
DEUTSCHES ELEKTRONEN-SYNCHROTRON
Ein Forschungszentrum der Helmholtz-Gemeinschaft

DESY 22-073
BONN-TH-2022-12
arXiv:2206.01584
June 2022

Tree-Level Soft Emission of a Quark Pair in

Association with a Gluon

V. Del Duca

Institut für Theoretische Physik, ETH Zürich, Switzerland
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Abstract: We compute the tree-level current for the emission of a soft quark-

antiquark pair in association with a gluon. This soft current is the last missing in-

gredient to understand the infrared singularities that can arise in next-to-next-to-next-

to-leading-order (N3LO) computations in QCD. Its square allows us to understand for

the first time the colour correlations induced by the soft emission of a quark pair and a

gluon. We find that there are three types of correlations: Besides dipole-type correla-

tions that have already appeared in soft limits of tree-level amplitudes, we uncover for

the first time also a three-parton correlation involving a totally symmetric structure

constant. We also study the behaviour of collinear splitting amplitudes in the triple-soft

limit, and we derive the corresponding factorisation formula.

1On leave from INFN, Laboratori Nazionali di Frascati, Italy.
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1 Introduction

The cornerstone of all methods to make predictions for modern collider experiments is

perturbative Quantum Field Theory, where observables are expanded into a series in

the coupling constants. The higher orders in the perturbative expansion capture, on

the one hand, the effect of the exchange of virtual quanta, and, on the other hand, the

emission of unobserved real particles in the final state. In theories featuring massless

particles, both the real and virtual corrections are separately divergent (even after

ultraviolet renormalisation), but their sum is finite for a scattering of colourless particles

in the initial state (e.g., at an e+e− collider) due to the celebrated Kinoshita-Lee-

Nauenberg theorem.1 The cancellation of these infrared singularities, however, is very

1If the scattering features also hadrons in the initial state, the divergences only cancel after we

perform mass factorisation.
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intricate, because it only happens after phase space integration, and the real and virtual

corrections live in different phase spaces.

The infrared singularities stemming from real corrections arise from regions of

phase space where massless particles become unresolved, i.e., they become either soft

(meaning that they have vanishing energies) or collinear to each other. The behaviour

of scattering amplitudes in these unresolved limits is universal, in the sense that the

amplitudes factorise into amplitudes without the unresolved particles, multiplied by

a function that captures the divergence and does not depend on the underlying hard

scattering. This universality of soft and collinear divergences is at the heart of so-called

subtraction schemes, where, very loosely speaking, one subtracts the phase space di-

vergences of real corrections at the integrand level, and adds them back in integrated

form to cancel the infrared singularities of virtual corrections. Subtraction schemes at

next-to-leading order (NLO) and next-to-next-to-leading order (NNLO) in the strong

coupling constant are one of the cornerstones of modern precision computations in

(massless) Quantum Chromodynamics (QCD). The construction and the success of

subtraction schemes at NLO and NNLO rely crucially on the fact that the soft and

collinear divergences describing tree-level amplitudes with up to two unresolved parti-

cles and one-loop amplitudes with one unresolved parton are well understood [1–12].

In order to reach the target precision for current and future collider experiments,

like the Large Hadron Collider (LHC) at CERN and its potential successors, NNLO

computations in QCD may not be sufficient, but also next-to-next-to-next-to-leading

order (N3LO) corrections will be required. While first examples of non-trivial two-

and three-loop amplitudes relevant to N3LO computations have recently become avail-

able [13–20], one of the major bottlenecks is that there is currently no general under-

standing of how to combine the real and virtual corrections. Experience from NNLO

shows that it is important to understand in detail all the unresolved limits that lead

to singularities in an N3LO computation. The relevant collinear singularities are by

now completely understood, and they include the emission of four collinear partons at

tree-level [21, 22], three collinear partons at one loop [23–25] or two collinear partons

at two loops [26]. Soft singularities at N3LO have also been studied. In particular, the

emission of a soft gluon at two loops is well established [27–29], as is the emission of

a pair of soft gluons or quarks at one loop [30, 31]. Tree-level soft emission of three

partons, however, has so far only been studied for the emission of three soft gluons [32],

but the case of a soft quark pair in addition to a gluon at tree-level has never been

considered. The main goal of this paper is to provide for the first time this last soft

limit needed to describe all infrared singularities that can arise in N3LO computations.

The paper is organised as follows: In section 2, we review soft limits of tree-level

scattering amplitudes, displaying explicitly the currents for a soft gluon and a soft q̄q
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pair. In section 3, we present the main results of this paper, namely the tree-level

current for the soft q̄qg emission from QCD scattering amplitudes. In section 4, we

consider kinematic sub-limits of the soft q̄qg limit, which are useful for constructing

subtraction schemes at N3LO accuracy. In section 5 we draw our conclusions. We also

include two appendices where we display analytic results which are too lengthy to be

shown in the main text.

2 Tree-level soft currents

The aim of this paper is to study the behavior of tree-level QCD amplitudes in the limit

where a certain number of massless partons are soft, i.e., they have vanishing energies.

To be more precise, consider the scattering of n particles with momenta pi, and flavour,

helicity and colour indices fi, si and ci, respectively. If a subset of m massless partons

become soft, the amplitude is divergent and the leading behaviour is captured by the

factorisation formula,

S1...mMc1...cn;s1...sn
f1...fn

(p1, . . . , pn)

= (µεgs)
m Jc1...cm;s1...sm

f1...fm
(p1, . . . , pm)Mcm+1...cn;sm+1...sn

fm+1...fn
(pm+1, . . . , pn) ,

(2.1)

where gs is the strong coupling constant and µ is the scale introduced by dimensional

regularisation. Throughout this paper we work in Conventional Dimensional Regular-

isation (CDR) in D = 4 − 2ε dimensions. In particular, we assume that gluons have

D − 2 physical polarisations (quarks always have 2 polarisations). The symbol S1...m

in eq. (2.1) denotes the operation of keeping only the leading divergent term in the soft

limit. The scattering amplitude Mcm+1...cn;sm+1...sn
fm+1...fn

on the right-hand side is obtained

from the amplitude on the left-hand side by simply removing the soft particles. The

current Jc1...cm;s1...sm
f1...fm

describes the leading divergent behaviour of the amplitude in the

soft limit, often referred to as the eikonal approximation in the literature.

The soft current depends on the colour, spin and flavour quantum numbers of the

soft partons. In order to keep our notations compact, we find it useful to work with the

colour-space formalism of refs. [33, 34], where scattering amplitudes are interpreted as

vectors that can be expanded into an orthonormal basis in colour ⊗ spin space,

|Mf1,...fn(p1, . . . , pn)〉 = |c1 . . . cn〉 ⊗ |s1 . . . sn〉Mc1...cn;s1...sn
f1...fn

(p1, . . . , pn) . (2.2)

We will often suppress the dependence on the momenta. With this notation, the

squared matrix element summed over spin and colour indices of the external particles

can be written as

|Mf1...fn|
2 ≡ 〈Mf1...fn|Mf1...fn〉 =

∑
(s1,...,sn)
(c1,...,cn)

[
Mc1...cn;s1...sn

f1...fn

]†Mc1...cn;s1...sn
f1...fn

.
(2.3)
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The soft current can then be interpreted as an operator Jf1...fm(p1, . . . , pm) in this colour

space, and the soft factorisation in eq. (2.1) takes the form,

S1...m |Mf1...fn〉 = (µεgs)
m Jf1...fm |Mfm+1...fn〉 . (2.4)

This operator acts on color space via the infinitesimal generators of the gauge trans-

formations,

Ta
i |c1 . . . cn〉 = |c1 . . . c

′
i . . . cn〉Ta

c′ici
, (2.5)

where we defined Ta
c′ici

= tac′ici
if parton i is a quark, Ta

c′ici
= −tacic′i if it is an anti-

quark (here tac′ici
are the generators of the fundamental representation of SU(Nc)), and

Ta
c′ici

= if c
′
iaci for a gluon. Since colour must be conserved in every scattering process,

the vector |Mfm+1,...,fn〉 must be a colour singlet, i.e., it must satisfy

n∑
i=m+1

Ta
i |Mfm+1...fm〉 = 0 . (2.6)

Henceforth we will simply use the shorthand,

n∑
i=m+1

Ta
i = 0 , (2.7)

where it is understood that this identity is only valid when we act on colour singlet

states.

The soft current for the emission of a single soft gluon is known through two loops in

the strong coupling constant [8, 10, 11, 27–29, 35, 36]. The double-soft current is known

at tree-level and one-loop for the emission of a pair of soft gluons or quarks [1, 3, 6,

30, 31]. Triple-soft emission is currently only known at tree-level for three gluons [32].2

The main aim of this paper is to compute for the first time the triple soft current for the

emission of a soft quark pair in addition to a gluon. In the remainder of this section, we

review the known results for the tree-level soft currents for the emission of a single soft

gluon or quark pair, both in order to illustrate some general properties of soft currents

and to define some quantities that will be useful when computing the soft current Jq̄qg
in section 3.

2.1 The tree-level soft current for the emission of a single soft gluon

Let us start by discussing the case of the emission of a single soft gluon at tree-level.

It will often be useful to consider a variant of the soft current operator where we have

2Quadruple-soft emission is known at tree-level for four gluons in the special case of the emission

from two hard partons [32].
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amputated the polarisation states, e.g., in the case of a single soft gluon, we define

Jg(p1) = |a〉 ⊗ |s〉Ja;s
g (p1) = |a〉 ⊗ |s〉 εsµ(p1, n)Ja;µ

g (p1) . (2.8)

Note that throughout this paper we always work in axial gauge for external gluons,

where the polarisation vectors satisfy the constraints,

pµ1ε
s
µ(p1, n) = nµεsµ(p1, n) = 0 , (2.9)

where n is a lightlike reference vector with p1 ·n 6= 0. The soft current for the tree-level

emission of a single gluon is given by [35, 36]

Ja;µ
g (p1) =

n∑
i=2

Ja;µ
i (p1) =

n∑
i=2

Sµi (p1)Ta
i , (2.10)

with

Sµi (p1) =
pµi

pi · p1

. (2.11)

Note that, as a consequence of gauge invariance, the soft current is conserved,

p1µ J
a;µ
g (p1) =

n∑
i=2

Ta
i = 0 mod

n∑
i=2

Ta
i = 0 . (2.12)

A similar relation also holds for multi-soft gluon emission, albeit, due to the non-

abelian nature of the gauge interactions, only upon replacing one polarisation vector

by its momentum. In ref. [32] a stronger version was shown to hold even if the remaining

external polarisation vectors are amputated, although one needs to project onto the

subspace spanned by the physical polarisations. Since our main interest is the current

for the emission of a single soft gluon in addition to a soft quark pair, we will not pursue

this further.

