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The appearance of large logarithmic corrections is a well-known phenomenon
in the presence of widely separated mass scales. In this work, we point out the
existence of large Sudakov-like logarithmic contributions related to external-
leg corrections of heavy scalar particles which cannot be resummed straight-
forwardly using renormalisation group equations. Based on a toy model, we
discuss in detail how these corrections appear in theories containing at least
one light and one heavy particle that couple to each other with a potentially
large trilinear coupling. We show how the occurrence of the large logarithms
is related to infrared singularities. In addition to a discussion at the one-
loop level, we also explicitly derive the two-loop corrections containing the
large logarithms. We point out in this context the importance of choosing an
on-shell-like renormalisation scheme. As exemplary applications, we present
results for the two-loop external-leg corrections for the decay of a gluino into
a scalar top quark and a top quark in the Minimal Supersymmetric extension
of the Standard Model as well as for a heavy Higgs boson decay into two tau
leptons in the singlet-extended Two-Higgs-Doublet Model.
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1. Introduction
Until now, only one scalar particle without a known substructure has been found: the
Higgs boson discovered at the Large Hadron Collider (LHC) in 2012 [1, 2]. In the
Standard Model (SM), the Higgs boson arises as part of an SU(2)L doublet along-
side with the neutral and charged “would-be” Goldstone fields. For suitable parameter
choices, the presence of the Higgs potential triggers the spontaneous breakdown of the
SU(2)L × U(1)Y gauge symmetry. As a direct consequence, the “would-be” Goldstone
fields become the longitudinal degrees freedom of the gauge bosons W± and Z which in
this way acquire mass.

While the SM provides a phenomenological description of electroweak symmetry break-
ing, an understanding of the underlying dynamics is lacking so far. Furthermore, a num-
ber of experimental observations — e.g., the presence of Dark Matter or the existence
of non-zero neutrino masses — and theoretical issues — e.g., the hierarchy problem —
cannot be explained within the framework of the SM and are, therefore, hints for the
existence of physics beyond the SM (BSM). Indeed, BSM models with an extended Higgs
sector, featuring additional Higgs bosons, provide a description of the available data that
is at least comparable or even better than for the case of the SM, see e.g. Ref. [3] for a
recent discussion of LHC results and Refs. [4, 5] for global fits.

So far no direct evidence for BSM particles has been found via the searches at the LHC,
which instead have placed increasingly strong lower bounds on the masses of potential
BSM particles. While this does not rule out the possibility of light BSM particles with
relatively small couplings to SM particles, in many BSM scenarios that are currently
investigated it implies a rather large hierarchy between the electroweak (EW) scale of
the SM and the scale of at least some of the BSM particles.

For the description of BSM scenarios where the masses of the new particles are so
heavy that they are beyond the reach of present and future accelerators, effective field
theory (EFT) frameworks — e.g., SMEFT [6, 7] — offer a conceptually clean way to
parameterise the effects of heavy BSM particles on low-scale physics. Moreover, they
provide a way to resum large logarithmic corrections involving the EW and the BSM
scales appearing in the theoretical predictions for physics at the EW scale, such as the
prediction for the mass of the SM-like Higgs boson in supersymmetric theories, see e.g.
Ref. [8] for a recent review.

By construction, these EFT frameworks, where the heavy particles are integrated out,
do not allow the description of the dynamics of heavy BSM particles. Such a description,
however, is of interest since the LHC high-luminosity run and also future colliders like an
e+e− linear collider or the FCC offer a significant potential for discovering new particles.

Precise theoretical predictions for the production and decay of new heavy particles are
important for determining the viable parameter space of the considered BSM scenarios
and for assessing the sensitivity for discoveries and for discriminating between different
possible realisations of BSM physics. In those predictions, which have been obtained
in the literature for a variety of models of BSM physics, the appearance of large log-
arithmic corrections potentially spoiling the reliability of the perturbative expansion is
a re-occurring issue. For describing the dynamics of heavy BSM particles, it is, how-
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ever, obviously not possible to resum these logarithmic corrections by integrating out
the heavy particles.

A well-known example in this context are the fermionic decays of a heavy BSM Higgs
boson. In order to avoid large QCD corrections, the fermion mass entering via the
Yukawa coupling of the Higgs boson to a pair of fermions should be evolved to the heavy
Higgs mass scale [9, 10]. Large logarithms develop, however, not only in this kind of QCD
corrections, but also in the form of electroweak Sudakov logarithms (see e.g. Refs. [11,
12]) which are related to the exchange of W , Z or light Higgs bosons. In principle, these
electroweak Sudakov logarithms can be resummed using soft-collinear effective theory
(SCET) [13–15]. A specific SCET approach for resumming large logarithms in the decay
of BSM particles to SM particles has been developed in Ref. [16] and applied to various
example models in Refs. [17–19].

In the present paper, we carry out a detailed investigation of the occurrence of large
logarithmic corrections in processes with external scalar BSM particles. We point out
that large logarithms can arise via external leg corrections involving an interaction be-
tween two heavy scalar particles and one light scalar particle. The size of these correc-
tions can be further enhanced1 by large trilinear couplings between the involved scalars.
Focusing first on a simple toy model, we explicitly show the origin of these logarithms at
the one-loop level. Moreover, we point out how these logarithms are related to infrared
divergencies which can be cured by light scalar radiation or by resumming the mass
corrections of the light scalar. While in principle one would expect that it should be
possible to resum these Sudakov-like logarithms with the methods of e.g. Ref. [16] (the
corresponding EFT realisation to the best of our knowledge has not been obtained in
the literature so far), we follow a more direct approach in the present paper by explic-
itly calculating the two-loop corrections involving the large logarithms. In this context,
we compare different renormalisation schemes for the involved parameters. As a result,
we stress the importance of choosing on-shell-like schemes in order to avoid corrections
that are enhanced by powers of the heavy BSM scale over the EW scale. In addition to
these conceptual studies, we discuss various exemplary applications. First, we discuss
the decay of a gluino into a top and a scalar top quark in the Minimal Supersymmetric
extension of the Standard Model (MSSM). As a second example, we study heavy Higgs
decays to two tau leptons in the next-to-minmal Two-Higgs-Doublet Model (N2HDM).
For each of these examples, we explicitly derive the quantum corrections involving the
large logarithms at the one-loop and the two-loop order.

Our paper is organised as follows. In Section 2, we introduce our toy model. The
occurrence of large logarithms for this toy model is then discussed in detail in Section 3.
The various exemplary applications are presented in Section 4. Section 5 contains the
conclusions. Details on the two-loop calculations carried out in this paper are given in
Appendices A and B.

1As a consequence of the chiral symmetry in the case of fermions and of the gauge symmetry in the
case of gauge bosons, analogous enhanced logarithmic corrections do not appear for BSM fermions
or BSM gauge bosons — hence our focus on scalar corrections in this paper.
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2. Toy model
In order to illustrate our discussion as clearly as possible, we start by focussing on a
toy model containing three real singlet scalars φ1,2,3 that are coupled to a Dirac fermion
χ. This model offers a simple setting for discussing the issue of large trilinear-coupling-
enhanced logarithms arising via external scalar leg corrections, and the different mass
configurations in which they can appear. Moreover, it can be directly mapped to many
BSM models (as done in Section 4 for some examples).

We endow this model with a Z2 symmetry under which the scalars and fermions
transform as

φ1 → −φ1, φ2 → −φ2, φ3 → φ3, χ→ χ . (1)

We assume that the Lagrangian parameters are chosen such that this Z2 symmetry is not
broken spontaneously. Therefore, only φ3 acquires a vacuum expectation value (VEV),
which we denote as v3. We can, however, redefine the couplings in the Lagrangian in
order to absorb this VEV v3 (and thus work with a field φ3 having 〈φ3〉 = 0) and we can
furthermore assume without loss of generality that the scalar mass matrix is diagonal.
The Lagrangian of this toy model can then be written as

L =
1

2

3∑

i=3

(∂µφi∂
µφi −m2

iφ
2
i )

− 1

2
A113φ

2
1φ3 − A123φ1φ2φ3 −

1

2
A223φ

2
2φ3 −

1

6
A333φ

3
3

− 1

24
λ1111φ

4
1 −

1

6
λ1112φ

3
1φ2 −

1

4
λ1122φ

2
1φ

2
2 −

1

6
λ1222φ1φ

3
2 −

1

24
λ2222φ

4
2

− 1

4
λ1133φ

2
1φ

2
3 −

1

2
λ1233φ1φ2φ

2
3 −

1

4
λ2233φ

2
2φ

2
3 −

1

24
λ3333φ

4
3

+ χ̄(i/∂ −mχ)χ+ y3φ3χ̄χ , (2)

where the trilinear couplings Aijk will be of special interest in the discussion below. Note
that since the fermions are not charged under the Z2 symmetry, only φ3 can couple to
them. Furthermore, because the three scalars are real, the trilinear, quartic, and Yukawa
couplings in the Lagrangian are also real.

We are mostly interested in the situation in which φ1 is much lighter than φ2 and φ3,
while φ2 and φ3 are approximately mass-degenerate. Accordingly, we will consider in
the following the double limit in which m1 � m2 ∼ m3 and concurrently m2 → m3.
From a phenomenological point of view, φ2 and φ3 can be regarded as heavy BSM fields
whereas φ1 represents a SM field with a mass around the electroweak scale.

3. Scalar external leg corrections as an origin of large
logarithms

One important ingredient in obtaining predictions for physical observables is to ensure
that the external particles have the correct on-shell properties as required by the LSZ
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formalism [20]. For unstable particles that can mix with each other this can be achieved
by employing a (in general non-unitary) matrix, denoted by Ẑ in the following (see e.g.
Refs. [21–23]), which relates the (renormalised) one-particle irreducible vertex functions
involving the external loop-corrected mass eigenstate fields φphysicala to the (renormalised)
vertex functions involving the internal lowest-order fields φj,

Γ̂φphysical
a

=
∑

j

ẐajΓ̂φj . (3)

The (aj) element of the Ẑ matrix can be written as a combination of the usual LSZ
factor for the case with non-vanishing mixing and a term accounting for the mixing
between the states i and j,

Ẑaj =

√
Ẑa
i Ẑ

a
ij, (4)

where no summation over repeated indices is implied. The terms on the right-hand side
are given by

Ẑa
i =

1

1 + Σ̂eff ′
ii (p2 =M2

a)
, Ẑa

ij =
∆ij(p

2)

∆ii(p2)

∣∣∣∣
p2=M2

a

. (5)

The superscript “ ′” denotes a derivative with respect to the external momentum squared.
The elements of the propagator matrix, ∆ii(p

2), ∆ij(p
2), . . . , are obtained from inverting

the matrix involving the renormalised self-energies of the fields φi, φj, . . . , denoted as
Σ̂ii(p

2), Σ̂ij(p
2), . . . , where the diagonal and off-diagonal entries read p2 −m2

i + Σ̂ii(p
2)

and Σ̂ij(p
2), respectively. Here mi is the tree-level mass of φi. The effective self-energy

Σ̂eff
ii (p2) is composed of the usual self-energy Σ̂ii(p

2) and mixing contributions. For the
example of the case where the three particles i, j, k can mix with each other it reads

Σ̂eff
ii (p2) = Σ̂ii(p

2) +
∆ij(p

2)

∆ii(p2)
Σ̂jj(p

2) +
∆ik(p

2)

∆ii(p2)
Σ̂kk(p

2). (6)

The quantities in Eq. (5) are evaluated at the complex propagator pole, p2 =M2
a, which

is associated with φi.
We note in this context that the elements of the Ẑ matrix given above contain higher-

order contributions that are crucial for the description of the resonant mixing of two or
more unstable particles that are nearly mass-degenerate [22, 23]. In the following dis-
cussion focusing on large logarithmic contributions arising from external-leg corrections
of heavy scalar particles we will always perform a strict perturbative expansion, keeping
only the terms contributing to the order — one- or two-loop — at which we are working.
In this way a mixing of orders in perturbation theory is avoided, so that there is no
associated residual dependence on unphysical gauge or field-renormalisation contribu-
tions (as discussed, e.g., in Refs. [24, 25]). Thus, we do not provide here a treatment of
the resonance-type behaviour of the nearly mass-degenerate heavy fields φ2 and φ3 that
would in general be expected to occur (this refers in particular to parameter regions
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ϕ3

χ̄

χ

Figure 1.: φ3 → χ̄χ decay process at tree level.

ϕ3

χ̄

χ

ϕ1,2,3

ϕ1,2,3
ϕ3 ϕ3

χ̄

ϕ3

χ
χ

ϕ3

χ̄

χ

ϕ3

Figure 2.: One-loop virtual corrections to the φ3 → χ̄χ decay process.

where their mass difference is smaller than the sum of their total widths). We note that
in the considered toy model the mixing between the fields φ2 and φ3 is forbidden by the
imposed Z2 symmetry, but we will study a model with non-vanishing scalar mixing in
Section 4.1.3. The treatment of the resonance-type behaviour, as outlined in [22, 23],
can be carried out in addition to the analysis of large logarithmic contributions that will
be presented in the following.

3.1. Large trilinear-coupling-enhanced logarithms appearing in
scalar external leg corrections

The external leg corrections can become a source of large logarithmic contributions. We
discuss this here in the context of the toy model introduced in Section 2. The discussion
is, however, straightforwardly transferable to other models (as we will demonstrate in
Section 4).

As an example process, we investigate the φ3 → χ̄χ decay process, which is shown at
tree level in Fig. 1. In more realistic models, this process could for example correspond
to the decay of a heavy Higgs boson to two SM fermions (see also Section 4.2). The
corresponding process for the other heavy field, φ2 → χ̄χ, is forbidden as a consequence
of the imposed Z2 symmetry (which also eliminates interference effects in the production
and decay of φ2 and φ3). We note, however, that both the decay processes of φ2 and φ3

need to be taken into account in order to ensure the cancellation of infrared divergences
in the limit where m2 = m3 and m1 = 0, see the discussion below.
At tree-level, the decay width for this process reads

Γ(0)(φ3 → χχ̄) =
1

8π
m3

(
1− 4m2

χ

m2
3

)3/2

y2
3 . (7)
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Once radiative corrections are taken into account, one must compute additional contri-
butions to this process, as illustrated in Fig. 2. We denote the relative one- and two-loop
corrections to the decay width by ∆Γ̂

(1)
φ3→χχ̄ and ∆Γ̂

(2)
φ3→χχ̄ respectively, so that

Γ̂(φ3 → χχ̄) = Γ(0)(φ3 → χχ̄)
[
1 + ∆Γ̂

(1)
φ3→χχ̄ + ∆Γ̂

(2)
φ3→χχ̄

]
. (8)

Among the radiative corrections, one must take into account one-particle-reducible di-
agrams corresponding to field renormalisation contributions of the external particles —
or equivalently, to the LSZ factors on the external legs (see above).

