Deutsches Elektronen-Synchrotron Hamburg-Bahrenfeld, Luruper Chaussee 149

DESY-Notiz A 2.52
(English Copy)

Hamburg, den 2. Dez. 1959 M8 Dr.Br./Dr.Ste./H.

# Orbit deviations generated by f-type distortions in an AG synchrotron

#### Contents:

(

| I.   | General equations                                    | page      | 2  |
|------|------------------------------------------------------|-----------|----|
| II.  | Deflecting field constant in time                    | page      | 5  |
| III. | Slowly rising deflecting field                       | page      | 5  |
| IV.  | Rf deflecting field with constant frequency          | page      | 6  |
| ٧.   | Rf deflecting field with linearly changing frequency | ,<br>page | 11 |

\_\_\_\_\_

For these types of deflecting fields particle trajectories are represented in a closed form by means of phase and amplitude functions.

The formulas allow a simple numerical evaluation and are provided for application in beam ejection and betatron frequency measurement problems.

# Orbit deviations generated by f-type distor ions in an AG synchrotron

#### I. General equations.

With  $r(\sigma')$  being the radial or vertical deviation of a particle trajectory from the principal orbit and  $F(\sigma')$  being the distortion produced by a homogeneous magnetic or electric deflecting field, the equation of motion for this component is given by

$$r''(6) + K(6) \cdot r(6) = F(6)$$

The general solution of this equation is given by the general solution of the homogeneous equation plus a special solution of the inhomogeneous equation and can be written as 1)

$$r(s,h) = A\sqrt{\beta(s)} \cos \left\{\phi(s) + B\right\} - \sqrt{\beta(s)} \int_{0}^{c} F(x) \sqrt{\beta(x)} \sin \left\{\phi(x) - \phi(s)\right\} dx \quad (1)$$
with  $c = s + (h-1) \cdot L$ 

In order to distinguish between different particle revolutions, the arc length variable s, starting at a point s=0 and being measured along the principal orbit, is restricted to only one revolution in the above notation. L is the length of the principal orbit and k - 1 is the number of completed revolutions  $\phi$  (G) and  $\beta$ (S) are the phase and amplitude functions, with

$$\beta(s) = \beta(s) = \frac{1}{\phi'(s)}$$

The function F(6) represents the distortion.

A and B are constants fixed by the initial conditions r(o) and r'(o). It shall be generally assumed A=0 in the following, looking at particles only which move along the principal orbit when putting on the deflecting field.

We now shall restrict ourselves to the special case of a distortion  $F_k \text{ which is independent of } \textbf{\textit{d}} \text{ within the regions } s_1 + (k-1)L \leq \textbf{\textit{d}} \leq s_2 + (k-1)L \\ (k=1,2,\dots) \text{ and which is zero everywhere outside these regions.}$ 

Equation (1) with 
$$A = 0$$
 can then be transformed into 
$$r(s,k) = \sqrt{\beta(s)} \sum_{j=0}^{k-1} F_{k-j} \int_{s_j}^{s_2} \sqrt{\beta(x)} \cdot s \omega \left\{ \phi(s) - \phi(x) + 2 \delta j \right\} dx$$

$$\left( s + (k-1)L + 3 c + (k-1)L \right)$$
(2)

The phase shift 2d is modulo  $2\pi$  equal to the betatron phase shift per revolution

$$2d = 2\pi \cdot \triangle Q$$
 with  $\triangle Q = Q - Q$ .

Q being the number of betatron oscillations per revolution and q being the next smaller integer. Equation (2) is valid for the  $k^{th}$  revolution after the  $k^{th}$  traverse through the deflecting field. The corresponding equation which is valid for the  $k^{th}$  revolution before traversing the deflecting field is obtained from equation (2) by replacing k by k-1 and  $\phi(s)$  by  $\phi(s)+2$ 

$$r(s,k) = \sqrt{\beta(s)} \sum_{j=0}^{k-2} F_{k-j} \int_{s_{1}}^{s_{2}} \sqrt{\beta(x)} \cdot \sin \left\{ \phi(s) - \phi(x) + 2\delta(j+1) \right\} dx$$

$$\left( s + (k-1)L \angle s_{1} + (k-1)L \right)$$
(28)