In applications one is usually interested in the effect of the soft current and the

color-correlations it induces after squaring the matrix element,

S1 |Mgf2...fn|2 = (µεgs)
2〈Mf2...fn||Jg(p1)|2|Mf2...fn〉

= −(µεgs)
2

n∑
i,j=2

Sij(p1)|M(ij)
f2...fn

|2 ,
(2.13)

where we have introduced the colour-correlated matrix element,

|M(ij)
f2...fn

|2 = 〈Mf2...fn|Ti ·Tj|Mf2...fn〉 , (2.14)
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and the well-known eikonal function,

Sij(p1) =
2χij
χ1iχ1j

(2.15)

with χij = 2pi ·pj and Ti ·Tj = Tj ·Ti = Ta
iT

a
j . At this point we make some important

comments. First, if we simply evaluate the square of the soft current in axial gauge,

we find

|Jg(p1)|2 =
[
Ja;µ
g (p1)

]†
dµν(p1, n)Ja;ν

g (p1) (2.16)

=−
n∑

i,j=2

Ti ·Tj Sij(p1) +
n∑

i,j=2

Ti ·Tj

(
n · pi

(pi · p1)(n · p1)
+

n · pj
(pj · p1)(n · p1)

)
,

where dµν(p1, n) denotes the sum over physical polarisations in axial gauge,

dµν(p1, n) =
D−2∑
s=1

εsµ(p1, n)εsν(p1, n) = −gµν +
p1µnν + nµp1ν

p1 · n
. (2.17)

We see that the terms dependent on n cancel due to colour conservation when acting

on the amplitude in eq. (2.13). We will from now on drop terms in the squared current

that vanish due to colour conservation in the hard amplitude. Second, we note that, as

a consequence of Ti ·Tj = Tj ·Ti, the colour-correlated squared amplitude, |M(ij)
f2...fn

|2,

features a symmetry under exchange of the emitters (i↔ j), to which we will refer as the

dipole symmetry. The dipole symmetry of |M(ij)
f2...fn

|2 implies that the kinematic factor

(the eikonal function Sij(p1)) in eq. (2.13) is symmetric as well under the exchange of

the emitters, (i↔ j). This is a general feature: The kinematic functions in the squared

soft current inherit the symmetry properties of the colour operators that they multiply.

2.2 The tree-level soft current for the emission of a single quark pair

Let us also briefly review the features of the soft current for a single soft quark pair

emission. It is again convenient to amputate the polarisation states,

Jq̄q(p1, p2) = |̄ıj〉 ⊗ |s1s2〉Jı̄j;s1s2q̄q (p1, p2)

= |̄ıj〉 ⊗ |s1s2〉us2(p2)Jı̄jq̄q(p1, p2)vs1(p1) ,
(2.18)

where ı̄ and j denote the anti-fundamental and fundamental colour indices of the anti-

quark and quark respectively. Note that Jı̄jq̄q is a matrix in Dirac spinor space, though

we suppress the matrix indices for brevity. It is easy to see that the current for the

emission of a soft quark pair is entirely determined by the soft current for single-gluon

emission,

Jı̄jq̄q(p1, p2) = − 1

χ12

tajı̄ γµ J
a;µ
g (p12) , p12 = p1 + p2 , (2.19)

– 6 –



where we work with a gluon propagator in Feynman gauge. We can square the soft

current to obtain

S12|Mq̄1q2f3...fn|2 = (µ2εg2
s)

2 TF

n∑
i,j=3

Qq̄q
ij (p1, p2)|M(ij)

f3...fn
|2 , (2.20)

where TF = 1
2

is defined by Tr(tatb) = TF δ
ab, and we defined the kinematic function,

Qq̄q
ij (p1, p2) =

4

χ2
12

χ1iχ2j + χ1jχ2i − χijχ12

χi(12)χj(12)

, (2.21)

and χi(jk) = χij +χik. Note that, in addition to the dipole symmetry under exchange of

the emitters (i↔ j), the soft q̄q function features charge conjugation symmetry under

the exchange of the quark and antiquark labels,

Qq̄q
ij (p1, p2) = Qq̄q

ij (p2, p1) . (2.22)

Finally, we recall that the eikonal currents, and so the kinematic functions of a

single soft-gluon (2.15) or of a soft q̄q pair (2.21), do not depend on the mass of the

emitters, while the eikonal current of two soft gluons receives an extra contribution

which is proportional to the squared mass of the emitters [6].

3 Tree-level factorisation for soft q̄qg emission

In this section we present the main result of this paper, namely our result for the tree-

level soft current for soft q̄qg emission. We start by quoting the results for the soft

current, and then we discuss the analytic expressions for the squared current and the

ensuing colour correlations.

3.1 The soft current

Without loss of generality, we assume the anti-quark, quark and gluon to be partons 1,

2 and 3, respectively. The soft current is obtained by evaluating the diagrams in fig. 1,

using the usual eikonal Feynman rules for the coupling of a soft gluon to a hard parton.

We use axial gauge for the external gluon, but we evaluate all internal gluon prop-

agators in Feynman gauge. We rescale the momenta of the three soft partons by λ,

pi → λ pi, i = 1, 2, 3, and we perform a Laurent expansion around λ = 0. The leading

term in this Laurent expansion defines the soft current. We find it again convenient to

amputate the polarisation vectors,

Jı̄ja;s1s2s3
q̄qg (p1, p2, p3) = εs3µ (p3, n)us2(p2)Ja;µ

q̄qg(p1, p2, p3) vs1(p1) , (3.1)
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i

q̄1

q2

g3

i

q̄1

q2
g3

(I)

i

q̄1

q2

g3

(II)

i

q̄1

q2

g3

i

q̄1

q2

g3

(III)

i

q̄1

q2

j

g3

(IV)

Figure 1: Soft-gluon insertion diagrams for the emission of a soft gluon and qq̄ pair.

where for brevity we keep the colour indices of the quark pair implicit on the right-hand

side.

We split the tree-level q̄qg soft current into two contributions,

Ja;µ
q̄qg(p1, p2, p3) = Ka,µ(p1, p2, p3) + Wa,µ(p1, p2, p3) . (3.2)

The first term on the right-hand side is given by,

Ka,µ(p1, p2, p3) =
1

2

{
Ja;µ
g (p3),Jq̄q(p1, p2)

}
,

= − 1

2χ12

n∑
i,j=4

{
Ja,µi (p3),Jb,νj (p12)

}
γνt

b . (3.3)
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where the soft currents appearing on the right-hand side have been defined in the

previous section. Equation (3.3) includes both uncorrelated (i 6= j) soft emission from

two different legs, fig. 1IV, as well as contributions to the abelian part of fig. 1III. The

second term on the right-hand side of eq. (3.2) has the explicit form,

Wa,µ(p1, p2, p3) =
n∑
i=4

Jb,νi (p123)

{
1

χ123

[
1

χ13

γν/p13
γµ
(
tbta
)
− 1

χ23

γµ/p23
γν
(
tatb
)]

(3.4)

+
i

χ12

fabc
[

1

2
δαν (Sµi (p3)− Sµi (p12)) +

1

χ123

Uν
αµ(p12, p3)

]
γαt

c

}
,

where we have defined

Uν
αµ(p12, p3) = −2δαν p

µ
12 + gαµ(p12 − p3)ν + 2δµν p

α
3 , (3.5)

and

χ1...k =
k∑
i<j

χij . (3.6)

Let us make two comments. First, we have seen that the soft current for the emission of

a soft q̄q pair can be expressed as the soft current for the emission of a single soft gluon

contracted with the quark current, cf. eq. (2.19). From the Feynman diagrams in fig. 1,

it may appear that the q̄qg soft current can similarly be factorised into the double soft

gluon current Jgg contracted with the quark current. This, however, is not so, because

there are certain contributions to Jgg that can be dropped due to the transversality

condition in eq. (2.9), but they have to be kept if the gluon is off shell. Second, we

note that, as expected, we find that the divergence of the triple-soft current defined in

eq. (3.2) is proportional to the total colour charge of the hard partons, implying that

the current is conserved,

p3,µJ
a,µ
q̄qg = − 1

χ12

tc
[
Jc,µ(p12)γµδ

ab − ifabc 1

χ123
/p3

] n∑
i=4

Tb
i = 0 mod

n∑
i=4

Tb
i = 0 , (3.7)

which is reminiscent of eq. (2.12) in the case of single-gluon emission.

Next, we consider the structure of the squared soft current. We find that we can

write the result as a sum over contributions from dipole, tripole and symmetrised colour

correlations,

S123|Mq̄1q2g3f4...fn|2 =
(
S (dip)

123 + S (trip)
123 + S (sym)

123

)
|Mq̄1q2g3f4...fn|2 . (3.8)
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We now discuss the three contributions in turn. The dipole term reads

S (dip)
123 |Mq̄1q2g3f4...fn|2

= (µ2εg2
s)

3 TF

n∑
i,j=4

[
CFQ

q̄qg (ab)
ij + CA

(
Q
q̄qg (nab)
ij +Q

q̄qg (mass)
ij

)]
|M(ij)

f4...fn
|2 ,

(3.9)

where CF and CA denote the Casimir operators in the fundamental and adjoint repre-

sentations of SU(Nc),

CF =
N2
c − 1

2Nc

and CA = Nc . (3.10)

The kinematic functions will be defined below. We suppress from now on the depen-

dence of the kinematic functions on the momenta for readability. The dipole-correlated

matrix element |M(ij)
f4...fn

|2 was already defined in eq. (2.14). The sym term comes from

the symmetrised product of two dipole operators and is given by

S (sym)
123 |Mq̄1q2g3f4...fn|2 = (µ2εg2

s)
3 TF

n∑
i,j,k,`=4

Qq̄qg
ik;j`|M

(ik;j`)
f4...fn

|2 , (3.11)

where we introduced the symmetric four-parton correlation function, which also appears

in the squared current for double-soft gluon emission at tree-level [3],∣∣M(ik;j`)
f4...fn

∣∣2 = 〈Mf4...fn|{Ti ·Tk,Tj ·Tl}|Mf4...fn〉 . (3.12)

Besides the two- and four-parton correlations, which have already appeared in the

context of single- and double-soft emission at tree-level, we also find a non-vanishing

three-parton correlation,

S (trip)
123 |Mq̄1q2g3f4...fn|2 = (µ2εg2

s)
3 1

2

n∑
i,j,k=4

Qq̄qg
ijk |M

(ijk)
f4...fn

|2 , (3.13)

where we defined the triple correlated tree-level squared amplitude by

|M(ijk)
f4...fn

|2 = dabc〈Mf4...fn|Ta
iT

b
jT

c
k|Mf4...fn〉 , (3.14)

and we have introduced the symmetric structure constant dabc,

dabc = 2 Tr
[{
ta, tb

}
tc
]
. (3.15)