Here, we focus on large logarithmic corrections that are proportional2 to powers of
the trilinear couplings Aijk. These arise only via the LSZ factor of the external φ3 leg.
Taking into account only terms proportional to at least two powers of trilinear couplings,
we obtain for the one-loop corrections to the φ3 → χ̄χ decay process3

∆Γ̂
(1)
φ3→χ̄χ ⊃ −

1

2
ky3Re

[
(A113)2 d

dp2
B0(p2,m2

1,m
2
1) + 2(A123)2 d

dp2
B0(p2,m2

1,m
2
2)

+ (A223)2 d

dp2
B0(p2,m2

2,m
2
2) + (A333)2 d

dp2
B0(p2,m2

3,m
2
3)

]∣∣∣∣
p2=m2

3

+ · · · , (9)

where k ≡ (4π)−2 is used to indicate the loop order, B0 is the usual Passarino-Veltmann
function (we recall its definition in Eq. (81)), and the ellipsis denotes terms that are not
proportional to at least two powers of trilinear couplings.

As already noted in Section 2, we concentrate on the situation in which m1 � m2 ∼
m3, and hence the second term in Eq. (9) is of particular interest because it is infrared
divergent in the double limit of m1 → 0 and m3 → m2. At the one-loop level no other
terms proportional to A2

123 appear that could cancel this divergence. For this mass
hierarchy, we can distinguish two different cases,

1. φ2 and φ3 are almost mass-degenerate, φ1 is light (m1 → 0, m2 → m3),

d

dp2
B0(p2,m2

1,m
2
2)
∣∣
p2=m2

3
=

1

m2
3

(
1

2
ln
m2

3

m2
1

− 1 +O
(
ε1/2
))

, (10)

where ε ≡ m2
3−m2

2 and m2
1 ∼ ε, and with the expansion in m1 performed first. We

note here that as long as m1 is non-zero, it regulates the possible IR divergence in
the derivative of the B0 function in the equation above, while the limit m2 → m3

can be taken without any issue.

2. φ2 and φ3 are almost mass-degenerate, φ1 is massless (m1 = 0, m2 → m3),

d

dp2
B0(p2, 0,m2

2)
∣∣
p2=m2

3
=

1

m2
3

(
ln

(
−m

2
3

ε

)
− 1 +O (ε)

)
, (11)

where ε ≡ m2
3 −m2

2.
2Logarithmic terms can also arise via the external leg corrections of the fermion χ. They can, however,
easily be avoided by choosing the renormalisation scale ∼ m3.

3For calculating the loop amplitudes at the one- and two-loop level, we have employed FeynArts [26]
and FormCalc [27].
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In both cases, logarithms appear which become large in the limit m1 → 0 or ε → 0.
The suppression by 1/m2

3 can be compensated by the prefactor A2
123 if A123 ∼ m3, a

situation which can easily be realised in many BSM theories. If one of the scalar fields
would obtain a vev, similar terms proportional to two powers of the vev times a scalar
quartic coupling would appear. However, such terms are expected to be smaller than
genuine BSM trilinear terms because they are of order vev times an O(1) number —
the size of the quartic coupling being limited by unitarity — while the natural scale for
BSM trilinear couplings is the BSM mass scale itself. Note on the other hand that the
magnitude of trilinear couplings can also be constrained by unitarity (at finite energies),
see e.g. Ref. [28], or by other considerations like vacuum stability, as is for instance the
case with Xt in the MSSM, see for instance Ref. [29].

The described logarithms do not involve the renormalisation scale and can, therefore,
not be avoided by an appropriate scale choice. Also a straightforward EFT approach, in
which φ3 and φ2 are integrated out, would not circumvent the issue, since we consider
here a process in which φ3 appears as an external particle. Consequently, the appearing
logarithms can not straightforwardly be resummed using renormalisation group equa-
tions.4 We also want to remark that this type of divergence, caused by a light scalar
close to or in the massless limit, is similar to the so-called “Goldstone boson catastrophe,”
which has been discussed in the literature – see in particular Refs. [30–35].

3.2. The infrared limit

As stated above, the external leg corrections to the φ3 → χχ̄ process develop infrared
divergences in the limit m1 → 0 or ε → 0, and this obviously raises the question of
how to address them. In the following, we discuss two methods to cancel out the IR
divergences: firstly the inclusion of real radiation, as prescribed by the KLN theorem [36,
37], and secondly a resummation of φ1 contributions.5

3.2.1. Inclusion of real corrections

In the case where m2 = m3 and m1 = 0, the radiation of a real φ1 scalar becomes
kinematically allowed, and the appearance of the IR divergence in the φ3 → χχ̄ decay
width can be understood as being due to considering an IR-unsafe observable. Following
the KLN theorem, in order to obtain an IR-safe observable, one should include also the
soft part of the Bremsstrahlung process φ2 → χχ̄φ1, shown in Fig. 3, which cannot be
experimentally resolved from the φ3 → χχ̄ decay. Reintroducing a mass m1 as an IR

4As already mentioned in the introduction, we expect the SCET approach worked out in Ref. [16]
to provide a way to resum these logarithms. While the approach seems to be suitable, the needed
concrete EFT has not been worked out yet.

5For completeness, we should mention another possible approach, following Ref. [38], that is to include
the width Γ3 of the φ3 scalar, and to evaluate the process at the complex pole,M2

3 = m2
3 − iΓ3m3.

However, this approach for curing the IR divergence works only at the one-loop order if no non-zero
width is taken into account for the internal particles. Moreover, in some models or scenarios, the
width of φ3 can vanish.

9



ϕ2

χ̄

ϕ3

ϕ1

χ

Figure 3.: Real φ1 emission diagram cancelling the IR divergence in the virtual correction
to the φ3 → χ̄χ process.

regulator, we obtain

Γ(0)(φ2 → χχ̄φ1)
∣∣soft = Γ(0)(φ3 → χχ̄) · k (A123)2

m2
3

[
− E`√

E2
` +m2

1

− 1

2
lnm2

1

+ ln(E` +
√
E2
` +m2

1)

]

= Γ(0)(φ3 → χχ̄) · k (A123)2

m2
3

[
− 1− 1

2
lnm2

1 + ln(2E`) +O(m1)

]
,

(12)

where E` denotes the energy resolution of a detector that would be used to study this
process. We can observe that the second term in the brackets in the lower equation
exactly cancels the divergence caused by d

dp2
B(p2,m2

1,m
2
3)|p2=m2

3
in the limit m1 → 0 —

c.f. Eq. (10) — and we find

Γ̂(φ3 → χχ̄) + Γ(0)(φ2 → χχ̄φ1)
∣∣soft = Γ(0)(φ3 → χχ̄) ·

[
1 + k

(A123)2

m2
3

ln
2E`
m3

]

+ · · · , (13)

where the ellipsis denotes IR-safe terms, not involving A123. We note that the inclusion
of the soft real radiation not only cancels the IR-divergent logarithm, but also changes
the finite part of the result (c.f. the −1 piece in Eq. (12)).

If we instead set m1 = 0 and regulate the IR divergence by ε (= m2
3 −m2

2), the real
radiation diagram in Fig. 3 evaluates to

Γ(0)(φ2 → χχ̄φ1)
∣∣soft = Γ(0)(φ3 → χχ̄) · k (A123)2

m2
3

[
− 1 + ln 2 + ln

m3E`
ε

]
, (14)

cancelling the IR divergent term in Eq. (11), and giving for the terms of order (A123)2

in the sum Γ̂(φ3 → χχ̄) + Γ(0)(φ2 → χχ̄φ1)
∣∣soft the same expression as in Eq. (13).

Finally, we note that while including only the soft part of the real φ1 radiation process
introduces, as mentioned already, a dependence on a new parameter E`, this can be
avoided by computing also the hard part of the real radiation process. We will do this
in the following in our numerical analysis, where we perform the necessary three-body
phase space integration numerically.
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Figure 4.: Examplary Feynman diagrams appearing in the resummation of φ1 contribu-
tions. The hashed dots denote the one-loop φ1 self-energy Σ̂

(1)
11 .

3.2.2. Resummation of φ1 contributions

Inspired by one of the proposed solutions to the “Goldstone boson catastrophe,” a second
possibility to address these problematic IR-divergent terms is to resum the contributions
from φ1, following Refs. [30, 33, 35]. While the resummation approach was devised for
the IR divergences from Goldstone bosons in the effective potential (and its derivatives),
it can also be applied for a more general situation, such as the one here. The reason
for this is that scenarios with large mass hierarchies lead to significant corrections to
the light-scalar mass(es). This means that the perturbative expansion is not adequately
organised in this case, because all diagrams with (subloop) self-energy insertions yield
large contributions, and a resummation is necessary to capture the relevant contributions
of higher-order diagrams with self-energy insertions.

We note that the approach of setting the φ1 (the Goldstone-like state in our toy model)
on shell, as done in Ref. [33], would not work here as there is no tree-level contribution
involving φ1 that would produce a one-loop shift in the calculation of the φ3 → χ̄χ
process in such a way as to cancel the IR divergences.

We show in Fig. 4 some examples of the diagrams that are resummed by applying
this procedure. At the cost of mixing orders in perturbation theory, this resummation
generates a finite mass for φ1 and therefore avoids divergences in the derivatives of the
B0 function in Eq. (9). For m1 = 0, the contributions to the φ1 mass read

∆m2
φ1

= Σ̂
(1)
11 (p2 = 0) = −k

[
1

2
λ1122A0(m2

2) +
1

2
λ1133A0(m2

3)

+ (A113)2B0(0, 0,m2
3) + (A123)2B0(0,m2

2,m
2
3)

]
, (15)

where Σ̂
(1)
11 (p2) denotes the one-loop φ1 self-energy at external squared momentum p2,

and the loop function A0(m2) is defined in Eq. (81) below. We recall also that the
quartic couplings λ1122 and λ1133 are defined in the Lagrangian in Eq. (2). The (A123)2

terms in the one-loop decay width are then obtained as

Γ̂(φ3 → χχ̄) ⊃ Γ(0)(φ3 → χχ̄) ·
[
1 + k

(A123)2

m2
3

(
1

2
ln

∆m2
1

m2
3

+ 1

)]
, (16)

which is free of IR divergences. We should point out here that employing this resum-
mation means that one interprets the occurrence of the IR divergence in the one-loop

11



ϕ3

ϕ2

ϕ3

ϕ1

ϕ3

ϕ2

ϕ1
ϕ3

ϕ1

ϕ3

ϕ2

ϕ3

ϕ1

ϕ2 ϕ3

ϕ2

ϕ3
ϕ2

ϕ1

ϕ3

ϕ1

Figure 5.: φ3 self energy at the two-loop level.

corrections to the φ3 decay as being due to the breakdown of the perturbative expansion
explained above, rather than a lack of inclusiveness of the observable we are computing.
As we will see in the following section, at two loops, there are additional IR-divergent
contributions that are not contained in the class of diagrams that are incorporated by
the resummation as indicated in Fig. 4, and the resummation approach therefore would
have to be extended for applications beyond one-loop order to include further classes of
diagrams. It should furthermore be noted that this approach of curing IR divergences
would have to be modified or may not be realised if a symmetry enforces the considered
particle to be strictly massless (like e.g. in the case of the photon).

3.3. Scalar external leg corrections at the two-loop level

We now investigate the external leg corrections to the φ3 → χχ̄ decay process at the
two-loop order. For this discussion, we set m2

2 = m2
3 = m2 and m2

1 = ε.
Following the discussion at the beginning of Section 3, the external-leg corrections to

the φ3 → χχ̄ decay width can be expanded up to two loops as

Γ̂(φ3 → χχ̄) = Γ(0)(φ3 → χχ̄)

{
1− ReΣ̂

(1)′
33 (m2)− ReΣ̂

(2)′
33 (m2)

+
(
ReΣ̂

(1)′
33 (m2)

)2 − 1

2

(
ImΣ̂

(1)′
33 (m2)

)2

+ ImΣ̂
(1)
33 (m2) · ImΣ̂

(1)′′
33 (m2) +O(k3)

}
, (17)

where Σ̂33 is the renormalised φ3 self energy. In particular, the two-loop contributions
are given by

∆Γ̂
(2)
φ3→χχ̄ = Γ(0)(φ3 → χχ̄)

[
− ReΣ̂(2)′

33 (m2) +
(
ReΣ̂

(1)′
33 (m2)

)2

− 1

2

(
ImΣ̂

(1)′
33 (m2)

)2
+ ImΣ̂

(1)
33 (m2) · ImΣ̂

(1)′′
33 (m2)

]
. (18)

To leading powers in the trilinear coupling A123, the one- and genuine two-loop contri-

12



butions to the φ3 self-energy (see Fig. 5) read in terms of MS-renormalised parameters

Σ̂
(1)
33 (p2) = k(A123)2B0(p2, ε,m2) ,

Σ̂
(2, genuine)
33 (p2) = k2(A123)4

[
T11234(p2,m2,m2, ε,m2, ε) + T11234(p2, ε, ε,m2,m2,m2)

+ T12345(p2,m2, ε,m2, ε,m2)
]
. (19)

The superscript “genuine” for the two-loop self-energy indicates that we consider therein
only pure two-loop contributions. Definitions6 of the two-loop T11234 and T12345 loop
integrals as well as expressions for their derivatives (obtained in the MS scheme) can
be found in Appendices A and B. The two-loop integrals contain potentially dangerous
terms of the form 1/ε, 1/

√
ε, ln2 ε/m2, and ln ε/m2, which in turn give rise to potentially

even more problematic terms of the form 1/ε and 1/
√
ε (as well as ln2 ε/m2, ln ε/m2) in

the first derivatives that enter the external leg corrections. Indeed, we have up to order
O(ε0)

Σ̂
(1)′
33 (m2) =

k(A123)2

m2

[
1

2
ln
m2

ε
− 1

]
,

Σ̂
(2, genuine)′
33 (m2) = k2(A123)4

[
− lnm2

2m2ε
+
π(4 + lnm2)

8
√
εm3

+
−18lnεlnm2 + 9ln

2
ε+ 60lnε+ 9ln

2
m2 − 78lnm2 + 9π2 − 64

72m4

− π2 ln 2− 3/2ζ(3)

m4

]
, (20)

where the results in Appendix B for the derivatives of the T integrals have been applied,
and the notation lnx ≡ lnx/Q2 (Q being the renormalisation scale) has been used.

