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Abstract

DRalgo is an algorithmic implementation that constructs an effective, dimensionally reduced,

high-temperature field theory for generic models. The corresponding Mathematica package

automatically performs the matching to next-to-leading order. This includes two-loop thermal

corrections to scalar and Debye masses as well as one-loop thermal corrections to couplings.

DRalgo also allows for integrating out additional heavy scalars. Along the way, the package

provides leading-order beta functions for general gauge-charges and fermion-families; both

in the fundamental and in the effective theory. Finally, the package computes the finite-

temperature effective potential within the effective theory. The article explains the theory of

the underlying algorithm while introducing the software on a pedagogical level.
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Program summary

Program title: Dimensional Reduction algorithm (DRalgo)

Version: 1.0

Developer’s repository link: https://github.com/DR-algo/DRalgo

Licensing provisions: GNU General Public License 3 (GPLv3)

Programming languages: Mathematica

External routines/libraries: GroupMath [57]

Nature of problem: Construction of high-temperature effective field theories for beyond the

Standard Model physics.

Solution method: Matching of n-point correlation functions using tensor-notation of cou-

plings [60–64].

Restrictions: Mathematica version 12 or above.

Operating system: macOS 11 and higher, Linux Ubuntu 18.04.
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1. Introduction

The origin of Baryon asymmetry [1] in the universe remains obscure. As such, much powder

has been spent throughout past decades to find a sound explanation of this asymmetry [2–5].

Amongst the suggested mechanisms, the one based on the electroweak phase transition –

electroweak baryogenesis – stands out. While the Standard Model (SM) has no strong first-

order transition on its own [6–8], its extensions can contain myriads of them. For new field

content to trigger a strong first-order phase transition, their masses have to be around the

electroweak scale, and their interaction with the SM Higgs cannot be too feeble. Beyond-the-

Standard-Model (BSM) theories that exhibit such transitions provide a direct target for many

future-generation colliders [9, 10]. Furthermore, thermal phase transitions can, perchance,

generate gravitational waves that are observable by next-generation space-based detectors

such as LISA [11], DECIGO [12], Taiji [13] and BBO [14]. These waves might open a fresh

window into the early universe – and the underlying quantum field theory.

The interplay between BSM phenomenology and gravitational waves is among the most ac-

tively studied topics in the high-energy-physics literature [15–25]. This interplay requires solid

understanding of thermodynamic properties of different models. It has been long known that

determining thermodynamics in theories with non-Abelian gauge fields is challenging because

of the Linde problem [26]. In short, there are non-perturbative effects arising from massless

vector-bosons: these infrared (IR) effects can only be captured by lattice simulations [27]. De-

spite this, leading-order perturbation theory is frequently used as an approximation. However,

it has been pointed out that such leading-order studies contain large theoretical uncertainties,

due to slow convergence of perturbation theory [20,28–30].

Dimensional reduction [31, 32] offers a way to overcome these challenges. In this frame-

work, ultraviolet (UV) modes – related to non-zero Matsubara modes in the imaginary time

formalism – are integrated out. The resulting effective field theory (EFT) [33, 34] describes

IR, or long wavelength zero modes, living in three spatial dimensions (3d) (cf. also [35–37]).

The 3d EFT can be simulated on a lattice and hence by-pass the Linde problem [27, 38].

Dimensional reduction can also be viewed as a systematic scheme for thermal resummations,

used purely within the realm of perturbation theory [29]. To leading order, dimensional re-

duction is equivalent to resummation via thermal masses. Concretely, the effective potential,

that describes the free energy of thermal plasma, is commonly given in a schematic form [28]

Veff ≃ VT=0 + VT + Vdaisy . (1.1)

Here, VT=0 is the Coleman-Weinberg zero-temperature contribution, which is often aug-

mented with the effective potential at one-loop level. Namely, VT is the thermal correction at

one-loop (commonly in the high-temperature expansion) and

Vdaisy ≃ −
T

12π

[

(m2 +ΠT )
3
2 − (m2)

3
2

]

. (1.2)
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Here m2 represents a field-dependent mass and ΠT ∼ g2T 2 is a one-loop thermal correction.

It is the first term in eq. (1.2) that implements the resummation.1 This resummed mass, for

zero Matsubara modes arises from thermal corrections due to non-zero Matsubara modes.

Physically, this corresponds to thermal screening: UV modes in the plasma screen IR modes.

In eq. (1.1) all contributions are evaluated at one-loop order, which means that only masses

are resummed. However, at high temperatures, the perturbative expansion is controlled by

g, rather than g2 as in a zero-temperature loop expansion. Dimensional reduction makes it

possible to systematically include higher order resummations, in particular two-loop thermal

masses and one-loop resummation of couplings and fields which are also affected by thermal

screening. Hence, dimensional reduction can be used to include important next-to-leading

order thermal effects. In particular, renormalization-group (RG) improvements require two-

loop computations at high temperatures [28, 30]; these are straightforward to implement in

the 3d EFT approach [29].

To date there are sundry studies using dimensional reduction in electroweak theories [20,

21,23,25,29,33,35–37,39–42]. For similar studies in hot QCD, see [43,44]. Still, many models

remain to be studied within the dimensional-reduction framework [45–48].

Along with this article, we launch the Mathematica package DRalgo to implement dimen-

sional reduction automatically for user-defined models. This package calculates parameters

in the 3d EFT. For example, DRalgo calculates two-loop thermal masses, effective couplings,

and beta functions. The package also allows users to integrate out heavy scalars and temporal

(Debye) scalars. Furthermore, DRalgo can be used to compute the two-loop thermal effective

potential within the effective theory. Subsequently, the 3d EFT matching relations can be

implemented to lattice Monte Carlo simulations. The algorithm 1 illustrates this pipeline.

This package can be applied to models previously studied in the electroweak and dark-sector

phase-transition literature.

The remainder of this article is organised as follows. Section 1.1 briefly introduces dimen-

sional reduction and matching relations. Section 2 explicates the front-end of the package, its

installation, and gives a tutorial based on the Abelian-Higgs model. Section 3 reviews theory

and computations in the back-end of the package. Section 4 illustrates additional features by

implementing a two-Higgs doublet model. In section 6, we discuss future prospects and possi-

ble updates of the package. Finally, appendix A displays the computation of thermodynamical

observables using the output of DRalgo for the Abelian-Higgs model.

1.1. Prologue: dimensional reduction at next-to-leading-order

At leading order (LO) scalars obtain familiar one-loop thermal masses, while temporal (longi-

tudinal) scalars get Debye masses. At next-to-leading order (NLO) couplings are resummed,

1The second ∼ Tm3 term in eq. (1.2) removes double counting; the same contribution is included VT but

with unresummed mass. This term is related to the Matsubara zero-mode contribution.
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Algorithm 1 DRalgo algorithm outline in alignment with fig. 2 of [49]. The use of lattice re-

sources is indicated as an optional path. The functions PerformDRhard[], PerformDRsoft[]

and CalculatePotentialUS[] are part of DRalgo.

Input: Four-dimensional Lagrangian L4d with parameters {c1, . . . , cn}, temperature T ,

physical parameters, heavy masses M

Start: Initialize model

Call PerformDRhard[] {

for all ci ∈ {c1, . . . , cn} do

Compute 4-dimensional β-functions β(ci)

Compute ci,3d(T,M) by integrating out non-zero Matsubara modes

end for

Compute thermal (Debye) masses mD,i(T,M)

Compute couplings that involve temporal vector fields

}

Output/Input: Three-dimensional soft Lagrangian L3d with parameters {c1,3d, . . . , cn,3d}

Call PerformDRsoft[] {

for all ci,3d ∈ {c1,3d, . . . , cn,3d} do

Compute 3-dimensional β-functions β3d(ci,3d)

Compute c̄i,3d(T, c1,3d, . . . , cn,3d) by integrating out massive temporal scalars

end for

}

Output: Three-dimensional ultrasoft Lagrangian L̄3d with parameters {c̄1,3d, . . . , c̄n,3d}

if Lattice resources then

Compute lattice continuum relations to construct Llattice
3d

Monte Carlo simulation

else

Call CalculatePotentialUS[] {

Compute effective potential V 3d
eff (m

2
i,3d) up to two-loops

}

end if

Compute thermodynamic parameters Tc, L/T
4
c
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and scalars receive two-loop thermal masses. DRalgo also calculates two-loop Debye masses.

Corrections at NLO are particularly important due to large logarithms. The idea with di-

mensional reduction is to render some logarithms (ln µ̄
T ) small by matching at a high energy

(µ̄ ∼ T ). The remaining logarithms can then be resummed by RG-evolution within the EFT.

Phase transitions often occur below the Debye-mass scale. In such cases temporal scalars

can also be integrated out. Thus effectively removing large logarithms of the form ln mD
µ̄ ,

where mD is a Debye mass. This second EFT is said to live at the ultrasoft scale, which is

characterised by energies of O(g2T ). In summary,2 the hard scale corresponds to energies

E ∼ T ; the soft scale corresponds to energies E ∼ gT ; and the ultrasoft scale corresponds to

energies E ∼ g2T .

To illustrate next-to-leading order dimensional reduction, we consider a schematic model

with scalar mass parameter µ2, scalar quartic coupling λ, and gauge coupling g. Given the

power counting µ2 ∼ g2T 2, λ ∼ g2, the matching of the mass parameter is

µ̄23 =
tree-level

µ2 +
1-loop

#g2T 2

O(g2)

+
1-loop

#g2µ2 +
2-loop

#g4T 2

O(g4)

+O(g6)

+
1-loop

#g2mD

O(g3)

+
2-loop

#g4

O(g4)

+O(g5) , (1.3)

where the first line (with even powers of g) results from the first step, and the second line

(with odd power of g) from second step of the dimensional reduction. In practice, full O(g4)

contributions are included. Going to higher orders, requires a three-loop computation for

both steps of the dimensional reduction. The situation is similar for the coupling:

λ̄3 =
tree-level

Tλ

O(g2)

+
1-loop

#g4

O(g4)

+O(g6)

+

1-loop

# g4

mD

O(g3)

+

2-loop

# g6

m2
D

O(g4)

+O(g5) . (1.4)

In practice for the coupling, O(g4) pieces are neglected since their numerical effect is small

(despite being formally of the same order). These contributions arise during the second step

of the dimensional reduction at two-loop. Pursuing higher order, requires a two-loop compu-

tation for the first step, and a three-loop computation for the second step of the dimensional

reduction.
2Some literature [33] interchangeably refers to the hard scale as superheavy, the soft scale as heavy, and

the ultrasoft scale as light.