Assuming the relative charge of the distortion to be small during one revolution, the instantaneous closed orbit  $\hat{r}(s,k)$  can be derived by applying to equation (1) the boundary conditions

$$r(s,k+1) = r(s,k) \qquad \text{and}$$

$$r'(s,k+1) = r'(s,k) \qquad \text{one gets}$$

$$\hat{r}(s,k) = \frac{\sqrt{\beta(s)}}{2 \sin \delta} \cdot \int_{\delta}^{\delta+L} F(x) \sqrt{\beta(x)} \cos \left\{ \phi(s) - \phi(x) + \delta \right\} dx$$
with  $\delta = s + (k-1)L$ 

Assuming again a constant distortion  $F_k$  in the region  $S_1 + (k-1)L \leq \sigma \leq S_2 + (k-1)L$  equation (3) can be written as

$$\hat{r}(s_{r}k) = \frac{\sqrt{\beta(s)}}{2 \sin \delta} \cdot F_{k} \int_{s_{1}}^{s_{2}} \sqrt{\beta(x)} \cos \left\{ \phi(s) - \phi(x) - \delta \right\} dx \tag{4}$$

.....

Equations (2) and (4) are only valid outside the deflecting field. They get a much simpler form by introducing the following notations:

$$I_{c} = \frac{1}{\ell} \int_{S_{4}}^{S_{2}} \overline{|\beta(x)|} \cos \phi(x) dx; \quad I_{s} = \frac{1}{\ell} \int_{S_{4}}^{S_{2}} \overline{|\beta(x)|} \sin \phi x dx$$

$$R^{2} = I_{o}^{2} + I_{s}^{2}; \quad \mathcal{I}_{s} = \text{are to } I_{s} I_{c}$$

 $1 = s_2 \cdot s_1$  is the length of the deflecting field. The trajectory (2) of a particle starting with r(0) = r'(0) = 0 is then given by

$$r(s,k) = eR \sqrt{\beta(s)} \sum_{j=0}^{k-1} F_{k-j} \sin \left\{ \phi(s) + 2dj - \theta \right\} , \qquad (5)$$

and the closed orbit by

$$\hat{r}(s,k) = \frac{\ell F_k R}{2 \sin \delta} \sqrt{\beta(s)} \cos \left\{ \phi s - \delta - \vartheta \right\}$$
(6)

For a short deflecting field centered about  $s_{cl}$ , the integrands in I and I can be assumed constant over the region of integration and one has

$$R \to \beta(s_d)$$
 ,  $\phi(s_d)$ 

For a deflecting field located in a straight section, approximations for the phase and amplitude functions can be used, allowing  $\mathbf{I}_{\mathbf{c}}$  and  $\mathbf{I}_{\mathbf{s}}$  to be evaluated in a closed form. Choosing  $\mathbf{s}=\mathbf{o}$  and  $\phi=\mathbf{0}$  at the beginning of the straight section, one gets for the integrals

$$I_{c} - \frac{1}{2|\beta_{o}|} \left\{ 2 \beta_{o} - \alpha_{o} (s_{1} + s_{2}) \right\}$$
 (76)

$$I_{s} = \frac{1}{2|\beta_{o}|} \left(s_{1} + s_{2}\right) \tag{7b}$$

 $\beta$ , and  $\alpha$ , are the values of the functions  $\beta(s)$  and  $\alpha(s) = -\frac{1}{2}\beta'(s)$  at the beginning of the straight section.

### II. Deflecting field constant in time

For a deflecting field B or E constant in time one has

$$\ell \cdot F = \mathcal{E} = r'(s_2) - r'(s_3) = \begin{cases} \ell \cdot \frac{eB}{P} \\ \ell \cdot \frac{eE}{P} \end{cases}$$

respectively. E is the change of particle direction due to the deflecting field. Evaluation of the sum in equation (5) leads to

$$r(s,k) - ER |B(s)| = \frac{\sin k\sigma}{\sin \sigma} \sin \left\{ \phi(s) + (k-\lambda)\sigma - B \right\}$$
 (8)

This means that a constant deflecting field, turned on suddenly, induces an oscillation which undergoes a phase shift of  $-\sigma = -\pi \cdot \Delta Q$  at each traverse through the field. The amplitude of this oscillation beats with a beating time of  $k = \frac{1}{\Delta Q}$  revolutions. Equation (8) can also be written as follows

$$r(s,k) = \frac{\mathcal{E}R \sqrt{\beta(s)}}{2 \sin \delta} \left[ \cos \left\{ O(s) - \delta - \vartheta \right\} - \cos \left\{ O(s) + (k+\lambda) 2\delta + \delta - \vartheta \right\} \right]$$
(9)

The first term is the closed orbit (6): the motion can therefore be described as a betatron oscillation of constant amplitude and the normal phase increase 26 per revolution around the new closed orbit.

