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Abstract: We study properties of Abrikosov-Nielsen-Olesen (ANO) strings with the

Coleman-Weinberg (CW) potential, which we call CW-ANO strings. While the scale-

invariant scalar potential has a topologically trivial vacuum admitting no strings at the

classical level, quantum correction allows topologically nontrivial vacua and stable string

solutions. We find that the system of the CW potential exhibits significant difference from

that of the conventional Abelian-Higgs model with the quadratic-quartic potential. While

a single-winding string is qualitatively similar in both systems, and the static intervortex

force between two strings at large distance is attractive/repulsive in the type-I/II regime

for both, that between two CW-ANO strings exhibits a nontrivial structure. It develops

an energy barrier between them at intermediate distance, implying that the string with

winding number n > 1 can constitute a metastable bound state even in the type-II regime.

We name such a superconductor type-1.5. We also discuss implications to high-energy

physics and cosmology.
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1 Introduction

Vortices or cosmic strings are string-like topological objects in quantum field theory [1–4]

playing important roles, from purely theoretical aspects such as supersymmetry [5–9] to

various applications in cosmology [10–15] and condensed matter systems [16–23]. One of

the typical examples is given by quantum vortices or magnetic flux tubes in superconduc-

tors [1, 21, 22]. While conventional metallic superconductors can be well-described by the

Bardeen-Cooper-Schrieffer theory, they can be more efficiently described around the critical

temperature by the Ginsburg-Landau effective low-energy theory, that is the Abelian-Higgs

model consisting of a complex scalar field Φ representing a Cooper pair of electrons and a

U(1) gauge field Aµ representing magnetic fields penetrating into superconductors. Inside

superconductors, the scalar field has a finite expectation value which yields, besides a finite
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scalar boson mass mΦ, a finite gauge boson mass mA as a consequence of the spontaneous

breaking of the U(1) gauge symmetry. Here, the Compton wavelengths m−1
Φ and m−1

A give

the coherence length and penetration depth, respectively. Hence, the scalar field represents

an order parameter of the U(1) gauge symmetry and the massive gauge field becomes the

origin of the Meissner effect.

In the sense of the Ginzburg-Landau theory, the potential of the scalar field, V (Φ) is

given as a polynomial form in terms of the order parameter, namely in the Abelian-Higgs

model, a polynomial of the U(1) invariant Φ†Φ = |Φ|2. The simplest form is given as

VAH(Φ) = m2|Φ|2 + λ|Φ|4. For m2 < 0 and λ > 0, the potential has a stable vacuum

vΦ = 〈Φ〉 =
√
−m2/λ which becomes the scale of the masses. Within such a setup, it

has been shown that the Abelian-Higgs model contains a non-trivial static solution to

equations of motion for Φ and Aµ, the so-called Abrikosov-Nielsen-Olesen (ANO) vortex

solution [1, 2]. A key quantity characterizing the features of the ANO vortex is the ratio

between the gauge and scalar masses and is denoted here by β = m2
Φ/m

2
A. In case of β < 1,

i.e. the lighter scalar boson than the gauge one, superconductors belong to the “type-I”. In

this case, vortices attractively interact and then magnetic fluxes gather. This fact implies

that the type-I superconductors tend to be abruptly destroyed upon applying stronger

magnetic field than a certain critical value. On the other hand, for β > 1, the gauge boson

mass is lighter than the scalar one, for which superconductors belong to the “type-II”. In

this case, magnetic fluxes penetrating into superconductors are discretely localized in the

form of the Abrikosov lattice, and thus type-II superconductors are robust against mag-

netic fields. Thus, the parameter β can be regarded as an indicator of attractive (β < 1)

or repulsive (β > 1) interaction between ANO strings, thereby characterizing robustness

of superconductors against applied magnetic field. There have been many studies investi-

gating the interaction between ANO strings, e.g., [24–30] (see also Refs [31–33] for vortices

in extended models).

An ANO vortex string in the Abelian-Higgs model is a stable object in the sense of

topological invariant which is characterized by the winding number n, or more precisely the

first homotopy group of the vacuum. However, multivortex strings can be unstable. Their

stability relies on the value β: For β < 1 those are always stable, while for β > 1 vortex

strings with n > 1 are unstable and decay into n vortex strings [34]. In particular, for the

critical coupling β = 1, vortex strings feel neither attractive nor repulsive forces, i.e. do not

interact with each other and thus multiple vortex configurations are marginally stable for

arbitrary n. In such a case, the system is in the so-called Bogomol’nyi-Prasad-Sommerfield

(BPS) state [35, 36] corresponding to the lowest bound of the energy, allowing 2n moduli

parameters constituting the moduli space [5–9].

In previous studies, ANO vortex solutions in the Abelian-Higgs model have been in-

vestigated intensively for the quadratic-quartic potential VAH(Φ) [1–4, 10–15]. The above

statements about the stability and forces between vortices have been established solely in

the case of VAH(Φ) at the classical level. However, in general, the occurrence of spon-

taneous symmetry breaking does not restrict the potential only to the quadratic-quartic

form in low-energy effective theories. A possible example would be the Coleman-Weinberg

(CW) potential [37] which induces quantum-mechanically nontrivial vacua: Starting from
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a scale-invariant potential V (Φ) = λ|Φ|4 admitting only the trivial vacuum 〈Φ〉 = 0 at the

classical level, quantum corrections deform the original |Φ|4 potential logarithmically into

V (Φ) ∼ λ|Φ|4 log(|Φ|2/v2
Φ) in which nontrivial vacua emerge. The underlying mechanism

is called the dimensional transmutation [37] or scalegenesis [38] in the sense that one of

dimensionless couplings turns to the dimensionful parameter, i.e. the vacuum expectation

value.

Coleman-Weinberg potentials have recently been attracting renewed interest in ele-

mentary particle physics, based on the argument to extend the Standard Model (SM) from

the viewpoint of the classical scale invariance [39, 40]. Its central idea is to generate the

origin of the electroweak scale via the dimensional transmutation in a scalar sector while

preventing the gauge hierarchy problem (or naturalness problem). The emergence of clas-

sical scale symmetry in the matter sector may be associated to UV theories beyond the

Planck scale based on e.g. asymptotic safety [41] and Multi-critical Point Principle [42–

47]. A simple way to implement such an extension of the SM is introducing a classically

scale-invariant Abelian-Higgs model as a “hidden sector” coupled to the SM via the Higgs

portal coupling [48–53], in which the radiative breaking of the hidden U(1) symmetry

triggers the electroweak symmetry breaking. The Universe with such a sector may have

a quite different thermal history from the Universe without it. Indeed, such models not

only allow for the formation of cosmic strings after spontaneous symmetry breaking (see

e.g. Refs. [54, 55] and references therein), but can also involve extremely strong first-order

phase transitions [56–64], making them a good target for ongoing and future gravitational

wave searches [65–74].

In this paper, we investigate the basic properties of ANO strings described by the CW

type potential. Vortices in this theory are classically unstable and quantum mechanically

stable: While the classical scale-invariant potential V (Φ) = λ|Φ|4 admits the trivial vacuum

uniquely without any vortices, the quantum mechanically corrected CW potential admits

topologically nontrivial vacua and stable vortices, which we call CW-ANO strings.1 One

of the main aims of this work is to study how the interaction between such vortex strings

changes for different values of β. In particular, we study whether there is a clear boundary

between the type-I (attractive) and type-II (repulsive) regimes, and whether there is a

critical coupling accompanied with the BPS state. To this end, we consider a system

of two strings and estimate its total energy as a function of the interstring distance d.

For the conventional Abelian-Higgs model with the quadratic-quartic potential, β < 1

(β > 1) corresponds to the type-I (type-II) regime for any value of d, and the BPS state

is observed at β = 1. In contrast, we find that the CW-type strings develop an energy

barrier as a function of d, implying that the force between them is attractive (repulsive)

at small (large) distances. Though this resembles type-1.5 superconductivity [33, 76], the

attractive-repulsive relation is opposite in the CW case, and thus we call this property

type-1.5. In addition, we find that the strings with multiple winding numbers can be

stable or metastable, depending on the value of β. This stability/metastability transition

occurs at a critical value βc that is different from unity, thus making the CW-ANO string

1Only asymptotic behaviors of a single CW-ANO string were studied before [75].
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in clear contrast to the ordinary ANO string with the quadratic-quartic potential.

