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Abstract. Many extensions of the standard model (SM) predict the existence of axion-like
particles and/or dark Higgs in the sub-GeV scale. Two new sub-GeV particles, a scalar and
a pseudoscalar, produced through the Higgs boson exotic decays, are investigated. The decay
signatures of these two new particles with highly collimated photons in the final states are
discriminated from the ones of SM backgrounds using the Convolutional Neural Networks and
Boosted Decision Trees techniques. The sensitivities of searching for such new physics signatures
at the Large Hadron Collider are obtained.

1. Introduction
Exploring anomalous particles from beyond standard model (BSM) signatures is one important
goal of the Large Hadron Collider (LHC) physics program. Recently, new particles in the sub-
GeV scale have received more and more attention. The light pseudoscalar such as axion-like
particles (ALPs) [1] and light scalar such as dark Higgs [2] are proposed by many BSM models
as mediators in sub-GeV dark matter models [3, 4]. In addition to fixed target and B factories
experiments, the light pseudoscalar and scalar can also be explored at the LHC via the Higgs
boson exotic decays and ALP/dark Higgs strahlung processes.

In this study, the Higgs portal model is used as a prototype to study a novel signature with
highly collimated photons forming a jet-like structure as photon-jet [5, 6, 7]. Two new particles,
a scalar (s) and a pseudoscalar (a), which are much lighter than the SM-like Higgs boson (h),
are introduced. In this work, the case that the light s (a) dominantly decays to γγ and/or 2π0

(γγ and/or 3π0) where γ (π0) is the photon (neutral pion) is studied. Both s and a can be pair
produced from the Higgs boson exotic decays. They are highly boosted after the production of
on-shell h such that the final states are two photon-jets with different substructures depending on
the decay modes of s and a. The relevant signal processes are (i) gg → h→ ss (aa)→ (γγ)(γγ),
(ii) gg → h→ ss→ (π0π0)(π0π0), (iii) gg → h→ aa→ (π0π0π0)(π0π0π0).

The signatures of the photon-jets from s/a are identified using an ATLAS-like electromagnetic
calorimeter [8] with the electromagnetic showers simulated using GEANT4 [9]. In particular,
the photon-jet signatures with the presence of SM backgrounds such as the single photon
or neutral π0 originating from QCD jets is studied using the deep learning technique, the
Convolutional Neural Networks (CNN) [10], and the Boosted Decision Trees (BDT) [11]. The
BDT uses specialized shower shape variables to capture the difference of electromagnetic shower
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development in the electromagnetic calorimeter (ECAL) between signal and backgrounds. Its
performance is compared to CNN which constructs high level feature variables starting from the
deposited energy per cell of the ECAL therefore can extract the maximum amount of information
from the raw measurements of the ECAL. Based on the photon-jet identification performance,
the physics sensitivities of searching for the Higgs exotic decays in pp collisions are derived.

2. Photon-jet Identification with Deep Learning
2.1. Simulation
A lead/liquid-argon (LAr) sampling ECAL with granularity similar to that of the ATLAS
electromagnetic calorimeter has been simulated using GEANT4 with a pseudorapidity (η)
coverage −0.2 < η < 0.2. It consists of a thin pre-sampling layer and three sampling layers
longitudinal in the shower depth. The first sampling layer is segmented into high-granularity
strips in the η direction, with a cell size of 0.0031 × 0.098 in ∆η×∆φ. The pre-sampling layer,
second sampling layer and third sampling layer have granularity of 0.025 × 0.01, 0.025 × 0.0245
and 0.05 × 0.0245 in ∆η ×∆φ, respectively.

The interaction of the photon-jet produced through the signal processes, the single photon
and π0 → γγ backgrounds with the ECAL and their deposited energies in each cell of the
calorimeter are separately simulated with GEANT4. Four benchmark masses of s/a, i.e. 0.45
GeV, 0.6 GeV, 0.8 GeV and 1 GeV are studied. For each process being studied, sample of
100,000 events with energy of the s/a signal or γ/π0 background uniformly distributed from 40
to 250 GeV is generated. The η of s/a, γ and π0 is fixed to zero. Out of each sample, 70% of the
events is used as the training set and the rest is used as the test set for performance evaluation.

2.2. Separation of photon-jet signatures from SM backgrounds using CNN
As shown in Fig. 1, the energy deposits from all cells per ECAL layer are represented as a 2D
image of dimensions Ncells(η)×Ncells(φ), where Ncells(η) and Ncells(φ) are the number of cells
in η and φ direction, respectively. The value for each cell represents the energy deposited in it.

The Keras [12] package with Tensorflow [13] as backend is used for implementing the CNN.
Four separated CNN models have been built for the four ECAL layers. Each CNN model
is constructed with two convolutional layers with filters of size 3 × 3 and stride 1 and the
rectified linear unit (RELU) [14] activation function. Each convolutional layer is followed by a
maxpooling layer of size 2× 2. A flatten layer is used to convert the 2D output array from the
pooling layer to 1D array. The 1D arrays from the four CNN models are concatenated before
fed to two fully connected layers with 32 nodes and the RELU activation. The final output layer
is a fully connected layer with the softmax activation function and number of nodes equal to
the number of distinct classes providing a multi-class output. The categorical cross-entropy loss
function with the adam optimizer [15] is applied.

