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Conservative Dynamics of Binary Systems at Fourth

Post-Minkowskian Order in the Large-eccentricity Expansion

Christoph Dlapa,1 Gregor Kälin,1 Zhengwen Liu,1 and Rafael A. Porto1

1Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany

We compute the conservative dynamics of non-spinning binaries at fourth Post-Minkowskian order
in the large-eccentricity limit, including both potential and radiation-reaction tail effects. This
is achieved by obtaining the scattering angle in the worldline effective field theory approach and
deriving the bound radial action via analytic continuation. The associated integrals are bootstrapped
to all orders in velocities through differential equations, with boundary conditions in the potential
and radiation regions. The large angular momentum expansion captures all the local-in-time effects
as well as the trademark logarithmic corrections for generic bound orbits. Agreement is found in
the overlap with the state-of-the-art in Post-Newtonian theory.

Introduction. The era of gravitational wave (GW) sci-
ence began in spectacular fashion with several detections
already reported by the LIGO-Virgo-KAGRA collabo-
ration [1], and many more yet to come with the future
planned observatories such as LISA [2] and the Einstein
Telescope [3]. Motivated by the initial breakthroughs and
the expected scientific output [4–8], a community effort
has been established toward constructing high-accurate
waveform models for the emission of GWs from binary
systems. This includes numerical simulations for the
merger phase [9–11] as well as analytic techniques to
tackle the inspiral in the Post-Newtonian (PN) regime,
using both traditional [12, 13] and modern methodologies
such as the effective field theory (EFT) approach [14–17].

These developments, in particular the use of tools from
particle physics pioneered in [18], have impacted our
understanding of the two-body problem in PN theory,
e.g. [19–54], leading to the knowledge of the conserva-
tive spin-independent gravitational potential at fourth
PN (4PN) order [32–36], in parallel with independent
derivations using traditional methods [55–63]. The cur-
rent state-of-the-art includes reports of contributions at
5PN [38–43], and partial results at 6PN [45, 46, 61–63].

Inspired by the EFT framework in the PN regime [14–
17], novel ideas from the theory of scattering ampli-
tudes [64], and the existence of a correspondence for
observables in hyperbolic-like and elliptic-like orbits via
analytic continuation in the binding energy and angu-
lar momentum—dubbed the Boundary-to-Bound (B2B)
correspondence [65, 66]—significant efforts have been in-
vested in recent years towards studying scattering pro-
cesses within the Post-Minkowskian (PM) expansion,
both with amplitude-based [65–89] and EFT-based [90–
101] methodologies. The PM expansion naturally en-
capsulates an infinite (resummed) series of velocity cor-
rections at each order in Newton’s constant, which may
result in improved waveform models, e.g. [102].

After the seminal result at third PM (3PM) or-
der for non-spinning binary systems [75, 76, 93], par-
tial (potential-only) corrections at 4PM have been ob-

tained within both approaches [83, 99]. Here we ex-
tend the knowledge of the two-body dynamics at O(G4),
by including both potential and radiation-reaction tail
effects—the latter being due to the back-scattering of
the outgoing GWs on the background geometry—thus
removing spurious divergent terms in previous potential-
only computations. Similarly to the Lamb shift [34],
yet in a classical setting, mode-factorization into po-
tential (off-shell) and radiation (on-shell) regions led to
infrared(IR)/ultraviolet(UV) divergences in PN compu-
tations [55–59], which ultimately cancel out in physical
observables [32, 33, 36]. As we demonstrate here, the
explicit cancelation is also manifest in the PM regime,
yielding (ambiguity-free) finite results.

Our derivation proceeds through the scattering angle
computed in the EFT approach [92, 93], in conjunction
with the B2B map [65, 66] between unbound and bound
motion extended to radiative effects [103]. Using multi-
loop integration tools from particle physics [104–132], the
calculation is reduced to a series of ‘three-loop’ (massless)
integrals which are computed through differential equa-
tions. The resulting deflection angle features logarithm,
dilogarithm and complete elliptic integrals of the first and
second kind, and agrees in the overlap with the state-of-
the-art in PN theory [40–43, 61, 62]. For completeness,
we reconstruct the center-of-mass momentum.