Applying Eq. (17), we obtain a pure MS expression for the dominant external-leg
contributions in powers of A123 to the φ3 → χχ̄ decay width, which reads

Γ̂(φ3 → χχ̄) = Γ(0)(φ3 → χχ̄)

{
1− k(A123)2

m2

[
1

2
ln
m2

ε
− 1

]

+
k2(A123)4

m4

[
m2lnm2

2ε
− mπ(4 + lnm2)

8
√
ε

+
17

9
− π2

8
+

1

8
ln2 m

2

ε
+

1

6
lnε+

1

12
lnm2

+ π2 ln 2− 3

2
ζ(3)

]}
. (21)

We will use this pure MS expression for comparison in our numerical analysis below,
but otherwise for obtaining our results we employ an on-shell renormalisation scheme

6Note that our definitions of the T integrals differ slightly from the usual ones (see e.g. Ref. [39]),
because we already subtract pieces corresponding to subloop renormalisation (following Refs. [40,
41]).
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— at least for the scalar masses. This implies that finite contributions from subloop
renormalisation need to be included, which for the parameters in our result are of the
form

Σ̂
(2, subloop)
33 (p2) = k(A123)2

[(
2δ(1)A123

A123

+ δ(1)Z3

)
B0(p2,m2

1,m
2
2)

+ δ(1)m2
1

∂

∂m2
1

B0(p2,m2
1,m

2
2)

+ δ(1)m2
2

∂

∂m2
2

B0(p2,m2
1,m

2
2)

]
, (22)

where δ(1)m2
1, δ(1)m2

2, δ(1)A123, and δ(1)Z3 are the one-loop mass counterterms for m2
1

and m2
2, the one-loop counterterm for A123, and the one-loop field renormalisation coun-

terterm for φ3, respectively.
We now derive the dominant contributions to these counterterms in powers of A123. It

should be noted that because the expressions for Σ̂
(1)
33 and Σ̂

(2,genuine)
33 are MS -renormalised

quantities, only the finite parts of the counterterms need to be considered here (as the
UV divergences have already been cancelled). Adopting an on-shell renormalisation
scheme for the scalar masses, the mass counterterms are

δ(1)m2
1 = k(A123)2ReB0(m2

1,m
2
2,m

2
3) ,

δ(1)m2
2 = k(A123)2ReB0(m2

2,m
2
1,m

2
3) . (23)

Next, renormalising the φ3 field in the MS scheme, we simply have

δ(1)Z3

∣∣fin. = 0. (24)

It should be noted that the MS field renormalisation drops out in the sum of the vertex
correction and the LSZ factor. Therefore the prescription that has been chosen for the
field renormalisation is insignificant.

Turning finally to the trilinear coupling counterterm δ(1)A123, there are several possible
choices for the renormalisation of A123. We consider here the following options.

(i) The simplest choice is to retain an MS renormalisation of A123 — in terms of the
finite part of the counterterm this simply means δ(1)

MS
A123

∣∣fin. = 0. In this case, the
subloop renormalisation contributions become

Σ̂
(2, subloop)
33 (p2) = k2(A123)4

[
ReB0(m2

1,m
2
2,m

2
3)

∂

∂m2
1

B0(p2,m2
1,m

2
2)

+ ReB0(m2
2,m

2
1,m

2
3)

∂

∂m2
2

B0(p2,m2
1,m

2
2)

]
. (25)

Taking now the derivative of Σ̂
(2, subloop)
33 with respect to p2, we can observe that

the 1/ε and 1/
√
ε divergent terms contained in these two terms exactly cancel with
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the ones in the derivative of Σ̂
(2, genuine)
33 . Indeed, the first term of Eq. (25) is

B0(m2
1,m

2
2,m

2
3)

∂

∂m2
1

B′0(m2
3,m

2
1,m

2
2) =

=
(
−lnm2 +

ε

6m2
+O(ε2)

)(
− 1

2εm2
+

3π

8
√
εm3

+
−1 + 2 ln ε

m2

4m4
+O(ε1/2)

)
=

=
lnm2

2εm2
− 3πlnm2

8
√
εm3

+
3lnm2 − 6lnεlnm2 + 6ln

2
m2 − 1

12m4
+O(ε1/2) , (26)

which yields an exact cancellation of the 1/ε and 1/
√
ε terms in the expression for

d
dp2
T11234(p2, ε, ε,m2,m2,m2). The second term of Eq. (25) is

B0(m2
2,m

2
1,m

2
3)

∂

∂m2
2

B′0(m2
3,m

2
1,m

2
2) =

=

(
2− lnm2 − π

√
ε

m2
+O(ε)

)(
− π

4
√
εm3
− ln ε

m2

2m4
+O(ε1/2)

)
=

= −π(2− lnm2)

4
√
εm3

+
π2 − 4lnε+ 4lnm2 + 2lnεlnm2 − 2ln

2
m2

4m4

+O(ε1/2) , (27)

which yields a cancellation of the 1/
√
ε term in d

dp2
T11234(p2,m2,m2, ε,m2, ε). Ac-

cordingly, we obtain

d

dp2
T11234(p2, ε, ε,m2,m2,m2)

∣∣∣∣
p2=m2

+B0(m2
1,m

2
2,m

2
3)

∂

∂m2
1

B′0(m2
3,m

2
1,m

2
2)

=
−50 + 6π2 + 3lnε− 12lnm2 + 18lnεlnm2 − 18ln

2
m2

36m4

+
3lnm2 − 6lnεlnm2 + 6ln

2
m2 − 1

12m4

=
1

m4

[
1

12
ln

ε

m2
+
π2

6
− 53

36

]
,

d

dp2
T11234(p2,m2,m2, ε,m2, ε) +B0(m2

2,m
2
1,m

2
3)

∂

∂m2
2

B′0(m2
3,m

2
1,m

2
2)

=
−6lnεlnm2 − 3ln

2
ε+ 24lnε+ 9ln

2
m2 − 24lnm2 − π2

24m4

+
π2 − 4lnε+ 4lnm2 + 2lnεlnm2 − 2ln

2
m2

4m4

=
−3 ln2 ε

m2 + 5π2

24m4
. (28)

We note that the renormalisation-scale dependence has dropped out in this expres-
sion. Thus, for the two-loop external-leg corrections at leading order in A123, i.e.
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O((A123)4), the incorporation of OS counterterms for the involved masses is already
sufficient to obtain a result that is independent of the renormalisation scale. This
fact can be explained by the finiteness of the A123 counterterm at leading order in
powers of A123. Indeed at this order, vertex corrections — in this toy model — can
only involve scalar triangle diagrams, resulting in the scalar integral C0 (defined in
Eq. (82)) that is UV-finite, while field renormalisation contributions only involve
derivatives of the B0 function, which are also UV-finite (this is further illustrated
in Eq. (31) below). In other words, even in the MS scheme, the contributions to
the trilinear coupling A123 are scale-independent at leading powers in A123.

The derivative of the total two-loop O((A123)4) contribution to the φ3 self-energy
hence reads

Σ̂
(2)′
33 (m2) =

= k2(A123)4

[−53 + 6π2 + 3 ln ε
m2

36m4
+
−3 ln2 ε

m2 + 5π2

24m4

+
ln2 ε

m2 − ln ε
m2 + 2

4m4
− π2 ln 2− 3/2ζ(3)

m4

]

=
k2(A123)4

m4

[
1

8
ln2 ε

m2
− 1

6
ln

ε

m2
− 35

36
+

3π2

8
− π2 ln 2 +

3

2
ζ(3)

]
. (29)

Taking all pieces together, we can write the dominant contributions in powers of
A123 to the φ3 → χχ̄ decay width including external leg corrections up to two loops
as

Γ̂(φ3 → χχ̄) = Γ(0)(φ3 → χχ̄)

{
1− k(A123)2

m2

[
1

2
ln
m2

ε
− 1

]

+
k2(A123)4

m4

[
1

8
ln2 m

2

ε
− 7

6
ln
m2

ε
+

71

36
− 3π2

8

+ π2 ln 2− 3

2
ζ(3)

]}
. (30)

(ii) A second possible choice is to renormalise A123 on-shell: for this we require that the
on-shell-renormalised loop-corrected φ2 → φ1φ3 amplitude with on-shell momenta
shall remain equal to the tree-level result. With this condition, we obtain

δ
(1)
OSA123 =

= k(A123)3

[
C0(p2

1 = m2
2, p

2
2 = m2

3, (p1 + p2)2 = m2
1,m

2
3,m

2
1,m

2
2)

+
1

2
Re
(
B′0(m2

1,m
2
2,m

2
3) +B′0(m2

2,m
2
1,m

2
3) +B′0(m2

3,m
2
1,m

2
2)
)]

= k(A123)3

[
∂

∂y
B0(m2, ε, y)

∣∣∣∣
y=m2

+
1

2
Re
(
B′0(ε,m2,m2) + 2B′0(m2, ε,m2)

)]
, (31)
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and the one-loop scalar integral C0 is defined in Eq. (82) below. Since this result
contains only derivatives of the B0 integral, it is manifestly UV-finite, in accordance
with the above discussion concerning the scale-independence of A123 (to leading
powers in A123). This result for δ(1)

OSA123 yields additional terms in Σ̂
(2), subloop
33 .

Accordingly, one finds for the derivative of the total two-loop φ3 self-energy

Σ̂
(2)′
33 (m2) =

k2(A123)4

m4

[
1

8
ln2 ε

m2
+

7

24
ln

ε

m2
− 1

18
+

3π2

8

− π2 ln 2 +
3

2
ζ(3)

]
. (32)

This yields for the decay width

Γ̂(φ3 → χχ̄) = Γ(0)(φ3 → χχ̄)

{
1− k(A123)2

m2

[
1

2
ln
m2

ε
− 1

]

+
k2(A123)4

m4

[
1

8
ln2 m

2

ε
− 31

24
ln
m2

ε
+

19

18
− 3π2

8

+ π2 ln 2− 3

2
ζ(3)

]}
, (33)

which as discussed above is independent of the choice of the renormalisation scale.

(iii) As a third possible choice, we explore whether it is possible to choose the finite part
of the A123 counterterm in such a way as to cancel the ln2 ε term in Γ̂(φ3 → χχ̄) —
we will denote this version of the counterterm δ

(1)
no-log-sqA123. We should emphasise

that this only shuffles the ln2 ε term away from the calculation of the φ3 → χχ̄ cross-
section and into the extraction ofA123 from a physical observable (e.g. related to the
φ3 → φ1φ2 process) and thus it does not remove the potentially large logarithmic
term entirely. However, if A123 is only considered as a user-given input, this choice
may be convenient. The piece of the subloop renormalisation related to δ(1)A123 is
given by

∆Σ̂
(2, subloop)′
33 (m2

3) = 2kA123δ
(1)A123B

′
0(m2

3,m
2
1,m

2
2)

=
kA123δ

(1)A123

m2

(
2 + ln

ε

m2

)
. (34)

In this prescription we require that the term

−k
2(A123)4

m4

[
1

8
ln2 ε

m2

]
(35)

is cancelled. This yields

δ
(1)
no-log-sqA123 =

k(A123)3

8m2
ln

ε

m2
. (36)
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Inserting this back into Σ̂
(2)′
33 (m2), we obtain

Σ̂
(2)′
33 (m2) =

k2(A123)4

m4

[
1

8
ln2 ε

m2
− 1

6
ln

ε

m2
− 35

36
+

3π2

8
− π2 ln 2 +

3

2
ζ(3)

]

+
k2(A123)4

m4

[
1

8
ln2 ε

m2
+

1

4
ln

ε

m2

]

=
k2(A123)4

m4

[
1

4
ln2 ε

m2
+

1

12
ln

ε

m2
− 35

36
+

3π2

8
− π2 ln 2 +

3

2
ζ(3)

]
,

(37)

and in turn for the decay width,

Γ̂(φ3 → χχ̄) = Γ(0)(φ3 → χχ̄)

{
1− k(A123)2

m2

[
1

2
ln
m2

ε
− 1

]

+
k2(A123)4

m4

[
− 11

12
ln
m2

ε
+

71

36
− 3π2

8
+ π2 ln 2− 3

2
ζ(3)

]}
.

(38)

It should be noted in this context that in general it is not possible to choose the
counterterm δ(1)A123 such that both the ln2 ε and ln ε terms are cancelled.

3.4. Numerical analysis

In this Section we present numerical investigations of the external leg corrections at
one and two loops, in both mass configurations specified in Eqs. (10) and (11). We
start by showing in Fig. 6 the relative modification of the φ3 → χχ̄ decay width due
to the inclusion of one-loop external φ3 leg corrections as a function of the mass of
the light scalar φ1. First, the red curve shows the one-loop result in the absence of
any treatment of the infrared divergence, and therefore it diverges logarithmically if
m1 approaches zero, as expected from Eq. (10). Next, we compare the impact of the
different treatments of the IR problem discussed above. The blue curves are obtained
by including soft real radiation of a φ1 scalar, displaying several values of the detector
energy resolution E`. While the IR divergence is cured independently of the numerical
value of E`, the one-loop contribution to Γ̂(φ3 → χχ̄) is sensitive to it: for m1 = 1 MeV,
one finds a one-loop contribution of approximately −35% for E` = 1 GeV, compared to
−18% for E` = 20 GeV. If the hard part of the real radiation is also included (performing
the phase-space integration numerically), one finds the magenta dotted curve, which is
independent of the value of E`. In this case the one-loop contribution amounts to about
−7% of the tree-level result. Finally, the two green curves indicate the result obtained
after resummation of φ1 contributions, for two possible choices of the renormalisation
scale, Q = m3 and Q = 2m3, entering the loop functions in ∆m2

1, see Eq. (15). One can
see that for small values of m1 the resummation procedure also cures the IR divergence
in the external leg corrections. The difference between the curves — for m1 = 1 MeV,
we find a one-loop effect of about −12% for the curve with Q = m3, while it is only
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Figure 6.: Size of the one-loop external φ3 leg correction to the φ3 → χχ̄ decay width in
the toy model of Section 2, relative to the tree-level result, as a function of
m1. Black: tree-level result only; red: one-loop result; blue: one-loop result,
including soft real φ1 radiation (with different choices for the detector energy
resolution E`); purple: one-loop result, including both soft and hard real φ1

radiation; green: one-loop result, including a resummation of φ1 contributions
(with different choices of the renormalisation scale Q). For simplicity, we set
all trilinear couplings to zero except A123, which we take to be A123 = 3 TeV.
The other parameters of the model are taken to be y3 = 1, m2 = m3 = 1 TeV,
mχ = 200 GeV, λ1122 = 0.25, λ1133 = 0.4.
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Figure 7.: The one- and two-loop external φ3 leg corrections to the φ3 → χχ̄ decay width
as a function of m1. In the left plot the one- and two-loop results for the decay
width are shown relative to the tree-level result, while in the right plot the
two-loop corrections are shown relative to the one-loop result. We have chosen
m2 = m3 = 1 TeV, y3 = 1, A123 = 3 TeV, while the other trilinear couplings
are set to zero.

−2.3% for Q = 2m3 — can be interpreted as an indication of the theoretical uncertainty
of this prescription. It can be associated in particular with diagrams containing higher-
order subloop insertions of φ1 that are not included in the resummation performed here.
This large theoretical uncertainty of the resummation procedure indicates a limitation
of applying this approach for the purpose of obtaining reliable higher-order predictions
for the φ3 → χχ̄ decay width. While the different predictions for the results including
real radiation can be understood as corresponding to different experimental situations,
i.e. they refer to different physical observables, there is no clear interpretation of which
observable the resummed prediction for the decay width should be compared to —
especially as varying the renormalisation scale Q leads to significantly modified results.
It is furthermore apparent that the curve for Q = m3 exhibits a spike around m1 ' 42
GeV arising from the fact that the sum m2

1 + ∆m2
1, appearing in logarithms of the loop

functions, vanishes for this particular value of m1. Since the resummation procedure is
meant to be applied to the region where m1 approaches zero, this numerical artifact at
a relatively large non-zero value of m1 has no particular physical significance.