The organization of the paper is as follows: In Sec. 2, we summarize our setups to

analyze motion of ANO strings. We first give both the standard quadratic-quartic potential

and the Coleman-Weinberg type potential in order to highlight differences of their structure.

In Sec. 3, the motion of a single string and the composition of the energy a string stores

are investigated for both the quadratic-quartic potential and the CW-type potential by

solving the equations of motion. In Sec. 4, we set up two-string systems and present their

dynamics by solving the equations of motion for two strings numerically. In particular,

there we highlight differences between the quadratic-quartic and CW cases. Sec. 5 is

devoted to summarizing results and making our conclusion. In Appendix A, we introduce

other examples of potentials and show the string tension as a function of the distance in

the two-string system. In Appendix B, we argue the validity of the superposed one-string

ansatz for describing the two-strings system. Appendix C summarizes the string tensions

for various values of β.

2 Model and Setup

In this section, we present the setup of the Abelian-Higgs model with the CW-type po-

tential. For comparison, the conventional quadratic-quadratic potential is also described

in parallel. After introducing the action, we describe a rescaling of quantities that greatly

simplifies the following calculations. We also comment on the justification for using the

CW potential in the study of strings.

2.1 The model

The starting action is given by

S =

∫
d4x

(
|DµΦ|2 − 1

4
FµνF

µν − V (Φ)

)
, (2.1)

where Φ is a complex scalar field, Fµν is the field strength of the U(1) gauge field Aµ
and Dµ = ∂µ − igAµ is the covariant derivative. Lorentz indices are lowered or raised by

the metric ηµν = diag(1,−1,−1,−1). In most of the earlier studies of the ANO string,

the potential is assumed to be a simple quadratic-quartic potential (hereafter denoted by

“AH”, standing for “Abelian-Higgs”), namely

V (Φ) = VAH ≡ λAH

(
|Φ|2 − v2

Φ

)2
, (2.2)

with λAH the quartic coupling and vΦ the vacuum expectation value of Φ. In this system,

the masses of the gauge and scalar bosons are given by

m2
Φ = 4λAHv

2
Φ, m2

A = 2g2v2
Φ, (2.3)

respectively.

The primary goal of this work is to investigate the ANO string solutions obtained from

the CW type potential whose form reads

V (Φ) = VCW ≡ λeff(|Φ|)|Φ|4 − λeff(vΦ)v4
Φ. (2.4)
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Here λeff(|Φ|) is the effective coupling as a function of |Φ| associated with the one-loop

corrections to the quartic coupling from the fields coupled to Φ. More specifically, we give

λeff(|Φ|) = λCW

(
ln
|Φ|2

v2
Φ

− 1

2

)
. (2.5)

In general, when arbitrary numbers of (real) scalar bosons, gauge bosons and femrions are

coupled to the scalar Φ, λCW is given by

λCW =
1

16π2

(
nb∑
i=1

3κ2
i +

ng∑
i=1

g4
i −

nf∑
i=1

y4
i

)
, (2.6)

at the one-loop level, where κi, gi, and yi are scalar-portal couplings, gauge couplings, and

Yukawa couplings, respectively, while nb, ng and nf are the numbers of degrees of freedom

of the relevant fields. In this work, we do not specify the fields that contribute to the

logarithmic running but rather regard λCW as a free parameter. With this parametrization

(2.5), the potential (2.4) has a finite global minimum located at |Φ| = vΦ. The masses of

the gauge and scalar bosons at the minimum take the same form as the AH case

m2
Φ = 4λCWv

2
Φ, m2

A = 2g2v2
Φ. (2.7)

Note that the emergence of the finite dimensionful parameter vΦ from a scale invariant

theory is the consequence of the dimensional transmutation (or scalegenesis) in the CW

type potential: The existence of a finite value of vΦ enforces a relation among dimensionless

couplings (free parameters) contributing to λCW, transmuting one of the free dimensionless

parameters into a dimensionful parameter.

We here stress an important difference between Eq. (2.2) and Eq. (2.4): Whereas VAH

has a negative curvature around its origin, VCW has a plateau due to the absence of the

|Φ|2 term. This difference can be seen in Fig. 1. Indeed, this fact entails a crucial difference

between VAH and VCW in the dependence of energy composition of two strings separated

at a finite distance d. We see this in Sec. 4.

A key quantity characterizing the features of the strings is the parameter β. It is

defined as the mass ratio between the gauge and scalar bosons

β ≡
m2

Φ

m2
A

=


4λAHv

2
Φ

2g2v2
Φ

=
2λAH

g2
: AH,

4λCWv
2
Φ

2g2v2
Φ

=
2λCW

g2
: CW.

(2.8)

Note that, if the gauge boson Aµ dominantly contributes to the running in the CW case,

λCW = 3g4/16π2 gives β = 3g2/8π2 and hence perturbative calculations are not applicable

in the β & 1 regime. However, as noted above, we regard λCW as a free parameter in order

to accommodate the possibilities that other fields contribute to the running and determine

the potential shape.

As mentioned in Sec. 1, in the AH case, β is a parameter classifying type-I (β < 1)

and type-II (β > 1) superconductors. In particular, for the critical coupling β = 1 the BPS

state is realized. In the CW case, however, such a classification is unclear at this point.

We discuss it in Sec. 4.
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Figure 1. Comparison of potentials. The solid and dashed lines indicate VCW and VAH, respec-

tively. The potentials are normalized to zero at Φ = vΦ. We set λAH = λCW = 0.1 in this plot.

2.2 Comments on the use of Coleman-Weinberg potential

Before moving on to the analysis of vortex strings, we comment on the caveats of using

the CW potential. The analysis of the ANO string has been done in the classical action

(2.1) with the quadratic-quartic potential (2.2), while our attempt is made by considering

the string dynamics with quantum-dressed potential VCW. However, the use of the CW

potential alone in the analysis of topological defects may not be fully justified since the

effective potential is merely the leading term in the derivative expansion of the effective

action. In other words, quantum corrections not only deform the potential but also induce

an infinite number of derivative operators which does not appear in the classical action.

More specifically, we write schematically the effective action

Γ =

∫
d4x

[
Ṽ (ΦB) + Z

(0)
Φ |∂µΦB|2 + Z

(1)
Φ |ΦB|2|∂µΦB|2 + · · ·+ Y

(0)
Φ |∂

2ΦB|2 + · · ·
]

=

∫
d4x

[
V (Φ) + |∂µΦ|2 + Z̃

(1)
Φ |Φ|

2|∂µΦ|2 + · · ·+ Ỹ
(0)

Φ |∂
2Φ|2 + · · ·

]
, (2.9)

where ΦB denotes the bare scalar field and the renormalized scalar field is defined as

Φ =

√
Z

(0)
Φ ΦB. Here Ṽ (ΦB) is the effective potential before the field renormalization.

In general, the existence of higher derivative operators modifies the equation of motion

for Φ. Our model-setup and analysis in this work correspond to the study within the

local potential approximation [77] such that in the effective action (2.9) we set Z
(0)
Φ = 1,

Z̃
(i)
Φ = Ỹ

(i)
Φ = · · · = 0 and V (Φ) is given by the CW potential (2.4). Although it is

expected that higher derivative operators are subdominant and thus negligible in the low

energy regime, it is difficult to completely guarantee the validity of this approximation.