The confusion matrix for distinguishing between the photon-jet produced in three different
signal processes and the same γ, π0 backgrounds with the test set using CNN are shown in Fig. 2.
The overall identification efficiency of the photon-jet is above 99.2% with γ (π0) rejection rate
above 99.9% (99.8%).

2.3. Comparison of performance between CNN and BDT
The Gradient BDT [16] is used for binary classification of the signal and backgrounds based on
the shower shape variables as used in Ref. [8]. The BDT is trained in four bins of the energy,
[40, 100] GeV, [100, 150] GeV, [150, 200] GeV and [200, 250] GeV.

Figure 3 shows the comparison of the identification efficiency of the photon-jet signal and
γ/π0 background as a function of their energy between CNN and BDT. Compared to BDT,
CNN has higher photon-jet identification efficiency, in particular at energy above 150 GeV, and
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Figure 1: The deposited energy per cell of (a) photon-jet from a→ γγ (ma = 1 GeV) (b) γ (c)
π0 at the first layer of the ECAL. The a, γ and π0 have energy in the range of [40, 250] GeV.
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Figure 2: The normalized confusion matrix for distinguishing between the photon-jet produced
in the process of (a) s → π0π0 (b) a → γγ (c) a → π0π0π0, and the single photon and π0

backgrounds for the test set using CNN. The mass of s and a is assumed to be 1 GeV.

higher γ rejection rate. When photon-jet is produced through a→ γγ, CNN has slightly lower
π0 rejection rate than BDT.

3. Physics Sensitivity
The h → ss (aa) coupling is parameterized as a dimension-1 coefficient µhss (µhaa) and the
sensitivities of photon-jets signatures is translated to this parameter. The branching ratio for
each channel, i.e. s/a → γγ, s → π0π0 and a → π0π0π0 is assumed to be 1 in a model-
independent way. The FeynRules [17] is used to generate the UFO [18] model files and MadGraph
5 [19] is used to generate the signal and background events produced in pp collisions at

√
s = 14

TeV. Additional interactions from the pileup effect are not considered in this study. All events
are passed to PYTHIA 8 [20] for parton showering and hadronization.

The generated truth events are required to have at least two photon-jet candidates with
∆RJ < 0.25, log θJ < −0.8 and Ntrack = 0 [21, 22], where ∆RJ is the cone of radius, θJ is
the hadronic energy fraction of a jet and Ntrack is the number of charged particles inside a
jet. The photon-jets are required to be isolated from nearby charged tracks within ∆R < 0.2.
The leading (J1) and sub-leading (J2) photon-jets are required to be boosted with transverse
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Figure 3: The comparison of identification efficiency of photon-jet (top panels) produced in the
process of (a) s→ π0π0 (b) a→ γγ (c) a→ π0π0π0 and the single photon (middle panels) and
π0 (bottom panels) backgrounds as a function of energy between CNN (orange dots) and BDT
(blue triangles) using the test set. The mass of s and a is assumed to be 1 GeV.
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Figure 4: The projection of limits at 95% CL for (a) |µhss| and (b) |µhaa| for various photon-jet
signatures at the LHC with

√
s = 14 TeV and an integrated luminosity of 3000 fb−1 without the

pileup effect.

momentum PT (J1,2) > 40 GeV and |η| < 2.5. Moreover, the cuts of PT (J1) > 0.4MJ1J2 ,
PT (J2) > 0.3MJ1J2 and 120 < MJ1J2 < 130 GeV, where MJ1J2 is the invariant mass of J1 and
J2, are applied to further suppress the SM backgrounds. Finally, the identification efficiencies
for the highly boosted signals and SM backgrounds using CNN are applied to obtain the events
at reconstruction level assuming the efficiencies are η-independent.

Projection of 95% Confidence Level (CL) limit for |µhss| and |µhaa| at the LHC with
√
s = 14

TeV and an integrated luminosity of 3000 fb−1 without pileup effect is shown in Fig. 4. The
recent Higgs boson exotic decays constraint measured in pp collision data at

√
s = 13 TeV

using an integrated lumininosity of 139 fb−1, B(h → undetected) < 19% [23], is added for the
comparison. With the good performance of CNN, the 2σ bounds for |µhss| and |µhaa| can reach
O(1) MeV.

4. Conclusions
Deep learning technique has been applied to identify the photon-jet signatures produced through
the Higgs boson exotic decays. The results show that the CNN is a promising tool to separate



the photon-jet signatures from SM backgrounds such as the single photon and π0 from QCD jets.
Using CNN, the photon-jet can be identified with efficiency above 99.2% with the backgrounds
rejection rate above 99.8%. For photon-jet with energy above 150 GeV, CNN shows profound
improvement with respect to BDT based on shower shape variables.

The sensitivity of exploring such Higgs boson exotic decays with novel photon-jet signatures
at the LHC without the pileup effect has been studied. The limits on the h→ ss (aa) coupling
at 95% CL as a function of the mass of s (a) have been obtained at the 14 TeV LHC with an
integrated luminosity of 3000 fb−1.
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