Next, in Fig. 7 we investigate the impact of the two-loop external leg corrections for
the different possible choices of renormalisation of the trilinear coupling A123 and of the
scalar masses that were discussed in the previous section. We set the mass of the heavy
scalars to be m2 = m3 = 1 TeV and take A123 = 3 TeV. In the left plot, the one-loop
(blue curve) and two-loop (red curves) results for the φ3 → χχ̄ decay width are shown
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relative to the tree-level result. For the two-loop results the OS scheme has been adopted
for the scalar masses, and A123 is renormalised in either the MS (dashed), the OS (solid),
or the “no-log-sq” (dotted) scheme. The two-loop corrections employing either an OS or
MS renormalisation for the trilinear coupling A123 turn out to be numerically significant.
For m1 = 10−3 GeV they amount to +25.4% and +21.6% in the OS and MS schemes,
respectively, as compared to −73.0% at one-loop order, entering Γ̂(φ3 → χχ̄) with the
opposite sign than the one-loop corrections. On the other hand, in the “no-log-sq”
scheme — devised to eliminate the ln2 term in Γ̂(φ3 → χχ̄) — the two-loop corrections
are noticeably smaller (only −7% for m1 = 10−3 GeV) and have the same sign as their
one-loop counterparts. It should be noted, however, that the red curves cannot be
compared directly to each other, since they correspond to different physical situations
as a consequence of the different renormalisation schemes used (we have not incorporated
the shifts in the numerical values of A123 that are induced by the different renormalisation
schemes).

In the right plot of Fig. 7 the two-loop corrections are shown relative to the one-loop
result for the considered three different choices of the renormalisation of A123 as well as
for a complete MS renormalisation (of the masses and of A123), using two different values
of the renormalisation scale Q. While the three choices for the renormalisation of A123

together with an on-shell renormalisation of the masses give rise to the moderate two-
loop effects that are shown in more detail in the left plot, one can see that the two-loop
corrections in the full MS scheme yield unphysically large effects. Those corrections are
many orders of magnitude larger than at one loop and furthermore exhibit a huge scale
dependence. These unphysically large effects arise as a consequence of the severe nature
of the terms enhanced by 1/m1 and 1/m2

1 in the derivatives of the T11234 integrals, see
the expressions in Appendix B. Thus, our analytical and numerical results highlight the
importance of adopting an on-shell renormalisation for the masses entering the compu-
tation at the one-loop order, in order to avoid unphysical power-enhanced terms at the
two-loop level. This situation is similar e.g. to the known occurrence of non-decoupling
effects in the context of Higgs-mass calculations in supersymmetric models that is en-
countered for scenarios with heavy gluinos if the parameters in the scalar top sector are
renormalised in the DR scheme, see for instance Refs. [42–46].

As a final step of our numerical analysis of the toy model we show in Fig. 8 our results
for the other mass configuration where m1 = 0 and there is a mass splitting ε = m2

3−m2
2.

In our one-loop analysis we had seen that the mass splitting ε = m2
3 − m2

2 acts as an
IR regulator for this mass configuration. The results presented in Fig. 8 are obtained
using the analytical expressions for the derivatives of two-loop self-energies given in
Appendix B.4, and adopting an OS scheme for all scalar masses. Because both the two-
loop integral T11234(p2,m2

1,m
2
1,m

2 + ε,m2 + ε,m2) and its derivative with respect to p2

are always IR divergent for m1 = 0 (see Eq. (94) below), ε does not suffice to regulate
all IR divergences at two loops for this mass configuration. We therefore introduce an
IR regulator mass squared of m2

IR = 10 GeV2 for φ1 in order to treat the otherwise
divergent two-loop integral. We emphasise that this IR divergence that is caused by the
occurrence of a squared massless propagator in T11234 is different from the IR divergences
that we had encountered in our one-loop analysis and also in the two-loop analysis for the
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Figure 8.: One- and two-loop external φ3 leg corrections to the φ3 → χχ̄ decay width in
the toy model of Section 2 as a function of the ratio m2/m3. In the left plot
the one-loop result with and without resummation of the φ1 contributions
(with different choices of the renormalisation scale Q) and the two-loop result
for the decay width are shown relative to the tree-level result, while in the
right plot the two-loop corrections are shown relative to the one-loop result.
The parameters are m3 = 500 GeV, mχ = 200 GeV, λ1122 = 1, λ1133 = 1.2,
and A123 = 1500 GeV. An MS renormalisation scheme is employed for A123 in
the two-loop decay width results.
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other mass configuration. This can been seen from the fact that the divergence appears
already in the self-energy and not only in its derivative. In fact, this is precisely the
situation encountered in the so-called “Goldstone boson catastrophe” discussed above. In
the prediction for a physical observable these IR divergences are expected to cancel with
the corresponding IR divergences in the real radiation contributions at the two-loop level
in an analogous way to the one-loop case that we had discussed above. While the sum of
those contributions should be free of logarithms involvingmIR, it still contains logarithms
involving the small but non-zero quantity ε that can be numerically large. On the left-
hand side of Fig. 8, we plot, as a function of the ratio m2/m3, the relative deviation of
the φ3 → χχ̄ decay width from its tree-level prediction at the one-loop (blue and green
curves) as well as at the two-loop level (red curve). We choose here a parameter point for
which m3 = 500 GeV, mχ = 200 GeV, A123 = 3m3, λ1122 = 1, and λ1133 = 1.2, while the
other trilinear couplings are set to zero for simplicity. As expected, we find the external
leg corrections to be divergent when m2/m3 → 1 at one- and two-loop order. The two
green curves show the one-loop result incorporating a resummation of φ1 contributions
for Q = m3 (dashed green curve) and Q = 2m3 (dotted green curve). As for the other
mass configuration the resummation regulates the IR divergence, but again we find that
the resummation procedure exhibits a large dependence on the renormalisation scale
Q. This difference originates from the quite significant difference in ∆m2

1 between the
two cases. It stems from the dependence on Q in ∆m2

1, or in other words from higher-
order contributions from φ1 self-energy insertions. On the right-hand side of Fig. 8, we
illustrate the size of the two-loop correction relative to the one-loop result. The more
rapid divergence of the two-loop corrections is a consequence of the ln2 ε term.
To summarize our study of the toy model, we have identified — at the one- and

two-loop level — the potentially dangerous logarithmic and squared-logarithmic contri-
butions arising from external-leg contributions to a process involving a heavy scalar as
an external state. We have shown that in the IR limit, in which these terms become
divergent, the inclusion of real radiation cures the IR divergences and yields a finite and
well-defined result. However, should the experimental resolution allow the separation
of the real-radiation contributions (this could happen if either of the mass parameters
that we defined as ε has a non-zero, but relatively small, value), large logarithmic and
squared-logarithmic terms remain in the computed decay width. We have also illus-
trated how a resummation of higher-order contributions involving the light scalar can
in principle alleviate the IR problem, although this method is in the present calculation
plagued by large theoretical uncertainties arising from the problem of relating the pre-
diction to a well-defined physical observable. Furthermore, we have discussed several
possible choices of renormalisation schemes for the parameters entering this calculation,
and their impact on the size of the remaining large logarithms. In this context, we
pointed out the importance of renormalising the involved masses on-shell in order to
avoid unphysically large power-enhanced corrections. At the same time, we found that,
within the class of corrections that we considered, the renormalisation scale dependence
of the contributions to A123 vanishes, and the differences between the discussed options
for renormalising this coupling are numerically moderate. While the two-loop effects re-
main smaller than those at one-loop order, their impact can become significant for large
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Figure 9.: Decay of a gluino into a stop and a top quark

mass hierarchies, i.e. close to the IR limit. This is in particular the case if the MS or OS
schemes are adopted for the renormalisation of A123, while as expected a scheme that
was specifically devised to absorb squared-logarithmic terms yields the smallest effects
at two-loop order.

4. Applications
In this Section, we discuss several concrete BSM models where large logarithms appear
in the external leg corrections in an analogous way to the toy model as described in
Section 3.

4.1. MSSM

As a first example, we consider corrections to processes involving external scalar top
quarks, i.e. the superpartners of the top quark, in the MSSM. One such process is the
decay of a gluino into a stop and a top quark as shown Fig. 9. The following discussion
is straightforwardly transferable to other processes involving scalar top quarks on an
external leg.7
In the limit of vanishing electroweak gauge couplings, the stop mass matrix is given

by

Mt̃ =

(
m2
t̃L

+m2
t mtXt

mtXt m2
t̃R

+m2
t

)
, (39)

where mt̃L
and mt̃R

are the stop soft SUSY-breaking mass parameters, mt is the top-
quark mass and Xt ≡ At − µ/ tan β (At is the trilinear stop coupling, µ is the Higgsino
mass parameter, and tan β ≡ v2/v1 is the ratio of the vacuum expectation values of
the two Higgs doublets). Here (and also for the rest of this Section), we assume all
parameters to be real for simplicity.

7The same type of corrections appears in the widely used OS scheme of the trilinear stop coupling
At [43, 47–49]. These corrections induce large logarithms entering the prediction for the mass of the
SM-like Higgs boson. This type of logarithms cannot be resummed by integrating out the heavy
scalar top quarks [8, 50, 51].

24



t̃L,R

t̃R,L

t̃L,R
H,A

t̃R

b̃L

t̃R
H±

Figure 10.: Left : Neutral heavy Higgs contribution to the left- and right-handed stop
self-energies. Right : Charged Higgs contribution to the right-handed stop
self-energies.

4.1.1. Yt terms

First, we aim at calculating all corrections to the external stop leg that are leading in
powers of the trilinear coupling Yt ≡ At+µ tan β, which couples the heavy Higgs bosons
H, A, and H± to the stops. We assume the heavy Higgs bosons to be much heavier
than the electroweak scale but still lighter than the stops.

In order to simplify our discussion, we work in the approximation of vanishing elec-
troweak gauge couplings. We neglect all terms that are proportional to the electroweak
scale by setting the vacuum expectation value v2 ≡ v2

1 +v2
2 to zero. In this approximation

the stops do not mix, since the off-diagonal entry of the stop mass matrix is zero (i.e.,
mt = 0 in this limit). Consequently, the left- and right-handed stop chirality eigenstates
(t̃L and t̃R) are also mass eigenstates.
In this approximation, all relevant couplings between the heavy Higgs bosons and the

stops are given by

c(Ht̃Lt̃L) = c(Ht̃Rt̃R) = c(At̃Lt̃L) = c(At̃Rt̃R) = 0, (40a)

c(Ht̃Lt̃R) = − 1√
2
htcβYt, (40b)

c(At̃Lt̃R) = −c(At̃Rt̃L) =
1√
2
htcβYt, (40c)

c(H+t̃Rb̃R) = c(H+t̃Lb̃L) = c(H+t̃Lb̃R) = 0, (40d)

c(H+t̃Rb̃L) = −htcβYt, (40e)

where ht is the MSSM top-Yukawa coupling, and cβ ≡ cos β. Note that the couplings of
the charged Higgs bosons involve only t̃R.
As a consequence of the coupling structure, the off-diagonal stop self-energy is zero,

Σt̃L t̃R
= Σt̃R t̃L

= 0. (41)

The diagonal left- and right-handed stop self-energies receive contributions from the H
and A bosons (see the left plot of Fig. 10). The diagonal right-handed stop self-energy
receives in addition a contribution from the charged Higgs boson (see the right plot of
Fig. 10).

The leading contribution in powers of Yt to the stop self-energies at the one-loop level
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is given by

Σ̂
(1)

t̃L t̃L
(p2) = kh2

t c
2
βY

2
t B0(p2,m2

A,M
2
SUSY), (42a)

Σ̂
(1)

t̃R t̃R
(p2) = 2kh2

t c
2
βY

2
t B0(p2,m2

A,M
2
SUSY), (42b)

where we set mt̃L
= mt̃R

= MSUSY, and mA is the mass of the heavy Higgs bosons. For
the leading genuine two-loop corrections, we obtain

Σ̂
(2,genuine)
t̃L t̃L

(p2) = k2h4
t c

4
βY

4
t

(
3T11234(p2,m2

A,m
2
A,M

2
SUSY,M

2
SUSY,M

2
SUSY)

+ 2T11234(p2,M2
SUSY,M

2
SUSY,m

2
A,M

2
SUSY,m

2
A)
)
, (43a)

Σ̂
(2,genuine)
t̃R t̃R

(p2) = 2k2h4
t c

4
βY

4
t

(
3T11234(p2,m2

A,m
2
A,M

2
SUSY,M

2
SUSY,M

2
SUSY)

+ T11234(p2,M2
SUSY,M

2
SUSY,m

2
A,M

2
SUSY,m

2
A)
)
. (43b)

The subloop renormalization is given by

Σ̂
(2,subloop)

t̃L t̃L
(p2) = kh2

t c
2
βY

2
t

[
C0(0, p2, p2,m2

A,m
2
A,M

2
SUSY)δ(1)m2

A

+ C0(0, p2, p2,m2
A,M

2
SUSY,M

2
SUSY)δ(1)m2

t̃R

+B0(p2,m2
A,M

2
SUSY)

(2δ(1)(htcβYt)

htcβYt
+ δ(1)Zt̃L

)]
, (44a)

Σ̂
(2,subloop)

t̃R t̃R
(p2) = kh2

t c
2
βY

2
t

[
2C0(0, p2, p2,m2

A,m
2
A,M

2
SUSY)δ(1)m2

A

+ C0(0, p2, p2,m2
A,M

2
SUSY,M

2
SUSY)(δ(1)m2

t̃L
+ δ(1)m2

b̃L
)

+ 2B0(p2,m2
A,M

2
SUSY)

(
2
δ(1)(htcβYt)

htcβYt
+ δ(1)Zt̃R

)]
, (44b)

where δ(1)m2
A is the one-loop mass counterterm of the heavy Higgses, δ(1)m2

t̃L,b̃R,t̃R
are

the one-loop mass counterterms of the stops and sbottoms, δ(1)Zt̃L,R are the one-loop
field renormalisation constants of the stops, and δ(1)(htcβYt) is the one-loop counterterm
of the Higgs–stop–stop interaction.

