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and

MPI für Gravitationsphysik, Albert-Einstein-Institut, Potsdam

ISSN 0418-9833

NOTKESTRASSE 85 - 22607 HAMBURG



 
 DESY behält sich alle Rechte für den Fall der Schutzrechtserteilung und für die wirtschaftliche 

Verwertung der in diesem Bericht enthaltenen Informationen vor.  
 
 

DESY reserves all rights for commercial use of information included in this report, especially in case of 
filing application for or grant of patents.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 
 
 

Herausgeber und Vertrieb: 
 

 
 

Verlag Deutsches Elektronen-Synchrotron DESY 
 
 

DESY Bibliothek 
                                                                 Notkestr. 85 

22607 Hamburg 
Germany 

 



ar
X

iv
:2

11
0.

02
24

3v
3 

 [g
r-

qc
]  

20
 Ju

n 
20

22

The Quadrupole Moment of Compact Binaries

to the Fourth post-Newtonian Order

II. Dimensional Regularization and Renormalization

François Larrouturou,1, 2, ∗ Luc Blanchet,1, †

Quentin Henry,1, 3, ‡ and Guillaume Faye
1, §

1GRεCO, Institut d’Astrophysique de Paris,
UMR 7095, CNRS, Sorbonne Université,
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Abstract
The regularization and renormalization of the radiative mass-type quadrupole moment of in-

spiralling compact binaries (without spins) is investigated at the fourth post-Newtonian (4PN)

approximation of general relativity. As clear from the conservative 4PN equations of motion, a

dimensional regularization has to be implemented in order to properly treat the non-linear interac-

tions experienced by gravitational waves during their propagation toward future null infinity. By

implementing such procedure, we show that the poles coming from the source moment (computed

in a companion paper) are exactly cancelled in the radiative moment, as expected for a physical

quantity. We thus define and obtain a “renormalized” source quadrupole, three-dimensional by na-

ture, which is an important step towards the computation of the gravitational-wave flux with 4PN

accuracy. Furthermore, we explicitly prove the equivalence between the dimensional regularization

and the previously used Hadamard partie finie scheme up to the 3PN order.

I. INTRODUCTION

The mass quadrupole moment of compact binary systems is a crucial ingredient toward
the definition of accurate gravitational wave (GW) templates in the post-Newtonian (PN)
approximation. Such PN templates represent the main technique for detection and analysis
of binary neutron star signals in the current network of detectors on ground, and they are at
the basis of effective phenomenological methods such as EOB (effective-one-body) and IMR
(inspiral-merger-ringdown), able to describe the late inspiral and merger of binary black
holes (see more details in the reviews [1–4]).

Previous computations of the quadrupole moment in the case of non-spinning compact
binaries achieved the 2PN order [5–8], then, the 3PN order [9–12], and the state-of-the-
art is currently the 4PN order. A preliminary calculation was done at the 4PN order [13]
where all the terms were computed using a series of techniques (extensively documented
in [13]); however, as recognized in this paper, the computation was incomplete because
the infra-red (IR) divergences appearing at the 4PN order were regularized thanks to the
Hadamard partie finie regularization instead of the required dimensional regularization. By
contrast, the ultra-violet (UV) divergences, due to the point-like nature of the source (model
of compact objects by point masses without internal structure) were correctly treated with
dimensional regularization [13].

Recently, we analyzed in Ref. [14] the IR divergences of the (source type) mass quadrupole
moment of compact binaries at 4PN order by means of dimensional regularization. This
study led to the presence of poles in the dimension, i.e. ∝ ε−1 ≡ (d− 3)−1, arising already
from the 3PN order, and, of course, also contributing at the 4PN order. The thorough
computation of IR poles and the finite terms following the poles was done in [14].

Furthermore, we also obtained [14] the contribution of propagating GW tails in the
source quadrupole itself. This effect is due to retarded correlations over arbitrarily large
time spans in the dynamics of the source [15]. It is exactly the analogue of the GW tail
effect which adds a non-local piece to the conservative dynamics (equations of motion and
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Lagrangian/Hamiltonian) at the 4PN order [16–24] and beyond [25, 26]. As such, it induces
a non-locality in time in the mass quadrupole moment at the 4PN order.

The present work is the follow-up of the companion paper [14]. We prove that the IR poles
are cancelled by UV poles coming from the contributions of non-linear effects, essentially the
“tails-of-tails” and the “tails-of-memory”, arising in the radiative type quadrupole moment,
which constitutes the physical observable at future null infinity.

More precisely, at the 3PN order, the non-linearities are made of the tail-of-tails due to
cubic interaction between two masses and the quadrupole [27], and the interactions between
one mass and two mass dipoles (the latter naturally vanishes in the center-of-mass frame).
Taking into account the pole term and the finite term beyond the pole, we find that the
contributions from dimensional regularization in the radiative moment exactly cancel out at
this order. This proves that at 3PN order the quadrupole moment can be computed using
the Hadamard regularization for the IR divergences (but the dimensional regularization for
the UV) and, therefore, we totally confirm the previous calculations of the 3PN quadrupole
moment [9–12].

Furthermore, we prove that the same cancellation holds for the 3PN current quadrupole
moment, thus supporting the recent computation of this moment at 3PN order using the
Hadamard regularization for the IR [28], and for the 3PN mass octupole moment, also
confirming the previous calculation done in [29].

Finally, we demonstrate that all the poles cancel in the radiative type quadrupole mo-
ment up to 4PN order. At the 4PN order, in addition to tails-of-tails, the main non-linear
effects to consider in the radiative moment are the so-called tails-of-memory, which are cubic
interations between one mass monopole and two quadrupole moments. However, at the 4PN
order, the net contribution of the dimensional regularization is not vanishing and, thus, we
determine some finite contributions beyond the poles which are crucial to include into the
final expression of the mass quadrupole moment.

To control the occurrence of poles from the non-linear multipole interactions, we have
to obtain a general expression for the retarded integral of some extended source in d di-
mensions up to cubic order, and compute from it the difference up to order O(ε) between
the dimensional regularization or, more precisely, the so-called Bε regularization which we
systematically employ [14, 19, 20], and the previously used Hadamard regularization.

The plan of this paper is as follows. We first present the derivations of the main technical
ingredients used for the analysis done in this work: the generic solution of the d-dimensional
wave equation in Sec. II, and the difference induced by the change of regularization scheme
in Sec. III. Sec. IV then sketches the MPM (Multipolar-post-Minkowskian) method used to
concretely implement the computation of this difference. The results at 3PN order are dis-
played in Sec.V, together with the proof that, at this order, both regularization schemes are
equivalent. Finally, Sec. VI displays the 4PN results, introduces our notion of “renormalized
mass quadrupole” and presents its expression on quasi-circular orbits. Appendix A contains
the proof that the generic solution of the d-dimensional wave equation correctly reduces to
the known results in the three-dimensional limit.

II. THE RETARDED INTEGRAL OF A MULTIPOLAR EXTENDED SOURCE

In this technical section we provide an explicit expression for the retarded solution of the
wave equation in any d space dimensions, in the case where the non-compact (extended)
source term has a definite multipolarity. This object is the core of the iteration presented in
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Sec. IV, that we use to compute the difference between regularizations in non-linear inter-
actions entering the gravitational wave propagation. We thus seek for the generic solution
h(x, t) solving the wave equation

�h(x, t) = N(x, t) , (2.1)

where � ≡ �η is the flat d’Alembertian operator and N(x, t) is some (non-compact support)
source term. While generally the solution is provided in the Fourier domain, here we work in
the physical space. The retarded solution of Eq. (2.1) in the real domain reads (see e.g. [19])1

h(x, t) = − k̃

4π

∫ +∞

1

dz γ 1−d

2

(z)

∫
ddx′ N(x′, t− z|x− x′|)

|x− x′|d−2
, (2.2)

where k̃ = Γ(d
2
− 1)/π

d

2
−1 is the constant entering the Green’s function of the Laplace

operator, i.e., ∆
(
k̃ r2−d

)
= −4πδ(x), Γ is the Eulerian function, and we have posed

γ 1−d

2

(z) =
2
√
π

Γ(3−d
2
)Γ(d

2
− 1)

(
z2 − 1

) 1−d

2 , (2.3)

whith chosen normalization such that
∫ +∞

1
dz γ 1−d

2

(z) = 1 and γ−1(z) = δ(z − 1).

We split the spatial integration over the source point x′ in (2.2) into an inner domain
corresponding to r′ < r, where we denote r′ ≡ |x′| and r ≡ |x| with x being the field point,
and the outer domain for which r′ > r. Consider for instance the integration over the inner
domain r′ < r, say

h< ≡ − k̃

4π

∫ +∞

1

dz γ 1−d

2

(z)

∫

r′<r

ddx′ N(x′, t− z|x− x′|)
|x− x′|d−2

. (2.4)

We obtain the multipole expansion in this domain by applying the formal Taylor expansion
when r′ → 0. The symmetric-trace-free (STF) form of that expansion reads

N(x′, t− z|x− x′|)
|x− x′|d−2

=

+∞∑

m=0

(−)m

m!