6



In perturbation theory the definition of 3d EFT parameters are accompanied with a per-

turbative computation of the effective potential [29]:

V 3d
eff = V 3d

tree
︸︷︷︸

O(g2)

+V 3d
1-loop
︸ ︷︷ ︸

O(g3)

+V 3d
2-loop
︸ ︷︷ ︸

O(g4)

+O(g5) . (1.5)

Instead of expanding the result in terms of 4d parameters of the parent theory, resummed

couplings and masses are kept along. This improves the overall convergence as the result is

less sensitive to the renormalization scale [50, 51]. The order O(g5) requires a computation

at three-loop level [52–54].

Dimensional reduction from a zero-temperature EFT perspective

It is instructive to consider the same physics from a standard EFT perspective. In particular,

for equilibrium observables we can, analogous to Kaluza-Klein theories [55], view thermal

corrections as an infinite tower of heavy particles. To see the connection with dimensional

reduction, we consider a theory with one light and one heavy scalar in Euclidean spacetime:

L =
1

2
(∂µφ)

2 +
1

2
(∂µΦ)

2 +
1

2
m2φ2 +

1

2
M2Φ2 +

1

4
κφ2Φ2 +

1

4!
λφ4 . (1.6)

Imagine now that there exists a hierarchy M2 ≫ m2. This is a well-known situation, and

when calculating scattering processes one encounters large corrections to m2 scaling as κM2

– analogous to the hierarchy problem. As well as large logarithms in the form ln µ̄2

M2 or ln µ̄2

m2 .

One of these logarithms will then be large regardless the choice of the RG-scale µ̄.

Using thermal masses is equivalent to using a resummation3 m2 → m2 + aκM2. This re-

summation does, however, not solve our problems of large logarithms. Therefore, calculations,

even with thermal masses, are sensitive to the RG-scale. The situation is much improved by

using an EFT. Therein, the logarithms ln µ̄2

M2 are rendered small by matching at the scale

µ̄Match ∼ M , and the remaining logarithms ln µ̄2

m2 are taken care of by RG-evolution in the

low-energy theory [56].

Once the scalar field Φ has been integrated out, the resulting EFT is of the form

Leff =
1

2
(∂µφ)

2 +
1

2
m2

eff φ
2 +

1

4!
λeff φ

4 . (1.7)

To leading order m2
eff = m2 + aκM2, and λeff = λ. While at NLO

δm2
eff = κ2M2

(

b+ c ln
µ̄2Match

M2

)

, (1.8)

δλeff = κ2
(

d+ e ln
µ̄2Match

M2

)

, (1.9)

3This can also be viewed as a temperature-dependent renormalization δTm
2 such thatm2 = m2+δTm

2 [23].
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where b, c, d, e are numerical coefficients. It is precisely these kind of corrections that appear

in the dimensionally reduced theory.

Finally, to do calculations in the IR, we should run the couplings within the EFT from

µ̄Match ∼ M down to µ̄IR ∼ meff. In this way, all large logarithms are eliminated and pertur-

bative convergence is improved.

In the case of dimensional reduction, we have an infinite tower of heavy particles with

masses M2
n = (2πnT )2 for all integers n 6= 0.4 Hence, the high-temperature matching scale

is µMatch ∼ T and the low-energy scale is µ2IR ∼ g2T 2. Since we are describing equilibrium

(static) processes, there is no time dependence – the degrees of freedom of the EFT are static

and live in three dimensions.

2. Installation and running

This section explains how to install DRalgo and presents a tutorial based on the Abelian-Higgs

model.

2.1. Installation

The current version of DRalgo, 1.0, is installed by placing all the source files either in the

applications folder Mathematica/Applications or running Mathematica from the package

root directory ./DRalgo.

The required source files are outlined in fig. 1. To create model files, DRalgo uses functions

from GroupMath [57]; see ibid. for its installation. This tutorial uses GroupMath Version 1.1.2

but GroupMath is not required for the dimensional reduction itself. If a model file is already

available, it can be loaded independently of GroupMath (cf. sec. Q.1). Since GroupMath is an

external package, any use of the model-creation features in DRalgo should be accompanied

by a citation of [57].

To load DRalgo from the Mathematica applications folder Mathematica/Applications,

the following commands need to be executed:

SetDirectory[NotebookDirectory[]];

$LoadGroupMath=True;

<<DRalgo`

Subsequently, we demonstrate the definition of models, the dimensional reduction, and the

calculation of the two-loop effective potential. All steps are mirrored in the accompanying

./examples/ah.m.

4Fermions have masses of Mn = (2n+ 1)πT .
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DRalgo
DRalgo.m ....................................................package file
Debye.m ........................Creates and organizes temporal scalars
EffPot.m ..........Computation of the effective potential in the EFT
HardToSoft.m .....................................Matching hard to soft
SoftToUS.m ..................................Matching soft to ultrasoft
ModelCreation.m ........................................Creating a model
examples/..........................................Model example library

ah.m...............................................Abelian-Higgs model
sm.m .................................................... Standard Model
xsm.m ........................... Standard Model and one real scalars
2xsm.m..........................Standard Model and two real scalars
cxsm.m........................Standard Model and one complex scalar
2hdm.m........................................Two-Higgs Doublet model
3hdm.m......................................Three-Higgs Doublet model
htm.m.....................Standard Model and one real SU(2) triplet
SU5.m.......................................................SU(5) model
LRSymmetric.m.............................Left-Right symmetric model
WessZumino.m........................................Wess-Zumino model
smZp.m..................................Standard Model and Z ′-bosons

README.md
LICENSE

Figure 1: Outline of the structure of DRalgo. The most relevant files for this article are

highlighted. Specific models are discussed in sec. 2 for ah.m and sec. 4 for 2hdm.m.

2.2. Model implementation

As an example, we consider the Abelian-Higgs model with the Euclidean Lagrangian

L =
1

4
FµνF

µν + (Dµφ)† (Dµφ) + V (φ, φ†) , (2.1)

V (φ, φ†) = m2φ†φ+ λ
(
φ†φ

)2
, (2.2)

where the covariant derivative is Dµ = ∂µ − ig1YφAµ and the corresponding field-strength

tensor is Fµν = ∂µAν − ∂νAµ. Here, the field Aµ is an U(1) gauge field with gauge coupling

g1 and φ is a complex scalar field charged under U(1) with general charge Yφ.

The zero, or temporal, component of the vector field receives a thermally induced mass in

the 3d theory. This temporal scalar transforms as a singlet under U(1) and has a Lagrangian

Ltemporal =
1

2
(∂iA0)

2 +
1

2
µsqU1A2

0 +
1

4!
λVLL[1]A4

0 +
1

2
λVL[1]A2

0φ
†φ , (2.3)

where indices i ∈ {1, . . . , d} are spatial. Here, µsqU1 is the temporal-scalar Debye mass

(squared), λVLL[1] is the self-interaction coupling, and λVL[1] is the portal coupling to φ.

The notation above is aligned with the systematic notation of DRalgo. For earlier studies of

this model in the literature, we refer to [35–37,58,59].
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To create a model in DRalgo, we have to specify the gauge group and the scalar represen-

tation. In DRalgo this is done via

Group={"U1"};

CouplingName={g1};

RepAdjoint={0};

Higgs={{Yφ},"C"};

RepScalar={Higgs};

RepFermion={};

Here, the adjoint (vector) representation is trivial for the Abelian Higgs model. In the def-

inition of the Higgs scalar {{Yφ},"C<R>"}, Yφ denotes the gauge charge. One additional

argument is passed depending on if the scalar has a real (R) or a complex (C) representation.

In this simple example, fermions are absent and the corresponding bracket is empty. While

not relevant for this model, note that fermions are never part of the 3d EFT Lagrangian as

they are integrated out during the first step of the dimensional reduction. The model-input

from the gauge sector is generated with the command

{gvvv,gvff,gvss,λ1,λ3,λ4,µij,µIJ,µIJC,Ysff,YsffC}=

AllocateTensors[Group,RepAdjoint,CouplingName,RepFermion,RepScalar];

The tensors listed above have the following correspondence

gvvv structure constants

gvff vector-fermion trilinear couplings

gvss vector-scalar trilinear couplings

λ1 scalar tadpole couplings

λ3 cubic couplings

λ4 quartic couplings

µij scalar-mass matrix

µIJ, µIJC fermion-mass matrices

Ysff, YsffC Yukawa couplings

and their purpose is described in depth in sec. 3. By default all these tensors, except for the

gauge ones, are empty. While their order on the left hand side of AllocateTensors is fixed,

the above naming of {gvvv,...,YsffC} is arbitrary.

The next task is to specify the scalar potential. Let us start with the mass matrix. There

is only one allowed term: φφ†. This term is selected via

InputInv={{1,1},{True,False}};

MassTerm1=CreateInvariant[Group,RepScalar,InputInv][[1]]//Simplify;

VMass=msq*MassTerm1; (* corresponds to a term 1
2
m2φφ† *)
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µij=GradMass[VMass];

To understand the syntax, recall that we defined our scalar as RepScalar={Higgs}. Then

{1,1} specifies that we are after a term with two (RepScalar[[1]]) φ fields. For general

models, the index 1 can be replaced by any index in RepScalar as defined by the user. In

addition, {True,False} specifies that we are after the φφ† term and conversely {True,True}

corresponds to a φφ term. The latter term, however, is not allowed in this example due to

gauge invariance. Since this example exhibits merely one U(1) invariant combination of φ and

φ†, we specify [[1]] in the CreateInvariant output.

For the quartic tensor only one possible term arises, namely (φφ†)2. We already created a

(φφ†) term above, which can be reused to find the quartic:

VQuartic=λ*MassTerm1^2;

λ4=GradQuartic[VQuartic]

To see how quartic and mass terms are composed of scalar-field components, one can inspect

the variables VMass and VQuartic.

This completes the model implementation, and we now have all ingredients to do the

dimensional-reduction step.

2.3. Running the dimensional-reduction algorithm

First we need to load the model with the command

ImportModelDRalgo[Group,gvvv,gvff,gvss,λ1,λ3,λ4,µij,µIJ,µIJC,Ysff,YsffC,Verbose->False];

Since the gauge group was previously defined, the corresponding Debye masses are automat-

ically generated and named. The option Verbose->False disables all progress messages.

The actual dimensional reduction is performed with the command

PerformDRhard[];

This calculates all thermal masses, effective couplings, β-functions and anomalous dimensions.

For example, gauge and scalar couplings are given by

PrintCouplings[]
{

g13d2 → g21T −
g4
1
LbTY 2

φ

48π2 , λ3d →
T (g4

1
Y 4

φ (2−3Lb)+6g2
1
Y 2

φ λLb+2λ(8π2−5λLb))

16π2

}

where the output is a replacement rule. The variables Lb and Lf are dependent on the 4d-
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renormalization scale (µ̄) and the temperature (T ) [29,33]. They are

Lb = ln
( µ̄2

T 2

)

+ 2γE − 2 ln(4π) , Lf = Lb+ 4 ln(2) , (2.4)

where γE is the Euler-Mascheroni constant. Further information about the functional basis of

the effective parameters is collected in sec. Q.11. The corresponding definitions of constants,

along with other shorthand notations, are shown with the command

PrintConstants[]

The above RG-scale µ̄ is the hard matching scale, and should be chosen as µ̄ ∼ T to avoid

large logarithms.5 Effective mass parameters are divided into scalar and temporal-scalars.