Nevertheless, we would like to highlight through this work that energy barriers, which

we will observe in the system of two CW-ANO strings, are a universal feature when the

potential is flatter than quadratic around the origin. Indeed, this fact can be observed in

other forms of the potential as we discuss in Appendix A. Thus, the CW potential can at

least be understood as one representative example of such potentials. We leave a complete

analysis including other terms of the effective action for future work.
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2.3 Conversion to dimensionless quantities

Throughout this paper, it is convenient to use dimensionless quantities since the dimen-

sionality of the system is characterized by the single scale vΦ. Here we define those more

appropriately. Let us start by rescaling the field variables,

Aµ →
1

g
Aµ, Φ→ 1

g
Φ, (2.10)

leading to

S =
1

g2

∫
d4x

(
|DµΦ|2 − 1

4
FµνF

µν − Vβ(Φ)

)
, (2.11)

with

Vβ(Φ) ≡


β

2

(
|Φ|2 − g2v2

Φ

)2
: AH,

β

2

(
ln
|Φ|2

g2v2
Φ

− 1

2

)
|Φ|4 : CW,

(2.12)

and Dµ = ∂µ− iAµ, in which g does not appear. The mass ratio β is given in Eq. (2.8) for

the AH and CW cases. Since g and vΦ always appears in the combination gvΦ, and since

one dimensionful parameter can always be taken to be unity, we adopt the unit gvΦ = 1.

It is equivalent to introduce the dimensionless variables (denoted by tilde)

Aµ = gvΦÃµ, xµ = x̃µ/(gvΦ), Φ = gvΦΦ̃, (2.13)

for which the action is given by

S =
1

g2

∫
d4x̃

(
|D̃µΦ̃|2 − 1

4
F̃µνF̃

µν − Ṽ (Φ̃)

)
≡ 1

g2
S̃, (2.14)

with the covariant derivative D̃µ = ∂̃µ − iÃµ, the field strength F̃µν = ∂̃µÃν − ∂̃νÃµ, and

the potential

Ṽ (Φ̃) ≡


ṼAH =

β

2

(
|Φ̃|2 − 1

)2
: AH,

ṼCW =
β

2

(
ln |Φ̃|2 − 1

2

)
|Φ̃|4 : CW.

(2.15)

Now we see that the action is written in terms of dimensionless quantities and contains

no apparent scale. In this convention, it is clear that the dynamics of the theory only

depends on the single dimensionless parameter β. One can easily translate all quantities in

this dimensionless unit into those in the physical unit by multiplying gvΦ with appropriate

powers. The action (2.14) has the overall factor 1/g2, but it does not affect the string

dynamics, and thus we use S̃ instead of the original S. In the following sections, we always

work in this convention and remove the tilde on dimensionless quantities for notational

simplicity.
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3 Axisymmetric string solution

In this section, we investigate axisymmetric ANO string solutions in the Abelian-Higgs

model with the CW potential, and compare them with the solutions for the conventional

quadratic-quartic potential. In particular, we highlight how the energy of the solutions

depend on β (the ratio between scalar and gauge boson masses).

3.1 ANO string solution

As shown by Nielsen and Olesen in Ref. [2], the Abelian Higgs model (2.1), in general, has a

vortex string solution as a non-trivial (classical) solution to its equation of motion. This is

ensured whenever the potential V (Φ) has U(1)-breaking vacua (i.e., the vacua characterized

by a non-trivial first homotopy group). Thus the existence does not depend on the detailed

shape of the potential V (Φ).

To find the solutions, we start by assuming static and axially symmetric configurations

and then parametrizing the fields Φ and Aµ = (At, Ar, Aθ, Az) as2

Φ = f(r)einθ, Aθ = na(r), At = Az = Ar = 0. (3.1)

Here n is the winding number being integers and r =
√
x2 + y2 is the (dimensionless) radius

on the xy-plane. For their regularity and finiteness of the energy, the profile functions f(r)

and a(r) satisfy the boundary conditions

f(0) = a(0) = 0, f(∞) = a(∞) = 1. (3.2)

Inserting Eq. (3.1) into the energy per unit length (i.e. tension) yields

T ≡ dE

dz
=

∫
rdr dθ

[(
df

dr

)2

+
n2

2r2

(
da

dr

)2

+
n2

r2
f2(1− a)2 + V (f)

]
. (3.3)

The rescaled potential V defined in Eq. (2.15) is given respectively by

V (f) =


β

2
(f2 − 1)2 : AH,

β

2
f4

(
ln(f2)− 1

2

)
: CW.

(3.4)

Here the coefficient of the potentials is given in terms of the mass ratio β defined in

Eq. (2.8). We see that only β is a free parameter of the system. Varying the tension (3.3)

with respect to f and a, their equations of motion are found to be

f ′′ +
1

r
f ′ − n2(1− a)2

r2
f − 1

2

∂V

∂f
= 0, (3.5)

a′′ − 1

r
a′ + 2(1− a)f2 = 0, (3.6)

2Note Ax = −Aθ sin θ/r and Ay = Aθ cos θ/r.
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respectively. Here and hereafter the prime denotes the derivative with respect to r, e.g.

f ′ = df/dr.

We read off the energy density for the stationary configurations (3.1) as

E(r) = (f ′)2 +
n2

2r2
(a′)2 +

n2

r2
f2(1− a)2 + V (f). (3.7)

In particular, for VAH, the tension (3.3) can be rewritten as

T = 2π

∫ ∞
0

dr r E(r)

= 2π|n|

+ 2π

∫ ∞
0

dr r

[(
f ′ + |n|a− 1

r
f

)2

+
n2

2r2

(
a′ +

r

|n|
(f2 − 1)

)2

+
1

2
(β − 1)(f2 − 1)2

]
.

(3.8)

The first and second terms in the integrand are in squared forms and thus always give

positive values. Therefore, the tension is bounded from below as

T ≥ 2π|n|+ 2π

∫ ∞
0

dr r

[
1

2
(β − 1)(f2 − 1)2

]
. (3.9)

Moreover, if β ≥ 1, the second term in Eq. (3.9) also becomes non-negative, so that one

has the Bogomol’nyi bound; T ≥ 2π|n|. In particular, for β = 1 the last term in Eq. (3.8)

vanishes, and the equations of motion (3.5) and (3.6) can be rewritten as the first-order

Bogomol’nyi equations [35] in terms of f and a:

f ′ + |n|a− 1

r
f = 0, a′ +

r

|n|
(f2 − 1) = 0, (3.10)

for which the tension is given by the Bogomol’nyi limit

T = 2π|n| (β = 1). (3.11)

Hence, the vortex becomes stable in sense that its tension takes the lowest value of the

energy bound. This is the BPS state. In the case of VAH, the stability of the vortex strings

can be understood analytically in terms of β, but this is not possible for the CW potential

VCW. Thus the stability analysis of the latter should instead rely on numerical methods.

Clarifying the stability of vortex strings for the CW type potential is one of the main

purposes in this work, and is done in Sec. 4.

We close this subsection by mentioning the behavior of f and a as functions of r. Since

exact solutions to Eqs. (3.5) and (3.6) do not exist even in the case of the AH potential,

numerical methods are necessary to obtain the full solutions. This is discussed in the next

subsection. Instead, we here explore the asymptotic behaviors of f and a in an analytic

way. In the limit r → ∞, the functions f and a are sufficiently close to the vacuum

values, and hence it is convenient to rewrite the equations of motion to the leading order
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in δf ≡ 1− f � 1 and δa ≡ 1− a� 1 as

δf ′′ +
1

r
δf ′ − 2βδf = O((δf)2, (δa)2), (3.12)

δa′′ − 1

r
δa′ − 2δa = O((δf)2, (δa)2), (3.13)

from which it is clear that δf and δa behave as

δf ∝ r−1/2 exp
[
−
√

2βr
]
, δa ∝ r1/2 exp

[
−
√

2r
]
, (3.14)

for r →∞. Note that these expressions apply only for β < 4. For β > 4 (i.e. mH > 2mA),

the nonlinear contribution (δa)2 is larger than the linear contribution δf and thus cannot

be neglected [78]. In this case, the linearized EOMs for δf should be modified to be

δf ′′ +
1

r
δf ′ − 1

r2
(δa)2 − 2βδf = O((δf)2, (δa)3), (3.15)

where the third term is the source term for δf behaving as r−1 e−2
√

2r, and it leads to the

asymptotic behavior

δf ∝ r1/2 exp
[
−2
√

2r
]
. (3.16)

On the other hand, δa does not change from Eq. (3.14). These results are independent

of the detailed shape of the potential V (f), and thus they hold both for the AH and CW

cases, because the nonlinear terms with respect to δf are always negligible. We check this

fact numerically in the next subsection.