#### III. Slowly rising deflecting field.

The distortion F may increase by  $\Delta$  F each revolution. Then, with  $F_k = k \cdot \Delta F = k \cdot \frac{\Delta \mathcal{E}}{\ell}$  one gets from equation (5)

$$r(s,k) = \frac{\Delta \mathcal{E} \cdot R}{2 \sin \theta} \sqrt{\beta(s)} \left[ k \cdot \cos \left\{ O(s) - \theta - \vartheta \right\} - \frac{\sin k \theta}{\sin \theta} \cos \left\{ \phi(s) + k \theta - \vartheta \right\} \right]$$
(10)

- 6 -

The first term is the closed orbit corresponding to the momentary distortion  $k \cdot \Delta F$ . The second term can be neglected compared to the first one for  $k \gg \frac{1}{\sin d} \cdot E \cdot g$  for  $\Delta Q = \frac{1}{4}$  after 20 revolutions the second term amounts to less than 10 % of the first term already. This means, the particle substantially follows the equilibrium orbit.

### IV. Rf deflecting field with constant frequency.

The influence of an rf deflecting field  $^{2}$  can be investigated by inserting into equation (5) the distortion

$$F_{k} = F_{o} \cos\left\{\frac{\omega}{\ell}(k-1) + \ell_{o}\right\}$$

with f being the orbital frequency and  $\omega$  being the angular frequency of the rf.  $\Psi_o$  is the rf phase at the first traverse of the particle through the field (k=1). Particles consecutively arriving at the rf field are distinguished by different  $\Psi_o$ , with  $\Psi_o$  = 0 corresponding to a particle arriving at maximum field. Introducing  $\mathcal{E}_o$  = 1° $\mathcal{F}_o$ , evaluation of equation (5) leads to

$$r(s,k) = \frac{1}{2} \mathcal{E}_{o} R \sqrt{\beta(s)} \left[ \frac{\sin k \left( d + \frac{\omega}{24} \right)}{\sin \left( d + \frac{\omega}{24} \right)} + \sin \left\{ \phi(s) + (k-\lambda)2d - (k-\lambda)(d + \frac{\omega}{24}) - \vartheta - \varphi_{o} \right\} \right]$$

$$+ \frac{\sin k \left( d - \frac{\omega}{24} \right)}{\sin \left( d - \frac{\omega}{24} \right)} + \sin \left\{ \phi(s) + (k-\lambda)2d - (k-\lambda)(d - \frac{\omega}{24}) - \vartheta + \varphi_{o} \right\}$$

$$(11)$$

The rf field induces a superposition of two oscillations, beating with frequencies  $\frac{2 \oint \sigma + \omega}{2\pi}$  and  $\frac{2 \oint \sigma - \omega}{2\pi}$  respectively and undergoing phase shifts of  $-\left(\frac{\omega}{2}\right) + f$  and  $\left(\frac{\omega}{2}\right) - f$  respectively at each traverse through the field.

In the resonant case  $\delta \pm \frac{\omega}{2f}$  -  $0 \mod \mathbb{T}$ , which is equivalent to  $\omega/2\mathbb{T} = \ell(mF \mp \Delta Q)$  with m = (0), 1,2, ..., equation (11) yields

$$r(s,k) = \frac{1}{2} \mathcal{E}_{a} R \sqrt{\beta(s)} \left[ k \cdot \sin \left\{ \phi(s) + (k-1)2\delta + \varphi_{a} - \vartheta_{b} \right\} \right]$$

$$+ \frac{\sin 2\delta k}{\sin 2\delta} \sin \left\{ \phi(s) \pm \varphi_{a} - \vartheta_{b} \right\}$$

$$(12)$$

The second term in equation (12) can be neglected compared to the first one for  $k\gg \frac{1}{\sin 2d}$ . Therefore, in the resonant case for a large number k of revolutions the rf field induces a betatron oscillation with the normal phase shift 2d per revolution and an amplitude linearly rising with time. In this case, the rf phase shift per revolution is also 2d; the phase difference between rf and betatron oscillation therefore remains constant.