The scalar masses are given by

PrintScalarMass["LO"]

PrintScalarMass["NLO"]

Here, the LO command prints tree-level masses together with one-loop thermal contributions;

the NLO command prints two-loop thermal masses. By default these NLO masses contain

the running from the matching scale (µ̄) to an arbitrary 3d scale (µ̄3).
6 The resulting Debye

masses are displayed by

PrintDebyeMass["LO"]

PrintDebyeMass["NLO"]

Mixed temporal-scalar couplings (to NLO) are printed with

PrintTemporalScalarCouplings[]

Such temporal-scalar couplings are denoted as λVLL[a] for V 4 couplings, λVVSL[a] for V 2S

couplings and λVL[a] for V 2S2 couplings, where S represents scalar fields and V temporal

scalar fields. The index ‘a’ systematically labels all linearly independent terms.

The coefficient of the unit operator [34], or the hard-mode contribution to the symmetric-

phase pressure, is given by

PrintPressure["LO"]

PrintPressure["NLO"]

PrintPressure["NNLO"]

5In DRalgo the renormalization scales are denoted by µ = µ̄ for the hard scale and µ3 = µ̄3 for the soft

scale.
6There are different ways to express the NLO masses. We refer to sec. Q.11 for further details.
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Here, LO corresponds to one-loop, NLO to two-loop, and NNLO to three-loop level. The

LO result describes the pressure of an ideal gas, and is given by PLO(T ) = N π2

90T
4, where

N represents the number of degrees of freedom. For the Abelian Higgs model N = 4 with 2

from the photon and 2 from the complex scalar.

DRalgo also provides anomalous dimensions and beta functions in the parent 4d theory;

see sec. 3.4. Beta functions are printed with the command

BetaFunctions4D[]

Next, to find anomalous dimensions we first need to specify for which particles we want

them. As DRalgo stores everything in tensor form, we need to find the positions of all particles

PosScalar=PrintScalarRepPositions[];

To determine the anomalous dimension of e.g. ScalarRep[[1]], we would write

AnomDim4D["S",{PosScalar[[1]],PosScalar[[1]]}]

See sec. Q.4 for how to obtain anomalous dimensions for vector-bosons and fermions.

2.4. Integrating out temporal scalars

Temporal scalars are often heavy compared to the fields driving the phase transition, and can

be integrated out [29, 33]. It should be stressed that this is a user-dependent optional step.

The resulting EFT is said to describe ultrasoft physics. The command is

PerformDRsoft[{}];

Couplings at the ultrasoft scale are given by

PrintCouplingsUS[];

And effective scalar masses are given by

PrintScalarMassUS["LO"];

PrintScalarMassUS["NLO"];

Finally, β-functions for the ultrasoft masses are provided with the command

BetaFunctions3DUS[];
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In the 3-dimensional theory only scalar masses have non-zero beta functions.

This concludes our tutorial of the dimensional reduction of the Abelian-Higgs model.

2.5. Two-loop effective potential

Once the model is loaded, we can calculate the effective potential. This can be done by

the user, either in the soft or the ultrasoft theory. Alternatively, DRalgo can calculate the

effective potential in the ultrasoft theory. First, we need to create field-dependent masses

which requires to specify a vacuum expectation value direction:

DefineNewTensorsUS[µij,λ4,λ3,gvss,gvvv];

φvev={0,φ}//SparseArray;

DefineVEVS[φvev];

Here the vacuum expectation value is in the second, imaginary, Higgs component.

For the calculation to proceed, all mass matrices must be diagonal. If not, an error message

is printed and it is up for the user to diagonalize the matrices; see section Q.16 for an example.

For the model at hand, the mass matrix is diagonal, which the user can confirm by printing

the field-dependent masses

FieldMasses=PrintTensorsVEV[]

The effective potential is calculated via

CalculatePotentialUS[]

The results are given by

PrintEffectivePotential["LO"]

PrintEffectivePotential["NLO"]

PrintEffectivePotential["NNLO"]

Here, LO refers to the tree-level, NLO to the one-loop, and NNLO to the two-loop effective

potential. Note that all results are given in Landau gauge. In the (two-loop) NNLO part, the

renormalization scale is denoted by µ3 = µ̄3.

This completes the first tutorial on quick installation and running. Output from the 3d

EFT matching relations can be implemented either to non-perturbative lattice codes, or

perturbative analyses in terms of the effective potential. While such implementations are

left to the user, appendix A displays how to interface DRalgo output in a Mathematica

implementation that determines selected thermodynamic quantities for the Abelian-Higgs
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model.

3. Theory behind the scenes: dimensional reduction of a generic model

In this section, we dig deeper into the theory and computations in the back-end of the

software. The implementation for dimensional reduction of a generic model is based on tensor-

notation [60–64] that separates Lorentz algebra from group algebra. The Lorentz algebra is

hard-coded, with contractions done by FeynCalc [65, 66] and FORM [20, 67], while the group-

structure is provided by the user.

3.1. Lagrangian in the 4d fundamental theory

Consider a general Lagrangian in Minkowski spacetime with mostly-plus metric: gµν =

diag(−1, 1, 1, 1), {σµ, σν} = −2gµν . In terms of the functional-integral measure and the action

S, the partition function is Z =
∫
D eiS . Correspondingly, the sigma matrices are defined as

σµ =
(
1, σi

)
, σµ =

(
−1, σi

)
, (3.1)

where σi are Pauli matrices.

To write down the Lagrangian, in a flattened form, we employ a basis where all scalars and

vectors are real. In addition, all fermions are composed of two-component Weyl-spinors [68].

The most general, four dimensional, Lagrangian in Minkowski space is [34,60,61]

L = −
1

2
Ri(−δij∂µ∂

µ + µij)Rj −
1

4
F a
µνF

µν,aδab −
1

2ξa
(∂µA

a,µ)2

− ∂µηa∂µη
a + iψ†

Iσ
µ∂µψ

I −
1

2
(M IJψIψJ + h.c.) + Lint , (3.2)

Lint = −λiRi −
1

3!
λijkRiRjRk −

1

4!
λjklmRiRjRkRm −

1

2
(Y iIJRiψIψJ + h.c)

+ gaIJA
a
µψ

†
Iσ

µψJ − gajkA
a
µRj∂

µRk −
1

2
gajng

b
knA

a
µA

µ,bRjRk − gabcAµ,aAν,b∂µA
c
ν

−
1

4
gabegcdeAµaAνbAc

µA
d
ν + gabcAa

µη
b∂µηc , (3.3)

where Lint is the interaction Lagrangian and Fµν = i
g [Dµ,Dν ] is the field strength tensor with

the corresponding gauge coupling g. In this notation, the field Ri denotes a real scalar-field

with scalar-index i. In the Standard Model, i corresponds to the Higgs, neutral Goldstone,

and real/imaginary component of the charged Goldstone. Further, the field Aa
µ corresponds

to a real vector-field with vector-index a, the field η is a ghost-field and the field ψI is a Weyl-

spinor with fermion-index I. In addition, µij denote (squared) scalar masses, andMIJ fermion

masses. Repeated indices are always summed over irrespective of their vertical placement.
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Above we denoted YiIJ as Yukawa couplings, λijkl as scalar quartic, λijk as scalar cubic, and

λi as scalar tadpole couplings. The gauge couplings gajk are (anti-symmetric) representation

matrices. For example, for an adjoint scalar-representation in SO(3) gajk = ǫajk. The abbre-

viation h.c. stands for the hermitian conjugate. The vertical placement of fermion indices is

important; e.g. M IJ =M∗
IJ . We refer to [68] for further details.

In the dimensional-reduction step, hard modes with masses ∼ πT are integrated out.

This is done by matching the fundamental Lagrangian above to the effective Lagrangian

living in three-dimensions. To avoid large logarithms this matching should be performed

close to µ̄ = πT where µ̄ is the RG-scale. This three-dimensional Lagrangian does not contain

fermions. Moreover, in the dimensional-reduction step the temporal component of vectors –

represented by temporal scalar fields in the EFT – obtain Debye masses, as well as thermally

generated interactions with other scalars.

The matching is straightforward using Euclidean signature. This is achieved by redefining

AM,a
0 ≡ iAE,a

0 , σM
i = −iσE

i , t = −iτ , ∂M
0 = i∂E

0 , (3.4)

(∂µR∂
µR)

M
= (∂µR∂

µR)
E
, /D M = i /D E , {σµ, σν}E

= 2δµν , (3.5)

where quantities are denoted either in Minkowskian (M) or Euclidean (E) metric. Henceforth,

we suppress these subscripts and implicitly assume an Euclidean metric.

With the above redefinitions, the partition function is defined as ZE =
∫
D e−SE with the

most general tree-level Lagrangian in Euclidean signature

L =
1

2
Ri(δij∂µ∂

µ + µij)Rj +
1

4
F a
µνF

µν,aδab +
1

2ξa
(∂µA

a,µ)2

+ ∂µηa∂µη
a + ψ†

Iσ
µ∂µψ

I +
1

2
(M IJψIψJ + h.c.) + Lint , (3.6)

Lint = λiRi +
1

3!
λijkRiRjRk +

1

4!
λjklmRiRjRkRm +

1

2
(Y iIJRiψIψJ + h.c.)

+ igaIJA
a
µψ

†
Iσ

µψJ + gajkA
a
µRj∂

µRk +
1

2
gajng

b
knA

a
µA

µ,bRjRk + gabcAµ,aAν,b∂µA
c
ν

+
1

4
gabegcdeAµaAνbAc

µA
d
ν − gabcAa

µη
b∂µηc . (3.7)

All Lorentz indices are contracted using the Euclidean metric δµν = diag(+1,+1,+1,+1).