3.2 Numerical result

We discuss the behavior of f and a by solving the equations of motion (3.5) and (3.6)

numerically. However, it is technically problematic to directly deal with Eqs. (3.5) and

(3.6) due to numerical fine-tuning required. Instead, we here use the relaxation method

(a.k.a. the gradient flow method) in order to obtain the static configuration with the

minimum energy numerically. We introduce a fictitious time τ called the flow time instead

of the real time t, and promote the profile functions f(r) and a(r) to τ -dependent functions,

f(r, τ) and a(r, τ). We evolve them by the following differential equations (flow equations):

f ′′ +
1

r
f ′ − n2(1− a)2

r2
f − 1

2

∂V

∂f
= ∂τf, (3.17)

a′′ − 1

r
a′ + 2(1− a)f2 = ∂τa, (3.18)

starting from some appropriate functions satisfying the boundary conditions (3.2) as the

initial configuration at τ = 0. For instance, we set f(r, 0) = tanh(r) and a(r, 0) = tanh2(r).

If the τ -evolution converges, ∂τf = ∂τa = 0, the converged profile functions are nothing

but the static solution of the original equations of motion.

In Fig. 2, we show numerical solutions for f(r) and a(r) with n = 1 for both VAH and

VCW given in Eq. (3.4) with β = 0.5 and 1.5. We observe no drastic difference between
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Figure 2. ANO vortex string solutions to Eqs. (3.5) and (3.6) for n = 1 with the potentials (3.4).

We set β = 0.5 (left) and β = 1.5 (right).

the ANO vortex solutions with VAH and VCW. Fig. 3 shows the asymptotic behavior of the

AH-ANO and CW-ANO strings obtained by the numerical calculations for β = 0.5, 1.5,

and 8. The blue and red lines represent δf ≡ 1 − f and δa ≡ 1 − a, respectively. These

quantities follow the analytic prediction ∝ e−
√

2βr and ∝ e−
√

2r for large r for β = 0.5 and

1.5, as seen from the top and middle panels. For β = 8, the asymptotic behavior of the

Higgs field deviates from ∝ e−
√

2βr but rather follows ∝ e−2
√

2r, as seen from the bottom

panels. Thus they are consistent with the analytic prediction obtained in Eq. (3.14).

Fig. 4 shows the energy composition (3.7) of the AH-ANO and CW-ANO strings with

winding number n = 1, 2, and 3 from top to bottom for β = 1.5. Here we define the

contribution from V to the total energy as the potential contribution, and the rest as the

kinetic

TV ≡
∫
rdr dθ V, TK ≡ T − TV . (3.19)

We see that the fraction of each contribution does not differ much between the two cases,

while their values themselves are slightly smaller in the CW-ANO string than those of

the AH-ANO string. We also see that the energy peak is located slightly outward for the

CW-ANO string, reflecting the flat structure of the potential.

We finally plot the total energy of the string for different values of β and for different

values of the winding number in Fig. 5. The left and right panels are for the AH and

CW potentials, respectively, and the bottom row is a zoom-in of the top row. For the AH

potential, all the lines cross at β = 1 that corresponds to the BPS limit (critical coupling).

Besides, the value of T/|n| at β = 1 takes 2π ' 6.28. At this parameter point, the energy

does not depend on the number of strings overlain. This fact indeed agrees with Eq. (3.11).

For the CW potential, in contrast, the lines do not cross at a single point. Therefore, it

seems that there is no apparent BPS state for the CW potential. Comparing the lines with

n = 1 and n = 2, we infer naively that the force between two strings with winding number

n = 1 is attractive for β . 2.1, while it is repulsive for β & 2.1 (see also Fig. 12). However,

as for whether the actual force acting between the two strings is attractive or repulsive,
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Figure 3. Asymptotic behavior of the Higgs field 1 − f (blue) and the gauge field 1 − a (red)

for the AH (left) and CW (right) strings. The parameter value is β = 0.5, 1.5, and 8 from top to

bottom. The dashed lines are ∝ e−
√

2βr (blue) and ∝ e−
√

2r (red). As well known, for β > 4 (i.e.

mH > 2mA), the asymptotic behavior of the Higgs field deviates from ∝ e−
√

2βr but rather follows

∝ e−2
√

2r, as shown in the blue dotted lines in the bottom panels.

nontrivial dependence may arise depending on the distance d. We discuss this point in

detail in the next section to elucidate the interaction feature of the strings.

4 Interaction potential for two string system

In this section we investigate the interaction between two parallel CW-ANO strings located

at the interstring distance d. The static energy E (per unit length) of this system for given d
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Figure 4. Energy composition of the strings with n = 1, 2, and 3 from top to bottom for the AH

(left) and CW (right) potentials with β = 1.5.

is regarded as an effective interaction potential for the strings, which is useful for discussing

the stability of the system.

4.1 Two-string system

The underlying model action is the same as Eq. (2.1) (or its dimensionless version (2.14)).

We consider a system with two parallel CW-ANO strings extending in the z direction.

Thanks to the translational invariance in z, it is sufficient to describe the two strings on
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Figure 5. Energy of the string with different winding number n for the AH (left) and CW (right)

potentials. The bottom panels are zoom-in of the top panels.

the orthogonal plane using static ansatz depending on the two-dimensional (x, y) coordinate

Φ = Φ1(x, y) + iΦ2(x, y), Aµ = (0, A1(x, y), A2(x, y), 0). (4.1)

Here Φ1 and Φ2 are real functions. In this ansatz, however, there is an issue of the gauge

redundancy. This often leads to technical problems in numerical computations such as

convergence. Thus, we fix the gauge as the Coulomb gauge by adding the following gauge

fixing action

Sg.f. = −1

2

∫
d4x (∂iA

i)2, (4.2)

giving the gauge-fixed action

S =

∫
d4x

[
|DµΦ|2 − 1

4
FµνF

µν − V (Φ)− 1

2
(∂iA

i)2

]
. (4.3)

Using this ansatz, the (gauge-fixed) tension reads off as

T =
dE

dz
=

∫
dx dy E(x, y), (4.4)

with the energy density

E = |∂iΦ|2 +
1

4
(∂iAj − ∂jAi)2 +

1

2
(∂iAi)

2 +A2
i |Φ|2 + iAi(Φ

∗∂iΦ− Φ∂iΦ
∗) + V (Φ), (4.5)
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where the index i runs 1, 2. The potential V is defined by Eq. (2.15) with the tildes

removed. To calculate the interaction potential for given d, we put two CW-ANO strings

at (x, y) = (±d/2, 0), and minimize the energy (4.5) with the positions of the string cores

fixed. The minimized energy value is the interaction potential energy at d. By performing

this for various d, we obtain the structure of the interaction potential.

As in the axisymmetric case, we rely on the numerical calculation as it is difficult to

perform the minimization procedure analytically. For the same reason as mentioned in

Sec. 3.2, we promote the functions Φ1,Φ2, A1 and A2 to τ -dependent ones and achieve the

minimization procedure by solving the diffusion equation

− δE
δX

= ∂τX, (4.6)

with X denoting the functions X = Φ1,Φ2, A1, and A2, until this “time evolution” suffi-

ciently converges. Specifically, the diffusion equation (4.6) reads

∂i∂iΦ1 −A2
iΦ1 + 2Ai∂iΦ2 −

∂V

∂Φ1
= ∂τΦ1, (4.7)

∂i∂iΦ2 −A2
iΦ2 − 2Ai∂iΦ1 −

∂V

∂Φ2
= ∂τΦ2, (4.8)

∂i∂iA1 − 2(Φ2
1 + Φ2

2)A1 + 2 (Φ1∂1Φ2 − Φ2∂1Φ1) = ∂τA1, (4.9)

∂i∂iA2 − 2(Φ2
1 + Φ2

2)A2 + 2 (Φ1∂2Φ2 − Φ2∂2Φ1) = ∂τA2. (4.10)

In the following subsections, we present the numerical solutions to these equations and

discuss the properties of the two vortex strings.