The EFT formalism. Following the procedure dis-
cussed in [92, 93, 99], the effective action (Seff) is ob-
tained by integrating out the metric perturbation, hµν =
gµν − ηµν , using the (classical) saddle-point approxima-
tion of the path integral, schematically∫

Dhei(SEH+Spp) → eiSeff , (1)

in Einstein’s gravity (SEH) coupled to point-like world-
line sources (Spp), ignoring quantum effects. The com-
putation is reduced to a series of (‘tree-level’) Feynman
diagrams. The full set of topologies at 4PM are shown in
Fig. 1. As before [99], we must include mirror images and
iterations from lower order solutions to the trajectories.
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Figure 1. Feynman topologies needed to compute the deflec-
tion angle at O(G4). The solid lines represent the gravita-
tional field and the dots account for the worldline sources.
The ones in the third and fourth row are self-energy diagrams
(involving only a single particle) needed when radiation fields
are included.

We restrict ourselves here to potential modes and con-
servative tail terms. The latter entail Feynman diagrams
with only two radiation modes coupled to a background
potential. In this scenario, the conservative contribu-
tion is captured by the standard Feynman rules and i0-
prescription for the propagators of the gravitational field,
i.e. i

p20−p2+i0
, as long as we consider the real part of the

effective action [32, 44], ignoring dissipative effects. This
allows us to retain the integration machinery intact.

From the resulting effective action we can then com-
pute the scattering angle, χ, through the impulse,
∆pµa=1,2, evaluated on the classical trajectory [92, 93, 99],

2 sin(χ/2) =
√
−∆p2

a/p∞ , (2)

with p∞ the incoming momentum in the center-of-mass
frame. As we mentioned, spurious IR/UV divergences
appear due to mode factorization, e.g. [33]. Hence, we
work in dimensional regularization and write the inter-
mediate result for the PM expansion of the angle in
d = 4− 2ε dimensions as [99]

χ

2
=
∑
n

((
4µ̄2b2

)ε GM
b

)n
χ

(n)
b , (3)

where b =
√
−bµbµ is the impact parameter, χ

(n)
b the as-

sociated PM coefficients, µ̄2 ≡ 4πµ2eγE the renormaliza-
tion scale (with γE Euler’s constant), and M = m1 +m2

the total mass. As expected, the combined result is de-
void of divergences or ambiguities [33, 34].

Integration. The scattering angle can be reduced to the
computation of the following set of (three-loop) integrals,

3∏
i=1

∫
dd`i
πd/2

δ(`i ·uai)
(±`i ·u/ai−i0)ni

1∏9
j=1D

νj
j

, (4)

restricted by Dirac-δ functions, where `i=1,2,3 are the
loop momenta, ni, νj are integers, ai ∈ {1, 2} (u/1 = u2,
u/2 = u1), and Dj are various sets of quadratic propaga-

tors: {`2i + i0, (`i−q)2 + i0, . . .}. The external data obeys
q ·ua = 0 and u2

a = 1, with q the transfer momentum and
ua=1,2 the incoming velocities. Hence, after factoring out
the dependence on q2 using dimensional analysis, the re-
sult of the integrals can only be a function of γ ≡ u1 ·u2.

Following our previous derivations [93, 99], introduc-
ing the parameter x defined through γ ≡ (x2+1)/2x [79],
the value of these integrals is obtained by the method
of differential equations [105–111], with boundary condi-
tions computed in the near-static limit x ' 1. We make
extensive use of the integration-by-parts (IBP) relations
[112, 113], via FIRE6 [114, 115] and LiteRed [116, 117],
as well as the INITIAL algorithm [130]. The final result
for the deflection angle involves logarithms, dilogarithms
(Li2(x)), as well as complete elliptic integrals of the first
(K(x)) and second (E(x)) kind [83, 99]. (See [133] for
more details in the integration procedure.)