The Feynman rules for the vertices are

RiRjRkRl : −λijkl , (3.8)

RiRjRk : −λijk , (3.9)

Ri : −λi , (3.10)

RiψIψJ : −YiIJ , (3.11)
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ψIψJA
a
µ : −igaIJσµ , (3.12)

RiRjA
a
µ : igaij(p+ q)µ , (3.13)

Aa
µA

b
νA

c
ρ : ig

abcTµνρ , (3.14)

Aa
µA

b
νA

c
ρA

d
σ : −Gabcd

µνρσ , (3.15)

ηaηbAc
µ : igabcpµ , (3.16)

RiRjA
b
µA

b
ν : δµν

(
gaing

b
nj + gajng

b
ni

)
≡ δµνH

ab
ij , (3.17)

where Gabcd
µνρσ and Tµνρ are defined in [61]. Since we only focus on the matching, only the sym-

metric phase is relevant and vacuum expectation values are not introduced. The propagators

are

〈Ri(p)Rj(q)〉 =
δijδ(p + q)

p2
,

〈Aa
µ(p)A

b
ν(q)〉 =

δabδ(p + q)

p2
Pµν(p) ,

〈ηa(p)ηb(q)〉 =
δabδ(p − q)

p2
,

〈ψI(p)ψJ(q)〉 =
δIJδ(p − q)ipµσµ

p2
, (3.18)

where all momenta are incoming by convention and

Pµν(p) = δµν − (1− ξ)
pµpν
p2

, (3.19)

where ξ is the corresponding gauge parameter which for our investigations in Landau gauge

is set to ξ = 0. All the Lorentz structure is contained in the vertices, and the generalized

coupling constants take care of the group structure.

To do the matching we need to renormalize our theory. The matching can, and will, in-

troduce kinetic mixing. To allow for this, we express the bare (b) fields and scalar masses

as

Ri(b) = Z
1/2
ij Rj , µij(b) = Zµ

ij = µij + δµij , Aa
µ(b) = Z

1/2
ab A

b
µ , ψI(b) = Z

1/2
IJ ψJ . (3.20)

By construction all propagators should be diagonal at tree-level, to wit

Z
1/2
ik Z

1/2
kj = δij + δZij , Z1/2

ac Z
1/2
cb = δab + δZab . (3.21)

Assumed size of masses and couplings

For the current problem there are three energy scales: πT , gT , and g2T . Denoted as the hard,

soft, and ultrasoft scale, respectively. In DRalgo it is assumed that all scalar (fermion) masses
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scale as gT or g2T . If, on the contrary, some masses would be hard, then they should formally

be integrated out together with high-temperature modes.7 After hard modes are integrated

out, it is up to the user whether soft-scale (gT ) fields are integrated out as well. By default

all temporal scalars have masses of this order, but some models might also have additional

scalars with soft masses. For the couplings, DRalgo assumes that all quartics and cubics scale

as g2. This scaling is chosen so that scalar masses of O(gT ) can be integrated out safely [23].

In summary, DRalgo assumes the following scaling

λijkl ∼ g2 , λijk ∼ g2 , λi ∼ g2 ,

µij ∼ g2T 2 , MIJ ∼ gT , YiIJ ∼ g , gaIJ ∼ gaij ∼ gabc ∼ g . (3.22)

It is of course possible to consider smaller couplings and masses than those above.

3.2. Lagrangian in the 3d effective theory

The three-dimensional theory is of the form

L =
1

2
Ri(δij∂µ∂

µ + µij)Rj +
1

4
F a
µνF

µν,aδab +
1

2ξa
(∂µA

a,µ)2

+ ∂µηa∂µη
a +

1

2
∂µA

a
0∂

µAa
0 +

1

2
µabD A

a
0A

b
0 + Lint , (3.23)

Lint = hiRi +
1

3!
hijkRiRjRk +

1

4!
hjklmRiRjRkRm

+ gajkA
a
µRj∂

µRk +
1

2
Aa

µA
µ,bRjRk + gabcAµ,aAν,b∂µA

c
ν

+
1

4
gabegcdeAµaAνbAc

µA
d
ν − gabcAa

µη
b∂µηc

+ λabcdA Aa
0A

b
0A

c
0A

d
0 + g0

ab
ijA

a
0A

b
0RiRj + gabc0 Aa

µA
b
0∂

µAc
0 , (3.24)

where Lorentz indices range between µ, ν = {1, . . . , 3}. In renormalizing the fields, we define

Z
1/2
ik Z

1/2
kj = δij + δZ3,ij , Z1/2

ac Z
1/2
cb = δab + δZab

3 , Z
1/2
ac,LZ

1/2
cb,L = δab + δZab,L

3 . (3.25)

Here, the term δZab,L
3 corresponds to temporal vectors. The propagators of this theory are

as in eq. (3.18) in three dimensions with the absence of the fermionic propagator and the

inclusion of the temporal-vector propagator

〈Aa
0(p)A

b
0(q)〉 =

δabδ(p + q)

p2
. (3.26)

The counterterm Feynman rules are the same as above, barring the new temporal-vector

diagram

Aa
0A

b
0 : −p

2δZab,L
3 − δµabD . (3.27)

7This will be implemented in future versions of DRalgo.
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Figure 2: Diagrams contributing to the thermal scalar masses. A wiggly line denotes gauge

bosons, a black line scalar particles, and a directed black line fermions. A black dot represents

corresponding counterterms.

3.3. Matching

Self-energies and general n-point correlations are calculated both in the original 4d theory

and the effective 3d theory. The 3-dimensional parameters are chosen, or matched, to give

the same correlators as the original theory [29,33].

One-loop thermal scalar masses

We start with the matching for scalar masses. For the matching we assume to be in a regime

of soft or ultrasoft external momenta p ∼ gT or p ∼ g2T . The corresponding diagrams at

one-loop level are illustrated in fig. 2. In their computation, we need the master integrals [69]

I4bα =
∑
∫

Q

1

[Q2]α
=

(
µ̄2eγE

4π

)ǫ

2T
[2πT ]d−2α

(4π)
d
2

Γ
(
α− d

2

)

Γ(α)
ζ2α−d , (3.28)

I4fα =
∑
∫

{Q}

1

[Q2]α
=

(
µ̄2eγE

4π

)ǫ

2T
[2πT ]d−2α

(4π)
d
2

Γ
(
α− d

2

)

Γ(α)

(
1− 2d−2α

)
ζ2α−d , (3.29)

where ζs = ζ(s) is the Riemann zeta function. The d-dimensional bosonic integral measure is

defined as

∑
∫

Q

≡ T
∑

qn

(
µ̄2eγE

4π

)ǫ ∫
ddq

(2π)d
, (3.30)

while for fermions the summation is written as Σ
∫

{Q}. We set d = 3 − 2ǫ with Euclidean

four-momenta Q2 = q2n + q2 =
[
(2n + σ)πT

]2
+ q2, and σ = 0(1) for bosons(fermions).

The first diagram in fig. 2 gives

Dij
1 = −

1

2
λijnnI

4b
1 , (3.31)

where the factor of 1
2 is the symmetry factor, −λijnn is the Feynman rule, and

I4b1 =
T 2

12
+O(ǫ) . (3.32)

The zero Matsubara mode is here ignored. The reason for this is that the zero Matsubara

mode corresponds to soft momenta, and should not be integrated out. Conversely, since the
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n = 0 mode exists both in the EFT and the parent theory, this contribution cancels in the

matching. The second diagram is likewise (neglecting higher ǫ terms)

Dij
2 =

1

2
Haa

ij dI
4b
1 , dI4b1 =

T 2

4
, (3.33)

where we used the shorthand notation for Hab
ij from eq. (3.17).

The remaining diagrams give

Dij
3 = i2gaing

a
nj

3

(4π)2ǫb
p2 , Dij

4 =
1

2
λijnl µnl

1

(4π)2ǫb
. (3.34)

The first diagram contains the external momentum is p, and the last diagram is the contribu-

tion from a scalar-mass insertion. With the assumed power-counting (3.22), this contribution

is formally of higher order. Finally, there is the fermion loop

Dij
5 =

1

2

(
Y iIJYjIJ + YiIJY

jIJ
)
[

−
T 2

12
− p2

1

(4π)2ǫf

]

. (3.35)

The second coupling-constant term above is the hermitian conjugate. Also, above we use ǫb

and ǫf to denote ǫ poles, albeit with some additional factors. They are defined in [29,33], and

are

1

ǫb
=

1

ǫ
+ Lb,

1

ǫf
=

1

ǫ
+ Lf, (3.36)

where Lb and Lf are given in eq. (2.4).

To perform the matching, we demand

∫

d4x〈RiRj〉4d = T−1

∫

d3x〈RiRj〉4d =

∫

d3x〈RiRj〉3d . (3.37)

At leading order, 3d fields are rescaled by a factor T−1/2. Next, consider the self-energies.

One finds

(
−δZijp

2 − δµij − µij +Π(0)ij + p2Π′(0)ij
)

4d
=
(
−δZ3,ijp

2 − δµ3,ij − µ3,ij
)

3d
, (3.38)

where Πij(p) = (D1 + · · · + D5)ij . To avoid confusion we added a subscript 3 to three-

dimensional quantities.

Here −δZijp
2 − δµij are 4d counterterms, and cancel all ǫ poles. The matching gives

µ3,ij = µij −Π(0)ij , δZ3,ij = δZij −Π′(0)ij . (3.39)

In this step all the Lorentz structure is stripped away, leaving mere group-theory factors.
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Figure 3: Diagrams contributing to the thermal corrections to the scalar quartics. Indices

correspond to the line notation in fig. 2.

One-loop scalar quartics

Next, we consider scalar quartics. Before calculating the actual diagrams, it is useful to look

at what happens on the 3d side. The relevant terms in the Lagrangian are

RiRjRkRl hijkl . (3.40)

There are two contributions to the matching. First, the coupling constant, h, receives contri-

butions from different loop orders

hijkl = h0ijkl + h1ijkl + . . . (3.41)

Second, as shown in the previous section, 3d fields are renormalized. In terms of the scalar

counterterm, δZ3,ij , this renormalization is (to leading order) Ri(b) = Ri +
1
2δZ3,ijRj . Com-

bined, these considerations imply that the contribution from the 3d side is

〈RiRjRkRl〉3d = −h0ijkl − h1ijkl

−
1

2

(
δZ3,imh

0
mjkl + δZ3,jmh

0
imkl + δZ3,kmh

0
ijml + δZ3,lmh

0
ijkm

)
. (3.42)

In the 4d theory, the first and second diagrams give

Dijkl
1 =

1

2

(

λijnmλnmkl + λiknmλnmjl + λilnmλnmkj

) 1

16π2ǫb
, (3.43)

Dijkl
2 =

1

2

(

Hab
ij H

ab
kl +Hab

ikH
ab
jl +Hab

il H
ab
kj

)[ 3

(4π)2ǫb
−

1

8π

]

. (3.44)

Finally, the fermion contribution is

Dijkl
3 =

1

2

(
YiIJY

jJKYkKLY
lLI + (jkl)

) 1

(4π)2ǫf
+ h.c. (3.45)

where the terms (jkl) contain all permutations over indices j, k, l.