4.2 Numerical results

We start by numerically solving Eqs. (4.7)–(4.10). In order to fix the string cores, we

impose Φ1(τ, x, y) = 0 at the position of the cores at every step of the time evolution. We

take the box size L = 30 with the grid size ∆L = 0.05 for both x and y directions, and

evolve the diffusion equations from τ = 0 to τ = 15 with the time step ∆τ = 0.0005. In

the following we plot only part of the full box for visibility.

4.2.1 Field configurations

We first see the field configurations. Fig. 6 shows the y = 0 slice of the field configurations

for β = 2 and d = 2 for the AH (left) and CW (right) strings. The yellow, red, and blue

lines are time slices at t = 0, 2, and 15, respectively.3 The two peaks in the flux density

and energy density correspond to the string cores, (x, y) = (±1, 0), and we see that Φ2
1 +Φ2

2

takes zero at these points. Each string has the winding number unity, so that the total

winding number on the xy-plane is n = 2.

3 Due to Φ1 = 0 we impose at the string cores, the energy density develops small spikes at the cores (see

the red lines in the bottom panels of Fig. 6). Although these spikes are negligible in the total energy, we

remove them at the end of simulation t = 15 by further evolving the system by 20 steps without imposing

Φ1 = 0. We checked that the effect of this procedure is negligible both on the string locations and on the

total energy of the system. In Fig. 6, the final time slice (blue lines) shows the field configurations after

this procedure.

– 15 –



-10 -5 0 5 10

0.0

0.2

0.4

0.6

0.8

1.0

-10 -5 0 5 10

0.0

0.2

0.4

0.6

0.8

1.0

-10 -5 0 5 10
0.0

0.5

1.0

1.5

2.0

-10 -5 0 5 10
0.0

0.5

1.0

1.5

2.0

-10 -5 0 5 10
0

1

2

3

4

5

-10 -5 0 5 10
0

1

2

3

4

Figure 6. Field configurations along y = 0 for the AH-ANO string (left) and for the CW-ANO

string (right) for β = 2. Different lines are for t = 0 (yellow), 2 (red), and t = 15 (blue). For the

spikes in the bottom panels, see footnote 3.

One clear difference between the AH and CW cases is the height of the flux density and

energy density. We already observed this behavior in Sec. 3: while the energy composition

is not much different between the two cases, the energy density itself for the same value of

β is smaller for the CW-ANO string due to the flat structure of the potential around the

origin.

Figs. 7 and 8 are two-dimensional field configurations at t = 15 for the same parameter

point. The phase of the complex scalar field Φ = Φ1 + iΦ2 rotates twice along the circle

with r = ∞, because the total winding number of the system is two. Both figures do not

have much difference except for the height of the peaks in the flux and energy densities, as
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Figure 7. Field configurations for the AH-ANO string for β = 2 and d = 2 with winding numbers

(nL, nR) = (1, 1). The top panels are (Φ1,Φ2) (top-left) and (A1, A2) (top-right), while the bottom

panels are F12 (bottom-left) and E (bottom-right). The red dots in the top panels are the position

of the string cores. The color in the top panels corresponds to the norm of the vectors, (Φ1,Φ2)

and (A1, A2).

mentioned above.

4.2.2 Attractive/repulsive force between strings

We perform above numerical analysis for different values of β and d to construct the

interaction potential for the two-string system with the winding number of the left and

right strings being (nL, nR) = (1, 1) (i.e. n = 2 in total).

Fig. 9 shows the dependence of the total energy per unit length (i.e. tension) on the

interstring distance d. The top row is a broad scan of β for the AH (left) and CW (right)

potentials, while the bottom row shows a zoom-in of the top row around the parameter

values where the tension becomes almost the same at d = 0 and d → ∞. As seen from the

left panels, the lines do not develop any nontrivial structure in the AH case. In particular,

the energy minimum appears at d = 0 (d → ∞) for β < 1 (β > 1), which reflects the
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Figure 8. Field configurations for the CW-ANO string for β = 2 and d = 2 with winding numbers

(nL, nR) = (1, 1). The top panels are (Φ1,Φ2) (top-left) and (A1, A2) (top-right), while the bottom

panels are F12 (bottom-left) and E (bottom-right). The red dots in the top panels are the position

of the string cores. The color in the top panels corresponds to the norm of the vectors, (Φ1,Φ2)

and (A1, A2).

well-known fact that the AH-ANO string with winding number n = 2 is stable for β < 1

while it is unstable and breaks up into two strings with n = 1 for β > 1.

In contrast, as shown in the right panels of Fig. 9, the CW case develops an energy

barrier for some range of β. This energy barrier is most pronounced around β � 2. Due

to this barrier, d = 0 is either a local or absolute minimum for this range of β. Comparing

the asymptotic values of the energy at d = 0 and d → ∞, we find that d = 0 is an

absolute minimum when β is smaller than a critical value βc (see β = 2.00, 1.95, 1.90 in

the right-bottom panel) while it becomes a local (not global) minimum when β is larger

than βc (see β = 2.10, 2.15, 2.20). This means that CW-ANO strings are metastable once β

exceeds βc. While the energy barrier prevents the metastable CW-ANO string with n = 2

from breaking up classically, quantum effects allow for it. Numerically we find that this

stable-metastable transition occurs around βc � 2.07, see the top panel of Fig. 12.
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Figure 9. Distance dependence of the energy of the two-string system with the AH (left) and CW

(right) potentials.

Note that, around β ' 1, the asymptotic behavior at large d for the CW-ANO string

is almost flat and hence the existence of the barrier is difficult to read off from the figure.

This is because the asymptotic behavior is a superposition of two effects: one is the energy

barrier, and the other is the mild exponentially decaying tail. The latter is studied in

the previous asymptotic analysis for axisymmetric strings. What we find there is that the

coefficient of the exponential is positive (negative) for β < 1 (β > 1), independently of

the potential shape. Thus we expect that the CW-ANO string develops the barrier for β

slightly larger than unity. On the other hand, it is numerically hard to see if there is an

upper bound on β that develops the barrier.

Finally, we highlight the difference between the AH and CW cases from another view-

point. In the conventional AH-ANO string with the quadratic-quartic potential, β = 1

is the only value at which the system shows a clear transition between different regimes.

What we find here is that it is not always the case for more general potentials: For the

CW-ANO string, β = 1 is still the transition between the attractive/repulsive regimes for

two strings far separated, whereas another critical value β = βc comes into the game once

(meta)stability is concerned. Therefore, two-string systems with generic potentials may

have richer phase structures and lead to richer phenomena than previously thought.

4.3 Larger winding numbers

We examine whether the same behavior as in the previous subsection can be observed for

strings with different winding numbers. For this purpose we change the winding number
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Figure 10. Field configurations for the CW-ANO string for β = 2 and d = 4 with winding numbers

(nL, nR) = (3, 1). The top panels are (Φ1,Φ2) (top-left) and (A1, A2) (top-right), while the bottom

panels are F12 (bottom-left) and E (bottom-right). The red dots in the top panels are the position

of the string cores. The color in the top panels corresponds to the norm of the vectors, (Φ1,Φ2)

and (A1, A2).

of the left and right strings nL and nR. One example of the field configuration is shown in

Fig. 10 for (nL, nR) = (3, 1). Since the total winding number is 4, the Φ field rotates four

times along a circle at r = ∞. Due to the larger winding number, the left string is thicker

and develops a ring in the energy density [15].