+∞∑

j=0

Γ
(
d
2
+m

)

Γ
(
d
2
+m+ j

) n̂
′
Mr′2j+m

22jj!
∂̂M∆j

[
N(x′, t− zr)

rd−2

]
, (2.5)

where M denotes a running multi-index j1 · · · jm with m indices, n̂′
M ≡ STF(n′

j1
· · ·n′

jm) is

the STF product of m unit vectors n′
j ≡ x′

j/r
′, and we denote ∂̂M ≡ STF(∂j1 · · ·∂jm) where

∂j ≡ ∂/∂xj . Note that ∂̂M and ∆j in (2.5) act on x, but x′ is just spectator.
We consider the above general formula in the case where the source term N(x, t) itself

has a definite multipolarity ℓ, i.e. is of the type

N(x, t) ≡ n̂L N(r, t) , (2.6)

where L denotes the multi-index i1 · · · iℓ and n̂L ≡ STF(ni1 · · ·niℓ) with ni ≡ xi/r. Clearly,
after summing up all the multipolar pieces, while assuming the convergence of the multi-
polar series, there is no restriction on the generality of the solution. For a source term of

1 We pose c = 1 in Secs. II, III and App. A.
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the type (2.6) the angular integration in the volume element ddx′ ≡ r′d−1dr′dΩ′
d−1 can be

evaluated in closed form using

∫
dΩ′

d−1n̂
′
L n̂

′
M =

ℓ!

2ℓ−1

π
d

2

Γ
(
d
2
+ ℓ

) δLM , (2.7)

where δLM ≡ δℓmδ(i1j1 · · · δiℓ)jℓ (symmetrization over the indices L = i1 · · · iℓ); we recall the

volume of the sphere Ωd−1 = 2π
d

2/Γ(d
2
). After angular integration, the part of the integral

over the domain r′ < r, let us now call it h<
L since it depends on the multi-index L, becomes

h<
L =

1

(−2)ℓ+1

+∞∑

j=0

Γ
(
d
2
− 1

)

Γ
(
d
2
+ ℓ+ j

) 1

22jj!

∫ +∞

1

dz γ 1−d

2

(z)

∫ r

0

dr′r′B+2j+ℓ+d−1∂̂L

[
N (2j)(r′, t− zr)

rd−2

]
.

(2.8)

Notice that in Eq. (2.8) the action of the iterated Laplacian ∆j has reduced to 2j time
derivatives of the source term, as indicated by the superscript in N (2j). Furthermore we
dispose of the following useful lemma (already employed in [19] but not given there)

∫ +∞

1

dz γ 1−d

2

(z) ∂̂L

(
F (t− zr)

rd−2

)
= (−2)ℓ

Γ
(
d
2
+ ℓ− 1

)

Γ
(
d
2
− 1

) n̂L

rℓ+d−2

∫ +∞

1

dz γ 1−d

2
−ℓ(z)F (t− zr) ,

(2.9)

which permits to rewrite (2.8) into the interesting alternative form

h<
L = −1

2

+∞∑

j=0

Γ
(
d
2
+ ℓ− 1

)

Γ
(
d
2
+ ℓ + j

) 1

22jj!

n̂L

rℓ+d−2

∫ +∞

1

dz γ 1−d

2
−ℓ(z)

∫ r

0

dr′r′
B+ℓ+2j+d−1

N (2j)(r′, t− zr) .

(2.10)

Very important in our approach, we use the “Bε” regularization scheme [14, 19, 20], which
is a variant of the dimensional regularization (with ε = d − 3), in which a regularization
factor (r/r0)

B is inserted first in order to protect against the usual divergence of the multipole
expansion when r → 0, where r0 is an arbitrary constant. Such factor (r/r0)

B is the same as
the one used in many previous works in 3 dimensions, and here it is also used on the “top”
of dimensional regularization. This procedure is not an ad hoc additional regularization
scheme, but comes from the matching between near zone and exterior zone and is crucial for
the proper definition of the MPM algorithm in three dimensions [30]. The calculations of the
tail sector in the conservative equations of motion [19, 20] have indicated that the (r/r0)

B

factor should be kept even in d dimensions, at least in intermediate calculations. Therefore,
in Eqs. (2.8) and (2.10) we have replaced the source term by N(r, t) −→ rBN(r, t). For
convenience we pose r0 = 1 but we will restore the constant r0 (as well as the dimensional
regularization length scale ℓ0) in our final results. Following the Bε regularization a finite
part (or Partie Finie PF [31]) at B = 0 is always understood before considering the limit
ε → 0. We expect that the finite part at B = 0 just reduces to a finite limit when B → 0.

The result (2.8)–(2.10) is still in the form of a formal series, and we now show how this
series can be re-summed so that we obtain the corresponding “exact” result. To this end
we use the expression of the near-zone (or PN) expansion of an antisymmetric multipolar
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solution of the wave equation, i.e. of the type retarded minus advanced. In the monopolar
case (ℓ = 0) this expansion is given by Eq. (A13) of [19], and we see that in d dimensions it
involves a non-local integral. See also the discussion in Sec. IV and the PN expansion given
by (4.7)–(4.8). Let us rewrite Eq. (A13) of [19] in the form (with ε = d− 3)

k̃

rd−2

∫ +∞

1

dy γ 1−d

2

(y)
[
F̂ε(t− yr)− F̂ε(t+ yr)

]
= −π2− d

2

2d−3

+∞∑

j=0

r2j

22jj!

F (2j+1)(t)

Γ
(
d
2
+ j

) . (2.11)

For any smooth function F (t) with compact support on R, we have introduced its “ε-

transform” F̂ε(t) (also smooth and with compact support) to be the function defined by
analytic continuation in ε as

F̂ε(t) =
1

2 cos(πε
2
)Γ(ε)

∫ +∞

−∞

dτ |τ |ε−1 F (t+ τ) . (2.12)

This ε-transform satisfies two remarkable properties.

• The main one is that its inverse transform is given by the same expression but corre-
sponding to the parameter −ε, thus

F (t) =
1

2 cos(πε
2
)Γ(−ε)

∫ +∞

−∞

dτ |τ |−ε−1 F̂ε(t+ τ) . (2.13)

This nice property can easily be proved by going to the Fourier domain, using
e.g. (3.17)–(3.18) in [19].2

• The second important property of the ε-transform is that it reduces to the identity in
the limit when ε → 0:

lim
ε→0

F̂ε(t) = F (t) . (2.14)

However, the transform (2.12)–(2.13) is valid by analytic continuation for any ε ∈ C.

Next we obtain the expansion for any multipolar antisymmetric wave by applying on
Eq. (2.11) the STF multi-spatial derivative operator ∂̂L, and we obtain3

k̃

∫ +∞

1

dy γ 1−d

2

(y) ∂̂L

[
F̂ε(t− yr)− F̂ε(t + yr)

rd−2

]
= − π2− d

2

2ℓ+d−3

+∞∑

j=0

x̂Lr
2j

22jj!

F (2j+2ℓ+1)(t)

Γ
(
d
2
+ ℓ+ j

) . (2.15)

Thanks to the relation (2.11) with the substitution d → d + 2ℓ, one can finally re-express
the result for h<

L as given by (2.8) in the following closed-analytic “exact” form

h<
L = k̃ Γℓ

∫ +∞

1

dy γ 1−d

2

(y)

∫ +∞

1

dz γ 1−d

2
−ℓ(z) (2.16)

×
∫ r

0

dr′ r′
B−ℓ+1

∂̂L

[
N̂

(−2ℓ−1)
ε

(
r′, t− yr − zr′

)
− N̂

(−2ℓ−1)
ε

(
r′, t− yr + zr′

)

rd−2

]
,

2 Hence we can check that Eq. (2.11) is indeed equivalent to Eq. (A13) of [19].
3 Using the fact that ∂̂Lr

2j = 2ℓj!
(j−ℓ)! n̂L r2j−ℓ when j > ℓ and is zero when 0 6 j 6 ℓ− 1.
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where the superscript (−2ℓ − 1) indicates 2ℓ + 1 time anti-derivatives4 and we have posed

Γℓ ≡ 2ℓ+d−4π
d

2
−2 Γ(d

2
+ ℓ − 1), such that limε→0 Γℓ =

(2ℓ−1)!!
2ℓ−1 . We can essentially repeat the

same steps of the previous calculation with only some simple adaptations, for the outer part
of the solution h>

L corresponding to r′ > r, and we obtain

h>
L = k̃ Γℓ

∫ +∞

1

dy γ 1−d

2

(y)

∫ +∞

1

dz γ 1−d

2
−ℓ(z) (2.17)

×
∫ +∞

r

dr′ r′
B−ℓ+1

∂̂L

[
N̂

(−2ℓ−1)
ε

(
r′, t− yr − zr′

)
− N̂

(−2ℓ−1)
ε

(
r′, t+ yr − zr′

)

rd−2

]
.

A finite part PF when B → 0 is to be understood in front of both Eqs. (2.16)–(2.17).
Recalling the definition (2.12) of the ε-transform we see that (2.16)–(2.17) involve three
non-local integrals over y, z and τ , that are specifically due to d dimensions and reduce to
trivial local results in 3 dimensions. Notice that in the complete solution the first terms
in (2.16) and (2.17) merge to form a single integral from 0 to +∞. Thus we may write the
complete solution hL = h<

L + h>
L as

hL = k̃ Γ′
ℓ

n̂L

rd+ℓ−2

∫ +∞

1

dy γ 1−d

2
−ℓ(y)

∫ +∞

1

dz γ 1−d

2
−ℓ(z) (2.18)

×
{∫ +∞

0

dr′ r′
B−ℓ+1

N̂ (−2ℓ−1)
ε

(
r′, t− yr − zr′

)

−
∫ r

0

dr′ r′
B−ℓ+1

N̂ (−2ℓ−1)
ε

(
r′, t− yr + zr′

)
−

∫ +∞

r

dr′ r′
B−ℓ+1

N̂ (−2ℓ−1)
ε

(
r′, t+ yr − zr′

)
}
,

where we pose Γ′
ℓ ≡ (−)ℓ22ℓ+d−4π

d

2
−2 [Γ(d

2
+ ℓ− 1)]2/Γ(d

2
− 1), and we have chosen to apply

the lemma (2.9) on the y integration in order to express the result. Note that the first term
in (2.18) is an homogeneous retarded solution of the wave equation in d dimensions. In the
Appendix A, we explicitly check the limit of our result (2.18) in three dimensions, and we
gladly recover a formula derived previously in [32].