The matching is performed by demanding
∫

d4x〈RiRjRkRl〉4d = T−1

∫

d3x〈RiRjRkRl〉4d =

∫

d3x〈RiRjRkRl〉3d . (3.46)

In the light of the discussion at the beginning of this section, this implies

T
(

−λijkl + Λijkl

)

= −h0ijkl − h1ijkl

−
1

2

(
δZ3,imh

0
mjkl + δZ3,jmh

0
imkl + δZ3,kmh

0
ijml + δZ3,lmh

0
ijkm

)
. (3.47)
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The renormalized sum of the diagrams above was denoted as Λijkl = (D1 +D2 +D3)ijkl and

one finds

h0ijkl = Tλijkl, (3.48)

h1ijklT
−1 = −

1

2

(

δZ3,imλmjkl + δZ3,jmλimkl + δZ3,kmλijml + δZ3,lmλijkm

)

− Λijkl , (3.49)

where δZ3,km was given in the previous section.

Higher loop levels

When performing dimensional reduction at NLO, two-loop contributions are required for

scalar thermal masses. Here, we do not show details of the two-loop computation, as they are

analogous to the one-loop computation presented above. Naturally the number of required

diagrams is larger. Due to the use of integration-by-parts identities (IBP) [70–72] it can be

shown that to the given order, the two-loop master sum-integrals factorize into the one-loop

master integrals given in eqs. (3.28) and (3.29). While this streamlines the computation at

NLO significantly, contributions at higher orders are non-factorizable. Nonetheless, DRalgo

also implements a generic computation of two-loop thermal masses and other 3d parameters

at NLO.

3.4. Beta functions and anomalous dimensions

DRalgo calculates beta functions and anomalous dimensions by renormalizing 4d parameters

(cf. [62–64]). As an example, consider the scalar sector. We have renormalized our fields and

couplings as

Ri(b) = Z
1/2
ij Rj =

(

δij +
1

2
δZij

)

Rj , (3.50)

Ri(b)Rj(b)Rk(b)Rl(b)λijkl(b) = RiRjRkRl

(
λijkl + δλijkl

)
µ̄2ǫ. (3.51)

On the 4d side, we assume the MS scheme, so δZij , δµij , and δλijkl are chosen to only cancel

ǫ poles.

We demand that bare parameters are independent of the RG-scale µ̄. To leading order in

ǫ, we find (t = log µ̄)

∂tλijkl = −2ǫλijkl , ∂tδZij = −2ǫδZij . (3.52)

Using this we can find the anomalous dimensions by demanding that ∂tRi(b) = 0:

=⇒ ∂tRi = ǫZijRj ≡ γijRj , (3.53)
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where we have introduced the anomalous dimension γij. Then, the quartic beta function is

determined by

0 = µ̄−2ǫ∂tλijkl(b) = 2ǫ
(
λijkl + δλijkl

)
+ ∂tδλijkl + ∂tλijkl ,

=⇒ ∂tλijkl = −2ǫλijkl + 2ǫδλijkl . (3.54)

Where we have used ∂tδλijkl = −4ǫδλijkl; which follows from counting powers of couplings

in δλijkl. We identify 2ǫδλijkl with the beta function for λijkl.

This beta function can be written in an equivalent form by writing the counterterm, for λ,

as the sum of a bare term and field renormalization:

δλijkl = λ̄ijkl +
1

2
(δZimλmjkl + δZjmλimkl + δZkmλijml + δZlmλijkm) . (3.55)

Using this one finds

∂tλijkl = −2ǫλijkl + 2ǫλ̄ijkl − (γλ)(ijkl) , (3.56)

where the last term denotes all possible contractions between one index of λijkl and one index

of γij. Other beta functions are calculated analogously.

All gauge beta functions in DRalgo are defined with couplings squared, viz. ∂tg
2. Conversely

beta functions for masses, scalar couplings, and Yukawa couplings are defined as linear in the

parameters, i.e. ∂tλ and so forth. These conventions are also shown in the DRalgo output.

In the 3-dimensional theory only scalar masses have non-zero beta functions.

4. Implementing beyond the Standard Model theories

In this section, we demonstrate the use of DRalgo for BSM theories based on the example of

the Two-Higgs doublet model (2HDM).

4.1. Two-Higgs doublet model with fermions

Consider the 2HDM potential [73, 74]

V (φ1, φ2) = m2
1φ1φ

†
1 +m2

2φ2φ
†
2 − (m2

12φ1φ
†
2 + h.c.) + λ1(φ1φ

†
1)

2 + λ2(φ2φ
†
2)

2

+ λ3(φ1φ
†
1)(φ2φ

†
2) + λ4(φ1φ

†
2)(φ2φ

†
1) +

λ5
2

[

(φ1φ
†
2)

2 + (φ2φ
†
1)

2
]

+
{[

λ6(φ1φ
†
1) + λ7(φ2φ

†
2)
]

(φ†1φ2) + h.c.
}

. (4.1)

The scalars are SU(2) doublets with hypercharge Yφ = 1. This means that the covariant

derivative is given by8

Dµφ1,2 =
(

∂µ − ig1
Yφ
2
Bµ − ig2

τa

2
Aa

µ

)

φ1,2 , (4.2)

8We use the convention that (φ1φ
†
1) = (φ†

1φ1) = φI
1φ

†,I
1 , where I = 1, 2.
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where τa are Pauli matrices. We further assume that all Standard-Model fermions are present,

and consider Yukawa interactions of the form

LYuk = yiqLφ
†
iqR + h.c. (4.3)

We define the group structure and scalar representations via

Group={"SU3","SU2","U1"};

RepAdjoint={{1,1},{2},0};

HiggsDoublet1={{{0,0},{1},1/2},"C"};

HiggsDoublet2={{{0,0},{1},1/2},"C"};

RepScalar={HiggsDoublet1,HiggsDoublet2};

CouplingName={g3,g2,g1};

All representations are specified according to their Dynkin coefficients (see e.g. [57, 75, 76]).

For example, gauge bosons transforms as (1, 1), or an octet, under SU(3). Next we need to

create the fermions. Let us start by creating a single generation

Rep1={{{1,0},{1}, 1/6},"L"}; (*qL*)

Rep2={{{1,0},{0}, 2/3},"R"}; (*uR*)

Rep3={{{1,0},{0},-1/3},"R"}; (*dR*)

Rep4={{{0,0},{1},-1/2},"L"}; (*ℓL*)

Rep5={{{0,0},{0},-1},"R"}; (*eR*)

RepFermion1Gen={Rep1,Rep2,Rep3,Rep4,Rep5};

In the definition of a fermion representation {{{1,0},{1},Y/2},"L<R>"} the last argument

depends on if the fermion left-handed (L) or right-handed (R) and Y is the corresponding

hypercharge. For the Standard Model, we have

Yq =
1

3
, Yu =

4

3
, Yd = −

2

3
, Yℓ = −1 , Ye = −2 . (4.4)

The above notation identifies Rep1 as the left-handed quark doublet, Rep2 as the right-handed

up-quark and so forth. The extra factor of 1
2 for hypercharges in the definition of e.g. Rep1

arises from the definition of the covariant derivative similar to eq. (4.2).

Additional fermion-families can be added by grouping multiple instances of RepFermion1Gen

together:

RepFermion3Gen={RepFermion1Gen,RepFermion1Gen,RepFermion1Gen}//Flatten[#,1]&;

where the number of generations is chosen to be nf = 3. When creating Yukawa interactions

the user decides which index contains which family. For example, above we stacked all genera-

tions after each other in RepFermion3Gen. Hence, in RepFermion3Gen indices 1–5 correspond
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to the first generation, indices 6–10 to the second, and indices 11–15 to the last. Thus the

user could use index 1, 6, or 11 as the top quark. An alternative way to add an arbitrary

number of fermion families nf is given in sec. Q.9.

Next, to create the tensors, we write

{gvvv,gvff,gvss,λ1,λ3,λ4,µij,µIJ,µIJC,Ysff,YsffC}=

AllocateTensors[Group,RepAdjoint,CouplingName,RepFermion3Gen,RepScalar];

The mass terms in the potential in eq. (4.1) are

V (φ1, φ2) ⊃ m2
1φ1φ

†
1 +m2

2φ2φ
†
2 − (m2

12φ1φ
†
2 + h.c.) , (4.5)

and due to the presence of two Higgs doublets, we need to specify the doublet for each term:

InputInv={{1,1},{True,False}}; (*φ1φ
†
1*)

MassTerm1=CreateInvariant[Group,RepScalar,InputInv][[1]]//Simplify;

InputInv={{2,2},{True,False}}; (*φ2φ
†
2*)

MassTerm2=CreateInvariant[Group,RepScalar,InputInv][[1]]//Simplify;

InputInv={{1,2},{True,False}}; (*φ1φ
†
2*)

MassTerm3=CreateInvariant[Group,RepScalar,InputInv][[1]]//Simplify;

InputInv={{2,1},{True,False}}; (*φ2φ
†
1*)

MassTerm4=CreateInvariant[Group,RepScalar,InputInv][[1]]//Simplify;

The mass matrix is then generated by the GradMass[] command:

VMass=(

+m1*MassTerm1

+m2*MassTerm2

-(m12R+I*m12I)(MassTerm3)

-(m12R-I*m12I)(MassTerm4)

);

µij=GradMass[VMass]//Simplify;

We allowed m2
12 to be complex, with real part m12R, and imaginary part m12I. For the scalar

quartics in eq. (4.1) the corresponding part of the potential is

V (φ1, φ2) = λ1(φ1φ
†
1)

2 + λ2(φ2φ
†
2)

2 + λ3(φ1φ
†
1)(φ2φ

†
2)

+ λ4(φ1φ
†
2)(φ2φ

†
1) +

λ5
2

[
(φ1φ

†
2)

2 + (φ2φ
†
1)

2
]

+
{[
λ6(φ1φ

†
1) + λ7(φ2φ

†
2)
]
(φ†1φ2) + h.c.

}

, (4.6)

for which we already created all the building blocks. Thus, the quartics can be constructed

as
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QuarticTerm1=MassTerm1^2; (*(φ1φ
†
1)

2*)

QuarticTerm2=MassTerm2^2; (*(φ2φ
†
2)

2*)

QuarticTerm3=MassTerm1*MassTerm2; (*(φ1φ
†
1)(φ2φ

†
2)*)

QuarticTerm4=MassTerm3*MassTerm4; (*(φ1φ
†
2)(φ2φ

†
1)*)

QuarticTerm5=(MassTerm3^2+MassTerm4^2); (*(φ1φ
†
2)

2 + (φ2φ
†
1)

2*)

QuarticTerm6=MassTerm1*MassTerm3+MassTerm1*MassTerm4; (*(φ1φ
†
1)
[

(φ1φ
†
2) + (φ2φ

†
1)
]

*)

QuarticTerm7=MassTerm2*MassTerm3+MassTerm2*MassTerm4; (*(φ2φ
†
2)
[

(φ1φ
†
2) + (φ2φ

†
1)
]

*)

Consequently, the quartic tensor itself is defined as

VQuartic=(

+λ1H*QuarticTerm1

+λ2H*QuarticTerm2

+λ3H*QuarticTerm3

+λ4H*QuarticTerm4

+λ5H/2*QuarticTerm5

+λ6H*QuarticTerm6

+λ7H*QuarticTerm7

);

λ4=GradQuartic[VQuartic];

For simplicity, we assumed above that λ5H, λ6H, and λ7H are real. One can allow for complex

couplings by adding them, and their conjugates, directly in QuarticTerm6 and QuarticTerm7.