Renormalising all counterterms in the OS scheme (apart from the field renomalisation),
we obtain

δ(1)m2
A = 3kh2

t c
2
βY

2
t ReB0(m2

A,M
2
SUSY,M

2
SUSY), (45a)

δ(1)m2
t̃L

= δ(1)m2
b̃L

= kh2
t c

2
βY

2
t ReB0(M2

SUSY,m
2
A,M

2
SUSY), (45b)

δ(1)m2
t̃R

= 2kh2
t c

2
βY

2
t ReB0(M2

SUSY,m
2
A,M

2
SUSY), (45c)

δ(1)(htcβYt)

htcβYt
=

1

2

(
ReΣ(1)′

HH(m2
H) + ReΣ(1)′

t̃L t̃L
(m2

t̃L
) + ReΣ(1)′

t̃R t̃R
(m2

t̃R
)
)
, (45d)
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with

ReΣ̂(1)′
HH(m2

H) = 3kh2
t c

2
βY

2
t ReB

′
0(m2

A,M
2
SUSY,M

2
SUSY), (46a)

ReΣ̂(1)′
t̃L t̃L

(m2
t̃L

) = kh2
t c

2
βY

2
t ReB

′
0(M2

SUSY,m
2
A,M

2
SUSY), (46b)

ReΣ̂(1)′
t̃R t̃R

(m2
t̃R

) = 2kh2
t c

2
βY

2
t ReB

′
0(M2

SUSY,m
2
A,M

2
SUSY) . (46c)

The counterterm for the coupling htcβYt is fixed by demanding that the amplitude for
the process t̃Lt̃R → H up to the one-loop level should coincide with the tree-level result
(taking into account contributions at leading order in Yt). All genuine vertex corrections
to this process vanish at this order, such that only the external leg corrections enter the
definition of the counterterm. Using instead for the renormalisation of Yt e.g. the DR
scheme would not significantly change the numerical size of the two-loop corrections (see
the discussion in Section 3.3). We employ the DR scheme for all field renormalisation
constants. As already mentioned above, this choice is insignificant, as the DR field
renormalisation constants drop out in the sum of the vertex corrections and the LSZ
factor.

Using these expressions, we obtain the following results for the two-loop stop self-
energies (Σ̂(2) = Σ̂(2,genuine) + Σ̂(2,subloop)),

Σ̂
(2)

t̃L t̃L
(p2) = k2h4

t c
4
βY

4
t

[
3B0(p2,m2

A,M
2
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2
SUSY,M
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SUSY)
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SUSY,m
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, (47a)
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]
, (47b)

where we dropped the “Re” in the counterterm expressions of Eqs. (45a) and (45d) since
all involved loop functions are real for the considered mass hierarchy.

The leading corrections in powers of Yt to the gluino decay width are then obtained
by taking into account the external stop LSZ factor (see Section 3). For an external t̃L
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we obtain

Γ̂g̃→t+t̃L = Γ
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}
, (48)

where on the right-hand side of the second equality we performed an expansion in
mA/MSUSY and Ŷt ≡ Yt/MSUSY. For an external t̃R we obtain
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. (49)

Note that even though the one-loop corrections to the decay widths with t̃L and t̃R differ
from each other, the logarithmic terms in the two-loop corrections are identical.

We show an exemplary numerical evaluation for these corrections in Fig. 11. For this
example, we fix Ŷt =

√
6, mA = 500 GeV, tβ ≡ tan β = 2, and mg̃ = 1.2MSUSY. We

vary MSUSY and show the relative deviation from the tree-level results for the gluino
decay widths including the one- (blue curves) and two-loop (red curves) corrections in
leading powers of Yt. For the decay into t̃L and a top quark (solid curves), the one-loop
corrections lower the tree-level decay width by up to ∼ 4% in the considered parameter
region. We find the two-loop corrections to have a significantly smaller effect. The
inclusion of the one-loop corrections has a larger effect for the decay into t̃R and a top
quark (dashed curves) reaching values of up to ∼ 8%. This is a consequence of the
additional factor of two appearing in the one-loop corrections of Eq. (49) with respect
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Figure 11.: The gluino decay widths g̃ → t + t̃L,R as a function of MSUSY, where the
final state t + t̃L is displayed by the solid curves and t + t̃R by the dashed
curves. The one-loop results including all corrections in leading powers of Yt
are shown relative to the tree-level decay width by the blue curves, while the
corresponding two-loop results are displayed by the red curves.

to Eq. (48). Also for the gluino decay into t̃R and a top quark, the two-loop corrections
have much smaller effect of . 0.5% in this case.
The example of the corrections in the MSSM that are enhanced by powers of the

trilinear coupling Yt is a realisation of the situation of the toy model in Section 3.3
for m2

2 = m2
3 = m2 and m2

1 = ε. In the MSSM example the mass m1 of the light
scalar in the toy model corresponds to the common mass scale of the MSSM Higgs
bosons H, A, and H±, which has been set to ∼ 500 GeV in the present example. The
heavy scale m of the toy model corresponds to mt̃L

= mt̃R
= MSUSY. If a gluino is

detected in future searches in the decay modes g̃ → t+ t̃L,R, there should be significant
experimental sensitivity for distinguishing the cases with and without additional H, A,
or H± radiation for this process. Thus, the appropriate theoretical description would not
be the IR limit discussed above but rather the case illustrated here where the prediction
for a measurable physical observable contains potentially large logarithms containing
the ratio of the widely separated scales MSUSY and mA.
Regarding the encountered numerical effects, we find these potentially large logarithms

to have a sizeable impact at the one-loop level. At the two-loop level, the size of the cor-
rections is moderate for the considered example suggesting that a fixed-order treatment
is sufficient and that no resummation of large logarithmic corrections is needed.
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4.1.2. Xt terms — case 1

Next, we look at the corrections leading in powers of Xt with Xt = At − µ/tβ. As for
corrections leading in Yt, we work in the unbroken phase of the theory (i.e., v = 0).
In this limit, Xt only appears in the couplings of the light CP-even Higgs boson h,
the neutral Goldstone boson G, and the charged Goldstone bosons G± to stops and
sbottoms,

c(ht̃Lt̃L) = c(ht̃Rt̃R) = c(Gt̃Lt̃L) = c(Gt̃Rt̃R) = 0, (50a)

c(ht̃Lt̃R) =
1√
2
htsβXt, (50b)

c(Gt̃Lt̃R) = −c(Gt̃Rt̃L) =
1√
2
htsβXt, (50c)

c(G+t̃Rb̃R) = c(G+t̃Lb̃L) = c(G+t̃Lb̃R) = 0, (50d)

c(G+t̃Rb̃L) = −htsβXt. (50e)

As a direct consequence of this coupling structure, we obtain as for the case above

Σt̃L t̃R
= Σt̃R t̃L

= 0. (51)

The limit v = 0 also implies that h, G, and G± are massless. This situation corresponds
to the second mass configuration discussed in Section 3, where the two heavy particles
t̃L and t̃R are separated by a small mass difference ε, while the light particle is massless.
Accodingly, we take mt̃L

= MSUSY, m2
t̃R

= M2
SUSY + ε and then consider the limit ε→ 0.

The stop self-energies obtain corrections proportional to X2
t from diagrams analogous

to the ones in Fig. 10 with H, A, and H± replaced by h, G, and G±, respectively. These
corrections are given by

Σ̂
(1)

t̃L t̃L
(p2) = kh2

t s
2
βX

2
tB0(p2, 0,m2

t̃R
), (52a)

Σ̂
(1)

t̃R t̃R
(p2) = 2kh2

t s
2
βX

2
tB0(p2, 0,m2

t̃L
). (52b)

The genuine two-loop corrections are given by

Σ̂
(2,genuine)
t̃L t̃L

(p2) = k2h4
t s

4
βX

4
t

(
3T11234(p2,m2

IR,m
2
IR,m

2
t̃R
,m2

t̃L
,m2

t̃R
)

+ 2T11234(p2,m2
t̃R
,m2

t̃R
, 0,m2

t̃L
, 0)
)
, (53a)

Σ̂
(2,genuine)
t̃R t̃R

(p2) = 2k2h4
t s

4
βX

4
t

(
3T11234(p2,m2

IR,m
2
IR,m

2
t̃L
,m2

t̃R
,m2

t̃L
)

+ T11234(p2,m2
t̃L
,m2

t̃L
, 0,m2

t̃R
, 0)
)
. (53b)

As for the Yt terms, all T12345 integrals cancel. Here, we have introduced mIR as an
infrared regulator mass for h, G, and G± to regulate the partially infrared-divergent
two-loop corrections where necessary. All explicit expressions given below are expanded
in mIR/MSUSY.
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For the subloop renomalisation, we obtain

Σ̂
(2,subloop)

t̃L t̃L
(p2) = kh2

t s
2
βX

2
t

[
C0(p2, 0, p2, 0,m2

t̃R
,m2

t̃R
)δ(1)m2

t̃R

+ C0(0, p2, p2,m2
IR,m

2
IR,m

2
t̃R

)δ(1)m2
h,G,G±

+B0(p2, 0,m2
t̃R

)
(2δ(1)(htsβXt)

htsβXt

+ δ(1)Zt̃L

)]
, (54a)

Σ̂
(2,subloop)

t̃R t̃R
(p2) = 2kh2

t s
2
βX

2
t

[
C0(p2, 0, p2, 0,m2

t̃L
,m2

t̃L
)δ(1)m2

t̃L

+ C0(0, p2, p2,m2
IR,m

2
IR,m

2
t̃R

)δ(1)m2
h

+B0(p2, 0,m2
t̃L

)
(2δ(1)(htsβXt)

htsβXt

+ δ(1)Zt̃R

)]
. (54b)

Here, we also introduce mass counterterms for the light scalars. In contrast to the broken
phase of the MSSM, in which the mass counterterms of the light Higgs boson h (and also
the Goldstone bosons) are dependent quantities that can be expressed in terms of the
counterterms of the independent parameters mA, tan β and mZ , in the unbroken phase,
independent mass counterterms can be introduced (by introducing counterterms for the
bi-linear potential parameters). It should also be noted that in the unbroken phase the
Goldstone bosons are physical particles with a finite mass.

We fix all counterterms in the OS scheme. The counterterm for the coupling combi-
nation htsβXt is fixed by demanding that the one-loop matrix element for the h→ t̃Lt̃R
process is equal to its tree-level value. This yields

δ(1)m2
t̃L

= δ(1)m2
b̃L

= kh2
t s

2
βX

2
t ReB0(m2

t̃L
, 0,m2

t̃R
), (55a)

δ(1)m2
t̃R

= 2kh2
t s

2
βX

2
t ReB0(m2

t̃R
, 0,m2

t̃L
), (55b)

δ(1)m2
h,G,G± = 3kh2

t s
2
βX

2
t ReB0(m2

IR,m
2
t̃L
,m2

t̃R
), (55c)

δ(1)(htsβXt)

htsβXt

=
1

2

(
Σ

(1)′
hh (m2

h) + Σ
(1)′
t̃L t̃L

(m2
t̃L

) + Σ
(1)′
t̃R t̃R

(m2
t̃R

)
)
, (55d)

with

Σ̂
(1)′
hh (m2

h) = 3kh2
t s

2
βX

2
t ReB

′
0(m2

IR,m
2
t̃L
,m2

t̃R
), (56a)

Σ̂
(1)′
t̃L t̃L

(m2
t̃L

) = kh2
t s

2
βX

2
t ReB

′
0(m2

t̃L
, 0,mt̃R

), (56b)

Σ̂
(1)′
t̃R t̃R

(m2
t̃R

) = 2kh2
t s

2
βX

2
t ReB

′
0(m2

t̃R
, 0,m2

t̃L
) . (56c)

It is important to remark that the counterterm δ(1)m2
h,G,G± is of O(M2

SUSY). This is
in contrast to the broken phase of the MSSM in which the loop corrections to the h
tree-level mass are of O(v2).8 Since we assume that the physical masses of h, G, and

8In the broken phase, the O(M2
SUSY) contributions of the hh self energy are cancelled as a consequence

of the renormalisation procedure.
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G± are zero, we need to cancel the O(M2
SUSY) one-loop corrections by choosing the mass

counterterm appropriately.
Summing the genuine and the subloop two-loop contributions, we get

Σ̂
(2)

t̃L t̃L
(p2) = k2h4

t s
4
βX

4
t

[
3B0(p2, 0,m2

t̃R
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,m2

t̃R
)

+ 3B0(p2, 0,m2
t̃R

)B′0(m2
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)
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, (57a)

Σ̂
(2)

t̃R t̃R
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4
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. (57b)

The leading Xt corrections to the gluino decay widths up to the two-loop level are then
given by (in the limit ε→ 0 and mIR/MSUSY → 0),

Γ̂g̃→t+t̃L = Γ
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and

Γ̂g̃→t+t̃R = Γ
(0)
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}
, (59)

where X̂t ≡ Xt/MSUSY. Taking into account all two-loop corrections in the considered
approximation, all infrared divergences ∝ 1/mIR or ∝ 1/m2

IR cancel. In order to cancel
the remaining lnm2

IR terms, additional real light scalar radiation contributions would
have to be taken into account, as explained in Section 3.3. This real radiation contribu-
tion would not introduce any additional large logarithms. Therefore, we set m2

IR = ε for
our numerical results presented below.

We assess the numerical size of these corrections in Fig. 12 showing the relative de-
viation from the tree-level results for the gluino decay widths including the one- (blue
curves) and two-loop (red curves) corrections in leading powers of Xt as a function of
mt̃R

/mt̃L
. For the gluino decay into t̃L and a top quark (solid curves) the effect of the

loop corrections is relatively modest (∼ 5%) for |1−mt̃R
/mt̃L

| & 0.05. If the two stops
are nearly mass degenerate — corresponding to ε ∼ 0 — the external leg corrections are
numerically large. As discussed in Section 3.2, the real radiation contributions should be
included if the additional final state particles cannot be resolved experimentally. Close
to mt̃L

∼ mt̃R
also the two-loop corrections have a sizeable impact, reducing the overall

size of the loop corrections by up to ∼ 10%. For the gluino decay into t̃R and a top
quark (dashed curves) the overall size of the one-loop corrections is enhanced because of
the additional factor of two in the one-loop part of Eq. (58) with respect to Eq. (59). As
for the previous MSSM example we find that large logarithms occur in the prediction
for the decay width of the gluino, which apart from the parameter region where real
radiation contributions should be included are theoretically well under control in the
two-loop fixed-order result.