Similarly to Sec. 4.2, we solve the diffusion equation for different values of β and d

to construct the interaction potential. Fig. 11 shows the distance dependence of the total

energy of the two-string system for winding numbers (nL, nR) = (2, 1), (2, 2), (3, 1), and

(3, 3). We see that all the lines are monotonic for the AH case, while the barriers still

remain for the CW case.

Finally, we show the stability-metastability diagram of the CW-ANO string for differ-

ent winding numbers in Fig. 12. The blue and red lines are the string tension at d = 0

and d = ∞, respectively, while the yellow lines show the height of the energy barrier. For
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Figure 11. Distance dependence of the energy for larger winding numbers for the AH (left) and

CW (right) strings. The winding number is (nL, nR) = (2, 1), (3, 1), (2, 2), and (3, 3) from top to

bottom.
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Figure 12. Stability and metastability of the CW-ANO string for different winding numbers

(nL, nR). The blue and red lines show the total energy of the system at d = 0 and d = ∞,

respectively, while the yellow line is the value of the energy barrier. In the parameter region in

which the red line is above (below) the blue line, the string is stable (metastable). The winding

numbers are (nL, nR) = (1, 1), (2, 1), (3, 1), (2, 2), and (3, 3) from top to bottom.
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β smaller (larger) than the gray line, the tension at d = 0 is smaller (larger) than that at

d =∞, and thus the string with winding number n = nL + nR can decay into two strings

with nL and nR.4

4.4 Closer look at the d-dependence

AH case Let us take a closer look at the energy behavior we found in Sec. 4.2. Firstly, we

consider the AH-ANO string. Let T (d) be the minimized total tension for the two-string

system with (nL, nR) = (1, 1) and d being the fixed distance. The strings feel the repulsive

(attractive) interaction potential when T ′(d) < 0 (T ′(d) > 0). It is convenient to introduce

the tension difference

∆T (d) ≡ T (d)− T (d = 0). (4.11)

As discussed in Sec. 3, the AH-ANO string exhibits a special property in the BPS limit β =

1 that ∆T (d) is independent of d, as each string has the translational moduli parameter. For

β 6= 1, it is difficult to investigate ∆T (d) analytically. Thus we focus on two extreme cases:

large d (� 1) and small d (� 1), and investigate its asymptotic behaviors. The qualitative

behavior with large d, i.e., for well-separated strings, is relatively easy to understand. As

studied in Sec. 3, the string configurations take the asymptotic behaviors (3.14) at large

distances from the strings, and hence the interaction is dominated by the overlap between

the exponential tails from the gauge field (scalar field) for β > 1 (β < 1). Furthermore, the

gauge and scalar fields provide the repulsive and attractive interactions, respectively [15].

Thus ∆T (d) at large d increases and decreases in d when β < 1 and β > 1, respectively.

On the other hand, the behavior of ∆T (d) for small d is more complicated. Thus we

consider the near-BPS case, β ' 1, and perform the perturbative analysis with respect to

|β − 1| � 1. At the zero-th order of β − 1, i.e., for the BPS limit β = 1, the tension of

the BPS solution reduces to the well-known result 4π independent of d. Furthermore, the

BPS solution with d = 0, i.e., the axisymmetric BPS solution with n = 2, is given by

Φ = fBPS(r)e2iθ, (4.12)

with f(r)BPS ∝ r2 for r ' 0 and fBPS(r)→ 1 for r →∞. Let us perturb the BPS solution

(4.12) by an infinitesimal perturbation

δcΦ = ch2(r)fBPS(r), (4.13)

with c (� 1) an arbitrary real constant and h2 satisfying the linearized EOM

− 1

r

d

dr

(
r

dh2

dr

)
+

(
f2

BPS +
4

r2

)
h2 = 0, (4.14)

4Note that the string decay can have multiple channels for n ≥ 4. For example, n = 4→ (nL, nR) = (3, 1)

and n = 4 → (nL, nR) = (2, 2) are both allowed for β & 2.4. Also note that the decay chain can continue

for more than one step, for example 4 → (3, 1) → (2, 1, 1) → (1, 1, 1, 1). The detailed construction of the

decay channel is beyond the scope of this paper.
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from which one can see that h2(r) is approximately expanded h2(r) ∝ r−2 for r ' 0. This

perturbation corresponds to splitting the axisymmetric solution into the two strings. This

can be seen by taking c such that

ch2(r) ' − d2

4r2
(for r ' 0), (4.15)

leading to the perturbed configuration

Φ + δcΦ = fBPS(r)e2iθ + ch2(r)fBPS(r), (4.16)

whose absolute value has two zero’s at (x, y) = (±d/2, 0) as

|Φ + δcΦ|2 = fBPS(r)2
[
1 + c2h2(r)2 + 2ch2(r) cos 2θ

]
(4.17)

' r4

[
1− 1

2

d2

r2
cos 2θ +

(
d

2r

)4
]

(for r ' 0). (4.18)

Note that, this perturbation does not change the tension from 4π to the order of O(c2) [15],

and thus, to the order of O(d4), the perturbed configuration coincides with the BPS solution

with the nonzero interstring distance d. In other words, this perturbation is nothing but

the moduli, with respect to which the tension changes only by the order of O(c3) (O(d6)).

Let us take into account the leading order of β − 1(6= 0). The tension is decomposed

as

T = TV + TK , (4.19)

TV =
β

2

∫
d2x (|Φ|2 − 1)2, TK =

∫
d2x

(
1

2
B2
z + |DiΦ|2

)
, (4.20)

where TV and TK are the contributions to the tension from the potential energy and from

the sum of the kinetic energy for the scalar and gauge fields, respectively. TK can be

rewritten as

TK = 4π +

∫
d2x

[
1

2

(
Bz + |Φ|2 − 1

)2
+ |(Dx + iDy)Φ|2

]
− 1

2

∫
d2x (|Φ|2 − 1)2, (4.21)

where we have used
∫

d2xBz = 4π. If the BPS limit is exact β = 1, the third term in TK
cancels with TV , and thus the tension is minimized to be 4π if and only if the second term

in Eq. (4.21) vanishes, leading to the well-known BPS equations as studied in Sec. 3. Since

β now slightly differs from unity, the cancellation is not exact, and the solution for each

fixed d deviates from the BPS solutions by the order of O(β−1), say, Φ = Φ(BPS) +δβΦ and

Ai = A
(BPS)
i + δβAi. (“δβ” indicates deviations of the order of O(β − 1).) By substituting

these and using that Φ(BPS) and A
(BPS)
i solve the BPS equations, it is found that the second

term in Eq. (4.21) gives O((β − 1)2) terms,

TK = 4π +O((β − 1)2)− 1

2

∫
d2x (|Φ|2 − 1)2. (4.22)
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Therefore, we obtain a relation for the kinetic energy and the potential energy,

∆TV (d)

∆TK(d)
= −β +O((β − 1)2) (4.23)

with ∆TV (d) ≡ TV (d)−TV (0) and ∆TK(d) ≡ TK(d)−TK(0), which holds for every solution

with arbitrary d. This relation can be confirmed by the numerical results, see Fig. 13. As

seen from the left panels of Fig. 14, this relation is realized by ∆TK(d) being positive and

∆TV (d) being negative. Since |∆TV /∆TK | > 1 (< 1) for β > 1 (β < 1) from Eq. (4.23),

the sign of their sum ∆T (d) changes at β = 1.

Let us see how ∆T (d) depends on d to the leading order of β − 1. To this end, it is

convenient to rewrite T using Eqs. (4.20) and (4.22) as

T = 4π +
β − 1

2

∫
d2x (|Φ|2 − 1)2 +O((β − 1)2), (4.24)

from which it can be seen that the deviations from the BPS solution, δβΦ and δβAi, give

negligible contributions of the order of O((β − 1)2) due to the factor β − 1 in the second

term. Thus, to the leading order of β − 1, we can take the configuration as the BPS

solution Φ ' Φ(BPS) and Ai ' A(BPS)
i . In particular, the solution with d = 0 can be taken

as Eq. (4.12).

Then, we again perturb the solution by acting the infinitesimal deformation (4.13).