To create a complex coupling λ6H, we would write

QuarticTerm6=(λ6HR+I*λ6HI)*MassTerm1*MassTerm3+(λ6HR-I*λ6HI)*MassTerm1*MassTerm4;

For Yukawa couplings, we only consider the top-quark coupling. If we choose the first

family to contain the top-quark, then a Yukawa term ∼ φ†qLuR would involve fermion repre-

sentations number 1 and 2. When defining a Yukawa interaction, representations should be

specified in the order: scalar, first fermion, second fermion. With this in mind, the Yukawa

coupling of the first Higgs doublet is9

InputInv={{1,1,2},{False,False,True}}; (*φ
†
1qLuR*)

YukawaDoublet1=CreateInvariantYukawa[Group,RepScalar,RepFermion3Gen,InputInv][[1]]//Simplify;

Here, {1,1,2} specifies

First Higgs doublet× Left-handed top-quark× Right-handed top-quark ,

9Here we assume that the top quark resides in the first generation. This has nothing to do with how the

top-quark is usually placed in the third generation. Rather, we here place it in the first for simplicity as

normally only the top-quark has a sizeable Yukawa coupling.
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and {False,False,True} specifies that the Higgs and left-handed quarks are conjugated.

The coupling to the second Higgs doublet is

InputInv={{2,1,2},{False,False,True}}; (*φ
†
2qLuR*)

YukawaDoublet2=CreateInvariantYukawa[Group,RepScalar,RepFermion3Gen,InputInv][[1]]//Simplify;

The complete Yukawa tensor is

Ysff=-GradYukawa[yt1*YukawaDoublet1+yt2*YukawaDoublet2];

For the sake of generality, we assumed that both Higgs doublets couple to the top-quark.

Note that this is not allowed for a realistic model due to flavor-changing-neutral-current

constraints.

Finally, assuming that the Yukawa couplings are real, we can define

YsffC=Simplify[Conjugate[Ysff//Normal],Assumptions->{yt1>0,yt2>0}]//SparseArray;

Above we did not consider Yukawa couplings between different generations but such cou-

plings can be added. To wit, when we defined RepFermion3Gen we put the first generation

on indices 1–5; the second on indices 6–10; and the third on indices 11–15. To define a cou-

pling between, e.g. the left-handed top quark (assumed to reside in generation 1) and the

right-handed charm quark (assumed to reside in generation 2), we would write

InputInv={{1,1,7},{False,False,True}};

YukawaTopCharm=CreateInvariantYukawa[Group,RepScalar,RepFermion3Gen,InputInv]//Simplify;

With the model implementation complete, all dimensional-reduction commands are identical

to those of the Abelian-Higgs model. We refer to [77–79] for earlier results in the literature.

Integrating out temporal scalars

For the Abelian-Higgs case in sec. 2 we only had one scalar field, whereas with the 2HDM

we have two. When integrating out temporal scalars we have two options. First, all scalars

are light and we have two active, dynamical doublets. Second, one doublet is heavy and is

integrated out when going from the soft to the ultrasoft scale.

For the first case, the corresponding command is

PerformDRsoft[{}];

For the second case, we assume that the second doublet is heavy. It can then be integrated
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out via

PerformDRsoft[{5,6,7,8}];

To understand the above syntax, note that the indices of all representations are given by

PosScalars=PrintScalarRepPositions[];

So the second Higgs doublet resides at PosScalars[[2]]=5;;8.

There is one complication when integrating out one of the Higgs doublets. Namely, generally

the two doublets mix through the m2
12 term. For a complete treatment the mass matrix needs

to be diagonalized before the heavy doublet can be integrated out. This lies beyond DRalgo

and is an optional step for the user. Instead, the code by default assumes that m2
12 is small –

of O(g2T ) in power counting – and performs the diagonalization perturbatively to first order

in m2
12.

5. Miscellaneous features

In this section, we discuss specific features of the software on a case-by-case basis.

5.1. User-options and features

Lower-order dimensional reduction for speed

The user has several options to control what is calculated and how the code operates. For

example, if the model has many degrees of freedom, the user might wish to save running-time

and only calculate one-loop thermal masses and couplings. This works by specifying Mode->1

when loading the model

Group={"U1"};

ImportModelDRalgo[Group,gvvv,gvff,gvss,λ1,λ3,λ4,µij,µIJ,µIJC,Ysff,YsffC,Mode->1];

The default is Mode->2, in which case everything is calculated to NLO. And for the most bare-

bone/fast option select Mode->0; in this case only one-loop thermal masses are calculated.

5.2. Model-treatment in the code

DRalgo works by factorizing all group and Lorentz algebra. The Lorentz algebra is hard-coded

while the group algebra is supplied by the user. All particles are indexed by the order they

appear. If the user has an SU(3)× SU(2) model with gauge bosons, the vectors in the SU(3)
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group have 8 components, while those of the SU(2) group have 3. The code indexes these

components by a =
(
8α
SU(3), 3

β
SU(2)

)
. Therein, α runs from 1–8, β from 1–3, and a from 1–11.

For example, the Debye mass tensor µabD stores the information of both groups. For most

cases this mass tensor is diagonal.

The scalars are treated differently since DRalgo only deals with real scalar components. For

example, a complex scalar Φ is rewritten Φ = 1√
2
(φ+ iψ). Hence the scalar indices would

in this case be i = (φ,ψ). Further, the scalar-mass matrix is stored as µS,ij. For example,

a m2φ2 mass term resides at µS,11. Consider now a complex representation with n scalar

components labelled by I, J . In a complex basis vector-scalar-scalar trilinear couplings are of

the form Aµ

(
Ga

IJ∂
µΦIΦ

∗
J +Ga,∗

IJ ∂
µΦ∗

IΦJ

)
, where Ga

IJ are representation matrices. To convert

to a real basis each scalar component is split as ΦI = 1√
2
(φI + iψI). The components are

then reordered with the real components first: i = (φI , ψI), so i = 1, . . . , 2n. If we call the

scalars in the real basis ϕi, our vector-scalar-scalar trilinear couplings become

Aµg
a
ij∂

µϕiϕj , gaij =

(

Im(Ga
IJ) Re(Ga

IJ )

−Re(Ga
IJ ) Im(Ga

IJ)

)

. (5.1)

Thus, gaij is automatically antisymmetric under i↔ j.

As an example, consider a U(1) theory with a complex scalar. The vector-scalar-scalar

coupling is igAµ (∂
µΦΦ∗ − ∂µΦ∗Φ). In a real basis Φ = 1√

2
(φ+ iψ), this becomes

gAµ∂
µ (φ,ψ)

(

0 1
2

−1
2 0

)(

φ

ψ

)

, and gij = g

(

0 1
2

−1
2 0

)

. (5.2)

5.3. Frequently asked questions

Below, we discuss various questions and problems the user might have encountered.

Q.1. How to save and load my model?

Saving and loading a model is straightforward with DRalgo built-in functions. Once a model

is created, and loaded with ImportModelDRalgo (see the .m files in the example folder), it

can be saved by writing

SaveModelDRalgo[ModelInfo,"<modelname>.txt"],

Here, ModelInfo is a string and should contain information about the authors, DRalgo ver-

sion, and citations to relevant articles. See ./examples/ah.m or ./examples/2hdm.m for some

examples. To load the model write

{Group,gvvv,gvff,gvss,λ1,λ3,λ4,µij,µIJ,µIJC,Ysff,YsffC}=LoadModelDRalgo["<modelname>.txt"];

29



The loaded model can be your own, or perhaps one of the provided DRalgomodel repository.

We also encourage you to make your own models available for the community which is possible

by submitting the model file via the Issue Tracker on https://github.com/DR-algo/DRalgo.

The model will then be verified and added to the model repository. When submitting a model,

please refer to a paper or explicitly write out the Lagrangian in an accompanying notebook.

Q.2. How do I order semi-simple groups?

If the user-defined model contains multiple groups, the groups and corresponding represen-

tations must be ordered as: SO(n), SU(n), SP(n), G2, F4 E6, E7, E8, U(1). For example, if

the user has a model with gauge group G = SU(5) ⊗ SO(10) ⊗ E6 ⊗ U(1), the model-input

should be defined as

Group={"SO10","SU5","E6","U1"};

The internal order of groups is not restricted. Hence, for a group such as G = SU(3)⊗SU(2),

the following definitions are equivalent

Group={"SU3","SU2"};

Group={"SU2","SU3"};

Q.3. How do I check that my model is anomaly free?

Once you have defined your model, the anomaly-free condition is that

Table[Tr[(a.b+b.a).c],{a,gvff},{b,gvff},{c,gvff}]

vanishes identically. Since this condition is not automatically fulfilled for general, non-numeric,

U(1) charges, it is the responsibility of the user to choose U(1) charges such that all anomalies

cancel.

Q.4. How do I calculate anomalous dimensions?

First find the position of all representations:

PosScalar=PrintScalarRepPositions[];

PosVector=PrintGaugeRepPositions[];

PosFermion=PrintFermionRepPositions[];

All anomalous dimensions are then found via
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Table[AnomDim4D["S",{i,j}],{i,PosScalar},{j,PosScalar}]

Table[AnomDim4D["V",{i,j}],{i,PosVector},{j,PosVector}]

Table[AnomDim4D["F",{i,j}],{i,PosFermion},{j,PosFermion}]

For more details regarding anomalous dimensions and beta functions cf. sec. 3.4.

Q.5. Temporal scalar mixing

In most models the temporal-scalar masses are diagonal. However, in cases with multiple

U(1) groups there can be mixing. In such a case, the code automatically recognizes this. For

example, if the group is

Group={"U1","U1","U1"};

the code creates the mixed U(1) masses with the convention that µU1Mix1 is the mixing

between groups 1 and 2, µU1Mix2 is the mixing between groups 1 and 3, and µU1Mix3 is

the mixing between groups 2 and 3. These masses are displayed with the PrintDebyeMass

command. See the ./examples/SMZp.m for an example.

Q.6. What if I miss some couplings?

By default DRalgo assumes that the user has defined all couplings allowed by symmetry in

their 4d theory. The code runs even though some couplings are missed. For example, consider

the 2HDM with scalar potential as in eq. (4.1) but without λ6 and λ7 couplings. For a φ1 ↔ φ2

symmetric model no λ6/λ7-type scalar quartic couplings are induced. However, if the model

breaks this symmetry by e.g. a Yukawa sector, then λ7 and λ6 couplings are generated at

one-loop. In this case DRalgo would still calculate these induced couplings; with the crux

that only the λ1, . . . , λ5 couplings are printed by the PrintCouplings[] command, while

the induced λ7 and λ6 couplings must be found manually via the PrintTensorDRalgo[]

command. In addition, DRalgo automatically alerts the user with a message if some new

couplings are generated at one-loop. This is a cross-check that no couplings are forgotten.