We end up this section by two remarks. For the computation of the conservative La-
grangian and equations of motion at 4PN order, and handling the conservative part of the
tail effect at that order, it was shown in Ref. [19] that the relevant quantity to be considered
is h0

L, defined by h>
L as given by (2.17) but in which the radial integral from r to +∞ is

replaced by the integral from 0 to +∞:5

h0
L = k̃ Γℓ

∫ +∞

1

dy γ 1−d

2

(y)

∫ +∞

1

dz γ 1−d

2
−ℓ(z) (2.19)

×
∫ +∞

0

dr′ r′
B−ℓ+1

∂̂L

[
N̂

(−2ℓ−1)
ε

(
r′, t− yr − zr′

)
− N̂

(−2ℓ−1)
ε

(
r′, t+ yr − zr′

)

rd−2

]
.

Indeed this h0
L is an homogeneous solution of the wave equation, �h0

L = 0, and furthermore
is regular when r → 0, i.e. is of the type retarded minus advanced. Therefore it was proved

4 As usual in our formalism, we assume stationarity in the remote past, and anti-derivatives are defined to

be those which vanish when t → −∞.
5 This solution is given in expanded form by Eq. (3.20) in [19].
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that this solution can be extended inside the source by matching, and it permitted the
computation of the 4PN tail effect in the conservative equations of motion (with result in
perfect agreement with the one derived by the effective-field-theory approach [22]).

Similarly we will find in the next section that in order to compute the contribution from
tails in the far zone, it is sufficient to define h∞

L by h<
L as given by (2.16), but in which the

radial integral from 0 to r is replaced by the integral from 0 to +∞:

h∞
L = k̃ Γℓ

∫ +∞

1

dy γ 1−d

2

(y)

∫ +∞

1

dz γ 1−d

2
−ℓ(z) (2.20)

×
∫ +∞

0

dr′ r′
B−ℓ+1

∂̂L

[
N̂

(−2ℓ−1)
ε

(
r′, t− yr − zr′

)
− N̂

(−2ℓ−1)
ε

(
r′, t− yr + zr′

)

rd−2

]
.

Again this is an homogeneous solution of the wave equation, �h∞
L = 0, but this time a

retarded solution, therefore regular at infinity, when r → +∞. This is that solution h∞
L

which will be responsible for the contribution of far zone tails in the difference between the
dimensional and Hadamard regularizations, as we will show in the next section.

III. THE DIFFERENCE BETWEEN TWO REGULARIZATION SCHEMES

Up to vanishingly small terms when ε → 0, the difference between the dimensional
regularization and the Hadamard one comes only from the bound r′ = 0 in the general
formula for the retarded integral, i.e. it comes only from the part of the integral h<

L given
by (2.16). This is clear because only the bound r′ = 0 can give a pole in dimensional
regularization, and any integration over an interval excluding r′ = 0 will have a finite limit
when ε → 0, and so cancels out between the two regularization in the limit ε → 0. This
further means that for the computation of the difference we can replace the integral from
0 to r in (2.16) by the integral from 0 up to +∞ (or any finite constant), i.e. we can just
consider the homogeneous retarded solution h∞

L given by (2.20).
Thus our statement is that modulo terms of order ε the difference is

DhL = Dh∞
L +O(ε) , (3.1)

where the difference operator D is formally defined as the commutator between the three-
dimensional limit (viz. lim3d) and the PF operator:

DA ≡
[
lim
3d

, PF
B=0

]
A = lim

3d

{
PF
B=0

A
}
− PF

B=0

{
lim
3d

A
}
= ABε − AHad . (3.2)

Here, by “3d” limit, we really mean the expansion ε → 0, while crucially keeping all the
divergent poles ε−1, and neglecting terms O(ε). By contrast, PFB=0 discards the poles B

−1,
so the difference DA is actually a function of the poles ε−1 but does not depend on B.

Since h∞
L is a retarded homogeneous solution of the wave equation in d dimensions, it

can be written in multipolar form as

h∞
L = ∂̂L

[
k̃

rd−2

∫ +∞

1

dy γ 1−d

2

(y)H(t− yr)

]
, (3.3)
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where we pose

H(t) = Γℓ

∫ +∞

1

dz γ 1−d

2
−ℓ(z)

∫ +∞

0

dr′ r′
B−ℓ+1

[
N̂ (−2ℓ−1)

ε

(
r′, t− zr′

)
− N̂ (−2ℓ−1)

ε

(
r′, t+ zr′

)]
.

(3.4)

We recall that the “ε-transform” operation is defined by (2.12).
As we consider only the limit r′ → 0 we insert into (3.4) the near-zone expansion of the

source term N(r, t) in d dimensions, which will turn out to be always of the generic type (as
shown in Sec. IV)

N(r, t) =
∑

p,q

r−p−qεfp,q(t) , (3.5)

where the coefficients fp,q(t) may be complicated non-local integrals involving poles, and the
singularity is not essential, i.e. the maximal divergence when r → 0 is finite, say p 6 p0.
Furthermore, we have explicitly checked that q takes values in a finite range, say q0 6 q 6 q1.
The d-dimensional coefficients fp,q(t) match the corresponding three-dimensional coefficients
when ε → 0, in the sense that

lim
ε→0

∑

q

r−qε fp,q(t) = f (3d)
p (t) + f (3d,ln)

p (t) ln

(
r

ℓ0

)
. (3.6)

The three-dimensional logarithm comes from possible poles in fp,q, see also Eq. (3.9) of [14],
but in our practical calculations the limit (3.6) is finite. Furthermore, in our case, the source
does not bear double poles so that only simple logarithms show up in the three-dimensional
limit. By inserting (3.5) into (3.4) we obtain

H(t)=
∑

p,q

Γℓ

∫ +∞

1

dz γ−1−ℓ− ε

2
(z)

∫ +∞

0

dr′r′
B−ℓ+1−p−qε

[
εf̂

(−2ℓ−1)
p,q

(
t− zr′

)
−εf̂

(−2ℓ−1)
p,q

(
t+ zr′

)]
,

(3.7)

and by posing ρ = zr′, we find that the integral over z factorizes out and can nicely be
computed in closed analytic form.6 Finally, we are able to perform a series of integrations
by parts (with all integrated terms at infinity vanishing) to arrive at

H(t)=−2ℓ−1+επ
ε

2

∑

p,q

∫ +∞

0

dρQp,q
ℓ

(
B, ε, ρ

) [
(−)ℓ+p

εf̂
(−ℓ−2+p)
p,q

(
t− ρ

)
+ εf̂

(−ℓ−2+p)
p,q

(
t + ρ

)]
,

(3.8)

in which we have inserted Γℓ ≡ 2ℓ+d−4π
d

2
−2Γ(d

2
+ ℓ− 1), and posed

Qp,q
ℓ

(
B, ε, ρ

)
≡

Γ
(

B+ℓ+3−p−(q−1)ε
2

)
Γ (−B + qε)

Γ
(
B−ℓ+3−p−qε

2

)
Γ (−B + ℓ− 1 + p+ qε)

ρB−qε . (3.9)

6 For that we use ∫ +∞

1

dz zα γs(z) =
√
π

Γ(−s− α+1
2 )

Γ(−s− 1
2 )Γ(

1−α
2 )

.
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With this result we straightforwardly obtain the difference DH corresponding to the
calculation with the Bε method minus the Hadamard regularization which is just the finite
part at B = 0 in three dimensions. Of course we use the link between d dimensions and
3 dimensions saying that the functions fp,q(t) match their counterparts in 3 dimensions,
see (3.6). From (3.8), it is clear that the difference reads as

DH(t) = −2ℓ−1+επ
ε

2

∑

p,q

∫ +∞

0

dρDQp,q
ℓ

(
ε, ρ

) [
(−)ℓ+p

εf̂
(−ℓ−2+p)
p,q

(
t− ρ

)
+ εf̂

(−ℓ−2+p)
p,q

(
t+ ρ

)]
,

(3.10)

where we recall that DQp,q
ℓ

(
ε, ρ

)
denotes the difference of the quantities (3.9) evaluated with

the two regularizations, and given explicitly by (3.2) as

DQp,q
ℓ

(
ε, ρ

)
≡ lim

3d

{
PF
B=0

[
Qp,q

ℓ

(
B, ε, ρ

)]}
− PF

B=0

[
Qp,q

ℓ

(
B, 0, ρ

)]
. (3.11)

Finally it is a straightforward (although fairly tedious) matter to evaluate explicitly the
difference (3.11) neglecting vanishing terms in the limit ε → 0. We find that there are two
cases where the difference is not zero:

1. When p = ℓ+ 2i+ 3 where i ∈ N and q 6= 1, in which case we have

DQp,q
ℓ =

(−)ℓ(ℓ+ i)!

i!(2ℓ+ 2i+ 1)!