4.1.3. Xt terms — case 2

As a final MSSM example, we show that large logarithms also appear in the broken
phase of the theory (i.e., if v 6= 0). Here, we assume that mt̃L

= mt̃R
. In the broken

phase, the off-diagonal terms of the stop mass matrix (see Eq. (39)) are non-zero. After

33



0.8 0.9 1.0 1.1 1.2
mt̃R

/mt̃L

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0.0

Γ
/Γ

tr
ee
−

le
v
el
−

1

X̂t =
√

6, MSUSY = 2 TeV, tβ = 10

g̃ → t+ t̃L,R leading Xt terms (case 1)

g̃ → t+ t̃L @ 1L

g̃ → t+ t̃L @ 2L

g̃ → t+ t̃R @ 1L

g̃ → t+ t̃R @ 2L

Figure 12.: The gluino decay widths g̃ → t + t̃L,R as a function of mt̃R
/mt̃L

, where the
final state t + t̃L is displayed by the solid curves and t + t̃R by the dashed
curves. The one-loop results including all corrections in leading powers of
Xt are shown relative to the tree-level decay width by the blue curves, while
the corresponding two-loop results are displayed by the red curves.

diagonalisation, we denote the mass eigenstates by t̃1 and t̃2 with mt̃2 ≥ mt̃1 . Their
couplings involving Xt are given by9

c(ht̃1t̃1) = −c(ht̃2t̃2) =
1√
2
htsβXt, (60a)

c(ht̃1t̃2) = c(ht̃2t̃1) = 0, (60b)
c(Gt̃1t̃1) = c(Gt̃2t̃2) = 0, (60c)

c(Gt̃1t̃2) = −c(Gt̃2t̃1) =
1√
2
htsβXt, (60d)

c(G+t̃1b̃1) = c(G+t̃2b̃1) = − 1√
2
htsβXt, (60e)

c(G+t̃1b̃2) = c(G+t̃2b̃2) = 0. (60f)

In contrast to the discussion in Section 4.1.2, for the case considered here the couplings
are not the only source of the Xt dependence. This is caused by the fact that also
the stop masses depend on Xt. The difference between the two stop masses is given
by m2

t̃2
− m2

t̃1
= 2mtXt. Consequently, the stops become mass-degenerate in the limit

v/MSUSY → 0, and large logarithms appear in analogy to Section 4.1.2.
9These expressions are valid in the limit mA → ∞ implying that the mixing angle α of the CP-even
Higgs bosons approaches α→ β − π/2, while in the case of the unbroken phase discussed above we
had α→ 0.
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We restrict ourselves here to a discussion at the one-loop level. The stop self-energy
contributions containing h, G and G± yield at leading order in Xt

Σ̂
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(p2) = Σ̂
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1

2
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t s
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2
t

[
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2
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+B0(p2,m2
IR,M

2
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t )

+B0(p2,m2
IR,M

2
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t )

]
, (61a)

Σ̂
(1)

t̃1 t̃2
(p2) = Σ̂

(1)

t̃2 t̃1
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1

2
kh2

t s
2
βX

2
tB0(p2,m2

IR,M
2
SUSY) , (61b)

where we introduced an infrared regulator mass as in Section 4.1.2. In contrast to
Section 4.1.2, the off-diagonal self energies are non-zero.

We then obtain for the derivative of the diagonal self energies with respect to the
external momentum expanded in the limit v/MSUSY → 0 (and in the limit mIR/v → 0)

Re
∂

∂p2
Σ̂
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t̃1 t̃1
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− 3− ln 2− 2 ln |X̂t|

]

+O (mt/MSUSY) . (62)

The off-diagonal self energies appear on the external leg without a derivative with respect
to the external momentum but divided by the stop mass difference. For them, we obtain

ReΣ̂(1)
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(
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)

+O (mt/MSUSY) . (63)

Also the vertex corrections can in principle generate X2
t terms even though only one

Higgs–stop–stop coupling can appear (see e.g. Ref. [52]). We checked, however, that this
is not the case for the one-loop corrections to the gluino decay into one of the stops and
the top quark.

The gluino decay widths taking into account the one-loop corrections in leading powers
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of Xt are then given by
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It is important to remark that here the infrared divergences related to the occurrence
of the massless Higgs boson h do not cancel (see below regarding the Goldstone contri-
butions). This issue can be addressed by one of the strategies discussed in Section 3.2:
either external h radiation could be included summing over different final states, or the
higher-order mass corrections for the Higgs boson h could be included in analogy to the
Goldstone boson resummation.

We focus here on the inclusion of real radiation. Having a close look at the coupling
structure in Eqs. (60a) and (60f) and at the diagonal stop self energies in Eq. (61a), it
is easy to identify the diagrams with an internal h boson and the same internal stop
as the external stops as origin of the infrared divergence. Following the discussion in
Section 3.2, we obtain for the gluino decay into a top quark, a stop, and the Higgs boson
h in lowest order

Γ
(0)

g̃→t+t̃1,2+h
= Γ

(0)

g̃→t+t̃1,2
· 1

2
khtsβX̂

2
t

[
1

2
ln

E2
`

m2
IR
− 1 + ln 2

]
. (66)

The infrared-divergent term exactly cancels with the corresponding term in Eq. (62)
rendering the combination Γ̂g̃→t+t̃1,2 + Γ

(0)

g̃→t+t̃1,2+h
free of infrared divergences.

It should be noted that the inclusion of real radiation of the neutral and charged
Goldstone bosons would not yield additional infrared divergences. Accordingly, the
virtual contributions of the neutral and charged Goldstone bosons also do not give rise
to large logarithms (see Eq. (14) with ε = 2mtXt and m3 = MSUSY).

Taking into account h radiation, we show the numerical result for the decay width of
the gluino into to the lighter stop and a top quark in Fig. 13. We choose X̂t =

√
6 and

tβ = 10. Three different values are chosen for the detector resolution: E` = 1 GeV (red),
E` = 10 GeV (green), and E` = 100 GeV (blue). The relative difference between the
one-loop corrected and the tree-level decay width increases logarithmically for increasing
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Figure 13.: The gluino decay width g̃ → t + t̃1(+h) at one-loop order including the
corrections in leading powers of Xt is shown relative to the tree-level decay
width as a function of MSUSY. The result is shown for different detector
resolutions: E` = 1 GeV (red), E` = 10 GeV (green), and E` = 100 GeV
(blue).

MSUSY, reaching values of up to ∼ −40%. Varying the detector resolution by two orders
of magnitude corresponds to a variation of the decay width of ∼ 10%.
As an alternative to including real radiation diagrams, one could consider to take into

account terms proportional to the electroweak gauge couplings. This would render the
Higgs and Goldstone boson masses non-zero. While in this case no infrared divergences
would appear, large logarithms would still occur in the limit v/MSUSY → 0, which
corresponds to taking simultaneously the limits m1 → 0 and m2 → m3 in Eq. (11).

Similarly to the examples discussed above, we expect the two-loop corrections to
be much smaller than the one-loop corrections evaluated here and thus a fixed-order
treatment should be sufficient for obtaining a percent-level precision.

4.2. N2HDM

We now turn to a second example of a frequently discussed BSM model in which poten-
tially large logarithms arising from wave-function normalisation contributions may ap-
pear, namely the N2HDM, i.e. a real-singlet extension of the Two-Higgs-Doublet Model.
We consider once again corrections to processes involving a heavy scalar on an external
leg. Specifically, we discuss the decay process h3 → τ+τ−, where h3 is the heaviest of
the three CP-even mass eigenstates (which we will assume to be mostly doublet-like).
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4.2.1. The model

We start with a CP-invariant tree-level potential written in terms of two SU(2)L doublets
Φ1, Φ2 of hypercharge 1/2 and a singlet ΦS as

V (0) = m2
11|Φ1|2 +m2

22|Φ2|2 −m2
12

(
Φ†1Φ2 + h.c.

)

+
1

2
λ1|Φ1|4 +

1

2
λ2|Φ2|4 + λ3|Φ1|2|Φ2|2 + λ4|Φ†2Φ1|2 +

1

2
λ5

(
(Φ†1Φ2)2 + h.c.

)

+
1

2
m2
SΦ2

S +
1

6
aSΦ3

S +
1

24
λS|ΦS|4 +

1

2
a1S|Φ1|2ΦS +

1

2
a2S|Φ2|2ΦS

+
1

6
λ1S|Φ1|2Φ2

S +
1

2
λ2S|Φ2|2Φ2

S . (67)

For this model, we derived a FeynArts model file using SARAH [53–55].
In the following we will use the shorthand notations

Xa ≡
a1S − a2S

4
,

Ya ≡
a1Ss

2
β + a2Sc

2
β

4
,

Za ≡
aS
4
− Ya (68)

for combinations of the trilinear couplings that appear in the calculated self-energies,
where tan β denotes the ratio of the vacuum expectation values of the two Higgs doublets.

4.2.2. X4
a external leg corrections to the h3 → τ+τ− process

Restricting ourselves to contributions involving only powers of Xa — defined in terms
of Lagrangian trilinear couplings in Eq. (68) — we find for the contributions to the h3

self-energy at one-loop order

Σ̂
(1)
h3h3

(p2) = kX2
ac

2
α3
s2

2β

[
B0(p2,m2

A,m
2
G) + 2B0(p2,m2

H± ,m2
G±)

+ 4s2
α3
B0(p2,m2

h3
,m2

h1
)
]
, (69)
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where α3 is the third CP-even mixing angle (see e.g. Eq. (11) in Ref.[56] for its definition).
At two-loop order we find

Σ̂
(2), genuine
h3h3

(p2) = k2X4
ac

4
α3
s4

2β

{
T12345(p2,m2

A,m
2
G,m

2
h3
,m2

G,m
2
A)

+ 2T12345(p2,m2
H± ,m2

G± ,m2
h3
,m2

G± ,m2
H±)

+ 16s4
α3
T12345(p2,m2

h3
,m2

h1
,m2

h3
,m2

h1
,m2

h3
)

+ T11234(p2,m2
A,m

2
A,m

2
G,m

2
G,m

2
h3

)

+ 2T11234(p2,m2
H± ,m2

H± ,m2
G± ,m2

G± ,m2
h3

)

+ 4s2
α3

[
T11234(p2,m2

h3
,m2

h3
,m2

h1
,m2

A,m
2
G)

+ 2T11234(p2,m2
h3
,m2

h3
,m2

h1
,m2

H± ,m2
G±)
]

+ 16s4
α3
T11234(p2,m2

h3
,m2

h3
,m2

h1
,m2

h3
,m2

h1
)

+ T11234(p2,m2
G,m

2
G,m

2
A,m

2
A,m

2
h3

)

+ 2T11234(p2,m2
G± ,m2

G± ,m2
H± ,m2

H± ,m2
h3

)

+ 8s4
α3
T11234(p2,m2

h1
,m2

h1
,m2

h3
,m2

h3
,m2

h3
)
}
, (70)

and

Σ̂
(2), subloop
h3h3

(p2) = kX2
ac

2
α3
s2

2β

{
C0(0, p2, p2,m2

A,m
2
A,m

2
G)δ(1)m2

A

+ C0(0, p2, p2,m2
A,m

2
G,m

2
G)δ(1)m2

G

+ 2C0(0, p2, p2,m2
H± ,m2

H± ,m2
G±)δ(1)m2

H±

+ 2C0(0, p2, p2,m2
H± ,m2

G± ,m2
G±)δ(1)m2

G±

+ 4s2
α3

[
C0(0, p2, p2,m2

h3
,m2

h3
,m2

h1
)δ(1)m2

h3

+ C0(0, p2, p2,m2
h3
,m2

h1
,m2

h1
)δ(1)m2

h1

]

+
[
B0(p2,m2

G,m
2
A) + 2B0(p2,m2

G± ,m2
H±)

+ 4s2
α3
B0(p2,m2

h1
,m2

h3
)
]

×
(

2
δ(1)(Xacα3s2β)

Xacα3s2β

+ δ(1)Zh3

)}
. (71)

We adopt an on-shell renormalisation scheme for the masses and the trilinear coupling,
together with an MS renormalisation of the h3 field (which drops out in the sum of the
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vertex corrections and the LSZ factor). We then obtain

δ(1)m2
h1

= 2kX2
ac

2
α3
s2

2βs
2
α3

ReB0(m2
h1
,m2

h3
,m2

h3
) , (72a)

δ(1)m2
G = kX2
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2
α3
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2βReB0(m2
G,m

2
A,m

2
h3

) , (72b)

δ(1)m2
G± = kX2

ac
2
α3
s2

2βReB0(m2
G± ,m2

h3
,m2

H±) , (72c)
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2βRe
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2
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α3
B0(m2

h3
,m2

h1
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h3
)
]
, (72d)

δ(1)m2
A = kX2
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α3
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h3

) , (72e)
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ac
2
α3
s2

2βReB0(m2
H± ,m2

h3
,m2

G±) , (72f)

δ(1)Zh1 = 0 , (72g)

δ(1)Zh3 = 0 , (72h)
δ(1)(Xacα3s2β)

Xacα3s2β

= kX2
ac

2
α3
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2βs
2
α3
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1 = m2
h3
, k2

2 = m2
h1
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)

+ kX2
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2βRe
[
2B′0(m2
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H±) +B′0(m2
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G,m
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A) (72i)

+ s2
α3

(
4B′0(m2

h3
,m2

h1
,m2

h3
) +B′0(m2

h1
,m2

h3
,m2

h3
)
)]
,

where we have only included terms that give rise to contributions of order X4
ac

4
α3
s4

2β in
Σ̂

(2), subloop
h3h3

and that involve heavy states (we drop terms involving only light states or
involving c2

2β).
In order to investigate the potentially large logarithms arising from the external leg

correction in the prediction for the h3 → τ+τ− decay width we consider a mass hierarchy
where the first two CP-even mass eigenstates as well as the Goldstone bosons are light,10
with m2

h1
∼ m2

h2
∼ m2

G ∼ m2
G± ∼ ε, while the remaining scalars are heavy, mh3 = mA =

mH± = m. At one-loop order we obtain

Σ̂
(1)′
h3h3

(m2) =
kX2

ac
2
α3
s2

2β

m2
(3 + 4s2

α3
)

[
1

2
ln
m2

ε
− 1

]
. (73)

At the two-loop level, for reasons of clarity we study the terms with different powers of

10Note that mass differences between h1, h2, G, G± that are much smaller than ε do not impact the
results in the following.
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sα3 separately. Starting with terms of order s4
α3
, we have

Σ̂
(2)′
h3h3

(m2)

∣∣∣∣
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. (74)

At order s2
α3
, we find
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∣∣∣∣
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Finally, the terms without sα3 are given by

Σ̂
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∣∣∣∣
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Finally, the loop-corrected decay width for the h3 → τ+τ− process, incorporating the
external leg contributions, is found via the relation

Γ̂(h3 → τ+τ−) = Γ(0)(h3 → τ+τ−)

{
1− ReΣ̂

(1)′
h3h3

(m2)− ReΣ̂
(2)′
h3h3

(m2)

+
(
ReΣ̂

(1)′
h3h3

(m2)
)2 − 1

2

(
ImΣ̂

(1)′
h3h3

(m2)
)2

+ ImΣ̂
(1)
h3h3

(m2) · ImΣ̂
(1)′′
h3h3

(m2) +O(k3)

}
. (77)

For the sake of brevity, we do not present the complete result, which can be straightfor-
wardly obtained from the expressions in the previous equations.