Potential Region. As a check, we re-evaluated the
boundary conditions for the differential equations at x =
1 with potential modes. As discussed in [99], these may
be reduced into a basis containing only seven integrals
via additional IBP identities, which we computed by di-
rect integration. As expected, the self-energy diagrams
in Fig. 1 turn into (scaleless) integrals which vanish in di-
mensional regularization, and therefore do not contribute
in the potential region. Adding the pieces together we re-
cover the result in [83, 99]

χ
(4)
b (pot)

πΓ
= χs(x) + ν

(
χ2ε(x)

2ε
+ χp(x)

)
, (5)

for the potential contribution to the scattering angle at
O(G4), where Γ ≡ E/M , with E the total energy, and
ν = m1m2/M

2 the symmetric mass-ratio. Expressions
for the (χs, χ2ε, χp) coefficients are given in [99] and the
ancillary file, see also (8) and the supplemental material.

Tail Region. The boundary conditions including
radiation-reaction effects is more challenging, mainly due
to the interplay between potential and radiation modes.
We use the asy2.m code in the FIESTA package to iden-
tify the relevant regions of integration [119, 120, 131].
We find several contributions featuring one, two and up
to three radiation modes. We keep only regions consis-
tent with conservative radiation-reaction tail effects.

After performing a Laurent expansion around x ' 1,
yielding the anticipated pole in (1− x)−4ε [99], we com-
puted the associated boundary integrals using various
consistency relations [132]. Collecting the terms we find

χ
(4)
b (tail)

πΓ
= ν

(
−χ2ε(x)

2ε
(1− x)−4ε + χt(x)

)
, (6)

for the (conservative) contribution to the deflection angle
due to tail effects at 4PM. The value of χt(x) is given in
the supplemental material and ancillary file.
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Combined Result. As expected, the divergence and µ-dependence cancel out and the combined result becomes

χ
(4)
b (comb)

πΓ
= χs + ν

(
χc(x) + 2χ2ε(x) log(1− x)

)
, (7)

where

χs(x) =
105h1(x)

128 (x2 − 1)4
, χ2ε(x) = −3h2(x) log(x)

32x (x2 − 1)5
+

3h3(x) log
(
x+1
2

)
32x2 (x2 − 1)2

+
h4(x)

64x2 (x2 − 1)4
,

χc(x) = −
21h6(x)E2

(
1− x2

)
8 (x2 − 1)4

+
3h7(x)K

(
1− x2

)
E
(
1− x2

)
8 (x2 − 1)4

−
15h8(x)K2

(
1− x2

)
16 (x2 − 1)4

−
h16(x) log

(
x2 + 1

)
32x3 (x2 − 1)4

+
3h19(x)Li2

(
− (x−1)2

(x+1)2

)
128x4 (x2 − 1)2

+
π2h35(x)

512(x− 1)3x4(x+ 1)5
+

3h36(x) log2(2)

16x2 (x2 − 1)2
+

3h37(x) log(2) log(x)

8 (x2 − 1)5
− 3h38(x) log(2) log(x+ 1)

16x2 (x2 − 1)2

+
3h39(x) log(2)

16x2 (x2 − 1)4
+

3h40(x) log2(x)

256x4 (x2 − 1)8
− 3h41(x) log(x) log(x+ 1)

128x4 (x2 − 1)5
+

h42(x) log(x)

64x3 (x2 − 1)7
− 3h43(x) log2(x+ 1)

2x (x2 − 1)2

+
h44(x) log(x+ 1)

32x3 (x2 − 1)4
+

3h45(x)
(
Li2

(
x−1
x

)
− Li2(−x)

)
128(x− 1)3x4(x+ 1)5

−
3h46(x)Li2

(
x−1
x+1

)
64(x− 1)2x4

+
h47(x)