1

q − 1

[
1

ε
−

ℓ+i∑

k=0

1

2k + 1
− 1

2
γE − ln

(
ρ rq−1

0

ℓq0

)]
+O (ε) . (3.12)

Note the important point that the exclusion of the q = 1 is not an artificial requirement
to ensure that the formula is well-defined. Indeed, when q = 1 the difference DQp,1

ℓ is
exactly vanishing; this point will be of uttermost importance in Sec. IV.

2. When p = −ℓ+ 2i+ 2 where i ∈ N and q 6= 0, where we have

DQp,q
ℓ = (−)i

(2ℓ− 2i− 1)!!

2ℓ+ii!

1

q

[
1

ε
+

|ℓ−i|−1∑

k=0

1

2k + 1
− 1

2
γE + ln

(
ℓq0
2rq0

)]
+O (ε) . (3.13)

with the convention that (−2n− 1)!!(2n+ 1)!! ≡ (−)n(2n+ 1) for any integer n ∈ N.

All other cases give zero (no difference). In case 2, since (3.13) does not depend on ρ the
difference is local, and turns out to be vanishing. Indeed, due to the even nature of p + ℓ,
the two integrals corresponding to the two terms in the square brackets of (3.10) exactly
cancel out. On the other hand, the case 1 seems to be non-local as there is a ln ρ remaining
and therefore a non-local integral associated. However we find that this non-local integral

exactly cancels out the one present in the coefficients εf̂p,q up to order O(ε), cf. Eq. (2.12) of
the ε-transform, so that the final result does not contain a remaining integral over ρ. Note
that we have not considered the O(ε) term, as we have explicitly verified that none of the
contributing fp,q (i.e. such that p−ℓ−3 ∈ 2N) bears poles. If it were the case, the difference
would turn out to be non-local. Fortunately this is not our case and thus we are able to
write down our final result as (with q̄ = 4πeγE)

DH(t) = (−2)ℓ
+∞∑

i=0

(i+ ℓ)!

i!(2ℓ+ 2i+ 1)!

∑

p,q 6=1

1

q − 1

[
1

ε
−

ℓ+i∑

k=0

1

2k + 1
+ ln

(√
q̄
ℓq−1
0

rq−1
0

)]
f
(2i)
p,q (t)

c2i
,

(3.14)
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plus the neglected remainder O(ε). It is understood that the sum over i is actually finite
because the singularity in the source term (3.5) is finite (i.e. p 6 p0 for some p0 ∈ N).
In (3.14) we have restored the relevant Hadamard regularization scale r0 and dimensional
regularization scale ℓ0. Again we emphasize that this result is local, as long as the fp,q(t)
are themselves local. As presented in the Sec. IV, this is always the case, and thus the
complicated difference between the two regularization schemes of non-linear interactions is
local. This appears to be a non-trivial result, considering that the tails and their iterations
are by essence non-local.

To summarize, we have computed the difference between regularization schemes in the
metric in harmonic coordinates. From (3.1) and (3.3) we have expressed this difference, for
each component of the metric and each multipolarity ℓ, see (2.6), in the form of a retarded
solution of the d’Alembertian equation in d dimensions,

DhL = ∂̂L

[
k̃

rd−2

∫ +∞

1

dy γ 1−d

2

(y)DH(t− yr)

]
, (3.15)

where the function DH is given by (3.14) for any source term of the form (3.5)

IV. THE MPM ALGORITHM FOR NON-LINEAR INTERACTIONS

The goal of this work is to apply the formulas derived in the previous section to the
case of the non-linear interactions entering the mass quadrupole moment at 4PN. A quick
dimensional analysis shows that such interactions are at most cubic in G. Thus, we need to
compute the cubic source term entering the right-hand side of the wave equation (2.1). To
this end, we rely on the so-called Multipolar-Post-Minkowskian (MPM) algorithm [30, 32].

The MPM algorithm builds the sources (and solutions) of the wave equation (2.1) in an
iterative fashion, orders by orders in G, hence the name. Its starting point is the so-called
canonical metric, which is a generalization in d dimensions of Thorne’s linearized metric [33].
The recent calculation in d dimensions [28] writes it as

h00
can 1 = − 4

c2

∑

ℓ>0

(−)ℓ

ℓ!
∂̂L M̃L , (4.1a)

h0i
can 1 =

4

c3

∑

ℓ>1

(−)ℓ

ℓ!

[
∂̂L−1 M̃(1)

iL−1 +
ℓ

ℓ+ 1
∂̂LS̃i|L

]
, (4.1b)

hij
can 1 = − 4

c4

∑

ℓ>2

(−)ℓ

ℓ!

[
∂̂L−2 M̃(2)

ijL−2 +
2ℓ

ℓ+ 1
∂̂L−1S̃(1)

(i|j)L−1 +
ℓ− 1

ℓ+ 1
∂̂LK̃ij|L

]
, (4.1c)

where we have defined the “tilded” versions of the moments as, e.g.,

M̃L(r, t) ≡
k̃

rd−2

∫ +∞

1

dy γ 1−d

2

(y)ML

(
t− yr

c

)
, (4.2)

and where ML and Si|L denote the mass and current canonical moments, together with the
additional moment Kij|L, which does not exist in 3 dimensions.

We let the reader refer to [2] for a comprehensive review of the MPM formalism.7 We will
only note that, due to its iterative nature, we need the knowledge of the quadratic solution

7 Note that the procedure is formally similar in three-dimensions (as presented in [2]) and in d-dimensions

(as should be implemented here); however the three-dimensional moments have to be replaced by their

d-dimensional tilded counterparts, e.g. ML(t− r/c)/r −→ M̃L(r, t) as defined in (4.2).
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to the wave equation in order to build up the cubic source. However, let us recall that the
difference between regularization schemes is a near zone effect [as only the r′ → 0 limit of the
integral (2.20) plays a role], and so we can focus on the near zone behaviour of the source
only. This notably implies that we do not require the knowledge of the whole quadratic
interactions to build up the cubic source, but only their near zone behaviour, which we can
iterate following the MPM procedure.

We discuss the near zone expansion of a quadratic metric, taking first the example of the
quadratic interaction M ×Mij . Later we will say a word on the more difficult interaction
Mij×Mij , but the generalization to other interactions is almost straightforward. The source

of a d-dimensional quadratic interaction like M×Mij (for which the monopole M̃ = k̃Mr2−d

is static) takes the generic form

N(x, t) = n̂L
ℓqε0
rp+qε

∫ +∞

1

dz γ 1−d

2

(z) zk F
(
t− zr

c

)
, (4.3)

and F involves some time derivative of Mij . The exact prescription to be applied would
naturally be the propagator (2.2), as we discussed in details in Sec. II. Nevertheless, we do
not need to use it for the quadratic interactions, as we only seek for the near zone behaviour.
Following [19], the formal PN expansion of the quadratic solution is made of two terms,

hL = PF�−1
R N − PF

B=0

∑

m∈N

(−)m

m!

∑

j∈N

∆−j x̂M

∫
ddx′

(
r′

r0

)B

∂̂′
M

[
Ñ (2j)(y, t− zr′/c)

c2j r′d−2

]

y=x′

,

(4.4)

where the “tilde” operation (with respect to variables r′, t) is defined by (4.2) and we denoted

∆−j x̂L ≡ Γ
(
d
2
+ ℓ

)

Γ
(
d
2
+ ℓ+ j

) r
2jx̂L

22jj!
. (4.5)

The first term is a particular solution built up (in the sense of the PF) from the formal
PN expansion N of the source term (4.3). Introducing τ = zr/c and using the asymptotic
expansion when z → +∞ of the function γ 1−d

2

given by (2.3), i.e.

γ 1−d

2

(z) ∼
z→+∞

+∞∑

j=0

(−)j

j!

2
√
π z−2−2j−ε

Γ
(
−j − ε

2

)
Γ
(
1+ε
2

) , (4.6)

we can decompose N into “even” and “odd” parts given by

N
even

=
∑

j∈N

Ak
j

r2j+κ−p−qε

c2j+κ
F (2j+κ)(t) n̂L , (4.7a)

N
odd

=
∑

j∈N

Bk
j

r1+2j−k−p+(1−q)ε

c1+2j−k+ε

∫ ∞

0

dτ τ−ε F (2j+2−k)(t− τ) n̂L , (4.7b)

where κ ≡ k − 2[k
2
], i.e. κ = 0 if k is even and 1 if k is odd, and the coefficients that enter

those expressions are

Ak
j ≡ (−)j

22j+κj!

Γ
(
1
2
− j − κ

)

Γ
(
1+ε
2

) Γ
(
1−κ−k+ε

2
− j

)

Γ
(
1−κ−k

2
− j

) , (4.8a)
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Bk
j ≡ (−)k

22jj!

2
√
π Γ (2− k + ε)

Γ
(
1+ε
2

)
Γ (1− ε) Γ

(
−ε
2

) Γ
(
1 + j + ε

2

)

Γ
(
1 + ε

2

) Γ
(
1− k

2
+ ε

2

)

Γ
(
1 + j − k

2
+ ε

2

) Γ
(
3−k+ε

2

)

Γ
(
j + 3−k+ε

2

) . (4.8b)

The expressions (4.7)–(4.8) generalize those of [19] in the case of a non-vanishing k.
Once integrated with the PN-expanded propagator, using the “Matthieu” formula, i.e.