4.2.3. Numerical results

We now turn to some numerical examples in order to illustrate the possible size of the
external leg corrections computed in the previous section. In Figs. 14 and 15 we show the
relative size of the one-loop (blue curve) and two-loop (red curve) external-leg corrections
to the h3 → τ+τ− decay width with respect to the tree-level result as a function of the
heavy mass scale m. For these plots a light mass scale of

√
ε = 50 GeV and a rather

large trilinear coupling Xa = 3m have been chosen. For sα3 (and tan β) we consider
two different scenarios: for the first one — inspired by one of the benchmark points in
Ref. [57] (see table 5 therein) — we take sα3 = 0.94. This choice ensures that the factor
cα3 , entering with the same power as Xa, is not too small so that an overall suppression
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Figure 14.: One-loop and two-loop external leg corrections to the h3 → τ+τ− de-
cay width in the N2HDM relative to the tree-level result as a function
of the heavy mass scale m (see text). The input values in this plot are
ε = (50 GeV)2, tan β = 1.26, sα3 = 0.94, and Xa = 3m.
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Figure 15.: One-loop and two-loop external leg corrections to the h3 → τ+τ− de-
cay width in the N2HDM relative to the tree-level result as a function
of the heavy mass scale m (see text). The input values in this plot are
ε = (50 GeV)2, tan β = 1.4, sα3 = 0.99, and Xa = 3m.
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of this class of contributions is avoided. As can be observed in Fig. 14, this scenario
indeed gives rise to sizeable contributions at the one-loop and the two-loop level. For
m = 1 TeV, we find effects of −8.2% at the one-loop and −0.84% at the two-loop level.
The corrections grow to −27.1% and −8.0% at one-loop and two-loop order, respectively,
for m = 100 TeV.
Values of sα3 closer to unity are however more easily reconcilable with the experimental

data on the Higgs signal at about 125 GeV, and we therefore consider a further scenario
with sα3 = 0.99, making use of the public code ScannerS [58]. As shown in Fig. 15, in
this case the size of the external leg corrections relative to the tree-level prediction for
the h3 → τ+τ− decay width is (as expected) much smaller than for the first scenario.
At one-loop order, the corrections increase from approximately −1.4% for m = 1 TeV to
−4.6% for m = 100 TeV, while at the two-loop level the corrections grow from −0.025%
to −0.24% in the same range ofm. The large relative increase of the two-loop corrections
for increasing m is due to the appearance of ln2m2/ε terms at the two-loop level.

We briefly comment in this context on the constraints that have been applied for the
above two scenarios. The analysis of Ref. [57] was carried out for an N2HDM without
trilinear couplings, and the same is also true for the implementation of the N2HDM
in the code ScannerS. Concerning the theoretical and experimental constraints that
the considered parameter points have to fulfill, we note that theoretical properties such
as boundedness-from-below or perturbative unitarity (in the high-energy limit) are not
significantly altered by the inclusion of trilinear couplings in the N2HDM scenario that
we are considering here. On the other hand, the trilinear couplings can modify the
production cross-sections and decay widths, such that a more thorough analysis would
be needed in particular for the scenario with sα3 = 0.94 in order to assess its compatibility
with the latest experimental results.

In comparison to the MSSM scenarios discussed in the previous sections, we have found
that the relative size of the two-loop corrections is larger in the considered N2HDM sce-
nario. Nevertheless we have found also for the case of the N2HDM that the perturbative
expansion remains well-behaved even if the mass ratio entering the logarithmic contribu-
tions in the external leg corrections becomes relatively large. In particular, the two-loop
corrections to the h3 → τ+τ− decay width remain much smaller than their one-loop
counterparts. Thus, also for the N2HDM case it appears safe to rely on a fixed-order
analysis, and there does not seem to be a pressing need for developing a SCET-like
resummation of the logarithmic contributions.

5. Conclusions
If a new heavy BSM particle (or more than one) is discovered, the characterisation of its
properties will be of foremost importance in order to unravel the underlying structure of
the observed physics beyond the SM. A crucial ingredient in this context will be precise
theoretical predictions to which the experimental measurements can be compared.

One re-occurring issue when calculating loop corrections for heavy BSM particles is the
appearance of potentially large logarithmic corrections. In this work, we have pointed
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out the existence of large Sudakov-like logarithmic contributions related to external-
leg corrections of heavy scalar particles in scenarios where in addition at least one light
scalar particle is present, giving rise to the possibility of large trilinear couplings between
the scalars and a significant hierarchy between the masses of the different scalars.

Working in a simple toy model, containing one light and two heavy scalars coupled
to each other with a potentially large trilinear coupling, we discussed in detail how the
occurrence of the large logarithmic corrections is related to a limit in which infrared
singularities emerge. We showed how these singularities can be regulated by including
the radiation of the light scalar particle or by resumming higher-order contributions
involving the light scalar. On the other hand, if for the decay of a heavy scalar BSM
particle the final states with and without the radiation of the light scalar particle can be
experimentally distinguished from each other, potentially large logarithmic corrections
involving the ratio of the two widely separated mass scales occur in the prediction for
the decay width of the heavy particle.

In order to assess the size of these logarithmic corrections at higher orders, we derived
the leading two-loop external-leg corrections in the considered toy model. In this context,
we compared different choices of renormalisation schemes for the parameters entering
our computation (masses and trilinear coupling). As a result, we found that the choice
of an MS renormalisation for the involved masses leads to unphysically large corrections
that are enhanced by powers of the BSM scale over the electroweak scale. We showed
that those huge effects are absent if the involved masses are renormalised in the OS
scheme. In the OS scheme, we found the numerical size of the two-loop corrections to be
moderate. This implies that a resummation of the Sudakov-like logarithms, which should
in principle be possible in SCET-like frameworks, is not expected to be mandatory for
obtaining theoretical predictions of sufficient accuracy.

As a further illustration of the qualitative features that we had found in our analy-
sis of the toy model we then considered specific examples of models that are popular
for studying possible BSM phenomenology. In the MSSM, we investigated corrections
related to external scalar top quarks as appearing e.g. for the decay of a gluino into a
top quark and its scalar superpartner. As a second example, we discussed the decay of
a heavy Higgs boson into two tau leptons in the N2HDM. For both models, we found
large one-loop corrections but only moderate effects at the two-loop level. Thus, the
analyses in the specific models confirm our results for the toy model indicating that
the class of logarithmic contributions that we have investigated here is not expected to
spoil the perturbative expansion. The corrections that we have obtained at the two-loop
order turned out to be much smaller than their one-loop counterparts, suggesting that
a fixed-order analysis at this level should be sufficient for obtaining reliable theoretical
predictions.
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A. Definition of loop functions
In this Section, we list the definitions of the one- and two-loop integrals that have been
used in this paper. We first introduce the shorthand notation

C ≡ (2πµ)2εUV

iπ2
, (78)

where εUV = (4− d)/2, and µ is the regularisation scale (related to the renormalisation
scale by the relation Q2 = 4πe−γEµ2). We will also use

lnx ≡ ln
x

Q2
, (79)

throughout the following discussion.
We would like to draw the reader’s attention to our conventions for denoting loop

integrals and loop functions: in the following, we refer to the (unrenormalised) complete
loop integrals with bold capitals, such as A, B, T, while we use normal script — A0,
B0, T — for the finite parts of these integrals, defining the loop functions that appear
in our computations.

First, the one-loop functions A0(x) and B0(p2, x, y) are defined as the UV-finite parts
of the integrals

A(x) ≡ C
∫

ddq

q2 − x ,

B(p2, x, y) ≡ C
∫

ddq

(q2 − x)((q + p)2 − y)
, (80)

as

A0(x) ≡ lim
εUV→0

[
A(x)− x

εUV

]
,

B0(p2, x, y) ≡ lim
εUV→0

[
B(p2, x, y)− 1

εUV

]
, (81)

while the function C0 is equal to the finite integral

C0(p2
1, p

2
2, (p1 + p2)2, x, y, z) ≡ C

∫
ddq

(q2 − x)((q + p1)2 − y)((q + p1 + p2)2 − z)
. (82)
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Next, the loop functions that enter the class of two-loop external-leg corrections (in-
volving only trilinear couplings) that we are computing in this paper are the finite parts
of the following two integrals

T11234(p2, x, y, z, u, v) ≡

≡ C2

∫ ∫
ddq1d

dq2

(q2
1 − x)(q2

1 − y)((q1 + p)2 − z)((q1 − q2)2 − u)(q2
2 − v)

,

T12345(p2, x, y, z, u, v) ≡

≡ C2

∫ ∫
ddq1d

dq2

(q2
1 − x)((q1 + p)2 − y)((q1 − q2)2 − z)(q2

2 − u)((q2 + p)2 − v)
, (83)

which correspond to −V(p2, z, x, v, u) (for degenerate mass arguments x = y) and
−M(p2, y, v, x, u, z) in the conventions of Refs. [40, 41, 59], respectively. Note that
we explicitly keep the momentum argument throughout this paper. We emphasise that
we follow here the choice of Refs. [40, 41, 59] (which differs from the usual treatment of
T -integrals) in that we consider only the finite part of the loop integral, removing also
any piece of the form O(1/εUV)×O(εUV) in factors therein (in the present calculation,
all such terms cancel with similar contributions arising from the subloop renormalisa-
tion). As a consequence of this choice, we do not need to include the O(εUV) part of
counterterms entering subloop renormalisation.
When deriving expressions for the derivatives of T11234 and T12345 in the next section,

we will also make use of the integrals

T134(x, y, z) ≡ C2

∫ ∫
ddq1d

dq2

(q2
1 − x)((q1 − q2)2 − y)(q2

2 − z)
,

T234(x, y, z) ≡ C2

∫ ∫
ddq1d

dq2

((q1 + p)2 − x)((q1 − q2)2 − y)(q2
2 − z)

,

T2234(p2, x, y, z, u) ≡ C2

∫ ∫
ddq1d

dq2

((q1 + p)2 − x)((q1 + p)2 − y)((q1 − q2)2 − z)(q2
2 − u)

,

T1234(p2, x, y, z, u) ≡ C2

∫ ∫
ddq1d

dq2

(q2
1 − x)((q1 + p)2 − y)((q1 − q2)2 − z)(q2

2 − u)
. (84)

In terms of the notations of Refs. [40, 41, 59], we have the following identifications

T134(x, y, z) =− I(x, y, z) ,

T234(x, y, z) =− S(p2, x, y, z) ,

T1234(p2, x, y, z, u) = U(p2, y, x, u, z) ,

T2234(p2, x, x, y, z) = T(p2, x, y, z) . (85)

The minus signs differing between our conventions and those of Ref. [41] arise from
the fact that Ref. [41] defines integrals in terms of Euclidean (rather than Lorentzian)
momenta. Relations for the subtraction of UV-divergent pieces from these integrals can
be found in Eqs. (2.12)-(2.18) of Ref. [41].
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B. Derivatives of two-loop functions
We present here our derivation of expressions for the derivatives of the two-loop self-
energy diagrams T11234 and T12345 — shown in Fig. 5 — which contribute to external
leg corrections of heavy particles and contain potentially large terms as a consequence
of the mass hierarchy between the involved particles.

B.1. Setup of the calculation and intermediate results

Our calculation makes use of the results of Refs. [40, 41, 59], in which T11234 and T12345

correspond to V and M , respectively. We start with the expressions of derivatives of
the two-loop self-energy basis integrals with respect to the external momentum as well
as mass arguments — see in particular Eqs. (3.22), (4.26), and (4.27) in Ref. [41] — and
we extract the IR-divergent and (leading) finite terms of the derivatives of T11234 and
T12345 for the two mass configurations

1: m2
1 = ε, m2

2 = m2
3 = m2,

2: m2
1 = 0, m2

2 = m2 + ε, m2
3 = m2,

used to regularise the IR divergence. We derive formulas for the related case 2’: m2
1 = 0,

m2
2 = m2, m2

3 = m2 + ε by applying the transformation ε→ −ε and m2 → m2 + ε to the
results of case 2.

We require a number of limiting cases of the loop functions entering the relations for
the derivatives: first, with one single mass scale we need

T234(x, x, x, x) =− S(x, x, x, x) =
35

8
x− 11

2
xlnx+

3

2
xln

2
x ,

T2234(x, x, x, x) = T (x, x, x, x) = −1

2
+

1

2
ln

2
x− lnx ,

T12345(x, x, 0, x, 0, x) =−M(x, 0, x, x, 0, x) = −1

x

[
π2 ln 2− 3

2
ζ(3)

]
, (86)

where once again we have retained the external momentum argument explicitly (here
p2 = x). Next, we also use limits with two distinct mass scales,

B0(x, 0, y) = 2− lny +
(y
x
− 1
)

ln

(
1− x

y

)
, (87a)

T134(0, x, y) =− I(0, x, y)

=− (x− y)

[
Li2

y

x
− ln(x− y) ln

x

y
+

1

2
ln

2
x− ζ(2)

]

− xlnx(2− lny)− 2ylny +
5

2
(x+ y) ,

T234(s, 0, 0, x) =− S(s, 0, 0, x)

= xLi2

( s
x

)
+

1

2
xln

2
x−

(
2x− 1

2
s

)
lnx− x2 − s2

2s
ln
(

1− s

x

)
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− 13

8
s+ (2 + ζ(2))x , (87b)

T234(x, y, x, y) =− S(x, y, y, x)

=
3

8
x+ 4y −

(
1

2
x− y

)
ln

2
y

−
(
x+

y2

x
− 2y

)[
Li2

(
1− x

y

)
− ζ(2)

]

−
(

3

2
x− y

)
lnx− 5ylny + xlnxlny , (87c)

T2234(s, x, x, 0, 0) = T (s, x, 0, 0)

= Li2

( s
x

)
+

1

2
ln

2
x− lnx+

(
1− x

s

)
ln
(

1− s

x

)
− 1

2
+ ζ(2) , (87d)

T2234(x, x, x, y, y) = T (x, x, y, y)

=− 1

2
+
(y
x
− 1
)[

Li2

(
1− x

y

)
− ζ(2)

]
+ lnx(lny − 1)− 1

2
ln

2
y ,

(87e)
T2234(x, y, y, x, y) = T (x, y, y, x)

=− 1

2
+
(

1− y

x

)[
Li2

(
1− x

y

)
− ζ(2)

]
+ lnx− 2lny +

1

2
ln

2
y ,

(87f)
T1234(y, x, 0, y, 0) = U(y, 0, x, 0, y)

= 3− 5

2

x

y
− π2

3

y

x
+
T134(0, x, y)

y
+ ylny

(
1

y
− 1

2x
lny

)

+

(
1

x
− 1

y

)[
(x− y)

π2

6

+ ln(x− y)

(
1

2
(x− y)ln(x− y) + ylny − 2x

)]
, (87g)

T1234(x, 0, y, x, y) = U(x, y, 0, y, x)

=
11

2
− 2lnx− lny +

1

2
ln

2
y +

(
1 +

2y

x

)
Li2

(
1− x

y

)

− 2
(

1 +
y

x

)
ζ(2) + ln

(
1− x

y

)[
lnx− 1 +

y

x
(1− lny)

]
. (87h)

Here Li2 denotes the dilogarithm, and we recall that ζ(2) = Li2(1) = π2/6.
In addition to these limits, we also had to derive several expansions of loop functions

in powers of ε, such as

B0(x, x, ε) = 2− lnx− π
√
ε

x
+

ε

2x

(
ln
x

ε
+ 2

)
+
π

8

( ε
x

)3/2

− ε2

12x2

+
π

128

( ε
x

)5/2

− ε3

120x3
+

π

1024

( ε
x

)7/2

− ε4

840x4
+

5π

32768

( ε
x

)9/2
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− ε5

5040x5
+O

(( ε
x

)11/2
)
, (88a)