Colour correlations between three hard partons do not appear in the tree-level soft

limits considered in refs. [1, 3, 32, 35, 36], and to the best of our knowledge it is the

first time that they occur in tree-level currents.
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Before we discuss the form of the kinematics functions, we outline how the colour

correlations introduced above come about, and in particular how it occurs that only

the totally symmetric structure constant dabc enters the tripole correlations, but there

is no correlation between three hard lines connected by the antisymmetric structure

constant fabc. In order to do so, we analyse the terms obtained from squaring the soft

current in eq. (3.2). The square of the K term in eq. (3.3) yields∣∣K∣∣2 = −TF
16

∑
ijkl

[{{
Ta
i , T

b
j

}
,
{
Ta
k, T

b
l

}}
+ (j ↔ l)

]
Sjl(p3)Qqq̄

ik(p1, p2) . (3.16)

Using the identity [6],{{
Ta
i ,T

b
j

}
,
{
Ta
k,T

b
l

}}
+ (j ↔ l) =

[
2{Ti ·Tk,Tj ·Tl} (3.17)

+
1

2
CA
(
3Ti ·Tk(δilδjk + δijδkl)− 4Ti ·Tj(δikδil + δjkδj`)

)
+ (i↔ k)

]
+ (j ↔ l) ,

eq. (3.16) is straightforwardly reduced to two- and four-parton colour correlations.

Next, we examine the crossed term, obtained by contracting K with W. The product

between K and the second line of eq. (3.4) yields

−TF
∑
i,j,l

ifabc
[
{Ta

i ,T
b
j}, Tc

l

]
Q(1)
ijl = −2TF CA

∑
i,j

Ti ·Tj (Q(1)
iji −Q

(1)
ijj) , (3.18)

where Q(1)
ijl is a function of kinematical invariants, and where in order to obtain the

equality on the right-hand side, we used the identity [6],

ifabc
[{

Ta
i ,T

b
j

}
,Tc

k

]
= 2CA (Ti ·Tj) (δik − δjk) . (3.19)

We see that eq. (3.18) is reduced to a two-parton colour correlation. The product be-

tween K and the first line of eq. (3.4) contributes to two- and three-parton correlations.

In particular, the product between K and the second term in the first line of the W

term has the form,∑
i,j,l

[
{Ta

i ,T
b
j}Tc

l tr(tbtatc) + Tc
l {Ta

i ,T
b
j} tr(tctatb)

]
Q(2)
ijl

=
∑
i,j,l

(
− i

2
TF f

abc
[
{Ta

i ,T
b
j}, Tc

l

]
+ dabcTa

iT
b
jT

c
l

)
Q(2)
ijl , (3.20)

where, like Q(1) in eq. (3.18), Q(2)
ijl is also a function of kinematical invariants, and we

used

Tr
(
tatbtc

)
=

1

4
dabc +

i

2
TF f

abc . (3.21)
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The contribution from the first term in the first line of W has a similar form. Note,

however, that the product between K and the first term on the first line of W has a

relative sign difference with respect to the second term on the first line of W. Therefore,

the kinematic term of the three-parton correlation (3.24) inherits a relative minus sign

under the exchange of the quark and antiquark labels. Conversely, that sign is cancelled

in the fabc term since fabc is antisymmetric. Finally, like in eq. (3.18), the fabc term is

reduced to dipole correlations using again the identity (3.19). This explains the absence

of three-parton colour correlations involving an antisymmetric structure constant.

Let us now discuss the form of the kinematic functions. First we note that, due to

the charge conjugation symmetry under exchange of the quark and anti-quark labels,

the functions are symmetric under an exchange of p1 and p2. Further, while the four-

parton and three-parton correlations in eqs. (3.11) and (3.13) and the abelian part

of the dipole correlations in eq. (3.9) are insensitive to the mass of the emitters, the

non-abelian dipole correlation contains additional terms proportional to the mass of

emitters, which we have made explicit in eq. (3.9). This is in line with the dependence

of the triple-soft gluon current on the mass [32].

The four-parton correlated term in eq. (3.11) only receives contributions from

squaring the function Ka,µ in eq. (3.3). Therefore, the kinematic function associated

to the four-parton correlations separates into the product of two eikonal functions, one

associated to the soft gluon and the other to the soft q̄q pair,

Qq̄qg
ik;j`(p1, p2, p3) = −1

2
Sj`(p3)Qq̄q

ik(p1, p2) , (3.22)

where the single-soft eikonal function and the soft-q̄q function are given in eqs. (2.15)

and (2.21). From the symmetry of the colour operator in eq. (3.12), it follows that the

kinematic factor in eq. (3.22) features dipole symmetries under the exchanges (i↔ k)

or (j ↔ `), as well as the symmetry under (i, k)↔ (j, `).

Let us now turn to the kinematic functions appearing in the dipole correlations.

They must possess the dipole symmetry (i ↔ j). The coefficient of CF in eq. (3.9) is
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given by

Q
q̄qg (ab)
ij =

8

χ2
123χi(123)χj(123)

{
D

2

[
χ1jχ3i

χ13

− χ12χ3iχ3j

χ13χ23

− χij
(
χ13

χ23

+ 1

)
+
χ1iχ3j + χ1jχ3i + χ2iχ3j

χ23

]
− χ12 (χ12χij − χ1iχ2j − χ1jχ2i)

χ13χ23

+
χ12 (χ3jχ1i + χ2jχ3i + 2χ3jχ3i)

χ13χ23

+ χij

(
χ13 − χ12

χ23

− χ12

χ13

+ 2

)
− χ1j (χ1i − χ2i + 2χ3i)

χ13

−
χ3jχi(12) + χ1j (χ3i − χ2i) + χ2iχj(23)

χ23

}
+ (1↔ 2) ,

(3.23)

with χi(123) = χ1i + χ2i + χ3i, which is manifestly symmetric under (i ↔ j) once the

(1↔ 2) exchange has been added. The coefficients of CA in eq. (3.9) are more lengthy,

and we provide them in appendix A.

Finally, the kinematic factor appearing in the three-parton correlations can be

written in an explicitly symmetric form as follows,

Qq̄qg
ijk (p1, p2, p3) =

2

3χ123

{
χij

[
ujk

χk(123)χi(12)

+
1

χj(123)

(
rk

χi(12)

+
tik

χk(12)

)]
+

uij;k
χk(123)

− 2

χ12χ23χk(123)

χ2j (χ1iχ2k + χ1kχ2i)

χ3jχi(12)

+
2χijχ2k

χ23χ3k

1

χi(12)χj(123)

+ 5 permutations of (ijk)

}
− (1↔ 2) , (3.24)

with

rk =
χ13χ2k

χ12χ23χ3k

− χ1k

χ12χ3k

+
1

χ23

,

tik =
χ13χ2k

χ12χ23χ3i

+
χ1k

χ12χ3i

− χ3k

χ23χ3i

,

uik = − χ13χ2k

χ12χ23χ3i

+
χ1k

χ12χ3i

+
χ3k

χ23χ3i

,

uij;k =
−χ1i (χ2jχ3k + χ2kχ3j) + χ1j (χ2kχ3i − χ2iχ3k)− χ1k (χ2iχ3j + χ2jχ3i)

χ12χ23χ3jχi(12)

.

(3.25)

3.2 Strongly-ordered soft limits

In this section we examine the strongly-ordered soft limits, where one or more partons

are much softer than the others. The strongly-ordered limits can be computed by

rescaling the softer momenta by a parameter λ and keeping only the leading term in

the Laurent expansion around λ = 0. Since the rescaling of the momentum components
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is uniform in λ, the ordering in the momentum components is equivalent to an ordering

of the energies Ei of the soft particles. We will use the latter to label strongly-ordered

limits. We note that the strongly-ordered soft limits where the quark is much softer

than the anti-quark (or vice versa) is subleading, and we will not discuss those cases

here. Hence, we discuss in the following only the two strongly-ordered soft limits where

the energies of the quark and the anti-quark are of the same order.

The factorisation of the squared matrix element in any of the strongly-ordered

limits can be written as in eq. (3.8), after replacing the kinematic factors with their

expressions in the limit. We now discuss the two relevant strongly-ordered limits in

turn.

Let us start with the case where the gluon is softer than the q̄q pair, E3 � E1, E2.

The kinematic functions behave as

S3Q
q̄qg
ik;jl(p1, p2, p3) = Qq̄qg

ik;jl(p1, p2, p3) ,

S3Q
q̄qg
ijk (p1, p2, p3) =

1

6
Qq̄q
ik(p1, p2) [S1j(p3)− S2j(p3)] + 5 permutations of (ijk) ,

S3Q
q̄qg (ab)
ij (p1, p2, p3) = 2S12(p3)Qq̄q

ij (p1, p2) ,

S3Q
q̄qg (nab)
ij (p1, p2, p3) =

{
1

4
Qq̄q
ij (p1, p2) [S1i(p3)− Sij(p3)− S12(p3)]

+
χ12

8
S2j(p3) [S1i(p12)S2j(p12)− S2i(p12)S1j(p12)] [S1i(p12)− S2i(p12)]

− 1

2χ12

Sij(p12)S2i(p3) +
1

2
Sij(p3)S1i(p12)S2i(p12) + (i↔ j)

}
+ (1↔ 2) .