Eq. (3.16) in [14], we find that Eqs. (4.7) yield poles. Fortunately, the three-dimensional
limit is non-pathological, since those poles then disappear by mutual cancellation. They
simply generate logarithmic terms as emphasized by (3.6). Moreover, such poles do not
contribute to the difference between regularization schemes in the iterated cubic solution,
as already advertized (they do not enter the terms bearing p− ℓ− 3 ∈ 2N).

As for the homogeneous solution, which is the second term of (4.4), after a series of
transformations following [19], it becomes

h
hom

L =
(−)p+ℓ

d+ 2ℓ− 2
PF
B=0

Γ (qε−B)

Γ (p+ ℓ− 1 + qε− B)
Ck,p,q

ℓ

∑

j∈N

∆−j x̂L

∫ ∞

0

dτ
τB−qε

rB0

F (2j+ℓ+p−1)(t− τ)

c2j+ℓ+p+qε−B
,

(4.9)

where we have denoted

Ck,p,q
ℓ ≡

∫ +∞

1

dy γ 1−d

2
−ℓ(y)

∫ +∞

1

dz γ 1−d

2

(z) zk(y + z)ℓ−2+p+qε−B . (4.10)

The coefficients Ck,p,q
ℓ are generalizations for q ∈ Z of the ones introduced in [19]. They can

be computed by methods similar to those described in the App. D of [19].
The three types of terms we have met: integrated “even” and “odd” PN expansions, as

well as the homogeneous solutions, are to be inserted into the cubic source which, again, can
be PN-expanded and will take the same general form as in (4.7), which confirms our claim
on the structure of the cubic source (3.5).

An important point to note is that only the “even” contributions (4.7a) will contribute to
the final result (3.14). Indeed we have explicitly checked that, due to the particular powers
of r, the “odd” terms given by (4.7b) will bear p−ℓ−3 = 2i+1, i ∈ N, thus not contributing
to the final difference. Concerning the homogeneous solution, it is apparent from Eqs. (4.9)
and (4.5) that it bears q = 0. As the linear metric bears q = 1, the homogeneous solution,
once inserted into the cubic source, will produce only terms with q = 1, thus evading the
condition for a term to contribute to the difference. This crucial remark that only “even”
terms contribute makes the cubic source become local in the end, once expanded in the near
zone. Therefore, our final result (3.14) will itself be local, as claimed at the end of Sec. III.

The only quadratic interaction that does not fall within the previous investigation is the
memory type one Mij ×Mij , which is needed to compute the cubic source of the 4PN tail-
of-memory (see Sec. VIA). This interaction involves two time-dependent moments, so that
its source reads

N(x, t) = n̂L
ℓqε0
rp+qε

∫ +∞

1

dy γ 1−d

2

(y) ys
∫ +∞

1

dz γ 1−d

2

(z) zk F
(
t− yr

c

)
G
(
t− zr

c

)
. (4.11)

In this case, the PN expansion of the solution involves five types of terms: the squares “even-
even” and “odd-odd”, the cross products “even-odd” and “odd-even”, and the homogeneous
solution, which keeps the same structure as Eq. (4.9). Nevertheless, by arguments similar as
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for the tail interaction, only the “even-even” terms contribute to the final result. Note that,
although the “odd-odd” terms could contribute as they contain terms with p− ℓ− 3 ∈ 2N,
it turns out that they have q = 0. Therefore, the same argument as the one used to discard
the contribution of the homogeneous solution applies. From (4.7a), we see again that the
result for the difference at cubic order will be purely local.

Finally, applying the formula (3.15) on each terms of the (PN-expanded) cubic source,
we obtain the difference between regularizations in the form of a piece Dhµν in the metric
to the cubic order,

Dhµν =
∑

ℓ∈N

∂̂L

[
k̃

rd−2

∫ +∞

1

dy γ 1−d

2

(y)DHµν
(
t− yr

c

)]
. (4.12)

We are almost done but, while this piece clearly obeys �Dhµν = 0, it does not a priori
satisfy the harmonic coordinate condition by itself, ∂νDhµν 6= 0. Next, we compute from
it another object, Dhµν

gen, which happens to be a general solution of the linearized Einstein
field equations in vacuum (and d dimensions), i.e. which satisfies at once �Dhµν

gen = 0 and
∂νDhµν

gen = 0. In doing so, we are exactly following the MPM procedure [30, 32], which can
be summarized as

uµν ≡ Dhµν −→ wµ = ∂νu
µν −→ vµν = H(wµ) −→ Dhµν

gen ≡ uµν + vµν , (4.13)

vµν being here a homogeneous solution such that ∂νv
µν = −wµ, built from wµ with the help

of the “harmonicity” algorithm H given by Eqs. (2.11)–(2.12) in [34]. Since Dhµν
gen solves the

linearized vacuum field equations, it can be written in a unique way as

Dhµν
gen = Dhµν

can + (linearized gauge transformation) , (4.14)

where the gauge transformation can be ignored as it plays no role when looking for the
invariants in the metric. The physically relevant quantity is another object, Dhµν

can, given
as some simpler canonical solution, which naturally takes the same form as the linearized
metric (4.1), i.e.

Dh00
can = − 4

c2

∑

ℓ>0

(−)ℓ

ℓ!
∂̂L δM̃L , (4.15a)

Dh0i
can =

4

c3

∑

ℓ>1

(−)ℓ

ℓ!

[
∂̂L−1 δM̃(1)

iL−1 +
ℓ

ℓ+ 1
∂̂LδS̃i|L

]
, (4.15b)

Dhij
can = − 4

c4

∑

ℓ>2

(−)ℓ

ℓ!

[
∂̂L−2 δM̃(2)

ijL−2 +
2ℓ

ℓ+ 1
∂̂L−1δS̃(1)

(i|j)L−1 +
ℓ− 1

ℓ+ 1
∂̂LδK̃ij|L

]
, (4.15c)

where we have straightforwardly defined

δM̃L(r, t) ≡
k̃

rd−2

∫ +∞

1

dy γ 1−d

2

(y)DML

(
t− yr

c

)
, (4.16)

and where DML and DSi|L denote the corresponding corrections to the mass and current
canonical moments ML and Si|L, together with those of the additional moment Kij|L, which
does not exist in 3 dimensions. In conclusion, when written into the form (4.15), our result
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is directly formatted to read off the non-linear corrections to the canonical moments. From
the detailed calculations of the cubic interactions (in particular M × Mij × Mij) outlined

below, and the comparison with (4.15)–(4.16), we will find δM̃ij(r, t) and, thus, the looked-
for correction to the canonical quadrupole moment DMij(t). This result will play a crucial
role in the definition of the “renormalized mass quadrupole” in Sec. VIA.

Finally, we have used two methods to extract the correction to the canonical moment

δM̃ij from the metric. One method consists of considering the leading order 1/rd−2 term in
the metric when r → +∞ and performing a suitable angular integration (in d dimensions)

to obtain δM̃(2)
ij , then δM̃ij. The second method was to extract it directly from the gauge

invariant components of the linearized Riemann tensor

R0i0j =
G

2

(
∂ijDh00

can +
2

c
∂t∂

(iDhj)0
can +

1

c2
∂2
tDhij

can +
∂ijDhcan

d− 1
− 1

c2
δij

d− 1
∂2
tDhcan

)
, (4.17)

where Dhcan ≡ −Dh00
can +Dhii

can. Both methods perfectly agree with each other.

V. REGULARIZATION OF NON-LINEAR INTERACTIONS AT 3PN ORDER

When computing the radiative mass quadrupole moment at 3PN order [12], a Hadamard
regularization scheme for the IR sector has been used for the source moment and the non-
linear interactions have been computed in ordinary 3 dimensions. However, the crucial need
for a dimensional regularization scheme in the 4PN equations of motion [19] implies that one
should trade the Hadamard regularization for dimensional regularization when computing
the mass quadrupole at the 4PN order. This has been achieved in the companion paper [14].
It was found that, when using a dimensional regularization scheme, the source quadrupole
moment receives corrections including poles ∝ ε−1 already starting at the 3PN order.

To describe the poles, it is convenient to “dress” them into the particular combination

Πε ≡ − 1

2ε
+ ln

(
r0
√
q̄

ℓ0

)
, with q̄ ≡ 4πeγE . (5.1)

Here r0 is the scale associated to the Partie Finie and ℓ0 the one associated to the dimensional
regularization. Now, the detailed calculations in [14] conclude that, at the 3PN order, the
dimensional regularization corrections can be recast as

DI3PNij =
214

105

G2M2

c6

(
Πε +

246 299

44 940

)
I
(2)
ij − 428

105

G2M

c6

(
Πε +

252 599

44 940

)
P〈iPj〉 , (5.2)

where Iij is the source quadrupole moment and Pi is the conserved linear momentum, i.e.

Pi = I
(1)
i , with Ii being the linearly varying mass dipole. Note that this formula is valid

in an arbitrary frame, not necessarily the center-of-mass (CoM) frame for which Pi = 0.
Obviously, Iij and Pi are merely Newtonian with the 3PN accuracy of (5.2) but will contain
crucial 1PN corrections when this equation is applied to 4PN order.

We recognize βI = −214
105

in the coefficient of the first term in (5.2). This coefficient is well
known from “tail-of-tail” calculations [27]. It can be interpreted as the beta function coeffi-
cient associated with the logarithmic renormalization of the mass quadrupole moment [35].

The 3PN correction to the source quadrupole (5.2) bears a pole, which looks dreadful.
Fortunately, the source quadrupole is not a physical quantity, contrary to the radiative
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quadrupole defined at infinity. We thus have to ensure that the correction (5.2) is ex-
actly compensated by the regularization of the 3PN non-linear interactions in the radiative
moment. Otherwise, it would show that the formalism used previously at 3PN order is
inconsistent with dimensional regularization.