The following two questions might illustrate the behaviour of the beam under the influence of a resonant rf field for  $k \gg \frac{A}{\sin 2d}$ ;

- 1) What is the shape of the beam center line around the synchrotron at a given instant t?
- 2) How does the beam center line move in a given observation point?

We assume that the rf field has been turned on at t=0 with maximum amplitude. Those particles which have passed the field at this moment correspond to the initial rf phase  $f_0=0$ . The initial phase of the other particles follows from the distance between the particle and the rf field at t=0:

 $S_d$  is the location of the rf field,  $s + (k-1)L - s_d$  the path length from the first traverse of the field to the point of observation and vt the path length covered between t = 0 and the instant t of observation. Inserting the above expression for  $\mathcal{L}_o$  into the first term of equation (12) yields the following equation for the center line  $r_c$  of the beam:

$$r_{c}(s,k) = k \cdot \frac{\mathcal{E}_{o}R}{2} \sqrt{\beta(s)} = \sin\left\{\phi(s) \mp \omega \cdot \frac{1}{2} + \frac{\omega}{V}(s-s_{d}) - v^{\beta}\right\}$$
 (13)

Here, the revolution number k is determined by s, t and the particle velocity v. At a given observation point the beam center line

oscillates with the rf frequency  $\frac{\omega}{2\pi}$  about the principal orbit, according to equation (13).

Introducing now in "smooth approximation"

equation (13) represents a sine wave, modulated by  $\beta(s)$ 

The wavelength is  $\sqrt[]{2\pi}$ . In the special case  $\omega$ =2 $\pi$ a i.e. for an rf frequency equal to the betatron frequency,  $r_c$  does, in smooth approximation, not depend on s, and the beam center line is a "circle", breathing with the rf frequency  $\frac{\omega}{2\pi}$ .

Looking at the resonance term in equation (11) in the vicinity of a resonance, e.g.  $6\frac{\omega}{2}$ 0, one gets for the amplitude

$$|r| = \frac{\mathcal{E}_{\alpha} R}{2} \sqrt{\beta(s)} \frac{\sin k(d-\frac{\omega}{2t})}{\sin (d-\frac{\omega}{2t})}$$

The first beating maximum occurs at

$$k_{\text{max}} = \frac{l}{2l\Delta Q - \frac{lQ}{T}}$$

with the amplitude

In the special case of an rf frequency  $\frac{C2}{2\pi}$  equal to the orbit frequency f modulo  $2\pi$ , equation (11) reduces to

which is equation (8) with  $\mathcal{E}:\mathcal{E}_o$  cos  $\mathcal{Y}_o$ , since in this case a particle finds the same field proportional to  $\cos\mathcal{Y}_o$  at each traverse.

In smooth approximation, the resonant term in equation (12) can also be obtained by a different approach, as shown by K.W. Robinson<sup>3</sup>). At the  $k^{th}$  traverse of the particle through the rf deflecting field, the directional change  $\mathcal{E}_k$  imposed on its trajectory is, in the resonant case  $\delta - \frac{\omega}{2l} - 0 \mod \mathcal{T}$ , given by

The betatron amplitude at the rf deflector may, in smooth approximation, be written as

$$r(k) = r_0(k) \cos \{(k-1)2\delta + l_0 + \theta(k)\} = r_0(k) \cos l_0(k)$$
 (14)

with  $\Theta$  (s) being the difference between the betatron phase and the rf phase at the  $k^{\mbox{th}}$  traverse.

A directional change  ${\mathcal E}$  will induce a maximum amplitude increase

$$\Delta r_0 = \mathcal{E} \cdot \overline{\beta}$$
 with  $\overline{\beta} = \frac{1}{2\pi Q}$ 

 $\overline{\beta}$  is the smooth approximation amplitude function.