S3Q
qq̄g (mass)
ij (p1, p2, p3) = m2

i

(
4χ1j

χ12χ13χ2
i(12)χ3j

− 4χij
χ12χ3iχ2

i(12)χ3j

+ (1↔ 2)

)
+ (i↔ j) . (3.26)

We note that the function Qq̄qg
ik;jl in eq. (3.22) is exact in this strongly-ordered limit. In

the case where the q̄q pair is softer than the gluon, E1, E2 � E3, the kinematic factors

behave as

S12Q
q̄qg
ik;jl(p1, p2, p3) = Qq̄qg

ik;jl(p1, p2, p3) ,

S12Q
q̄qg
ijk (p1, p2, p3) = S12Q

q̄qg (ab)
ij (p1, p2, p3) = 0 ,

S12Q
q̄qg (nab)
ij (p1, p2, p3) =

{
χ13

χ12χ3(12)

S1i(p3)

[
2χ23

χ12χ3(12)

− 1

2
S2i(p12)

]
+ Sij(p3)

[
χ13

2χ3(12)

S2i(p12)2 +
χ23

χ12χ3(12)

S1i(p12)− 2χ13χ23

χ2
12χ

2
3(12)

– 14 –



+
1

4

(
S1i(p12)S2i(p12)−Qq̄q

ij (p1, p2)
) ]

− Sij(p12)

[
χ12

8χ3(12)

S1j(p12)S2i(p12) (χ13 S1j(p3)− χ23 Si2(p3))

+
1

2
Si(12)(p3)

(
S1j(p12) +

1

χ12

)]
+ (i↔ j)

}
+ (1↔ 2) ,

S12Q
qq̄g (mass)
ij (p1, p2, p3) = m2

i

(
4χ3j

χ12χ3(12)χ
2
3iχj(12)

− 8χ23χ1j

χ2
12χ3(12)χ

2
3iχj(12)

− 4χij
χ12χ2

3iχi(12)χj(12)

+
8χ1iχ2j

χ2
12χ

2
3iχi(12)χj(12)

+
2

χ12χ3(12)χ3iχi(12)

+ (1↔ 2)

)
+ (i↔ j) , (3.27)

where we defined Sk(ij)(pl) = Sik(pl)+Sjk(pl). The functions Qq̄qg
ik;jl in eq. (3.22) is again

exact in this limit. The tripole contribution is power-suppressed and can therefore be

neglected. The same is true for the coefficient of CF in the dipole contribution.

4 Soft limits of the splitting amplitudes

So far we have only considered soft singularities of on-shell tree-level scattering am-

plitudes. Soft singularities, however, are not the only kinematic limits in which am-

plitudes become singular and factorise into universal building blocks, but they also

exhibit collinear singularities when two or more massless particles become collinear.

These limits need to be taken into account when constructing subtraction schemes for

higher order computations. In particular, one is also interested in understanding it-

erated soft and collinear limits. In this section we discuss the behaviour of scattering

amplitudes where a subset q̄qg of collinear massless particles become soft. Before we

do this, we give a short review of collinear factorisation in general.

4.1 Review of collinear factorisation

Throughout this section we follow closely the notations and conventions of section 2.

Consider a tree-level scattering amplitude for n partons, and assume that a subset of

m masslees particles become collinear to a light-like direction P . The approach to the

collinear limit is parametrised by a lightcone decomposition as follows,

pµi = ziP
µ + kµ⊥i −

k2
⊥i

2zi

nµ

P · n
, i = 1, . . . ,m , (4.1)

where p2
i = 0 and P · k⊥i = 0. Above, nµ is an auxiliary light-like vector such that

n · k⊥i = 0 and n · pi 6= 0 6= n · P . The longitudinal momentum fractions zi and the
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transverse momenta k⊥i can be chosen to satisfy the following constraints,

m∑
i=1

zi = 1 and
m∑
i=1

kµ⊥i = 0 . (4.2)

The collinear limit is performed by introducing a uniform scaling parameter λc as

follows,

k⊥i → λc k⊥i , 1 ≤ i ≤ m. (4.3)

Then, we expand the matrix element into a Laurent series around λc = 0 and only keep

the leading divergent term. In the collinear limit a scattering amplitude factorises3

as [38–40],

C1...m |Mf1...fn〉 = Spff1...fm |Mffm+1...fn〉 , (4.4)

where f denotes the flavour of the parent particle (note that in QCD f can always be

inferred from the flavours f1 . . . fm of the collinear partons). The symbol C1...m indicates

that the equality only holds up to terms that are power-suppressed in the collinear limit.

The scattering amplitude on the right-hand side of eq. (4.4) is obtained from the original

amplitude by replacing the collinear particles with the light-like momentum P . The

quantity Sp is called the splitting matrix [23, 37] and only depends on the kinematics

and the quantum numbers in the collinear set.

The factorisation in eq. (4.4) implies that also the squared matrix element must

factorise,

C1...m |Mf1...fn|
2 =

(
2µ2ε g2

s

s1...m

)m−1

〈s′|P̂f1...fm|s〉 〈s|Tffm+1...fn|s′〉 , (4.5)

where we defined the Mandelstam invariant s1...m ≡ (p1+. . .+pm)2. The helicity matrix

Tffm+1...fn denotes the square of the reduced amplitude by not summing over the spin

of the parent parton,

〈s|Tffm+1...fn|s′〉 ≡ 〈Mffm+1...fn|s′〉〈s|Mffm+1...fn〉 . (4.6)

The dependence of the helicity matrix on the lightcone direction P as well as the mo-

menta of the hard partons is not written explicitly. The (polarised) splitting amplitude

3The factorisation in eq. (4.4) is valid to all orders in perturbation theory if all the collinear

particles are in the final state. For the case where at least one collinear parton is in the initial state,

the factorisation in eq. (4.4) is known to hold only at tree-level [37].
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P̂ is related to Sp by(
2µ2ε g2

s

s1...m

)m−1

P̂f1...fm =
1

Cf
[
Spff1...fm

]†
Spff1...fm , (4.7)

where Cf is the number of colour degrees of freedom of the parent parton with flavour

f , i.e., Cg = N2
c − 1 for a gluon and Cq = Nc for a quark. In writing down eq. (4.7)

we implicitly sum over the spin and colour indices of the collinear partons. Due to

colour conservation in the hard amplitude, there are no non-trivial colour correlations,

i.e., the operator P̂f1...fm acts as the identity on colour space. However, there can be

non-trivial spin correlations. When the parent parton is a quark, helicity conservation

implies that the splitting amplitude is proportional to unity in spin space,

〈s′|P̂f1...,fm|s〉 = δss
′
P̂f1...fm , (4.8)

where the quantity P̂f1...fm is a scalar. In the case where the parent parton is a gluon,

it is possible to write the splitting amplitude in terms of Lorentz indices as [3],

〈s|P̂f1...fm|s′〉 = εsµ(P , n)∗ εs
′

ν (P , n) P̂ µν
f1...fm

, (4.9)

with

P̂ µν
f1...fm

= gµν Af1...fm +
m∑

i,j=1

kµ⊥ik
ν
⊥j

s1...m

Bij,f1...fm . (4.10)

The splitting amplitudes for the squared matrix element have been computed at tree-

level for the emission of up to four collinear partons [21, 22]. At one-loop level, they

been computed for the emission of up to three collinear partons [23–25].

So far all considerations were valid in the case where the collinear partons have

non-zero energies. In applications it can be interesting to understand how splitting

amplitudes behave if a subset of collinear partons are soft. In ref. [41] the single-

and double-soft limits of triple-collinear tree-level splitting amplitudes were considered.

Those soft limits were generalised to a generic set of m collinear partons [21], where

m ≥ 2 in the single-soft limit and m ≥ 3 in the double-soft limit, and applied to the

single- and double-soft limits of quadruple-collinear splitting functions. It was shown

in particular that the soft limits of splitting amplitudes involve universal quantities

reminiscent of soft currents. In the remainder of this section we extend the analysis of

refs. [21, 41] to certain classes of soft limits of more than two collinear partons.
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4.2 m-parton soft limit of the m-collinear splitting amplitudes

We start by analysing the special case where all m collinear partons are soft. This

implies that the parent parton must itself be soft, and therefore it must then be a

gluon. The soft limit of the collinear factorisation in eq. (4.4) then becomes:

S1...m C1...m |Mf1,...fn〉 = µεgs Spgf1...fm Jg(P ) |Mfm+1...fn〉 , (4.11)

where the soft-gluon current is given in eq. (2.10). Squaring eq. (4.11) and summing

over spin and colour indices, we obtain

S1...mC1...m |Mf1...fn|2

=
(
µ2εg2

s

)m+1
(

2

s1...m

)m−1 n∑
i,j=m+1

Sijµν(P )P̂ µν
f1...fm

|M(ij)
fm+1...fn

|2 ,
(4.12)

where P̂ µν
f1...fm

denotes the polarised splitting amplitude for a gluon to split into m

partons f1, . . . , fm defined in eq. (4.9), and the sum runs over the hard partons. The

soft factor Sµνij is given by

Sµνij (P ) =
pµi p

ν
j

(pi · P )(pj · P )
. (4.13)

Equation (4.12) generalises straightforwardly the analogous derivation for m = 2

collinear partons [6, 41].

4.3 Soft q̄qg limit of tree-level splitting amplitudes

In ref. [21], in the case of a tree-level amplitude of n massless partons, the behaviour

of an m-parton splitting amplitude was analysed where a single gluon, or a q̄q pair, or

two gluons from the collinear set become soft.

We consider now the more general case of a tree amplitude with (m+ r) massless

and (n − m − r) massive partons. Firstly, we note that for an m-parton splitting

amplitude where a single gluon or a q̄q pair from the collinear set become soft, the

kinematic coefficients are the same as the ones of ref. [21], because they are degree-zero

homogeneous functions of the (n − m) momenta of the non-collinear partons. Thus,

the kinematic coefficients do not depend on the momenta of the non-collinear partons.

Likewise, for an m-parton splitting amplitude where two gluons from the collinear set

become soft, the massless pieces of the kinematic coefficients are the same as the ones of

ref. [21], while the pieces which are proportional to the squared mass of the partons [6]

are not singular in the collinear limit. Thus, we conclude that in the case of an m-

parton splitting amplitude where a single gluon, or a q̄q pair, or two gluons from the
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collinear set become soft, the factorisation formulae are the same as the ones of ref. [21]

even in the more general case of a tree-level amplitude with massive partons.

We now focus on the behaviour of an m-parton splitting amplitude P̂ ss′

q̄qgf4...fm
in

the limit where a q̄q pair and a gluon from the collinear set become soft. The triple

soft limit of the splitting amplitude is defined by performing a rescaling by a small

parameter λs as follows,

zi → λszi , k⊥i → λsk⊥i , χij → λ2
sχij , χik → λsχik ,

1 ≤ i, j ≤ 3 , 3 < k ≤ m.
(4.14)

We expand the ensuing splitting amplitude in λs, and keep only the leading pole, of

O(λ−6
s ). We will argue that its coefficient is universal.