Q.7. Can I run DRalgo without specifying the representation?

For general groups no. However, it is possible for the user to specify arbitrary (non-numeric)

U(1) charges. With non-numeric charges the code does not check that various quartic or

Yukawa terms are allowed. Hence, it is the responsibility of the user to ensure gauge invariance.
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Q.8. How large representations can I use?

In principle any group and representations can be used. In practice the code slows down for

huge representations. The code has been tested on general models with ∼100–200 compo-

nents in a given representation. For example an SO(10) model with a 120-dimensional scalar.

Since DRalgo was purposely written to deal with any quartic and Yukawa sector, these are

often the bottlenecks. If the user wants to omit two-loop contributions, significantly larger

representations are possible. Further still, if the user only wants one-loop thermal masses,

almost any model (within reason) can be run in quick order.

Q.9. Can I include an arbitrary number of fermion generations?

Yes, take for example the 2HDM. As described in sec. 4.1, a single family of SM fermions is

defined via

Rep1={{{1,0},{1}, 1/6},"L"}; (*qL*)

Rep2={{{1,0},{0}, 2/3},"R"}; (*uR*)

Rep3={{{1,0},{0},-1/3},"R"}; (*dR*)

Rep4={{{0,0},{1},-1/2},"L"}; (*ℓL*)

Rep5={{{0,0},{0},-1},"R"}; (*eR*)

RepFermion1Gen={Rep1,Rep2,Rep3,Rep4,Rep5};

Defining Yukawa and scalar couplings proceed as before, and the model is loaded with

ImportModelDRalgo[Group,gvvv,gvff,gvss,λ1,λ3,λ4,µij,µIJ,µIJC,Ysff,YsffC,Verbose->False];

The user can then define nf = nF fermion families by writing10

PosFermion=PrintFermionRepPositions[];

FermionMat=Table[{nF,i},{i,PosFermion}];

DefineNF[FermionMat]

These commands should be used before running

PerformDRhard[];

Adding nf fermion families in this way does not add new Yukawa or scalar couplings as the

extra (nf −1) families only have gauge interactions. To define cross-family Yukawa couplings,

one should follow the procedure in sec. 4.1.

10This adds nF copies of all fermions.
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Q.10. How do I compare with the literature?

Most outputs from DRalgo can directly be compared with the literature. For temporal scalars

this requires some care. For example, if the original 4d theory has a SU(2) triplet, then two

types of A2
0Σ

2 couplings are allowed:

L3d ⊃ κ1(A
a
0A

a
0)(Σ

aΣa) + κ2(A
a
0Σ

a)2 . (5.3)

DRalgo does not distinguish between these two terms since its output is stored in the form
1
4!A

a
0A

b
0Σ

cΣdλabcdK . To compare with the two parametrizations, the user can rewrite the

κ1/κ2 basis in tensor form. To this end, it is necessary to additionally define the relevant

terms of the effective model and compare to its Lagrangian. This procedure is analogous

to creating the fundamental model where invariants can be compared using the command

CompareInvariants[]. See the htm.m file for a worked example of the Higgs triplet model

(HTM).

The matching of all possible allowed operators in the EFT is automatic in DRalgo. This

way also previously disregarded effective coefficients can be determined. One example is a

L3d ⊃ κTrC3
0B0 operator in the Standard Model. Here, C0 is the gluon (temporal) field, and

B0 is the temporal hypercharge field. The output from DRalgo gives κ ∝ (2Yq + Yd + Yu).

See eq. (4.4) for the corresponding hypercharges and the 2hdm.m example file for the full

expression

Q.11. What is the functional basis used in the matching?

In addition to the variables Lb and Lf defined in eq. (2.4), two-loop diagrams also contain

factors of

c =
1

2

(

ln
(8π

9

)

+ (ln ζ2)
′ − 2γE

)

, (5.4)

where ζs = ζ(s) is the Riemann zeta function and (ln ζs)
′ = ζ ′(s)/ζ(s). By default DRalgo

uses the relations ln(2π)− (ln ζ2)
′ = 1− γE + (ln ζ−1)

′ and 1 + (ln ζ−1)
′ = 12 lnA, where A is

the Glaisher-Kinkelin constant. It is possible to convert the output of DRalgo to the conven-

tions of [33] by using the replacement rule Log[Glaisher]->-1/12(Lb+2cplus-EulerGamma),

where cplus=(c+Log[3T/µ]). This rule is implemented as PrintGenericBasis[] in DRalgo.

Q.12. How do I define scalar cubic operators?

Scalar cubics are created analogously to quartics. Consider for example a SU(2) theory with

a scalar doublet φ and a singlet S. We can then create the cubic operator (φφ†)S via

InputInv={{1,1,2},{True,False,True}}; (*φφ†S*)
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CubicTerm1=CreateInvariant[Group,RepScalar,InputInv][[1]]//Simplify;

VCubic=λC*CubicTerm1;

The corresponding tensor is defined with the command

λ3=GradCubic[VCubic];

Tadpoles are defined analogously. See the 2xsm.m file for a worked example with two real

scalars.

Q.13. Do I need to define tadpoles?

If tadpoles are allowed by symmetry we encourage the user to define them – even if they are

absent at tree-level.

Q.14. How do I define Dirac and Majorana masses?

Fermion masses are defined analogously to scalar masses. We stress that DRalgo only works

with Weyl fermions. For example, assume a theory with two Weyl fermions ψ1 and ψ2. The

following terms are then possible

m1ψ1ψ1 +m2ψ2ψ2 +mDψ1ψ2 + h.c. (5.5)

Where the first two terms are Majorana masses, and the third is a Dirac-type mass. These

masses can be defined in DRalgo via

InputInv={{1,1},{True,True}}; (*ψ1ψ1*)

MassTerm1=CreateInvariantFermion[Group,RepFermion,InputInv][[1]]//Simplify;

InputInv={{2,2},{True,True}}; (*ψ2ψ2*)

MassTerm2=CreateInvariantFermion[Group,RepFermion,InputInv][[1]]//Simplify;

InputInv={{1,2},{True,True}}; (*ψ1ψ2*)

MassTerm3=CreateInvariantFermion[Group,RepFermion,InputInv][[1]]//Simplify;

The mass matrix is given by

FermionMasses=1/2*m1*MassTerm1+1/2*m2*MassTerm2+mD MassTerm3;

µIJ=GradMassFermion[FermionMasses];

µIJC=SparseArray[Simplify[Conjugate[µIJ]//Normal,Assumptions->{m1>0,m2>0,mD>0}]];

See the WessZumino.m notebook for a worked example.
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Q.15. What if a model has Ψ1γ5Ψ2 terms?

Since DRalgo only uses Weyl fermions, the inclusion of other fermionic bilinear operators

requires some extra work. One example is the operator Ψ1γ5Ψ2 which can be expanded in

Weyl spinors

Ψ1 =

(

ψL
1

ψR
1

)

, Ψ2 =

(

ψL
2

ψR
2

)

, (5.6)

such that

Ψ1Ψ2 = ψR
1 ψ

L
2 + ψL

1 ψ
R
2 , (5.7)

Ψ1γ5Ψ2 = −ψR
1 ψ

L
2 + ψL

1 ψ
R
2 . (5.8)

These terms can then be implemented in DRalgo as explained in earlier examples.

Q.16. My mass matrix is not diagonal. Is the effective potential still calculable?

Yes, it is still possible to calculate the effective potential, just not in general. It is up to

the user to diagonalize the mass matrix. But once done, the user has two choices. First,

diagonalization-matrices can be given to DRalgo. Second, the user can do all the diagonal-

ization themselves and reload the model. The first option is quick, but becomes protracted if

the diagonalization is complicated or needs to be done perturbatively.

Consider for example the Standard Model. As before, field-dependent masses can be created

via

DefineNewTensorsUS[µij,λ4,λ3,gvss,gvvv];

φvev={0,0,0,φ}//SparseArray;

DefineVEVS[φvev];

PrintTensorsVEV[];

To diagonalize the vector-bosons, we first need to extract the field-dependent mass-tensor:

MassMatrix=PrintTensorsVEV[];

VectorMass=MassMatrix[[2]]//Normal;

VectorEigenvectors=FullSimplify[

Transpose[Normalize/@Eigenvectors[VectorMass[[11;;12,11;;12]]]],

Assumptions->{g1>0,g2>0,φ>0}];

DVRot={{IdentityMatrix[10],0},{0,VectorEigenvectors}}//ArrayFlatten;

DSRot=IdentityMatrix[4];

RotateTensorsUSPostVEV[DSRot,DVRot];

After this the effective-potential calculation proceeds as before.
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Q.17. Can DRalgo handle non-renormalizable operators?

Currently no. This features will be implemented in future versions.

Q.18. How do I define complicated scalar potentials?

For most cases, scalar quartics can be easily defined using the examples above. For non-

standard representations, the model-building tools in DRalgo might differ by a basis change

from other conventions in the literature. Let us take an example, a SU(5) model with an

adjoint scalar. Commonly this scalar is written as Φ = ΦaT a where T a are traceless hermitian

matrices satisfying TrT aT b = 1
2δ

ab. The most general (quartic) potential is

V1 = δ1(TrΦ
2)2 + δ2TrΦ

4 . (5.9)

By default DRalgo uses GroupMath, which defines its invariants differently to those above. In

fact, the two scalar quartic operators given in GroupMath can be linear combinations of those

above. Thus, the result from DRalgo would be in the form

V2 = λH inv1(Φ
4) + λS inv2(Φ

4) , (5.10)

where the invariants inv1,2 are the output from the CreateInvariant command. Fortunately,

it is quite easy to find the relations between the V1 and the V2 basis. To do so, first, rewrite

everything in tensor form

V1 = 1/4!λ1,ijklΦiΦjΦkΦl , (5.11)

and likewise for the DRalgo output

V2 = 1/4!λ2,ijklΦiΦjΦkΦl . (5.12)

Since λ1 and λ2 are defined in different bases, we want to compare invariants. Here we only

need three:

λijklδijδkl , λijklλijkl , λijnmλnmklλklij . (5.13)

Comparing the invariants one finds

λH =
1

960

√

23

14
(130δ1 + 47δ2) , λS = −

5

64

√

13

42
(2δ1 − δ2) . (5.14)

The above procedure works for any representation as long as the user can write the quartic

operator from DRalgo in their preferred form. See SU5.m for a concrete example.
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Q.19. Can I use dimensionally reduced theory for calculating nucleation rates?