A trivial dimensional analysis shows that only two interactions can arise at 3PN order:
(i) the tail-of-tail M ×M ×Mij , where M is the constant ADM mass and Mij the canonical
moment (which agrees with the source moment to 2PN order), and (ii) the interaction
M×Mi×Mi where Mi is the mass dipole moment, varying linearly with time and vanishing
in the CoM frame. As we have proved in Sec. III [see (3.14)], the regularization of the
non-linear interactions linking the canonical and radiative quadrupoles yields purely local
corrections. Moreover, since in general relativity the propagation of GW is described entirely
by the two types of multipole moments ML and Si|L (called the canonical moments in
our terminology) we have to express the non-linear terms as corrections in the canonical
moments, as discussed in Sec. IV [see (4.15)].

Implementing the non-linear iteration of the requested multipole interactions, as described
in Sec. IV, we computed the 3PN correction to the canonical quadrupole:

DM3PN
ij = −214

105

G2M2

c6

(
Πε +

246 299

44 940

)
M

(2)
ij +

428

105

G2M

c6

(
Πε +

252 599

44 940

)
M

(1)
〈i M

(1)
j〉 .

(5.3)
As the canonical and source moments are equivalent at Newtonian order, we see that
the contribution of the non-linear interactions exactly cancels the correction of the source
quadrupole given by Eq. (5.2). Again, this result is valid in a general frame, not necessarily
in the CoM frame, and it is true not only for the pole part, but also for the finite part
following the pole.

We conclude that the corrections due to dimensional IR regularization exactly vanish in
the radiative quadrupole to 3PN order; so, using Hadamard or dimensional regularization
for the IR is equivalent at that order. A priori, the same cancellation is not expected to
happen at 4PN order, because we found for the conservative equations of motion that the
dimensional and Hadamard regularization schemes are no more equivalent [19]. Correcting
the quadrupole moment to account for dimensional regularization at 4PN order is the main
motivation for this work.

Two other radiative moments are very important as they have to be computed to 3PN
order in order to control the 4PN flux: these are the mass octupole moment, obtained in [29],
and the current quadrupole moment, computed in [28]. We have to verify the equivalence of
both regularization schemes for these 3PN moments too. Following the methods described
in [14], we have computed the correction due to the change in regularization schemes for both
the source mass octupole Iijk and the (dual of the) current quadrupole Ji|jk, with results

DI3PNijk =
26

21

G2

c6

(
Πε +

9281

2730

)
M2I

(2)
ijk +

92

35

G2

c6

(
Πε −

161 597

28 980

)
I〈iPjPk〉

− 52

7

G2

c6

(
Πε +

14 387

4 095

)
MI

(1)
〈ij Pk〉 +

12

5

G2

c6

(
Πε +

63 421

7560

)
MI

(2)
〈ij Ik〉 , (5.4a)

DJ3PN
i|jk =

214

105

G2

c6

(
Πε +

54 989

44 940

)
M2J

(2)
i|jk

+
856

105

G2

c6

(
Πε +

229 289

44 940

)
MI

(2)
{i|jPk} −

106

7

G2

c6
MI

(3)
{i|jIk} . (5.4b)
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Here {i|jk} ≡ A
ij
TF
ijk

STF
jk

denotes the appropriate symmetries of the d-dimensional current

quadrupole derived in [28] [see Eq. (2.36) there]. In Eqs. (5.4), we again recognize the usual
beta function coefficients βO = −26/21 and βJ = −214/105 (= βI)

8 in front of the tail-
of-tail contribution to the octupole and current quadrupole. On the other hand, using the
formulas of section III, we derived the corrections to those canonical moments as

DM3PN
ijk = −26

21

G2

c6

(
Πε +

9281

2730

)
M2M

(2)
ijk − 92

35

G2

c6

(
Πε −

161 597

28 980

)
M〈iM

(1)
j M

(1)
k〉

+
52

7

G2

c6

(
Πε +

14 387

4 095

)
MM

(1)
〈ij M

(1)
k〉 − 12

5

G2

c6

(
Πε +

63 421

7560

)
MM

(2)
〈ij Mk〉 , (5.5a)

DS3PN
i|jk = −214

105

G2

c6

(
Πε +

54 989

44 940

)
M2S

(2)
i|jk

− 856

105

G2

c6

(
Πε +

229 289

44 940

)
MM

(2)
{i|jM

(1)
k} +

106

7

G2

c6
MM

(3)
{i|jMk} . (5.5b)

Similarly to the case of the 3PN mass quadrupole, we find that the proper regularization
of the non-linear interactions exactly compensates the correction due to the dimensional
regularization of the source mass octupole and current quadrupole. As clear from (5.4)
and (5.5), this is proven not only for the pole parts but also for the finite terms beyond
the poles. In other words, for all these 3PN moments, the corrections due to dimensional
regularization exactly vanish in the radiative moments, which are the physically relevant
quantities. In conclusion, the present investigations have confirmed the previous calculations
of multipole moments at the 3PN order presented in Refs. [10, 12, 28, 29].

VI. THE RENORMALIZED MASS QUADRUPOLE MOMENT AT 4PN ORDER

A. Regularization of non-linear interactions at 4PN order

Having proved that Hadamard and dimensional (IR) regularizations are equivalent at the
3PN order, we now turn to the main goal of this work, namely the IR regularization of the
radiative mass quadrupole up to 4PN.

In addition to the 3PN interaction (5.3) which has now to be considered up to 4PN, five
additional interactions can show up: the “tail-of-memory” M ×Mij ×Mij , the interaction
M ×Mij × Si|j involving the constant angular momentum Si|j, and three interactions M ×
Mi ×Mijk, Mi ×Mi ×Mij and M ×Mi × Si|jk involving the mass dipole Mi. As discussed
earlier, the difference between the regularizations of the non-linear interactions are local and
can be expressed as corrections to the canonical moments ML and Si|L.

For the sake of simplicity, we will work in the CoM frame, where Mi vanishes. Indeed,
the main application of the present work for PN templates can be performed in such frame.
Only three interactions survive, yielding the following corrections in the canonical moment:

DMCoM, 4PN
ij = − 214

105

G2M2

c6

(
Πε +

246 299

44 940

)
M

(2)
ij (6.1)

8 These coefficients are known for both mass and current tail-of-tail interactions up to any multipolar

order [15, 36].
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+
G2M

c8

[
12

7

(
Πε +

3581

7560

)
M

(2)
a〈i M

(2)
j〉a −

24

7

(
Πε −

338

2835

)
M

(1)
a〈i M

(3)
j〉a

− 4

7

(
Πε −

1447

216

)
Ma〈i M

(4)
j〉a +

4

3

(
Πε +

11 243

7560

)
M

(3)
a〈iSj〉|a

]
,

where we recall that the pole has been “dressed-up” according to (5.1).
As we have discussed in Sec. V the tail-of-tail contribution given by the first line of (6.1)

exactly cancels the correction due to dimensional regularization in the source moment at
the 3PN order. Note that this keeps being true up to the 4PN order because the canonical
and source moments are equivalent at the 1PN order. Now, we discover that the coefficients
of the remaining poles entering the non-linear interactions in the purely 4PN terms of (6.1)
exactly cancel those coming from the IR regularization of the source mass quadrupole, given
by Eq. (4.4) of the companion paper [14].

Therefore, we arrive at the main result of this paper, namely that the radiative mass
quadrupole moment is free of poles up to the 4PN level. This important feature (but expected
for a physical quantity) naturally leads us to define a “renormalized mass quadrupole” as the
sum of the properly regularized source mass quadrupole, which was computed in [13, 14],
and augmented by the contributions from the dimensional regularization of the cubic non-
linear interactions, as displayed in Eqs. (6.1), including the finite corrections beyond the
poles explicitly found in (6.1). The interest of such quantity is that it is finite when ε → 0,
so that it can be considered and manipulated in ordinary three dimensions. This notably
allows us to express it in the CoM frame and, then, for quasi-circular orbits using the usual
three-dimensional reduction procedure.

Recalling the work conducted in [14], the renormalized quadrupole is thus defined as

Irenormij ≡ Iij +DMij = IHad
ij + Inon-locij +DIij + δχIij +DMij , (6.2)

where IHad
ij denotes the result of [13], i.e. the local source quadrupole computed with a UV

dimensional regularization and an IR Hadamard one; Inon-locij is the non-local effect of the
source quadrupole, coming from the 4PN tail effect in the conservative sector (equations
of motion and Fokker Lagrangian), given in Eq. (2.14) of [14]; DIij is the correction due
to dimensional regularization in the source quadrupole (DIij is itself the sum of four con-
tributions in Eq. (3.1) of [14]); δχIij is the effect of the local part of the IR shift applied
in the conservative sector [14, 19]; and, finally, DMij is the correction due to dimensional
regularization of the non-linear interactions, computed in the present work.