In order to obtain the factorisation of the splitting amplitude in the triple soft limit

from eq. (4.14), we use the fact that the soft limit and the collinear limit commute. We

then start from eq. (3.8) and take the collinear limit where partons 1 through m are

collinear using colour conservation for the hard amplitude,

n∑
j=m+1

Ta
j = −

m∑
j=4

Ta
j . (4.15)

By doing so, we obtain the factorisation formula,

S123

[(
2µ2εg2

s

s1...m

)m−1

P̂q̄qgf4...fm

]
= (µ2εg2

s)
3TF
Cf

[
m∑

i,j,k,`=4

U q̄qg
ijk`;123 |Sp

(ik;j`)
ff4...fm

|2 (4.16)

+
m∑

i,j,k=4

U q̄qg
ijk;123 |Sp

(ijk)
ff4...fm

|2 +
m∑

i,j=4

(
CF U

q̄qg (ab)
ij;123 + CA U

q̄qg (nab)
ij;123

)
|Sp(ij)

ff4...fm
|2
]
,

with the factor Cf defined in eq. (4.7), and we introduced the two-, three- and four-

parton colour-correlated splitting amplitudes,

|Sp(ij)
ff4...fm

|2 ≡
[
Spff4...fm

]†
Ti ·Tj Spff4...fm ,

|Sp(ijk)
ff4...fm

|2 ≡ dabc
[
Spff4...fm

]†
Ta
iT

b
jT

c
k Spff4...fm ,

|Sp(ik;j`)
ff4...fm

|2 ≡
[
Spff4...fm

]† {Ti ·Tk,Tj ·T`} Spff4...fm .

(4.17)

The two- and four-parton colour-correlated splitting amplitudes were introduced in

ref. [21]. The coefficients of colour-correlated splitting amplitudes are obtained by

taking the collinear limit of the soft functions in eqs. (3.9), (3.11) and (3.13).

Applying colour conservation in the hard amplitude, eq. (4.15), we see that the hard

matrix element completely factorises from the collinear limit of eqs. (3.9), (3.11) and
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(3.13). This is due to colour coherence: a cluster of collinear partons acts coherently as

one single coloured object, i.e., the hard partons cannot resolve the individual collinear

partons, and the colour correlations are in the space of the collinear partons only. The

procedure to compute the contributions of the two- and four-parton colour correlations

has been presented in detail in ref. [21] in the context of single- and double-soft limits

of splitting amplitudes. The computation of the three-parton colour correlations is

similar, and so here we content ourselves to simply state the results.

• The coefficient multiplying CF in the two-parton colour-correlated term in eq. (4.16)

is given by

U
q̄qg (ab)
ij;123 = Q

q̄qg (ab)
ij + u

(ab)
(dip) , (4.18)

where Q
qq̄g (ab)
ij is given in eq. (3.23) and u

(ab)
(dip) collects contributions with at least

one spectator outside of the collinear set,

u
(ab)
(dip) =

8

χ2
123z

2
123

[
z2(z1 − z2)− 2z3z12

χ23

+
z1z2χ12

χ13χ23

(
z3(z3 + z123)

z1z2

+ 2

)
− z1(z1 − z2 + 2z3)

χ13

+
1

2
Dz3

2z2χ3(12) − χ12z3

χ13χ23

]
−
{

8

χ2
123z123si(123)

[
zi

(
χ13

χ23

− χ12χ123

χ13χ23

+ 2

)
+
z1(s2i − s1i − 2s3i)

χ13

+
D

2

χ13(si(12)z3 − χ3(12)zi) + s3i(χ3(12)z1 − χ12z3)

χ13χ23

− s2i(z23 + z3 − z1) + s3iz1 + s1iz3

χ23

+
χ12(z3si(13) + z23s3i + 2z2s1i)

χ13χ23

]
+ (i↔ j)

}
+ (1↔ 2) ,

(4.19)

where we defined z1...k = z1 + . . . + zk. The function multiplying CA in the

two-parton colour-correlated term in eq. (4.16) is

U
qq̄g (nab)
ij;123 = Q

qq̄g (nab)
ij + u

(nab)
(dip) , (4.20)

where Q
qq̄g (nab)
ij is given in eq. (A.1), while u

(nab)
(dip) is provided in appendix B. Note

that there is no mass term in eq. (4.16), since the mass-dependent term Q
qq̄g (mass)
ij

in eq. (A.2) is not singular in the collinear limit.

• The function multiplying the three-parton colour correlations in eq. (4.16) reads

U q̄qg
ijk;123 = Qq̄qg

ijk + u(trip) , (4.21)
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where Qq̄qg
ijk is given in eq. (3.24), while u(trip) is

u(trip) =

{
8z1z2z23

3χ123χ12χ23z3z12z123

+
2

3χ12χ123χ23

{
2z2

(
χ1(23)zi − χ1iz23 − z1χi(23)

)
z3z12χi(123)

+
2

z123

[
z1z2

z12

(
χ23zi − z3χ2i

z2χ3i

− 2χ2i

χ3i

− 1

)
− z23 (−χ12zi + z2χ1i + z1χ2i)

z3χi(12)

]
− χij

[
z3χ12 − z2χ13 + z1χ23

z123χ3iχj(12)

+
1

χi(123)

(
z2χ13 + z1χ23 − z3χ12

z12χ3j

+
(2z2 + z3)χ12 + z2χ13 − z1χ23

z3χj(12)

)]
− zi

[
1

χ3i

(
u2;j

z12χj(123)

+
u1;j

z123χj(12)

)
+

1

χi(12)

(
χ12χ3j + u3;j

z123χ3j

+
u2;j

z3χj(123)

)
+

1

χi(123)

(
χ12χ3j + u3;j

z12χ3j

+
u1;j

z3χj(12)

)]
− 1

χi(123)

[
χ2i (z3χ1j − z1 (2χ2j + χ3j)) + rij

z12χ3j

+
χ2i (z1χ3j − (2z2 + z3)χ1j) + rij

z3χj(12)

]
− z2χ1jχ3i − χ3j (z2χ1i + z1χ2i)− z1χ2jχ3i

z123χ3jχi(12)

+
z3χ1iχ2j + χ2i ((2z2 + z3)χ1j + 2z1χ2j)

z123χ3iχj(12)

}
+ 5 permutations of (ijk)

}
− (1↔ 2) , (4.22)

with

u1;j = −χ12χ3j + χ13χ2j + χ1jχ23 ,

u2;j = χ12χ3j − χ13χ2j + χ1jχ23 ,

u3;j = χ2j (2χ12 + χ13)− χ1jχ23 ,

rij = −z2 (χ1iχ3j + χ1jχ3i)− χ2j ((z2 + z23)χ1i + z1χ3i) .

(4.23)

• The function multiplying the symmetrised colour correlation in eq. (4.16) is given

by

U q̄qg
ijk`;srt =

1

2
U qq̄
ik;srUj`;t , (4.24)

with

Uj`;t =
2zj
ztχjt

+
2zl
ztχlt

− Sj`(pt) , (4.25)

U q̄q
ik;sr =

4

χ2
sr

[
1

4
χ2
srQ

q̄q
ik(ps, pr)−

zsχri + zrχsi − ziχsr
zsrχi(sr)

− zsχrk + zrχsk − zkχsr
zsrχk(sr)

+
2zszr
z2
sr

]
.

(4.26)
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We note that just like the function (3.22), eq. (4.24) is the product of two func-

tions, one associated to the single-soft limit and the other to the soft-q̄q limit of

splitting amplitudes introduced in ref. [21].

Finally, we note that, just like in the two-soft-gluon case, all the kinematic terms in

the factorisation formula (4.16) of the splitting amplitude are independent of whether

the embedding tree amplitude contains massive partons or not.

4.3.1 Soft q̄qg limit of the quadruple collinear splitting amplitudes

So far all considerations were completely generic and hold for the soft-q̄qg limit of any

splitting amplitude. We now focus on the soft-q̄qg limit within a quadruple collinear

splitting f → q̄qgf , and we work out all the color factors explicitly. Equation (4.16)

becomes

S123

[(
2µ2εg2

s

s1234

)3

P̂q̄qgf

]
= (µ2εg2

s)
3 1

Cf

[ (
CF U

q̄qg (ab)
44;123 + CA U

q̄qg (nab)
44;123

) ∣∣Sp(44)
ff

∣∣2
+ U qq̄g

444;123

∣∣Sp(444)
ff

∣∣2 + U qq̄g
4444;123

∣∣Sp(44;44)
ff

∣∣2] , (4.27)

where the kinematic coefficients are given in eq. (4.17), and the colour-correlated split-

ting matrices are defined in eq. (4.17), with Spff ′ = δff ′ (note that Spff ′ acts as the

identity on both colour and spin indices). We can now evaluate the colour correlations

in eq. (4.17) explicitly. For the dipole and symmetric four-parton correlations, the

colour algebra is trivial,

1

Cf
∣∣Sp(44)

ff

∣∣2 = C4 and
1

Cf
∣∣Sp(44;44)

ff

∣∣2 = 2C2
4 , (4.28)

where C4 denotes the Casimir in the representation of the fourth collinear parton, with

flavour f . For the three-parton correlation we need to distinguish two cases, depending

on the flavour f . If f = g, we have (Tc
4)ab = ifa4cb4 , and using dabc = 2 Tr

({
ta, tb

}
tc
)

and fabc = −2iTr
([
ta, tb

]
tc
)
, one can check that the three-parton correlation vanishes.

If f is an (anti-)quark instead, (Tc
4)ab = tca4b4 , we repeatedly use the identity,

tatb =
1

2

[
1

Nc

δab1 +
(
dabc + ifabc

)
tc
]
, (4.29)

and we arrive at

dabc ta tb tc =
(N2

c − 1)(N2
c − 4)

4Nc

, (4.30)
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where we used that daab = 0 and dabcfabd = 0, and dabcdabd =
N2
c − 4

Nc

δcd. Hence, we

obtain that ∣∣Sp(444)
ff

∣∣2 = δfq
(N2

c − 1)(N2
c − 4)

4Nc

, (4.31)

where

δfq =

{
0 , if f = g ,

1 , otherwise .
(4.32)

Putting it all together, we see that for m = 4, eq. (4.27) can be cast in the compact

form,

S123

[(
2µ2εg2

s

s1234

)3

P̂q̄qgf

]
= (µ2εg2

s)
3

[
C2
A

(
U
q̄qg (nab)
44;123 + 2U qq̄g

4444;123

)
(4.33)

+ CF CA U
q̄qg (ab)
44;123 + δfq

(N2
c − 1)(N2

c − 4)

4Nc

U qq̄g
444;123

]
.

Equation (4.33) describes quadruple splitting amplitudes P̂q̄qgf in the triple soft limit.

We stress that the derivation of eq. (4.33) only requires the knowledge of the triple

soft current of section 3. In particular, we did not need any explicit results for the

quadruple splitting amplitudes. We checked, however, that eq. (4.33) agrees with what

we obtain by taking the soft limit of the quadruple collinear splitting amplitudes for

f ∈ {g, q, q′} of refs. [21, 22].

5 Conclusions

In this work we have computed for the first time the tree-level current for the emission

of a soft quark-antiquark pair in addition to a gluon. Our result is an operator in

the colour space of the hard partons, and it is valid for any number of hard particles,

irrespective of their flavour, spin, colour or mass.

