃13254 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 g̃13425 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 g̃13524 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 g̃14235 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 g̃14325 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 g̃15432 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 g̃14532 0 0 0

0 0 0 0 0 0 0 g̃15342 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 g̃13542
0 0 0 0 0 0 g̃14352 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 g̃13452 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 g̃15423 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 g̃14523 0 0 0 0 0 0 0 0 0

0 g̃15243 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

g̃14253 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 g̃15324 0 0 0 0 0 0

0 0 0 g̃15234 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0



.

(C.4)
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C.2 Solution of the KLT bootstrap

We confirmed explicitly that the solution to the KLT bootstrap at 5-point is reproduced

by Eq. (6.11), with

g1,l(1, 2, 3, 4, 5)×m[12345|12345] = 3
e1
Λ4
− e1

Λ4

(
s12
s34

+
s12
s45

+ cyclic

)
+

e2
Λ6

(
−2 s12 +

s212
s34

+
s212
s45

+ 2
s12s23
s45

+ cyclic

)
g2,l(1, 2, 3, 4, 5)×m[12345|12345] =

e1
Λ4
− e2

Λ6
(s12 + cyclic)

g1,r(1, 2, 3, 4, 5)×m[12345|12345] = 3
e3
Λ4
− e3

Λ4

(
s12
s34

+
s12
s45

+ cyclic

)
g2,r(1, 2, 3, 4, 5)×m[12345|12345] =

e3
Λ4

(C.5)

where

m[12345|12345] =
1

s12s34
+ cyclic . (C.6)

and ei are free parameters, which reproduce the results of [36] when e1 = a1,0 − a1,1,

e2 = a2,0, and e3 = a1,1. Note that the e2 parameter could have equivalently been part of

g1,r and g2,r without changing the amplitudes.

C.3 Generalized KLT kernel from seeds

At 4-point, the generalized kernel for any choice of BCJ bases was obtained by multiplying

the left and right side of the traditional KLT kernel by the diagonal matrices Gh.d.
l/r for

the same BCJ bases, see Eq. (5.6). This simple structure extends to 5-point only for a

particular BCJ bases, as the structure gets more involved due the presence of the non-

diagonal matrix Gh.d.
2 in Eq. (6.11). This is not necessarily a problem as one is always

allowed to choose a particular basis to compute double-copy amplitudes.

For example, for the usual biadjoint scalar theory, the sub-matrix of ordered amplitudes

for α, β ∈ {12345, 13524} reads

m5[α|β] =

(
m5[12345|12345] 0

0 m5[13524|13524]

)
, (C.7)

where m5[12345|13524] = m5[13524|12345] = 0 because the color orderings 12345 and

13524 do not share any poles. The associated kernel is then simply

S5[α|β] =

(
1/m5[12345|12345] 0

0 1/m5[13524|13524]

)
. (C.8)

It turns out that mh.d.
5 is also simplified when restricted to the BCJ basis {12345, 13524}.

For any color ordering a, and δ restricted to {12345, 13524}, Eq. (6.11) becomes

mh.d.
5 [a|δ] =

24∑
b,c

(G1,r +G2,r)[a|b] m5[b|c] (G1,l +G2,l)[c|δ] . (C.9)
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This can be simplified by noting that (G1,l + G2,l)[c|12345] is nonzero only for c =

{12345, 14253}, while (G1,l +G2,l)[c|13524] is nonzero only for c = {12345, 13524}. More-

over, m5[α|14253] = −m5[α|13524] for any α, which means that the second index of m5

can be limited to the BCJ basis {12345, 13524}. This means that we can restrict to the

sub-matrix (appearing in Eq. (6.14))

Gl ≡

(
(G1,l +G2,l)[12345|12345] (G1,l +G2,l)[12345|13524]

−(G1,l +G2,l)[14253|12345] (G1,l +G2,l)[13524|13524]

)
, (C.10)

and similarly for the right side with

Gr ≡

(
(G1,r +G2,r)[12345|12345] −(G1,r +G2,r)[12345|14253]

(G1,r +G2,r)[14253|12345] (G1,l +G2,r)[13524|13524]

)
, (C.11)

We can then write the BAS amplitudes for this specific BCJ basis as

mh.d.
5 [α|δ] =

∑
β,γ∈{12345,13524}

Gr[α|β] ·m5[β|γ] · Gl[γ|δ] , (C.12)

Therefore, in this case, it is simple to invert the generalized BAS matrix to obtain the

generalized KLT kernel:

Sh.d.
5 [α|δ] =

∑
β,γ∈{12345,13524}

G−1l [α|β]S[β|γ]G−1r [γ|δ] . (C.13)

We let the investigation of similar formula for a generic BCJ basis for a future work.
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