The non-local tail term in the source quadrupole found in [14] can be restated as

Inon-locij = I instij + Înon-locij . (6.3)

The first term corresponds to instantaneous (non-tail) contributions given by

Î instij =
24

7

G2M

c8

(
Πε +

74

105

)
Ia〈i I

(4)
j〉a , (6.4)

and which combine with (6.1) and the other terms in (6.2) to cancel the pole. The second
term is, properly speaking, the purely non-local tail contribution which reads as

Înon-locij =
24

7

G2M

c8
Ik〈i(t)

∫ +∞

0

dτ ln

(
cτ

2r0

)
I
(5)
j〉k(t− τ) . (6.5)
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Such contribution will naturally combine with the non-localities induced by the non-linear
interactions in the radiative quadrupole. The non-local tail term contains both conservative
and dissipative effects,

Înon-locij = Înon-locij

∣∣∣∣
cons

+ Înon-locij

∣∣∣∣
diss

, (6.6)

where the conservative sector is given by the time-symmetrized integral

Înon-locij

∣∣∣∣
cons

=
12

7

G2M

c8
Ik〈i

∫ +∞

0

dτ ln

(
cτ

2r0

)[
I
(5)
j〉k(t− τ)− I

(5)
j〉k(t+ τ)

]
, (6.7)

or can also be expressed in the form of the Hadamard partie finie (Pf) integral

Înon-locij

∣∣∣∣
cons

=
12

7

G2M

c8
Ik〈i Pf2r0/c

∫ +∞

−∞

dt′

|t− t′| I
(4)
j〉k(t

′) , (6.8)

with associated time scale 2r0/c. The dissipative effect is naturally encoded in the comple-
mentary time-antisymmetrized integral

Înon-locij

∣∣∣∣
diss

=
12

7

G2M

c8
Ik〈i

∫ +∞

0

dτ ln

(
cτ

2r0

)[
I
(5)
j〉k(t− τ) + I

(5)
j〉k(t+ τ)

]
. (6.9)

Note that the notion of renormalized mass quadrupole applies to the source type moment,
hence we appropriately called it Irenormij and not M renorm

ij . In order to obtain the physical
radiative moment, we still have to add to the renormalized source moment the corrections
coming from (i) the relation between the canonical quadrupole on the one hand, and the
source and gauge moments on the other hand (see [30] for discussion), and (ii) the non-
linear tails, tails-of-tails, tails-of-memory, etc. multipole interactions. However, the interest
of having defined such renormalized source quadrupole moment Irenormij is that the latter
corrections (i) and (ii) can be computed in ordinary three dimensions using the standard
MPM algorithm, as all dimensional regularization contributions have already been included.
Many of the corrections (i)-(ii) are already known (see notably [37, 38]), although not all of
them at the 4PN order. Notably, the involved cubic tail-of-memory terms M ×Mij ×Mij

will still have to be computed in 3 dimensions, which is left for future work.

B. Center-of-mass frame and quasi-circular orbits

As, by construction, the renormalized quadrupole is a three-dimensional quantity, one can
safely reduce it to the CoM frame and, then, specialize it to the case of quasi-circular orbits,
using usual three-dimensional reduction formulas. Unfortunately, the complete quadrupole
is too long to be presented, even when expressed in the CoM frame. Therefore, we will only
present the difference between the purely local renormalized quadrupole and the Hadamard
one ∆Iij ≡ Irenormij − Înon-locij − IHad

ij in the CoM frame.
We denote by r = |y1 − y2| the radial separation in harmonic coordinates, x = y1 − y2

the relative distance, and v = v1 − v2 the relative velocity. We recall also the dimensionless
1PN parameter γ defined as γ = Gm

rc2
with m = m1 +m2 the total mass and ν = m1m2/m

2

the symmetric mass ratio. The difference ∆Iij is rather compact, when written in the CoM
frame. It reads

∆ICoM
ij =

G2m3ν

c8

{
G2m2

r2

[
1072

105
− 571826

14175
ν

]
n〈inj〉 +

[
7516

735
− 123944

6615
ν

]
v2 v〈ivj〉 (6.10)
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+
Gm

r

([
3004

147
+

1800322

11025
ν

]
(n.v)2 n〈inj〉 +

[
−30004

2205
− 9985783

99225
ν

]
v2 n〈inj〉

+

[
−7516

245
− 2437018

19845
ν

]
(n.v)n〈ivj〉 +

[
−15056

2205
+

161096

6615
ν

]
v〈ivj〉

)}
.

It is fully apparent that the dimensional regularization brings in a finite contribution to
the quadrupole moment at the 4PN order. In previous work on 4PN equations of mo-
tion [19, 20], adding the analogue of (6.10) permitted resolving the long-standing problem
of regularization ambiguities.

Finally, we give the complete end result for the renormalized quadrupole on quasi-circular
orbits. We write it in the form9

Irenormij = mν

(
Ax〈ixj〉 +B

r2

c2
v〈ivj〉 +

G2m2ν

c5r
C x〈ivj〉

)
+O

(
1

c9

)
, (6.11)

where the coefficients read

A = 1 + γ

(
− 1

42
− 13

14
ν

)
+ γ2

(
− 461

1512
− 18395

1512
ν − 241

1512
ν2

)

+ γ3

(
395899

13200
− 428

105
ln

(
r

r0

)
+

[
3304319

166320
− 44

3
ln

(
r

r′0

)]
ν +

162539

16632
ν2 +

2351

33264
ν3

)

+ γ4

(
−1067041075909

12713500800
+

31886

2205
ln

(
r

r0

)
+

[
−85244498897

470870400
− 2783

1792
π2 − 64

7
ln
(
16γe2γE

)

− 10886

735
ln

(
r

r0

)
+

8495

63
ln

(
r

r′0

)]
ν +

[
171906563

4484480
+

44909

2688
π2 − 4897

21
ln

(
r

r′0

)]
ν2

− 22063949

5189184
ν3 +

71131

314496
ν4

)
, (6.12a)

B =
11

21
− 11

7
ν + γ

(
1607

378
− 1681

378
ν +

229

378
ν2

)

+ γ2

(
−357761

19800
+

428

105
ln

(
r

r0

)
− 92339

5544
ν +

35759

924
ν2 +

457

5544
ν3

)

+ γ3

(
23006898527

1589187600
− 4922

2205
ln

(
r

r0

)
+

[
8431514969

529729200
+

143

192
π2 − 32

7
ln
(
16γe2γE

)

− 1266

49
ln

(
r

r0

)
− 968

63
ln

(
r

r′0

)]
ν

+

[
351838141

5045040
− 41

24
π2 +

968

21
ln

(
r

r′0

)]
ν2 − 1774615

81081
ν3 − 3053

432432
ν4

)
, (6.12b)

C =
48

7
+ γ

(
−4096

315
− 24512

945
ν

)
− 32

7
π γ3/2 . (6.12c)

The term C corresponds to time-odd contributions. The 2.5PN and 3.5PN terms were com-
puted in [38], whereas the new 4PN term −32

7
π γ3/2 comes from the dissipative contribution

9 Note that, after publishing the Hadamard source quadrupole in [13], we have spotted an error in the

d-dimensional computation of the value of the potential R̂i at 1PN order, when evaluated in y1,2. This

error induces a small change in the value of the coefficients, namely δA = −4γ4ν2/63 and δB = 4γ3ν2/63,

which has been taken into account here.
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of the non-local term (6.9). As for the conservative contribution of the tail term (6.8), it
yields the logarithmic dependences ln(16γe2γE) in the time-even coefficients A and B.

Finally, the two constants r0 and r′0 entering the coefficients (6.12) are associated with
the Partie Finie and the dimensional UV regularization schemes, respectively (see [13]). As
unphysical scales, they are expected to be exactly compensated in the radiative moment, by
virtue of non-linear effects and application of the time derivatives. This will be checked in
future work.
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Appendix A: Check with the d = 3 limit of the retarded integral

In three dimensions, the function γ 1−d

2

(z) defined by (2.3) takes the distributional form

γ−1(z) = δ(z − 1), where δ(z − 1) means the Dirac function at point z = 1. More generally,
we have for any ℓ ∈ N (see App. C of [19])

γ−1−ℓ(z) =
1

(2ℓ− 1)!!

ℓ∑

i=0

βℓ
i δ

(i)(z − 1) , (A1)

where δ(i) denotes the i-th derivative of the Dirac function. The numerical coefficients
βℓ
i ≡ 2i−ℓ (2ℓ−i)!

i!(ℓ−i)!
are such that the multipolar retarded or advanced homogeneous wave in 3

dimensions reads

∂̂L

(
F (t∓ r)

r

)
= (−)ℓ

n̂L

rℓ+1

ℓ∑

i=0

βℓ
i (±r)i F (i)(t∓ r) , (A2)

We compute the 3-dimensional limit of our final d-dimensional result (2.18). In this limit
the two integrations over variables y and z can be effected explicitly thanks to Eq. (A1),
while the integration over τ follows from the limit (2.14) which just amounts to replacing

the source term N̂ε by N . Thus, we obtain in 3 dimensions

hL =
(−)ℓ

2
n̂L

ℓ∑

i=0

ℓ∑

j=0

βℓ
i β

ℓ
j r

−1−ℓ+j

×
{∫ +∞

0

dr′ r′
B−ℓ+1+i

N (−2ℓ−1+i+j)(r′, t− r − r′)

− (−)j
∫ +∞

r

dr′ r′
B−ℓ+1+i

N (−2ℓ−1+i+j)(r′, t+ r − r′)

− (−)i
∫ r

0

dr′ r′
B−ℓ+1+i

N (−2ℓ−1+i+j)(r′, t− r + r′)

}
. (A3)
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After inserting the well-known formula for the multiple time anti-derivative (valid for the
source term becoming zero when t′ → −∞)

N (−2ℓ−1+i+j)(r′, t′) =

∫ t′−r′

−∞

ds
(t′ − r′ − s)2ℓ−i−j

(2ℓ− i− j)!
N(r′, s+ r′) , (A4)

and inverting the summations over r′ and s, we can re-express the result (A3) into the form

hL =

∫ t−r

−∞

ds

{∫ t−r−s

2

0

dr′ r′
B−ℓ+1

N(r′, s+ r′)AL (A5)

−
∫ t+r−s

2

r

dr′ r′
B−ℓ+1

N(r′, s+ r′)BL −
∫ r

0

dr′ r′
B−ℓ+1

N(r′, s+ r′) CL
}
.