#### Figure 1.



Assuming  $\Delta r_{\circ}$  to be small compared to  $r_{\circ}$ , it can be seen from figure 1 that the following equations hold:

$$\frac{dr_o}{dk} = -\frac{\varepsilon_o \beta}{r_o} \cos \vartheta_{r} + \sin \vartheta_{\beta}$$

$$\frac{d\vartheta_{\beta}}{dk} = -\frac{\varepsilon_o \beta}{r_o} \cos \vartheta_{r} + \cos \vartheta_{\beta} + 2\delta$$
(15)

Replacing  $\Re_{\mathcal{B}}$  by  $\Re_{\mathcal{C}}$  +  $\theta$  and averaging equations (15) over one period of  $\cos \Re_{\mathcal{C}}$ , one gets

$$\frac{dr_0}{dk} = -\frac{\mathcal{E}_a \overline{B}}{2} \sin \theta$$

$$\frac{d\theta}{dk} = \frac{\mathcal{E}_B \overline{B}}{2r_0} \cos \theta$$
(16)

The solutions of (16) are given by

$$\Theta(k) = \arctan \left\{ \frac{d}{d} \theta_{A} - \frac{\varepsilon_{o} \overline{\beta}}{2} \frac{k}{r_{A} \cos \theta_{A}} \right\}$$

$$r_{o}(k) = \frac{r_{A} \cos \theta_{A}}{\cos \Theta(k)} = \sqrt{r_{A}^{2} + \left(\frac{\varepsilon_{o} \overline{\beta}}{2}\right)^{2} k^{2} - \varepsilon_{o} \overline{\beta} k r_{A} \sin \theta_{A}}$$
(7)

 $r_1$  and  $\theta_1$  are the initial values of  $r_0$  and  $\theta$  for k=0, i.e. before the first traverse through the rf field.

For a large number k of revolutions one has

$$\lim_{k \to \infty} \operatorname{tg} \, \theta(k) = \begin{cases} -\infty & \text{for } -\frac{\pi}{2} \leq \theta_1 < \frac{\pi}{2} \\ +\infty & \text{for } -\frac{3\pi}{2} < \theta_1 \leq -\frac{\pi}{2} \end{cases}$$

In both cases  $\theta$  (k) therefore approaches  $-\frac{\pi}{2}$ . Varying the initial phase  $\theta$ <sub>1</sub> between  $\frac{\pi}{2}$  and  $-\frac{\pi}{2}$  (or between  $-\frac{3\pi}{2}$  and  $-\frac{\pi}{2}$ ), the amplitude  $\mathbf{r}_0(\mathbf{k})$  correspondingly varies between

$$r_0 (k)_{min} = \frac{\mathcal{E}_0 \overline{B}}{2} \cdot k - r_1$$
 and (18)
$$r_0 (k)_{max} = \frac{\mathcal{E}_0 \overline{B}}{2} \cdot k + r_1$$

These results agree with those obtained above in smooth approximation for a large k and a short deflecting field, since in this case with  $R \to \sqrt{8(e_d)} \to \sqrt{\overline{\beta}}$  and  $\phi(s_d) \to \sqrt{\theta}$  equation (12) transforms into

$$r(s_d,k) = \frac{\varepsilon_0 \overline{\beta}}{2} \cdot k \cdot \sin\{(k-1)2d + \gamma_0\}$$
 (19)

for 
$$\delta - \frac{\omega}{2 \, \xi} = 0 \mod \pi$$
.

Adding to this, according to equation (1), an initial betatron oscillation

$$r^*(s_d, k) = r_a \cos\{(k-1)2d+f_0+\theta_1\}$$

one gets exactly the equations (17). The phase shift between r in equation (19) and the rf distortion  $F_k = F_0 \cos \{ (\kappa - \lambda) 2 J + f_0 \}$  is always  $-\frac{\pi}{2}$ .

So far we have been dealing with an rf distortion turned on suddenly with its full amplitude. The case of a linearly rising rf amplitude according to

$$F_{K} = K \cdot \Delta F_{0} \cos \left\{ \frac{\omega}{\lambda} (K-\lambda) + \gamma_{0} \right\}$$

shall only briefly be mentioned. Introducing  $F_k$  into equation (5), one gets again equation (11) for the dominating terms, with  $\xi_o$  being replaced by Ke· $\Delta F$ . The additional terms can be neglected for k  $\gg \frac{1}{\sin 2d}$ .

## V. Rf deflecting field with linearly changing frequency

As has been previously shown by Geiger<sup>4)</sup>, the case of a linearly changing frequency can also be reated in a relatively simple way. Using again the formalism developed in part I, a formula will be derived which describes the particle trajectories in the vicinity of a resonance.