We have also considered the square of the soft current and the colour correla-

tions it induces on the squared matrix elements summed over colour and spin quantum

numbers. Remarkably, we find that there are only three different types of colour corre-

lations. These include dipole correlations, which correlate two hard partons and appear

already for the emission of a single soft gluon, and symmetrised four-parton correlations

that show up in two-gluon emissions. A novel feature of our result is the appearance

of tripole correlations involving the totally symmetric structure constant dabc. To the

best of our knowledge, this is the first time that such colour correlations have been

observed in soft limits of tree-level matrix elements.
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If our soft current is used in the context of an N3LO computation, e.g., to build

a subtraction scheme at N3LO, it is important to understand also kinematic sublim-

its, i.e., limits where a subset of unresolved particles develop additional singularities.

We have in particular studied the strongly-ordered soft limits in which the gluon is

softer than the quark pair (or vice-versa). We have worked out how collinear splitting

amplitudes behave if a subset q̄qg of collinear particles becomes soft. This leads to a

novel type of universal factorisation of splitting amplitudes, and we have derived the

universal building blocks entering this factorisation in detail.

Our soft current was the last missing ingredient to describe all kinematic infrared

singularities that can arise in N3LO computations. This brings the understanding of

these infrared limits to the same level as at NNLO, thereby opening the way to the

development of subtraction schemes to combine real and virtual corrections at N3LO

in the future.
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A Two-parton colour correlated soft function

In this appendix we provide the explicit expression for the coefficients of CA in eq. (3.9),

with

Q
q̄qg (nab)
ij =

[
1

4
Sij(p3)

(
S1i(p12)S2i(p12)− 3

4
Qqq̄
ij (p1, p2)

)
+

1

χ2
123χi(123)χj(123)

(
a0 + a1χij + a2χ

2
ij

)
+ (1↔ 2)

]
+ (i↔ j) ,

(A.1)

and

Q
q̄qg (mass)
ij = m2

i

[
1

2χ2
3i

Qqq̄
ij (p1, p2)− 1

χ12χ2
i(12)

Sij(p3)

+
2

χ123χi(12)χj(12)χi(123)χj(123)

(c0 + c1χij) + (1↔ 2)

]
+ (i↔ j) .

(A.2)

Like for the coefficient of CF given in eq. (3.23), here we have exploited the dipole

symmetry under the exchange of the indices labelling the hard emitters, as well as the

charge conjugation symmetry of the qq̄ current. On the second lines of eqs. (A.1) and
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(A.2) we have extracted a pre-factor which captures the overall scaling of O(λ−6) in

the triple soft limit.

The coefficients a0, a1 and a2 on the right-hand side of eq. (A.1) are given by,

a2 =
χ3(12)

χi(12)χj(12)

{
χ12

χ3(12)

(
1

2
− 2χ1i

χ3i

)
+

2χ13

χ3(12)

+
1

χ12

[
χ13 +

χ3(12)

χ3i

(
χ1jχi(12)

χ3j

− 2χ1i

)]
+

1

χ3i

(
2χ1jχi(12)

χ3j

− 4χ1i

)}
+

χ12

2χ3iχ3j

, (A.3)

a1 = D +
2χ2

12

χ13χ23

− 2χ12χ1i

χ13χ3i

− χ1jχ2i

χ3iχ3j

+
χ3(12)

χi(12)χj(12)

{
χ12

χ3(12)

[
χ1i

(
10χ1j

χ13

+
8χ1j

χ23

)
+ χ2i

(
9χ1j

χ13

+
9χ1j

χ23

)]
− 6χ2

1iχ1j

χ3(12)χ3i

− 4χ1jχ3i

χ3(12)

− χ2
2i

χ3(12)χ3i

(
χ2

13χ1j

χ12χ23

+
2χ13χ1j

χ23

+ 2χ1j

)
+

χ1j

χ2
12χ3(12)

[
χ2i

(
χ1j(χ

2
13 − χ2

23)

χ3j

+ (χ13 − χ23)2 − 4χ13χ23

)
+ 4χ23χ1i(χ23 − χ13)

+
χ2

2i (χ
2
23 − χ2

13)

χ3i

]
− χ1j

χ12χ3(12)

[
χ2i

χ3j

(
4χ13χ1iχ2j

χ3i

+ 3χ1jχ23

)
+

3χ13χ
2
2i + χ2

1i (4χ13 + 10χ23)

χ3i

− χ1i (4χ13 + 10χ23)

]
+
χ2iχ1j

χ3(12)

[
6χ13

χ23

+
χ2

23

χ12χ13

− χ1i

χ3i

(
2χ2

13

χ12χ23

+
4χ13

χ23

+ 10

)
+

6χ23

χ13

− χ1j

χ3j

(
χ2

23

χ12χ13

+
2χ23

χ13

+ 2

)
+

χ2
13

χ12χ23

+ 9

]
− 2χ1iχ1j

χ2
12χ3i

(
χ13χ2iχ2j

χ3j

+ 2χ1iχ23

)
+

1

χ12

[
χ2i

(
5χ1j −

χ1i

χ3i

(
4χ2

1j

χ3j

+ 10χ1j

))
−

2χ2
1jχ

2
2i

χ3iχ3j

− 4χ1jχ3i

]
−
χ3(12)χ2i

χ2
12χ3i

[
χ1i

(
2χ2

1j

χ3j

+ 2χ1j

)
+
χ2

1jχ2i

χ3j

]
+

χ1i

χ3(12)

(
2χ1jχ

2
23

χ12χ13

+
8χ1jχ23

χ13

−
2χ1jχ23χi(12)

χ3iχ13

(
χ23

χ12

+ 2

)
+

4χ13χ1j

χ23

+ 10χ1j

)}
− χ123

χi(12)χj(12)

{
χ1jχ

2
2i

χ23χ3i

+
2χ1iχ1jχ2iχ3(12)

χ13χ23χ3i

+
2χ2

1iχ1j

χ13χ3i

+
χ2

1jχ2i

χ13χ3j

−
4χ1iχ1jχ2iχj(12)

χ12χ3iχ3j

+
χ3(12)

χi(12)χj(12)

[
2χ2

1j

(
2χ1iχ2i + χ2

i(12)

)
χ23χ3(12)

+
2χ2

1j

χ13χ3(12)

(
4χ1iχ2iχ2j

χ1j

+ 2χ1iχ2i + χ2
i(12)

)
+
χ1jχ3i

χ13

(
χ1j (2χ1i + χ2i)

χ3j

(
χ2j

χ23

+
χj(12)

χ3(12)

)
+

2χ1i (χ1j + 2χ2j) + χ1jχ2i

χ23

)
+
χ1jχ

2
2iχ3j

χ13χ23

+
χ2

2iχ3j

χ23χ3i

(
χ1iχ1j + χ1jχ2i

χ3(12)

+
χ1iχ1j

χ13

)
−
χ2

1jχ
2
2i

χ2
12

{
2 +

4χ1i

χ3i

[
χ23

χ3(12)

(
χ1i

χ2i

(
χ13

χ23

+ 4

)
+

χ13

2χ23

+ 2 +
χ2

1i

χ2
2i

+
χ2i

2χ1i

)
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+
χ2j

χ3j

(
χ1i

χ2i

(
χ1j

χ2j

+ 3

)
+

χ1j

2χ2j

+ 3 +
χ2i

2χ1i

)
+

2χ1iχ2j

χ1jχ2i

]
+

2χ23

χ3(12)

(
χ13χ1j + χ2j (4χ13 + χ23)

χ23χ3j

+
2χ2

1i

χ2
2i

+
4χ1i

χ2i

)}
+

2χ2
1j

χ12

{
χ3iχ1i

χ3(12)

(
χ1i (2χ1j + 6χ2j) + χ2i (χ1j + 3χ2j)

χ1iχ3j

+ 2

)
+

χ2
1iχ2i

χ3(12)χ3i

[
8χ2j

χ1j

+ 1 +
χ3j

χ1j

(
3χ2i

χ1i

+
χ2iχi(23)

χ2
1i

)
+
χ1i

χ2i

(
4χ2j

χ1j

+ 1

)
+

χ2i

2χ1i

+
χ2

2i

2χ2
1i

]
+
χ1iχ2i

χ3(12)

[
4χ2jχi(23)

χ1jχ2i

+ 6 +
χ1i

χ2i

+
χ2iχj(12)

2χ3jχ1i

+
χi(23)

χ1i

]}]}
, (A.4)

a0 =
χ3(12)

χi(12)χj(12)

{
2χ2

1iχ
2
1j

χ13χ3(12)

(
χ23

χ12

+ 2

)
+

χ1jχ
2
1iχ

2
2i

χ12χ3(12)χ3i

(
2χ1iχ23χ2j

χ13χ2
2i

+
χ13χ1jχ2i

χ23χ2
1i

)
+
χ1iχ

2
1jχ23χ2i

χ2
12χ3(12)

(
4χ1i + 4χ3i

χ2i

− 2χ2iχ3j

χ1iχ1j

+
2χ3i

χ1i

− 8χ2j

χ1j

+ 8

)
+
χ2iχ3iχ

2
1j

χ13χ23

(
χ2j

χ3j

− 6χ3j

χ1j

)
+

2χ1jχ2i (4χ1iχ2j + χ2iχ3j)

χ2
12

+
χ2

1j

χ3(12)

{
χ2iχ1i

χ12

[
χ1iχ23

χ13χ3i

(
χ2j (2χ2

13 + 4χ2
23)

χ2
23χ1j

+ 2

)
− 4χ13

χ23

(
χ2

13 + χ2
23

χ2
13

+
χ2j

χ1j

)
+

χ3i

χ13χ23χ1i

(
χ2j (χ2

13 + χ2
23)

χ3j

+ 3χ2
23 − χ2

13

)]
+

2χ1iχ2i

χ13

[
χ3i (3χ23 − 2χ13)

2χ23χ1i

− 5χ13 + 3χ23

χ23

− 4χ2j

χ1j

]}
+

2χ1iχ
2
1jχ3i

χ13χ23

(
χ2j

χ3j

− 3χ3j

χ1j

)
+

2χ1iχ1j

χ3(12)

{
χ1jχ3i

χ12

[
χ2j

χ3j

(
χ13

χ23

+
χ23

χ13

)
+

3χ2(13)

χ13

− χ12

χ23

]
+
χ2jχ3i

χ12

(
2χ13 + χ12

χ23

+
χ23

χ13

)}
+
χ2

1jχ
2
2i

χ13χ23

(
χ1iχ3j

χ1jχ3i

− 6

)
+

χ2
2i

χ3(12)