T134(x, x, ε) =− I(x, x, ε)

= x(ln
2
x− 4lnx+ 5)− 1

2
ε
[
ln

2
x+ 2lnx(2− lnε) + 3

]

+
ε2

6x

[
ln
x

ε
+

8

3

]
+

ε3

60x2

[
ln
x

ε
+

31

15

]
+

ε4

420x3

[
ln
x

ε
+

389

210

]

+
ε5

2520x4

[
ln
x

ε
+

1097

630

]
+O

(
ε6

x5

)
, (88b)

T1234(x, ε, x, x, x) = U(x, x, ε, x, x)

=
11

2
− 3lnx+

1

2
ln

2
x− 2π2

3
+ π

√
ε

x
lnx

+
ε

x

[
1

2
lnx ln

ε

x
− lnx− 1 +

π2

6

]
− π

24

( ε
x

)3/2

[4 + 3lnx]

+
ε2

6x2

[
− 1

2
lnε+ lnx+

8

6

]
− π

160

( ε
x

)5/2
[
lnx− 2

3

]

+
ε3

144x3

[
1− lnε+ 2lnx

]
+O

(( ε
x

)5/2
)
, (88c)

T1234(x, x, ε, x, ε) = U(x, ε, x, ε, x)

=
11

2
− 3lnx+

1

2
ln

2
x− π2

3
+ π

√
ε

x
(lnx− 2)

+
ε

x

[
1

2
lnx ln

ε

x
− lnx− 1 +

5π2

6

]

+
π

2

( ε
x

)3/2
[
lnε− 5

4
lnx− 3

2

]

+
ε2

x2

[
− 1

8
ln2 ε

x
− 1

6
lnε+

1

4
lnx− 3π2

8
+

37

36

]

+
π

96

( ε
x

)5/2 [
22− 6lnε+ 5lnx

]
+

ε3

288x3

[
95− 66lnε+ 69lnx

]

+O
(( ε

x

)7/2
)
, (88d)

T12345(x, x, ε, x, ε, x) =−M(x, ε, x, x, ε, x)

= − 1

x

{
π2 ln 2− 3

2
ζ(3) + π

√
ε

x
ln
ε

x
− ε

2x
(1 + π2)

+
π

24

( ε
x

)3/2
[
16 + ln

ε

x

]
− ε2

144x2

[
5 + 18π2 + ln

ε

x

]

+O
(( ε

x

)5/2
)}

. (88e)
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The expansions of the B0 and T134 integrals can be obtained directly from the
known analytical expressions of these functions — the former can be reproduced with
Package-X [60], while the latter can be verified to correspond up to order ε to Eqs. (3.15)
and (3.21) in Ref. [32]. For the T1234 and T12345 integrals, we can use Eqs. (3.20), (3.21),
(3.22), and (3.32) in Ref. [41] to derive differential equations in the variable ε. The
solutions of those differential equations yield the desired integrals (as we know their
expressions for ε = 0).

Integral Numerical results (TSIL vs Eq. (88a))
T134(x, x, ε)/x TSIL Approx. O(ε3) Approx. O(ε4) Approx. O(ε5)

(a) 2.706961 2.706961 2.706961 2.706961
(b) 2.649604 2.649604 2.649604 2.649604
(c) 1.984546 1.984533 1.984546 1.984546

T1234(x, ε, x, x, x) TSIL Approx. O(ε) Approx. O(ε2) Approx. O(ε3)

(a) -2.897500 -2.897499 -2.897500 -2.897500
(b) -2.718365 -2.717635 -2.718365 -2.718365
(c) -2.120744 -2.066306 -2.120920 -2.120745

T1234(x, x, ε, x, ε) TSIL Approx. O(ε) Approx. O(ε2) Approx. O(ε3)

(a) 0.330178 0.330195 0.330178 0.330178
(b) -0.000583 0.009712 -0.000600 -0.000583
(c) -0.814525 -0.270416 -0.838471 -0.814698

x · T12345(x, x, ε, x, ε, x) TSIL Approx. O(ε) Approx. O(ε2) −
(a) 4.748109 4.748108 4.748109 −
(b) 3.538307 3.536898 3.538301 −
(c) 1.823276 1.689842 1.812955 −

Table 1.: Sample values of the integrals T134(x, x, ε), T1234(x, ε, x, x, x), T1234(x, x, ε, x, ε),
and T12345(x, x, ε, x, ε, x) — multiplied by powers of x to obtain a dimensionless
quantity — for the mass parameter assignments (a), (b), (c) given in Eq. (89).
We compare values obtained using the program TSIL [59] with those from our
approximate expansion, at different orders in ε. Note that as the integral T12345

is UV finite, there is no Q dependence in the corresponding loop function.

In Table 1 we provide some sample results of our checks of the expansions in ε of the
integrals T134, T1234, and T12345 for three sets of mass parameters:

(a) : x = 1.0 · 104 GeV2, ε = 1 GeV2, Q2 = 5.0 · 103 GeV2;

(b) : x = 1.0 · 104 GeV2, ε = 1.0 · 102 GeV2, Q2 = 5.0 · 103 GeV2;

(c) : x = 1.0 · 104 GeV2, ε = 2.0 · 103 GeV2, Q2 = 5.0 · 103 GeV2. (89)

B.2. Example derivation

In order to illustrate the procedure of our calculations, we present here how we derived
the expansion of T134(x, x, ε) in powers of ε. Starting from Eq. (5.3) in Ref. [41], which
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gives the first derivative11 of the integral I with respect to its first mass argument, and
substituting the mass arguments with the two variables x and y, we find

∂

∂y
T134(x, x, y) =

=
4x2 − y2 − 2A0(y)A0(x) + 2A0(x)2 − (y − 2x)

[
A0(y) + 2A0(x)− T134(x, x, y)

]

y2 + 2x2 − 2(2yx+ x2)
.

(90)

This is simply a differential equation in the function T134, for which we also know the
boundary condition at y = 0

T134(x, x, 0) = x
(
ln

2
x− 4lnx+ 5

)
. (91)

One can then straightforwardly solve this equation, and while the resulting function is
fairly complicated, it can be expanded to arbitrary order in powers of y = ε� x.

We should emphasise here that for the case of the T134 integral one could in principle
obtain the same result by directly expanding the analytical expression that is known for
general mass assignments. However, we discuss the case of this integral as it provides
a simple example of our setup to derive expansions of the more complicated integrals
T1234 and T12345 — for which analytical results are not known in general. Finally, for the
derivatives of T11234 and T12345, we make use of the relations in Sec. IV of Ref. [41].

B.3. Mass configuration 1: m2
1 = ε, m2

2 = m2
3 = m2

Setting m2
2 = m2

3 = m2 and m2
1 = ε, we find, up to order O(ε0)

d

dp2
T11234(p2,m2,m2, ε,m2, ε)

∣∣∣∣
p2=m2

=

=
π(2− lnm2)

4
√
εm3

+
−6lnεlnm2 − 3ln

2
ε+ 24lnε+ 9ln

2
m2 − 24lnm2 − π2

24m4
,

d

dp2
T11234(p2, ε, ε,m2,m2,m2)

∣∣∣∣
p2=m2

=

=− lnm2

2m2ε
+

3πlnm2

8m3
√
ε

+
−50 + 6π2 + 3lnε− 12lnm2 + 18lnεlnm2 − 18ln

2
m2

36m4
,

d

dp2
T12345(p2,m2, ε,m2, ε,m2)

∣∣∣∣
p2=m2

=

=
1

4m4

[
2 + ln

m2

ε
+ ln2 m

2

ε

]
− π2 ln 2− 3/2ζ(3)

m4
. (92)

11Ref. [41] provides complete results for the derivatives of a basis of two-loop self-energy integrals with
respect to external momentum and mass arguments. Solving this system of differential equations
allows a numerical evaluation of those basis integrals. This method is implemented in the public
tool TSIL [59].
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We present in Table 2 some example values of these three derivatives, multiplied by
m4 in order to obtain a dimensionless number, for the set of mass parameters (a) in
Eq. (89). We compare the results from TSIL (left column) to the values obtained with
the approximate expressions of Eq. (92) (right column). We note that because TSIL
provides results for the integrals V and M — corresponding to T11234 and T12345 in our
notation — we need to take the derivatives with respect to p2 numerically. We choose for
this a step size of δ = 10−3 GeV2, although we have verified that the numerical derivatives
are stable and depend only very slightly on δ. Given that we derived approximate results
only to order O(ε0), we choose a set of mass inputs with small ε, for which we expect
the higher-order terms to be moderate. Indeed, we find good agreement between the
numerical results of TSIL and the approximate ones, with differences of only 0.06%,
3 · 10−4%, and 2%, respectively.

Integral Numerical results
TSIL Approx. O(ε0)

m4 d

dp2
T11234(p2,m2,m2, ε,m2, ε)

∣∣∣∣
p2=m2

85.552342 85.606671

m4 d

dp2
T11234(p2, ε, ε,m2,m2,m2)

∣∣∣∣
p2=m2

-3387.9644 -3387.9533

m4 d

dp2
T12345(p2,m2, ε,m2, ε,m2)

∣∣∣∣
p2=m2

21.636871 21.274760

Table 2.: Example values of the derivatives of T11234 and T12345, multiplied by m4 to
obtain dimensionless numbers, computed by TSIL and with the approximate
expansions of Eq. (92). The mass values are chosen according to (a) in Eq. (89).
The numerical derivatives that are necessary for the TSIL column are computed
with a step size of δ = 10−3 GeV2.

B.4. Mass configuration 2: m2
1 = 0, m2

2 = m2 + ε, m2
3 = m2

Turning next to the mass configuration with m2
1 = 0, m2

2 = m2 +ε (ε > 0), and m2
3 = m2,

we have

d

dp2
T11234(p2,m2 + ε,m2 + ε, 0,m2, 0)

∣∣∣∣
p2=m2

=

=
2− lnm2

m2ε
+
−π2 + 6lnε− 3ln

2
ε− 6lnm2 + 3ln

2
m2

6m4
+O(ε) ,

d

dp2
T11234(p2,m2,m2, 0,m2 + ε, 0)

∣∣∣∣
p2=m2+ε

=

=
lnm2 − 2

m2ε
+

2π2 + 18 + 6iπ + (6− 6iπ)lnε− 3ln
2
ε− 12lnm2 + 3ln

2
m2

6m4

+O(ε) , (93)
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and

d

dp2
T11234(p2,m2

1,m
2
1,m

2 + ε,m2 + ε,m2)

∣∣∣∣
p2=m2

=− lnm2

2m2m2
1

+
3πlnm2

8m3m1

+
−50 + 6π2 + 3lnm2

1 − 12lnm2 + 18lnm2
1lnm2 − 18ln

2
m2

36m4

+
ε

m2

[
πlnm2

8mm3
1

− 1 + 2lnm2

4m2m2
1

+
π(40 + 27lnm2)

192m3m1

− 23 + 90lnm2 − 42lnm2
1

144m4

]

+O(ε2) ,

d

dp2
T11234(p2,m2

1,m
2
1,m

2,m2,m2 + ε)

∣∣∣∣
p2=m2+ε

=− lnm2

2m2m2
1

+
3πlnm2

8m3m1

+
−50 + 6π2 + 3lnm2

1 − 12lnm2 + 18lnm2
1lnm2 − 18ln

2
m2

36m4

+
ε

m2

[
πlnm2

8mm3
1

− 3

4m2m2
1

+
π(−112 + 81lnm2)

192m3m1

+
329− 48π2 − 138lnm2 + 144ln

2
m2 + 90lnm2

1 − 144lnm2lnm2
1

144m4

]

+O(ε2) , (94)

where we have retained a dependence on m2
1 because the integral

T11234(s,m2
1,m

2
2,m

2
3,m

2
4) itself is IR-divergent in the limit m1 → 0, and finally

d

dp2
T12345(p2,m2 + ε, 0,m2, 0,m2 + ε)

∣∣∣∣
p2=m2

=

=
1

m4

[
π2

(
1

4
− ln 2

)
+

3

2
ζ(3) + ln

m2

ε
+ ln2 m

2

ε

]
+O(ε) ,

d

dp2
T12345(p2,m2, 0,m2 + ε, 0,m2)

∣∣∣∣
p2=m2+ε

=

=
1

m4

[
− π2

(
3

4
+ ln 2

)
+

3

2
ζ(3) + iπ + (1 + 2iπ) ln

m2

ε
+ ln2 m

2

ε

]

+O(ε) . (95)

We present in Table 3 some example values of the three derivatives of two-loop in-
tegrals for case 2. As in Table 2, we multiply the derivatives by m4 in order to obtain
dimensionless quantities, and we compare the results using TSIL (left column) with the
approximate expansions of Eqs. (93) to (95) (right column). For the mass parameters,
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Integral Numerical results
TSIL Expansion

m4 d

dp2
T11234(p2,m2 + ε,m2 + ε, 0,m2, 0)

∣∣∣∣
p2=m2

-13022.295 -13021.642

m4 d

dp2
T11234(p2,m2

1,m
2
1,m

2 + ε,m2 + ε,m2)

∣∣∣∣
p2=m2

-3361.5011 -3361.3207

m4 d

dp2
T12345(p2,m2 + ε, 0,m2, 0,m2 + ε)

∣∣∣∣
p2=m2

91.482800 91.470115

Table 3.: Example values of the derivatives of T11234 and T12345, multiplied by m4 to ob-
tain dimensionless numbers, computed by TSIL and with the approximate ex-
pansions of Eqs. (93) to (95). The mass values are chosen to be m = 100 GeV,
ε = 1 GeV2, m1 = 1 GeV, and the numerical derivatives are computed with a
step size of δ = 10−3 GeV2.

we take m2 = (100 GeV)2, ε = (1 GeV)2, and m1 = 1 GeV (we recall that we need to
take a non-zero value of m1 to avoid a divergence in T11234(p2,m2

1,m
2
1,m

2 +ε,m2 +ε,m2)
and its derivative). As desired, we find a very good agreement between the TSIL and
approximate values, with discrepancies of only 0.05%, 0.05%, and 0.004%, respectively,
for the three derivatives.

As a final remark, we note that the light regulator mass m1 that we needed to include
for the integral T11234(p2,m2

1,m
2
1,m

2 +ε,m2 +ε,m2) could be generated by extending the
resummation of the light-scalar contribution to two loops. We have explicitly verified
that this resummation cures the IR divergence in the integral T11234(p2,m2

1,m
2
1,m

2 +
ε,m2 + ε,m2) and its derivatives. We have however left to further work the derivation of
expressions for the derivatives of the two other integrals (T11234(p2,m2+ε,m2+ε, 0,m2, 0)
and T12345(p2,m2 + ε, 0,m2, 0,m2 + ε)) with non-vanishing light-scalar masses.
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