Certainly. The user can use the effective theory and directly find the bounce in the 3d. To

first approximation the nucleation rate is e−S3d , where S3d is the bounce action in the dimen-

sionally reduced theory. See [80] for the original work, and [58,81–83] for recent examples.

Q.20. Can I study GUT models with DRalgo?

Most GUT models can be readily studied with DRalgo. However, for models with large

representations the running-time rises rather rapidly. The bottleneck is not the complexity of

e.g. the scalar potential but rather the size of the representations of particles. For example,

DRalgo rapidly handles the general Pati-Salam, SU(5), 3HDM, or left-right symmetric model

– even with 20–30 free parameters in the potential. See SU5.m, 3hdm.m, and LRSymmetric.m

for explicit implementations.

Q.21. How much RAM does DRalgo require?

The required RAM is negligible for most models. However, for models with 50–100 dimen-

sional representations, the requirements start to rise. And for said scenario around 1 GB of

RAM is required. If the package drains too much RAM, it is recommended to not include

two-loop contributions.

Q.22. How should I report possible bugs?

We are grateful if any bugs are reported. We kindly ask users to supply both a short de-

scription and a Mathematica file describing the error. These reports and attached files can

provided via the Issue Tracker on https://github.com/DR-algo/DRalgo.

6. Outlook

High-temperature field theory is pestered by large radiative corrections, which compromises

perturbative calculations. In effect, perturbation theory needs to be reorganized in terms of

thermal resummations. While at leading order only thermally corrected masses are required,

new contributions to couplings arise at higher orders. In addition, there are currently sev-

eral different schemes for incorporating thermal masses – all depending substantially on the

renormalization scale.

As an effective field theory, dimensional reduction by-passes these issues. The ultraviolet

sector of the theory is controlled by a matching computation and the infrared sector is

resummed to all orders. Indeed, as discussed in this paper, using a three dimensional EFT

unambiguously resums masses and couplings. Using the framework is simple from a practical
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standpoint since three-dimensional theories are super renormalizable. Concretely, only mass

parameters are RG-scale dependent and their beta functions are exact at two-loop level. This

property not only allows for a straightforward perturbative treatment, but also provides an

attractive framework to a non-perturbative lattice study of the 3d EFT since in the effective

theory relations between continuum and lattice parameters are exact at two-loop level [84].

Hitherto, dimensional reduction has been used sparsely. With this paper and the associated

software, we aim to change this by automating the EFT construction. In summary, DRalgo

calculates all effective couplings and masses in the effective theory, the leading-order beta

functions both in the 4d parent and 3d effective theory, as well as the effective potential

within the EFT. This facilitates studying models with dimensional reduction and requires

merely three-dimensional calculations that are analogous to zero-temperature computations.

Since the effective theory is fully bosonic, the perturbative calculation can be compared with

lattice simulations. This has one clear benefit as a large number of fundamental 4d theories

can map into the same effective theory given the mass hierarchy of the additional scalars.

Not only does the lattice provide an invaluable cross-check, but pre-existing simulations can

be reused and applied to new BSM theories.

In conclusion, gravitational waves have opened up a new gateway to the early universe,

and particle physics stands at its threshold. Upcoming experiments are fast approaching both

at future particle colliders and gravitational wave observatories. It is therefore important to

control theoretical uncertainties at unprecedented precision. In this venture, dimensional

reduction is the tool of choice, and DRalgo its harbinger.
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A. Interfacing DRalgo output

In this appendix, we collect additional material that is not part of the package itself.

A.1. From 3d effective theory to thermodynamics

A possible interface between the output of DRalgo, in the 3-dimensional theory, and the

determination of thermodynamic quantities is implemented in ./examples/ah-thermo.m.

This implementation comes with a disclaimer: we present a simplified algorithm suitable

for the simple case of the Abelian-Higgs model (cf. eq. (2.1)) but this is not part of the

package itself. We encourage users to implement their own numerical minimisation routines

for thermodynamics optimized for individual models. The algorithm given here is not gauge

invariant and should be used with discretion.

The algorithm 2 illustrates our implementation. In the simplified algorithm ah-thermo.m

Algorithm 2 The DRalgo algorithm output is interfaced in ./examples/ah-thermo.m with

functions solveBetas[], DRstep[] and Veff3d[], which are called by findThermo[].

Input: Four-dimensional theory parameters ci ∈ {c1, . . . , cn} and scale factor X

for all ci ∈ {c1, . . . , cn} do

Call findThermo[X,ci] {

Call ci(µ̄) = solveBetas[ci]

for all Ti ∈ {Tmin, . . . , Tmax} do // e.g. binary search

Fix T -dependent RG-scale: µ̄ = XπT

Call ci,3d = DRstep[T,µ̄,ci]

Minimize the effective potential by NMinimize[Re[Veff3d[φ,ci,3d]]]

end for

Return {Tc, φc/Tc, L/T
4
c }, based on degenerate minima.

}

end for

Output: Thermodynamics as function of {c1, . . . , cn}

Export the data

Plot by Python: .examples/ah-thermo-python-plots/plot.py

the loop over 4-dimensional variables ci contains only a single λ and for simplicity and faster

running time M = 100 and g2 = 0.42 are fixed. Here, M is the Higgs mass in arbitrary units

related to the MS mass parameter by the tree-level relation µ2 = −M2/2. The critical tem-

perature Tc is defined from the condition that the effective potential at the broken minimum

vanishes since the potential at the symmetric minimum at the origin is normalized to zero.

To find this condition, we use an elementary binary search.
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Figure 4: Thermodynamics of the Abelian-Higgs model as function of λ (cf. eq. (2.1)) at fixed

g2 = 0.42 and M = 100 as obtained in ./examples/ah-thermo.m. Both M and T are in

arbitrary units of mass. The RG-scale is varied at the edges of the interval µ̄ = (0.5 . . . 2.0)πT .

While the curves are barely discernible, this showcases that the scale-dependence is indeed a

higher-order effect once at full NLO dimensional reduction. The additional RG-scale of the

3d EFT is not varied in the plots.

As an indicator of the transition strength, we also output the value of the background

field at the critical temperature, φc/Tc, that describes the discontinuity of the minima at Tc.

Since φc/Tc is gauge-dependent, it should not be given physical meaning but used as a rough

indicator that correlates positively with the phase transition strength. This strength can be

defined in terms of the released latent heat at the critical temperature Tc

L = T∆p′ = T∆
dV 4d

eff

dT
= T 2∆

dV 3d
eff

dT
, (A.1)

where p′ is the derivative of the pressure with respect to temperature and ∆ ≡ (. . . )low-T −

(. . . )high-T denotes the difference between the broken and symmetric phase. The T -derivative

is approximated as a finite difference dT = 0.1. The symmetric-phase part does not con-

tribute here since we normalized the effective potential to zero at all T at the origin. For a

commented documentation of the technicalities of this implementation see directly the source

ah-thermo.m.

The described perturbative determination is done in Landau gauge with ξ = 0 in eq. (3.19)

and the results for Tc and L/T
4
c are gauge-dependent. Despite this simple user-friendly exam-

ple, a recipe for a more sophisticated, gauge-invariant determination can be found in e.g. [85]

(cf. refs. therein). The final output data for thermodynamics is

stored in ./examples/ah-thermo-python-plots/*.dat,

plotted in ./examples/ah-thermo-python-plots/plot.py, and shown in fig. 4.

We encourage DRalgo users to develop and optimize their individual implementations for

algorithms to determine thermodynamic properties. While including efficient algorithms for

determining thermodynamics is conceivable for future versions of DRalgo, in the current

version 1.0 these features are not implemented in the package itself.
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[72] M. Nishimura and Y. Schröder, IBP methods at finite temperature, JHEP 09 (2012) 051

[1207.4042].

[73] G. C. Branco, P. M. Ferreira, L. Lavoura, M. N. Rebelo, M. Sher, and J. P. Silva, Theory and

phenomenology of two-Higgs-doublet models, Phys. Rept. 516 (2012) 1 [1106.0034].

[74] J. F. Gunion, H. E. Haber, G. L. Kane, and S. Dawson, The Higgs Hunter’s Guide, vol. 80.

2000.

[75] H. Georgi, Lie algebras in particle physics, vol. 54. Perseus Books, Reading, MA, 2nd ed. ed.,

1999.

[76] R. Slansky, Group Theory for Unified Model Building, Phys. Rept. 79 (1981) 1.

[77] M. Losada, High temperature dimensional reduction of the MSSM and other multiscalar models,

Phys. Rev. D 56 (1997) 2893 [hep-ph/9605266].

[78] J. O. Andersen, Dimensional reduction of the two Higgs doublet model at high temperature, Eur.

Phys. J. C 11 (1999) 563 [hep-ph/9804280].

[79] T. Gorda, A. Helset, L. Niemi, T. V. I. Tenkanen, and D. J. Weir, Three-dimensional effective

theories for the two Higgs doublet model at high temperature, JHEP 02 (2019) 081 [1802.05056].

[80] A. D. Linde, Decay of the False Vacuum at Finite Temperature, Nucl. Phys. B 216 (1983) 421.

[81] O. Gould and J. Hirvonen, Effective field theory approach to thermal bubble nucleation, Phys.

Rev. D 104 (2021) 096015 [2108.04377].

[82] A. Ekstedt, Higher-order corrections to the bubble-nucleation rate at finite temperature, Eur.

Phys. J. C 82 (2022) 173 [2104.11804].

[83] A. Ekstedt, Bubble Nucleation to All Orders, [2201.07331].

[84] M. Laine and A. Rajantie, Lattice continuum relations for 3-D SU(N) + Higgs theories, Nucl.

Phys. B 513 (1998) 471 [hep-lat/9705003].

[85] P. Schicho, T. V. I. Tenkanen, and G. White, Combining thermal resummation and gauge in-

variance for electroweak phase transition, [2203.04284].

45


	desy086
	Innenseite-DESY-Berichte-Vers.2
	desy22-086
	1 Introduction
	1.1 Prologue: dimensional reduction at next-to-leading-order

	2 Installation and running
	2.1 Installation
	2.2 Model implementation
	2.3 Running the dimensional-reduction algorithm
	2.4 Integrating out temporal scalars
	2.5 Two-loop effective potential

	3 Theory behind the scenes: dimensional reduction of a generic model
	3.1 Lagrangian in the 4d fundamental theory
	3.2 Lagrangian in the 3d effective theory
	3.3 Matching
	3.4 Beta functions and anomalous dimensions

	4 Implementing beyond the Standard Model theories
	4.1 Two-Higgs doublet model with fermions

	5 Miscellaneous features
	5.1 User-options and features
	5.2 Model-treatment in the code
	5.3 Frequently asked questions

	6 Outlook
	A Interfacing DRalgo output
	A.1 From 3d effective theory to thermodynamics