The perturbed one coincides with the BPS solution with fixed d to the order of O(d4).

However, since β deviates from unity, the perturbation is no longer the moduli of the

tension. Instead, the perturbation changes the tension as

T =
β − 1

2

∫
d2x

(
fBPS(r)2

[
1 + c2h2(r)2 + 2ch2(r) cos 2θ

]
− 1
)2

+ 4π +O((β − 1)2), (4.25)

and hence

∆T (d) = (β − 1)c2

∫
d2xh2(r)2

(
fBPS(r)2 − 1

)
+O(c4) +O((β − 1)2), (4.26)

where we have used Eq. (4.17) and
∫

dθ cos 2θ = 0. Thus the tension changes by the order

of O(c2) (O(d4)), instead of O(c3) (O(d6)). From Eq. (4.26), it can be seen that the sign of

∆T (d) changes from positive to negative as β exceeds unity (note that fBPS(r)2 < 1 holds

everywhere), which agrees with the behavior derived from the relation (4.23).

From the above analysis for small d, it follows that ∆T (d) increases and decreases as

∝ ±d4 for β < 1 and β > 1, respectively. Note that this analytical argument is valid to

the leading order of O(β − 1). Remarkably, this behavior is confirmed by the numerical

calculation even for wide range of β, see the left panels in Fig. 14. The top-left and bottom-

left panels show the behavior of ∆T (d) at small d for β = 0.9 and β = 2.0, respectively.

The former one has the asymptotic behavior increasing with ∝ d4 while the latter one has

decreasing one with ∝ d4.

Therefore, the asymptotic behavior of ∆T (d) in the AH case is summarized as below:
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Figure 13. Ratio between ∆TK and ∆TV for the AH-ANO string. The data points show the

average value of −∆TV /∆TK evaluated at d = 0.1, 0.2, · · · , 1. They match well with the prediction

from Eq. (4.23), i.e. 〈∆TV /∆TK〉 = −β + O((β − 1)2). The gray line is 〈∆TV /∆TK〉 = −β for

comparison.

• ∆T (d) increases/decreases with exponential behaviors at large d for β < 1 (β > 1).

• ∆T (d) increases/decreases being proportional to d4 at small d for β < 1 (β > 1).

These agree well with the qualitative structure read off from the left panels in Fig. 9, which

do not have any non-trivial energy barrier.

CW case In the case of the CW-ANO string, in contrast, there is no simple way of

understanding the behavior of the string tension like the AH-ANO string. We again focus

on the two extreme cases: large d and small d. For large d, the asymptotic behavior of

∆T (d) is the same as that of the AH case, because the analysis that led to Eq. (3.14) holds

independently of the detailed shape of the potential. Thus ∆T (d) exponentially increases

and decreases at large d when β < 1 and β > 1, respectively.

On the other hand, the small d behavior is much more complicated. In the blue

lines of Fig. 14 we show the absolute value of the tension difference |∆T (d)| at small

d. We also show its kinetic and potential contributions |∆TK(d)| and |∆TV (d)| in red

and yellow, respectively. In this plot, solid (dotted) lines mean that the quantity before

taking the absolute value is positive (negative). From the top-right (β = 1.8) and bottom-

right (β = 3) panels, we see that the CW-ANO string behaves as |∆T (d)| ∝ d4 with

positive coefficients around d ∼ 0 independently of the value of β. However, their kinetic

and potential fractions are totally different. For β = 1.8, it is the potential contribution

∆TV (d) that dominates the d-dependence for small d, while it is the kinetic ∆TK(d) for

β = 3. Also, the sign of ∆TV (d) changes between these two panels. In Fig. 19 in App. C

we show how ∆TK(d) and ∆TV (d) behave for different values of β. We clearly see the

tendency that ∆TV (d) dominates the behavior of ∆T (d) for small β, while ∆TK(d) starts

to dominate as β increases.

The energy barrier for the CW-ANO string appears as a result of these asymptotic

behaviors. The existence of the barrier requires ∆T (d) be an increasing and deceasing
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Figure 14. Behavior of the absolute value of the energy difference ∆T (d) = T (d) − T (d = 0) for

the AH-ANO and CW-ANO strings. The left panels show the AH case with β = 0.9 (top) and

β = 1.5 (bottom), while the right panels show the CW case with β = 1.8 (top) and β = 3 (bottom).

The red and yellow lines are |∆TK(d)| and |∆TV (d)|, respectively, while the blue lines are |∆T (d)|.
For the solid (dotted) lines, the quantity before taking the absolute value is positive (negative). See

also Figs. 18 and 19.

functions of d for small and large distances, respectively. The latter is guaranteed for

β > 1, while the former is difficult to understand analytically.

5 Discussion and conclusions

In this paper we have investigated the properties of the Abelian-Higgs string described

by the CW potential. As well known, the Abelian-Higgs string described by the usual

quadratic-quartic potential (which we simply call the AH-ANO string) has two phases,

type I (attractive) and type II (repulsive), and the only deterministic parameter is the mass

ratio of the gauge boson to the Higgs β = m2
Φ/m

2
A, with the BPS state existing at the

boundary β = 1. However, in high-energy physics, this is not the only potential that leads

to spontaneous symmetry breaking in low-energy effective theories. One typical example

is the Coleman-Weinberg (CW) potential. While the λΦ4 potential classically admits only

the trivial vacuum with no string, nontrivial vacua arise once quantum corrections are

taken into account. We call the string realized by this potential the CW-ANO string, and
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have investigated in detail the difference of its properties from those of the usual AH-ANO

string.

In Sec. 3 we have estimated the energies for different mass ratios β and winding numbers

n for axisymmetric strings. For the AH-ANO string, the energy per unit length (tension)

for different n intersects at a single point (BPS) at β = 1 (see Fig. 5), whereas this is not the

case for the CW-ANO string. This fact already suggests that the phase diagram of the CW-

ANO string has a richer structure. We have also investigated the field configurations for

both AH-ANO and CW-ANO strings. Although the fractions of the kinetic and potential

contributions are not significantly different between the two, some differences have been

observed: For the CW-ANO string, the values of both contributions themselves are smaller,

and radius at which the configuration mainly contributes to the total energy is located

outward. These reflect the flatness of the potential near the origin.

In order to investigate the richer structure of the CW-ANO string suggested by the

analysis of axisymmetric strings, in Sec. 4 we have numerically determined the interaction

potential (minimum energy) of the two-string system as a function of the interstring dis-

tance d. This can be done without numerical difficulty by rewriting the equation for the

minimum energy as a diffusion equation (Eq. (4.6), also called the flow equation). Inter-

estingly, an energy barrier has been observed in the interaction potential at some distance

for CW-ANO strings with β > 1 (Fig. 9), meaning that the interstring force is attractive

(repulsive) below (above) that distance. While such coexistence of attraction and repul-

sion is known for so-called type-1.5 strings, the attractive/repulsive relation is found to be

opposite in the CW-ANO string. Thus we call the latter type-1.5. We have also found

that the relative magnitude of the energy at d = 0 and at d = ∞ depends on the value

of β, and that the transition occurs at some critical value β = βc, not at β = 1. Such

transition in string properties at multiple values of β is one distinct feature not observed

in AH-ANO strings, and it suggests that vortex strings in general have richer properties

than previously thought.

We also have had a closer look at the energy barrier observed in the CW-ANO string

in Sec. 4.4. For small d, the kinetic and potential terms contribute to the total energy

of the AH-ANO string as increasing and decreasing functions of d, respectively. Their

relative magnitude changes at β = 1, so that the attractive/repulsive relation also changes

across this value. In the case of the CW-ANO strings, however, the d-dependence of the

string tension is much more complicated, due to the absence of the BPS state. While the

interstring force at large d behaves in a similar way as the AH-ANO string (i.e. attractive

(repulsive) for β < 1 (β > 1), see also the last paragraph of Sec. 3.1), it behaves nontrivially

at small d (Figs. 14 and 19). The combination of different behavior at small and large d

results in the appearance of the energy barrier in the CW-ANO string.