384x3 (x2 − 1)6 (x2 + 1)7
,

(8)

with the explicit value of the hi(x) polynomials displayed
in the ancillary file (see also the supplemental material for
the intermediate results leading to (8)). After expanding
in small velocities we find perfect agreement with the PN
state-of-the-art value reported in [40–43, 61, 62].1

Boundary-to-Bound correspondence. As it was shown
in [65, 66, 103], the B2B dictionary allows us to derive
PM-expanded observables for bound orbits from the scat-
tering angle computed in a large-eccentricity (or large
angular momentum) expansion. After analytic contin-
uation in angular momentum, and to negative binding
energies, we obtain

i4PM
r =

2(1− γ2)2

3(Γj)3

[
χs + ν

(
χc + χ2ε log(x− 1)2

)]
(9)

for the B2B large-eccentricity approximation to the (re-
duced) 4PM bound radial action, with j ≡ J/(GM2ν)
the (dimensionless) angular momentum. From the radial
action we can then derive all the observables for elliptic-
like orbits through differentiation, including the binding
energy which is one of the main ingredients needed to
compute the GW phase evolution in an adiabatic approx-
imation [12, 102], providing an infinite series of velocity
corrections at O(G4).

As it is known from the PN literature, e.g. [32, 61, 62],
tail terms feature both local- as well as non-local-in-time
dynamical effects. As it was discussed in [65, 66, 103],
the expression in (9) readily captures all local-in-time

1 There is a mismatch at O(ν2) between the results in [40–43]
and those in [61, 62], which can be traced to the definition of
conservative terms in [61, 62].

contributions to gauge-invariant observables for generic
bound orbits (also for aligned-spin effects). Remarkably,
the same is true for the trademark (non-local) logarith-
mic tail corrections, which may be obtained via [99]

i4PM
r(log) =

2ν

3

(1− γ2)2

(Γj)3
χ2ε(γ) log |E| , (10)

to all orders in velocity, with E ≡ E−M
Mν the (reduced)

binding energy. This is not the case, however, with other
non-local-in-time effects for generic orbits, which do not
transition smoothly between hyperbolic- and elliptic-like
motion and therefore cannot be derived from the knowl-
edge of the scattering angle [103].

From the deflection angle we can also reconstruct the
4PM coefficient, f4(E), of the PM expansion of an effec-
tive (local-in-time) center-of-mass momentum

p2 = p2
∞

[
1 +

∞∑
n=1

fn(E)

(
GM

r

)n]
, (11)

in an isotropic gauge, such that ir ∝
∫
prdr, using the

relationship [65, 66]

f4 =
8

3π
χ

(4)
b − 2χ

(3)
b χ

(1)
b −

8

π2
(χ

(2)
b )2

+
8

π
(χ

(1)
b )2χ

(2)
b −

2

3
(χ

(1)
b )4 ,

(12)

together with previous results to 3PM [92, 93]. Explicit
values are given in the ancillary file. The Hamiltonian
can be also reconstructed using the algebraic relations in
[65, 66]. Notice, as advertised in [99, 103], that in all
cases the factors of log r in the intermediate results drop
out of the final expressions.
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Conclusions. We have computed the contribution from
potential and radiation-reaction tail effects to the conser-
vative dynamics of binary compact objects to 4PM order
in the large-eccentricity limit. Our (ambiguity-free) re-
sult for the deflection angle at 4PM agrees in the overlap
with state-of-the-art computations in PN theory for the
combined potential and tail contributions [40–43, 61, 62].
As it was already the case in previous derivations in
the EFT approach [93, 99], the PM result can be en-
tirely bootstrapped from PN data to all orders in veloci-
ties through differential equations—at this order includ-
ing a sector involving elliptic integrals—without resorting
to PN resummations. The boundary conditions (in the
near-static limit) were obtained via the method of regions
with potential and radiation modes.