[
χ1jχ3j

χ12

(
3χ1(23)

χ23

− χ23

χ13

− 2χ12

χ13

)
+
χ1iχ1jχj(13)

χ12χ3i

(
χ13

χ23

+
χ23

χ13

)
+
χ2

1j

χ12

(
χ2j

χ3j

(
χ13

χ23

+
χ23

χ13

)
− 3χ13

χ23

− 3χ23

χ13

)
+

χ3
1jχ23

χ12χ13χ3j

]
+
χ2

1jχ
2
2i

χ2
12

[
χ2j

χ2
2i

(
4χ2

1iχi(12)

χ1jχ3i

+
4χ1iχ3i

χ3j

)
+

2χ1iχj(13)

χ1jχ3i

+
2χj(12)

χ3j

+
2χ2i

χ3i

+
2χ2jχ3i

χ2iχ3j

− 2

]
+

χ2
1jχ

2
2i

χ12χ3(12)

{
4χ1iχj(13)

χ1jχ3i

+
χ1iχ3i

χ2
2i

(
8χ2j

χ3j

−
6χj(23)

χ1j

+ 2 +
4χi(12)

χ3i

+
6χ2

1iχ2j

χ1jχ2
3i

)
+

3χ2i

χ3i

+
3χj(12) + χ2j

χ3j

+
χ1i

χ2i

[
χ1i

χ3i

(
10χ2j

χ1j

+ 2

)
+

1

χ1i

(
4χ2jχ3i

χ3j

− 6χ3iχ3j

χ1j

− 8χi(12)

)]}
−

χ12χ
2
1jχ

2
2i

χ13χ23χ3(12)

[
4χ1iχ3i

χ2
2i

(
2χj(23)

χ1j

+ 1

)
+

2χ3i

χ2i

(
4χ3j

χ1j

+ 1

)
+

2χ3j

χ1j

]}
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+
D

2

[
χ23 (2χ1iχ1j + χ1jχ2i)

χ12χ13

+
χ13χ1jχ2i

χ12χ23

+ χ3iχ3j

(
2χ12

χ13χ23

+
1

χ12

+
2

χ13

)
− χ3i

(
2χ1jχ23

χ12χ13

+
2χ1j

χ12

+
6χ1j

χ13

+
2χ1j

χ23

)]
− 4χ12χ1jχ2i

χ13χ23

+
χ2

1jχ2i

χ13χ3j

+
1

χ3i

(
2χ1iχ1jχ2i

χ13

+
χ1jχ

2
2i

χ23

)
+

χ123

χi(12)χj(12)

{
χ2

1jχ2i

χ12χ3i

[
2χ2

1i

χ13

(
1−

χ2j

(
χ3(12) + χ23

)
χ23χ1j

)

+
χ2

2i

χ23

− 2χ3
1iχ2j

χ13χ1jχ2i

+
χ1iχ2iχ3(12)

χ13χ23

]
+

χ3
1jχ

2
2i

χ12χ13χ3j

(
χ2jχ3(12)

χ1jχ23

+ 1

)
+

χ3(12)

χi(12)χj(12)

{
2χ2

1jχ
2
2i (χ1jχ2i − χ1iχ2j)

χ12χ13χ23

+
χ2

1jχ2i

χ12χ3(12)

(
χ1iχ1j (χ2i − 2χ1i) + 3χ2j (χ2

2i − 2χ2
1i)

χ13

+
χ1iχ1j (2χ1i + 3χ2i) + χ2j (χ2

2i − 2χ2
1i)

χ23

)
+

4χ2
1jχ2iχi(12)

(
χ2iχj(12) − 2χ1iχ2j

)
χ2

12χ3(12)

+
4χ2

1iχ
2
1jχ

2
2i

χ2
12χ3(12)χ3i

(
χ2i (3χ1j − χ2j)

2χ1i

+
χ1i (χ1j − 3χ2j)

χ2i

+ (3χ1j − 3χ2j)

+
χ1jχ

2
2i

2χ2
1i

− χ2
1iχ2j

χ2
2i

)
+

χ2
1jχ

2
2iχ3j

χ12χ3(12)χ3i

(
χ1iχi(23)

(
1

χ13

− 1

χ23

)
+
χ2iχ3i

χ13

)
+

2χ3
1jχ

2
2i (χ2i (χ1j + 3χ2j)− χ1iχ2j)

χ2
12χ3(12)χ3j

+
χ2

1jχ2jχ3i (χ13 − χ23) (χ1jχ
2
2i − 2χ2

1i (χ1j + 2χ2j))

χ12χ13χ23χ3(12)χ3j

+
χ2

1jχ3iχ2i

χ12χ3(12)

[
χ1i

χ23

(
χ2iχj(12)

χ1i

− 2χ1iχ2j

χ2i

+ 2χ1j

)
− χ2j (2χ1i + χ2i)

χ13

]}}
. (A.5)

The coefficients c0 and c1 on the right-hand side of eq. (A.2) are given by,

c1 =
χ3(12)

χi(12)χj(12)

{
χ2iχ2jχj(12)

χ3(12)χ3i

(
χ2

1iχ3j

χ2iχ2jχ3i

+
χ2iχ3j

χ2jχ3i

+
χ2jχ3i

χ2iχ3j

+
χ3i

χ2i

− χ3j

χ2j

− 2

)
+
χ123

χ12

χj(12)

χ3j

[
χ1jχ2j

χ3(12)

(
2χ1iχ2iχ

2
3j

χ1jχ2jχ2
3i

−
2χ1iχ3jχj(12)

χ1jχ2jχ3i

−
χ1iχ

2
3j

χ1jχ2jχ3i

+
χ1j

χ2j

− 2χ2iχ3j

χ2jχ3i

+
χ3j

χ2j

+ 2

)
+
χ1jχ2iχ3j

χ123χ3i

(
χ2

1iχj(123)

χ1jχ2iχ3i

−
χ1iχ

2
j(12)

χ1jχ2iχ3j

+
2χ1iχj(12)

χ1jχ3i

+
χ2jχ3iχj(23)

χ1jχ2iχ3j

+
χ2iχj(23)

χ1jχ3i

−
χ2jχj(23)

χ1jχ3j

− χ1j

χ3j

−
χj(23)

χ1j

+
χ2i

χ3i

− 2χ2j

χ3j

)]}
−
χj(12)

(
χ3iχj(12) − χ3jχi(12)

)
χ2

3iχ3j

, (A.6)
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and

c0 =
χ3(12)

χi(12)χj(12)

{
χ1jχ2jχi(12)χj(12)

χ23χ3(12)

(
χ2

3jχi(12)

χ1jχ2jχ3i

+
χ3jχi(123)χj(12)

χ1jχ2jχ3i

+
3χ2j

χ1j

+ 4

)
−
χ13χ23χi(12)χj(12)

χ2
12χ3(12)

[
χi(12)

(
χ123χ3j + χ3(12)χj(12)

)
(χ1iχ2j + χ1jχ2i)

χ13χ23χ2
3i

+
χj(123)

χ3i

(
χ1j (2χ1i + χ2i)− χ1iχ2j

χ13

− χ1jχ2i − χ2j (χ1i + 2χ2i)

χ23

)]
+
χ1jχ2jχi(12)χj(12)

χ12χ3(12)

[
χ13

χ23

(
χ2j

χ1j

+ 1

)
+

2χ2j

χ1j

+ 3 +
χ1jχ2(13)

χ23χ2j

+
χ2
j(12)

χ1jχ3j

(
χ13

χ23

+
χ1j

χ2j

+ 2

)
+
χ3j

χ3i

(
3χ1i

χ1j

+
χ1i

χ2j

− χ13

χ23

(
χ1i

χ1j

+
χ2i

χ1j

)
+

2χ2i

χ2j

+
2χ2i

χ1j

)
+
χ1iχj(12)

χ1jχ3i

−
χ1iχj(12)

χ2jχ3i

+
2χ2

3jχi(12)

χ1jχ2jχ3i

−
χ13χi(12)χj(12)

χ1jχ23χ3i

]}
+

2χ2jχ
2
j(12)

χ23χ3j

+
χj(12)

(
χ3i − χi(12)

) (
χ2(13)χ3j − χ2jχ3(12)

)
χ12χ23χ3i

−
χi(12)χj(12) (χ1iχ2j + χ1jχ2i)

χ12χ2
3i

. (A.7)

B Collinear limit of the two-parton colour correlation

In this appendix we consider the u
(nab)
(dip) term in eq. (4.20),

u
(nab)
(dip)

=
4

χ2
123z

2
123

{
D

4

[
z3 − z12

χ12

(
4χ12z3 − 2χ13z2

χ23

− z12

(
1 +

z3

z3 − z12

)
+ 2z1

)
+

2z3(z1 − z3)

χ23

− 2z1z3

χ13

+
2χ12z

2
3

χ13χ23

]
+
z1 (z1 − z2 + 2z3)

χ13

− z3χ12 (z12 + 2z3)

χ13χ23

+
2z1z2χ23

χ2
12

[
z13χ13

z1χ23

(
z12

z3

+ 1

)
− z3z1

z2z12

−
χ3(12)z123

2z12χ23

]
+
z1z2

χ23

(
z1 − z23 − z3

z12

+
z23

z1

− 3z2
3

z1z2

− 4z2 + z3

z2

)
+
z1z2

χ12

[
z123 + 2z2

z3

+
z3

z12

(
2z1

(
1

z3

− 1

z2

)
− 7− 2z2

z1

)
− z2 − 2z3

4z1

+
9 (z1 + 2z3)

4z2

− 3

+
χ13

χ23

(
z1 − z23 − z3

z12

+
z2

z1

+
2z2

z3

− 2 +
3z3

z1

)]
+

2z1z2 (z2χ13 − z3χ12)

z3χ13χ23

+
z2

3

χ12

(
1

4
(D − 6) +

(z2
2χ13 + z2

1χ23)

z3z12χ12

)}
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−
[

4

χ2
123z123χi(123)

(
c0 + c1zi + c2z

2
i

)
+ (i↔ j)

]
+ (1↔ 2) , (B.1)

with

c0 = (D − 6)
z3χ1iχ3i

2χ12χi(12)

+
z3

χi(12)

(
χ2

1iχ23

χ2
12

+
z2

1χi(12)χ23χ3i

z3χ2
12z12

)
+
z2χ1i

2χ23

(
χ2i

χ3i

+
z2

z3

)
+

z1χ
2
2i

2χ23χ3i

+
z1χ2i

χ23

(
z2

2z3

− 2χ12

χ13

)
− χ123

χ12

{
z1χ2i

χ12

(
z3χi(12)