In App. A, we have confirmed the same features for other potentials that have a

flat structure around the origin. As mentioned in Sec. 2.2, the analysis of the CW-ANO

string in this paper is not fully justified in that it uses the effective potential alone, which is

merely the leading term of the effective action. However, the universality confirmed at least

suggests that strings with different potentials have rich phase structures than previously

thought.
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In our analysis, we did not specify the origin of the logarithmic running of the quartic

coupling λ(Φ), which could be radiatively generated by loop effects of scalar bosons, gauge

bosons, or fermions in general. There still remains the question whether the same result

is obtained without integrating out these underlying particles. This is an interesting but

highly non-trivial question, which will be tackled elsewhere.

There are many possible applications of the analysis in this paper. Relatively straight-

forward applications would be to investigate string properties for a larger variety of po-

tentials, or to compute the quantum decay of strings. Other applications include going

beyond the simplest Abelian-Higgs model. When the U(1) gauge field is coupled to more

complex scalar fields (the extended Abelian-Higgs model), strings are called semi-local

strings [79, 80]. The extension of our work to the case of semi-local strings is one of inter-

esting future directions. On the other hand, when the U(N) gauge field is coupled to N×N
matrix complex scalar field (the non-Abelian Higgs model), strings are called non-Abelian

strings [81–84] (for N × Nf (Nf > N) matrix scalar field, then non-Abelian semi-local

strings [85, 86]). Non-Abelian strings have internal orientational moduli and have been

studied extensively, see Refs. [5–9] for a review. Apparently, a non-Abelian extension of

our work is also worth studying.

As for applications to high-energy phenomenology, it is worth to point out that elec-

troweak Z strings are discussed in the Standard Model (SM) [80, 87, 88]. These strings

are nontopological and in fact are unstable in the realistic parameter region [80, 89–91].

The same happens for models beyond the SM (BSM) such as two-Higgs doublet models

[92, 93] (see also Refs. [94–99] for topological fractional Z-strings). It is an interesting

open question whether a CW-type potential can stabilize Z-strings in the (B)SM. From

the viewpoint of cosmology, cosmic strings are one of the interesting targets of the ongoing

and future gravitational wave observatories [65–74], and the nontrivial dependence of the

energy on the string distance may affect the reconnection dynamics and thus leave its own

characteristic imprint on the spectrum. We leave such a study for future work.

We conclude this section by mentioning another interesting implication for condensed

matter physics. If one can realize a superconducting material that is described by an

effective theory similar to the one we studied in this paper, i.e., the Landau-Ginzburg

theory with the CW potential without the quadratic term, one would observe a non-trivial

behavior of the vortices for β > 1. For example, consider an external magnetic field applied

to the material. When the magnetic field is relatively weak but suffices to penetrate it, the

vortices are dilute and the typical distance between neighboring vortices is large. At this

point the interaction is repulsive, just in the same way as the ordinary Abrikosov lattice.

However, as the magnetic field gets stronger, the number of the vortices increases and the

typical distance between them gets smaller. As a result, once the magnetic field exceeds

a critical value, the distance between some of the neighboring vortices becomes so small

that the interaction between them flips the sign and the pairs start to merge into vortices

with winding number two. What would happen if we make the magnetic field stronger?

One possibility is that the material behaves similarly as buffer solution: after some of the

pairs merge, the distance between vortices would be large enough again for the vortices

to feel the repulsive force. As the magnetic field becomes further stronger, the number of
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the merged pairs increases, but the lattice structure would still remain. Therefore, such

a material can be more stable against the magnetic field than the conventional type-II

superconductors.
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A Universality of the barrier for flat potentials

In this appendix, we analyze several types of potentials that have flat structure around the

origin, and show that the strings have similar properties as we found in the main text for

the CW potential. We study the rescaled potentials

ṼAH−cut =


β

2
Ṽ0

(
|Φ̃| <

√
1−

√
Ṽ0

)
,

β

2

(
|Φ̃|2 − 1

)2
(
|Φ̃| >

√
1−

√
Ṽ0

)
,

(A.1)

ṼAH−36 =
2β

9

(
|Φ̃|3 − 1

)2
, (A.2)

ṼAH−48 =
β

8

(
|Φ̃|4 − 1

)2
. (A.3)

We plot these potentials in Fig. 15. We calculate the d-dependence of the energy of the

two-string system with the same method as the main text. The result is shown in Fig. 16.

We see that all of these potentials develop an energy barrier around d ∼ 2− 3.
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Figure 15. Potentials used in App. A: ṼAH (blue), ṼCW (red), ṼAH−cut with Ṽ0 = 0.5 (yellow),

ṼAH−36 (green), and ṼAH−48 (light blue).
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Figure 16. Distance dependence of the energy of the two-string system with the ṼAH−cut with

Ṽ0 = 0.5 (top), ṼAH−36 (bottom-left), and ṼAH−48 (bottom-right).
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B Explanation with one-string ansatz

In this appendix we study whether the superposition of the string configuration with wind-

ing number n = 1 can explain the behavior of the energy. In Fig. 17 we show the compari-

son between the energy calculated from the actual two-string configuration (blue) and that

from superposed one-string ansatz (red). For the latter, we first solve for the axisymmetric

configuration that minimizes the energy for n = 1, and then superpose two of such config-

urations at distance d. The superposition is done with Φ = ΦL×ΦR and Ai = Ai,L +Ai,R,

with the subscripts L and R are for the left and right strings, respectively. We see that the

superposed configurations explain the behavior of the blue lines at large distances, while

they fail at small distances.

C Details for the string tension

In this appendix we show the kinetic and potential contributions ∆TK(d) and ∆TV (d) to

the string tension difference ∆T (d) for a wider range of parameter values. Figs. 18 and 19

show how the string tension ∆TK(d), ∆TV (d), and ∆T (d) behave for different values of β

and d for the AH-ANO and CW-ANO strings, respectively. The blue lines are the absolute

value of the tension difference |∆T (d)|, while the red and yellow lines are its kinetic and

potential contributions |∆TK(d)| and |∆TV (d)|. The solid and dotted lines indicate that

the quantity before taking the absolute value is positive and negative, respectively.

For the AH-ANO string, ∆TK(d) and ∆TV (d) are always positive and negative, re-

spectively. Their ratio is ∆TV (d)/∆TK(d) ' −β at the leading order in β−1 (see Sec. 4.4).

Since their relative magnitude changes across β = 1, their sum ∆T (d) behaves as an in-

creasing and decreasing function for β < 1 and β > 1, respectively.

In contrast, ∆TK(d) and ∆TV (d) for the CW-ANO string can change the sign at

some value of d . O(1), depending on the value of β. While the asymptotic behavior for

d� O(1) can be understood analytically (see Sec. 4.4), the behavior at small d is hard to

grasp. The energy barrier for the CW-ANO string appears as a result of these asymptotic

behaviors.
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Figure 17. Comparison between the energy of the actual two-string system (blue) and superposed

one-string ansatz (red). The potential is VAH with β = 1 (top-left), VCW with β = 2 (top-right),

VAH−cut with β = 2 (middle), VAH−36 with β = 3 (bottom-left), and VAH−48 with β = 6 (bottom-

right).
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Figure 18. |∆TK | (red), |∆TV | (yellow), and |∆T | (blue) for the AH-ANO string. The value of β is

β = 0.6, 0.7, 0.8, 0.9 (left column) and β = 1.1, 1.2, 1.3, 1.4 (right column) from top to bottom. The

solid (dotted) lines mean that the quantity before taking the absolute value is positive (negative).
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Figure 19. |∆TK | (red), |∆TV | (yellow), and |∆T | (blue) for the CW-ANO string. The value of

β is β = 1.2, 1.4, 1.6, 1.8, 2.0 (left column) and β = 2.2, 2.4, 2.6, 2.8, 3.0 (right column) from top to

bottom. The solid (dotted) lines mean that the quantity before taking the absolute value is positive

(negative).
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