There are, however, some important caveats that need
to be addressed in order to complete the knowledge of
the conservative 4PM dynamics for generic orbits, no-
tably the mapping between unbound and bound motion

for all the non-local-in-time effects. Moreover, there is
also the issue of conservative non-linear memory terms.2

The latter arise from the interaction between the outgo-
ing GW radiation and the waves emitted by the binary
system at an earlier time. The derivation of memory ef-
fects at 4PM, the extension of the B2B map to generic
non-local-in-time terms, as well as the computation of
higher PM orders, is underway in the EFT approach.
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Supplemental Material

The coefficients of the scattering angle for the potential (beyond the test-body limit) and tail contributions to 4PM
order displayed in the text are given by:

χp(x) =
π2h5(x)

1024x4 (x2 − 1)5
−

21h6(x)E2
(
1− x2

)
8 (x2 − 1)4

+
3h7(x)K

(
1− x2

)
E
(
1− x2

)
8 (x2 − 1)4

−
15h8(x)K2

(
1− x2

)
16 (x2 − 1)4

+
3h9(x) log2

(
x+1
2

)
16x2 (x2 − 1)2

+
3h10(x) log(2) log(x)

8 (x2 − 1)5
+

h11(x) log(2)

128x3 (x2 − 1)4
+

3h12(x) log2(x)

512x4 (x2 − 1)8
− 3h13(x) log(x) log(x+ 1)

256x4 (x2 − 1)5
+

h14(x) log(x)

128x3 (x2 − 1)7

− h15(x) log(x+ 1)

128x3 (x2 − 1)4
−
h16(x) log

(
x2 + 1

)
64x3 (x2 − 1)4

+
3h17(x)Li2

(
x−1
x

)
256x4 (x2 − 1)5

− 3h18(x)Li2(−x)

256x4 (x2 − 1)5
+

3h19(x)Li2
(
− (x−1)2

(x+1)2

)
256x4 (x2 − 1)2

−
3h20(x)Li2

(
x−1
x+1

)
128x4 (x2 − 1)2

+
h21(x)

1536x3 (x2 − 1)6 (x2 + 1)7
,

χt(x) = −
h16(x) log

(
x2 + 1

)
64x3 (x2 − 1)4

+
3h19(x)Li2

(
− (x−1)2

(x+1)2

)
256x4 (x2 − 1)2

+
h22(x)

(
12Li2(−x) + π2

)
1024x4 (x2 − 1)5

− 24h23(x) log2(2)

(x2 − 1)2
− 6h24(x) log(2) log(x)

(x2 − 1)5

+
3h25(x) log(2) log(x+ 1)

16x2 (x2 − 1)2
− h26(x) log(2)

128x3 (x2 − 1)4
− 3h27(x) log2(x)

512x4 (x2 − 1)8
+

3h28(x) log(x+ 1) log(x)

256x4 (x2 − 1)5
− h29(x) log(x)

128x3 (x2 − 1)7

− 3h30(x) log2(x+ 1)

16x2 (x2 − 1)2
+
h31(x) log(x+ 1)

128x3 (x2 − 1)4
−

3h32(x)Li2
(
x−1
x

)
256x4 (x2 − 1)5

+
3h33(x)Li2

(
x−1
x+1

)
128x4 (x2 − 1)2

+
h34(x)

1536x3 (x2 − 1)6 (x2 + 1)7
,

2 The result in [43] suggests the appearance of a conservative mem- ory term in the overlap between 4PM and 5PN orders at O(ν2).
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where the hi(x)’s are polynomials in x up to degree 32, collected in the ancillary file. We use the following conventions

Li2(z) ≡
∫ 0

z

dt
log(1− t)

t
,

K(z) ≡
∫ 1

0

dt√
(1− t2) (1− zt2)

,

E(z) ≡
∫ 1

0

dt

√
1− zt2√
1− t2

,

for the dilogarithm, and complete elliptic integral of the first and second kind, respectively.
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Testing binary dynamics in gravity at the sixth post-
Newtonian level, Phys. Lett. B 807, 135496 (2020),
arXiv:2003.07145 [gr-qc].
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[65] G. Kälin and R. A. Porto, From Boundary Data to
Bound States, JHEP 01, 072, arXiv:1910.03008.
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