Here, we have posed as intermediate notation

AL =
(−)ℓ

2

n̂L

r1+ℓ

ℓ∑

i=0

ℓ∑

j=0

βℓ
i β

ℓ
j r

jr′
i (t− r − s− 2r′)2ℓ−i−j

(2ℓ− i− j)!
, (A6a)

BL =
(−)ℓ

2

n̂L

r1+ℓ

ℓ∑

i=0

ℓ∑

j=0

βℓ
i β

ℓ
j (−r)jr′

i (t + r − s− 2r′)2ℓ−i−j

(2ℓ− i− j)!
, (A6b)

CL =
(−)ℓ

2

n̂L

r1+ℓ

ℓ∑

i=0

ℓ∑

j=0

βℓ
i β

ℓ
j r

j(−r′)i
(t− r − s)2ℓ−i−j

(2ℓ− i− j)!
. (A6c)

All the point is now to rewrite these quantities into a more convenient form. For this we
dispose of the following formula, valid for any ρ and r′,

ℓ∑

i=0

βℓ
i

r′i(2ρ− 2r′)2ℓ−i−j

(2ℓ− i− j)!
=

2ℓ−j

ℓ!

(
d

dρ

)j [
ρℓ(ρ− r′)ℓ

]
, (A7)

together with the fact that the coefficients βℓ
i also enter the formula (A2), which can alter-

natively be further written as

(
1

r

∂

∂r

)ℓ [
F (t∓ r)

r

]
=

(−)ℓ

r2ℓ+1

ℓ∑

i=0

βℓ
i (±r)i F (i)(t∓ r) . (A8)

These two facts permit proving that the three terms defined in (A6) are actually all identical:

AL = BL = CL (for any t, s, r, r′) , (A9)

so that we may glue together the three integrals in (A5) and arrive at

hL =

∫ t−r

−∞

ds

{∫ t−r−s

2

0

dr′ r′
B−ℓ+1

N(r′, s+ r′)AL −
∫ t+r−s

2

0

dr′ r′
B−ℓ+1

N(r′, s+ r′)BL

}
,

(A10)
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together with the following summed-up expressions

AL =
2ℓ−1

ℓ!
∂̂L

[
1

r

(
t− r − s

2

)ℓ (
t− r − s

2
− r′

)ℓ
]
, (A11a)

BL =
2ℓ−1

ℓ!
∂̂L

[
1

r

(
t+ r − s

2

)ℓ(
t+ r − s

2
− r′

)ℓ
]
. (A11b)

The fact that AL and BL are actually identical follows immediately from Eq. (A36) in [32].

At last, we can commute the multi-spatial derivative operator ∂̂L in AL and BL with the
integration over r′ in (A10). Indeed, the contributions coming from the differentiation of
the bound (t ∓ r − s)/2 are seen to be zero from the structure of AL and BL respectively.
So, finally, posing

R(ρ, s) = ρℓ
∫ ρ

0

dr′
(ρ− r′)ℓ

ℓ!

(
2

r′

)ℓ−1

r′
B
N(r′, s+ r′) , (A12)

we get our final result in 3 dimensions,

hL =

∫ t−r

−∞

ds ∂̂L

[
R
(
t−r−s

2
, s
)
− R

(
t+r−s

2
, s
)

r

]
. (A13)

This is exactly the result given by Eq. (6.4) in [32].

[1] M. Maggiore, Gravitational waves: Volume 1: Theory and experiments, Vol. 1 (Oxford uni-

versity press, 2008).

[2] L. Blanchet, Gravitational radiation from post-Newtonian sources and inspiralling compact

binaries, Living Rev. Relativ. 17, 2 (2014), arXiv:1310.1528 [gr-qc].

[3] A. Buonanno and B. Sathyaprakash, Sources of gravitational waves: Theory and observa-

tions, in General Relativity and Gravitation: A Centennial Perspective, edited by A. Ashtekar,

B. Berger, J. Isenberg, and M. MacCallum (2015) p. 513, arXiv:1410.7832 [gr-qc].

[4] R. A. Porto, The effective field theorist’s approach to gravitational dynamics,

Phys. Rept. 633, 1 (2016), arXiv:1601.04914 [hep-th].

[5] L. Blanchet, T. Damour, and B. R. Iyer, Gravitational waves from inspiralling compact bi-

naries: Energy loss and wave form to second post-Newtonian order, Phys. Rev. D 51, 5360

(1995), gr-qc/9501029.

[6] L. Blanchet, T. Damour, B. R. Iyer, C. M. Will, and A. G. Wiseman, Gravitational radiation

damping of compact binary systems to second post-Newtonian order, Phys. Rev. Lett. 74,

3515 (1995), gr-qc/9501027.

[7] C. Will and A. Wiseman, Gravitational radiation from compact binary systems: Gravitational

waveforms and energy loss to second post-Newtonian order, Phys. Rev. D 54, 4813 (1996),

gr-qc/9608012.

[8] A. K. Leibovich, N. T. Maia, I. Z. Rothstein, and Z. Yang, Second post-Newtonian order

radiative dynamics of inspiralling compact binaries in the Effective Field Theory approach,

Phys. Rev. D 101, 084058 (2020), arXiv:1912.12546 [gr-qc].

23

https://arxiv.org/abs/arXiv:1310.1528 [gr-qc]
https://arxiv.org/abs/arXiv:1410.7832 [gr-qc]
https://doi.org/10.1016/j.physrep.2016.04.003
https://arxiv.org/abs/1601.04914
https://arxiv.org/abs/gr-qc/9501029
https://arxiv.org/abs/gr-qc/9501027
https://arxiv.org/abs/gr-qc/9608012
https://arxiv.org/abs/1912.12546


[9] L. Blanchet, B. R. Iyer, and B. Joguet, Gravitational waves from inspiralling compact binaries:

Energy flux to third post-Newtonian order, Phys. Rev. D 65, 064005 (2002), erratum Phys.

Rev. D, 71:129903(E), 2005, gr-qc/0105098.

[10] L. Blanchet and B. R. Iyer, Hadamard regularization of the third post-Newtonian gravitational

wave generation of two point masses, Phys. Rev. D 71, 024004 (2004), gr-qc/0409094.
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boliques (Hermann, Paris, 1932).

[32] L. Blanchet and T. Damour, Radiative gravitational fields in general relativity. i. general

structure of the field outside the source, Phil. Trans. Roy. Soc. Lond. A 320, 379 (1986).

[33] K. Thorne, Multipole expansions of gravitational radiation, Rev. Mod. Phys. 52, 299 (1980).

[34] L. Blanchet, Quadrupole-quadrupole gravitational waves, Class. Quant. Grav. 15, 89 (1998),

gr-qc/9710037.

[35] W. Goldberger and A. Ross, Gravitational radiative corrections from effective field theory,

Phys. Rev. D 81, 124015 (2010), arXiv:0912.4254 [gr-qc].

[36] G. L. Almeida, S. Foffa, and R. Sturani, Gravitational Multipole Renormalization (2021),

arXiv:2107.02634 [gr-qc].

[37] L. Blanchet, G. Faye, B. R. Iyer, and S. Sinha, The third post-Newtonian gravitational wave

polarisations and associated spherical harmonic modes for inspiralling compact binaries in

quasi-circular orbits, Class. Quant. Grav. 25, 165003 (2008), arXiv:0802.1249 [gr-qc].

[38] G. Faye, S. Marsat, L. Blanchet, and B. R. Iyer, The third and a half post-Newtonian gravi-

tational wave quadrupole mode for quasi-circular inspiralling compact binaries, Class. Quant.

Grav. 29, 175004 (2012), arXiv:1204.1043 [gr-qc].

25

https://arxiv.org/abs/2021.13672
https://arxiv.org/abs/gr-qc/9710038
https://doi.org/10.1088/1361-6382/ac1850
https://arxiv.org/abs/2105.10876
https://arxiv.org/abs/arXiv:1409.3546 [gr-qc]
https://arxiv.org/abs/gr-qc/9801101
https://arxiv.org/abs/gr-qc/9710037
https://arxiv.org/abs/arXiv:0912.4254 [gr-qc]
https://arxiv.org/abs/2107.02634
https://arxiv.org/abs/arXiv:0802.1249 [gr-qc]
https://arxiv.org/abs/arXiv:1204.1043 [gr-qc]

	desy006
	Innenseite-DESY-Berichte-Vers.2
	desy22-006
	The Quadrupole Moment of Compact Binaries to the Fourth post-Newtonian OrderII. Dimensional Regularization and Renormalization
	Abstract
	I Introduction
	II The retarded integral of a multipolar extended source
	III The difference between two regularization schemes
	IV The MPM algorithm for non-linear interactions
	V Regularization of non-linear interactions at 3PN order
	VI The renormalized mass quadrupole moment at 4PN order
	A Regularization of non-linear interactions at 4PN order
	B Center-of-mass frame and quasi-circular orbits

	 Acknowledgments
	A Check with the d=3 limit of the retarded integral
	 References