2z12χ3i

+
z12χ3i

2z3χi(12)

− 1

)
−
z2

(
z2χ1iχi(13) + z1χ2iχi(23)

)
2z3χ23χi(12)

+
z1z2χ1iχ2i

z12χ23χi(12)

(
χ2

2i

2χ1iχ3i

− z13χ
2
2i

2z2χ1iχ3i

− z13χ2i

2z2χ3i

+
χ2i

χ1i

+
χ1i

2χ3i

−
z23χi(12)

2z1χ3i

+
χ2i

χ3i

+
z2

z1

+
z2

2

2z1z3

+
z1

2z3

+
z2

z3

+ 2

)}
+
D

4

(
χ13

(
z2χi(12) − z2χ3i + (z12 − z3)χ2i

)
χ12χ23

+
2z3χ12χ3i

χ13χ23

− 2z1χ3i

χ13

− (z12 − 2z3)χ3i + z3 (χ1i + 3χ2i)

χ23

− z1χ1i + (z3 − z2)χ2i + z2χ3i

χ12

)
+
χ1iχ2i

2χ23

[
z1z2χ3i

z3χ1iχ2i

− (z12 + 6z3)χ3i

χ1iχ2i

+
z3

χ3i

+
2z23 + z3 − 6z1

χ1i

− 4z2 + z3

χ2i

+
z1

z12

(
z2

χ2i

− z2

χ1i

(
χ3i

χ2i

+ 1

)
− z3z2

z1χ2i

)]
+
z1 (χ1i − χ2i + 2χ3i)

χ13

−
χ12

(
z3χi(13) + z23χ3i

)
χ13χ23

+
χ1iχ2i

2χ12

{
χ1i

χ3i

(
2z3 − z1

χ1i

+
z2

χ2i

)
+
χ13z23

χ23χ3i

−
(
z3z12 + (z1 − z2)2)χ123χ2i

z12χ23χ3iχi(12)

+
z1

χ1i

{
2 +

z2χ13

z3χ23

+
z2

z1

(
2χ13

χ23

− 1

)
+
z3

z1

(
3χ13

χ23

+ 2

)
− 3χ13

χ23

+
χ3i

χ2i

[
z2

z1

(
3χ13

χ23

+ 2

)
+
z2

z3

(
χ13

χ23

+ 2

)
− z2

z12

(
χ12 + 2χ13

χ23

+ 3

)
− 3z3

z1

+ 3

]
+
χ2i

χ3i

[
z1

z12

χ1(23)

χ23

(
1− z2

z1

+
2χ23

χ1(23)

)
+
χ3(12)

χ23

]
− z2

z12

(
2χ12 + 3χ13

χ23

− z1χ123

z2χ23

+
2z23

z2

+
2z3

z1

)}
+

z1z2

z12χ3i

(
z23χ1(23)

z1χ23

+
2z2

z1

−
z23χ1(23)

z2χ23

+
z3(z2 − z1)

z1z2

+
z1

z2

+ 1

)
+

z2

χ2i

(
z23χ12

z12χ23

+
z1

z12

+
z2

z3

(
χ13

χ23

+ 1

)
− z1

z3

− 2χ13

χ23

+
z3 + 5z1

z2

+ 3

)
+

z1

χi(12)

{
z2 (z2

1 − z2
2)χ1i

z2
1z3χ2i

+
z2

12

z1z3

+
z2χ1i

(
χ1(23) − 5χ23

)
z1χ23χ2i

− z2

z1

(
2χ12 + 3χ13

χ23

+ 2

)
− z3

z1

(
χ12 + 2χ13

χ23

+ 3

)
+
z12χ3i

z1χ2i

(
3z3

z12

− z2

z3

(
χ1(23)

χ23

+ 1

)
− 2

)
+

2z2

z12

(
z2

z1

(
χ1(23)

χ23

− 2

)
+

2χ1(23)

χ23

− 3z1

z2

− 4

)
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+
z2χ1i

z1χ3i

[
z2z12χ3i

z1z3χ2i

+
z1

z12

(
χ1(23)

χ23

+ 1

)
− z23

z12

(
χ1(23)

χ23

+ 1

)]
+
χ2i

χ1i

[
2z2

z12

(
χ1(23)

χ23

− 2

)
+
z13χ2i

z12χ3i

(
z2

z13

(
χ1(23)

χ23

+ 1

)
−
χ1(23)

χ23

− 1

)
− 6z1

z12

+
χ1(23)

χ23

+
z123

z3

+
χ3i

χ2i

(
χ12

χ23

+
3z3 − 2z12

z1

)]
+
χ13

χ23

+ 2

}}
+
z1z2χ1iχ2i

2χ2
12

{
2χ13

z1χ1i

(
χ3i

χ2i

− 2

)
+
z2

z12

[
4χ13χi(12)

z1χ1iχ2i

− 2

χi(12)

(
2z12χ3(12)χ1i

z1z2χ2i

+
χ13χi(12)χ3i

z1χ1iχ2i

)
+
χ3(12)(3χi(12) − χ3i)

z2χ1iχ2i

]
+

2z12χ3(12)χ1i

z3z1χ2iχi(12)

+
z3z12

z1z2

{
1

z12

(
2χ13

χ1i

+
χ3(12)

χ3i

)
+

1

χi(12)

[
1

z3

(
4χ13χ2i

χ1i

+ χ3(12)

)
+
z12χ3(12)

z2
3

− 1

z12

(
2χ13χ2i

χ1i

+ χ3(12)

)]}
+

2χ3(12)

z1z2

(
z1χ2i

χ1iχ3i

− z2z13

z3χ2i

+
z1z2χ3i

2z3χ1iχ2i

)
+

χ123

χ2
i(12)

{
z12χ1iχ3i

z1z3χ2i

−
2χ2

i(12)

z1χ2i

+
z123χ3iχi(12)

z3χ1iχ2i

(
χi(123)χ1i

z1χ3i

+
χ2

1i

z1χ3i

− χ1i

z1

)
+
z123χi(12)

z1z2

(
χi(12)

2χ3i

− 3z12

2z3

+
1

2χi(12)z123

(
z2

12χ3i

z3

+
3z3χ1iχ2i

χ3i

))
+
χ1iχ2i

z12χ3i

[
z3χ

2
1i

z1χ2
2i

+
z3χ1i

χ2i

(
1

z2

+
3

z1

)
+
χ2
i(12)

χ1iχ2i

(
χi(123)

χ2i

(
z2 − z3

z1

− 3

)
+
z123χi(13)

z1χ2i

)]}}

− χ123

4z12χi(12)

2z12χ2i (χ1i (z23 − z1) + z1χ3i)

χ123χ23

, (B.2)

c1 =
D

2
+
χ2

123z123χi(123)

4χ12χ3iz3

[
2

χ12

(
χ1iχ2i

χ2
i(12)

+
z1z2

z2
12

)
− 3

χi(12)z12

χ2iz1 + χ1iz2

χ12

]

− z12

χi(12)

[
χ3(12)χ3i

2χ12z12

− 2χ2iz1z2

z12χ12

(
(χ13 − χ23)2

4z12z2χ12

− χ13χ23

z1z2χ12

+
χ2

13

z1z12χ12

−
z3χ3(12)

2z1z2z12

)]
+

χ2
12

χ13χ23

− χ2iχ12

2χ23χ3i

− z2χ12

2z3χ23

− z2χ1i

2z3χ3i

− χ123

χ12

{
χi(12)

χ3i

(
z3

4z12

− z2
1χ23

z2
12χ12

)
− χ1iχ2i

χ2
i(12)

[
2z1χ1iχ23

z12χ2iχ12

− z123

z12

(
χ2i

χ1i

+ 1

)
+
z2

1χ23

z2
12χ12

(
2 +

χ2iχ3(12)

χ1iχ23

)
+
z12χ13χ2i

z3χ1iχ12

]
+
z2χ12χi(123)

2z3χ23χi(12)

− χ1iχ2i

2χ3iχi(12)

− χ1iχ2i

z12χ3i

[
z1z2

z3χi(12)

((
χ2i

χ1i

+ 2

)
+
z1

z2

)
− χ12z123

2χ1iχ23

]
− z1z2

2z3z12

+
(z123 + z3)χ3i

4z3χi(12)

}
+
χ12

χ13

−
(
χ13

χ23

+
1

2

)(
χ2i

χ3i

+
z2

z3

)
+

3χ12 + 2χ13

χ23

−
χi(12)

4χ3i

− 2 +
z1

2z12

(
1− z3

z1

+
z2

(
χ123 + χ3(12)

)
z1χ23

− χ1i

χ3i

)
− χ123z123

2z12χ23

(
χ2i

χ3i

+ 1

)
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+
χ1iχ2i

2χ12

{
χ13

χ1iχ2i

{
1

z12

[
z1

(
2χ23

χ13

+ 1

)
+ z2

(
χ13

χ23

+ 2

)
−
χ12z23 + 2z3χ3(12)

χ13

]
− z2

z3

(
χ13

χ23

+
z1χ23

z2χ13

+ 2

)
− 4

}
− χ13

χ1iχ3i

(
z2χ3(12) + z23χ123

z12χ13

+
χ13

χ23

+
z1χ3(12)

z3χ13

+ 2

)
+

χ3(12)

χ1iχi(12)

{
χ12

χ3(12)

[
χ13

χ12

(
χ13

χ23

+ 2

)
− z12

z3

− 1

]
+
z123 + z2

z12

− z12 + z2

z3

}
+

χ3(12)

χ2iχi(12)

(
z123 + z1

z12

+
χ23

χ3(12)
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z3

+ 1

)
−
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z123

z12
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+
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z12χ3(12)
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)
+
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12
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)
+
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+
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+
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+
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+
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+
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+
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+
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+
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+
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+

2χ13χ3(12)
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+
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+
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z2
12

[
2z1χ2i

z2χ1i

+
χ2
i(12)χi(123)
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+
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+
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+ 1

]}}

+
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+
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+
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χ23χ3i

−
2z12χi(123)

χ23

]
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4z3χ3i
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χ2

3(12)

4χ12z12χi(12)

(
3χ2

123z123χi(123)

z3χ3iχ2
3(12)

+ 1

)
+

χ12

2z12χ3i

[
χ3(12)

χ12

(
z12

z3

− 1

)
− 1

2

]
+
χ1iχ2i

2χ12

{
χ2

3(12)

2z12χ1iχ2iχi(12)

[
z12

z3

(
χi(12)

χ3i

− 1

)
−
χi(12)

χ3i

]}
+

χ123

4z12χi(12)

(
χ3(12)

χ123

−
z12

(
χ12 + 2χ3(12)

)
z3χ123

+ 1

)
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