In the distortion

$$F_{\kappa} = F_{o} \cos \left\{ \frac{1}{\ell} \int_{0}^{\kappa - 1} \omega(\tau) d\tau + \varphi_{o} \right\}$$
 (20)

the rf angular frequency  $\boldsymbol{\omega}$  may be linearly changing with the revolution number according to

$$\omega(\tau) = \omega_{res} + \Delta\omega(\tau - k_o)$$
 (20a)

 $\omega_{\text{res}}$  is the resonant frequency as given by  $2\delta \pm \frac{\omega_{\text{res}}}{\xi} = 0 \mod 2\pi$ ,  $\Delta\omega$  is the increase of the rf angular frequency per revolution, and the resonance is reached at the  $k_0^{\text{th}}$  traverse. Inserting equation (20) into equation (5), one gets

$$r(s,k) = \frac{\ell F_0 R}{2} \sqrt{B(s)} \cdot \exp \left[i \left\{ \phi(s) + (k-1) 2 \delta - i h - \frac{\pi}{2} \right\} \times \left[ \exp \left\{ -i \psi_0 \right\} \sum_{j=0}^{k-1} \exp \left[\frac{i}{k} \left\{ \frac{\Delta \omega}{2} j^2 + (\omega_{res} + 2 \delta \phi) j - \Delta \omega k_0 j \right\} \right] + \exp \left\{ i \psi_0 \right\} \sum_{j=0}^{k-1} \exp \left[\frac{i}{k} \left\{ \frac{\Delta \omega}{2} j^2 + (\omega_{res} - 2 \delta \phi) j - \Delta \omega k_0 j \right\} \right]$$

$$(21)$$

The complex notation has been chosen here for convenience; we mean only the real part of the expression on the right.

In passing the resonance  $2\delta \xi + \omega_{\text{res}} = 0 \mod 2\pi$  the first term in equation (21) will be the dominating term, while the second term will be dominating in passing the resonance  $2\delta \xi - \omega_{\text{res}} \mod 2\pi$ , as can be seen form the result of part IV. Thus, for passing a resonance equation (21) can be written as

$$r(s,k) = \frac{\mathcal{E}_{o}R}{2} \sqrt{\beta(s)} \exp i \left\{ \phi(s) + (k-1)2\sigma - \vartheta + \varphi_{o} - \frac{\pi}{2} \right\} \times$$

$$\times \sum_{j=0}^{k-1} \exp \frac{\mp \lambda \Delta \omega}{2 \cdot 4} \left\{ j^{2} - 2k_{o}j \right\}$$
(22)

The sum in this equation can be approximated by an integral if the derivative of the exponent with respect to j is small compared to  $\frac{\pi}{2}$ , i.e. if

$$\left| \frac{\Delta \omega}{4} \left( j - k_o \right) \right| \ll \frac{\pi}{2}$$
 eq.  $\frac{4}{4} \left| \omega(k) - \omega_{res} \right| \ll \frac{\pi}{2}$ 

Therefore,  $\omega\left(k\right)$  has to stay close to the resonant frequency for this approximation. Equation (22) then transforms into

$$r(s,k) = \frac{\varepsilon_{o}R}{2} \sqrt{\beta(s)} \exp i \left\{ \phi(s) + (k-\lambda)2\delta - \vartheta \mp \varphi_{o} - \frac{\pi}{2} \right\} \cdot \int_{0}^{k-\lambda} e^{\frac{i\Delta\omega}{2}} \left\{ \tau^{2} - 2k_{o}\tau \right\} d\tau$$
 (23)

The integral in equation (23) can be expressed by means of Fresnel's integrals

$$\mathcal{L}(v) = \int_{0}^{v} \cos \frac{\pi}{2} \tau^{2} d\tau \qquad \text{and} \quad \mathcal{L}(v) - \int_{0}^{v} \sin \frac{\pi}{2} \tau^{2} d\tau \qquad (25)$$

which e.g. are tabulated in Jahnke-Embde  $^{5)}$ . Plotting S(v) over C(v) in Cartesian coordinates, one gets Cornu's spiral which is shown in figure  $2_{\ell}$  In this graph, the argument v appears to be the arc length measured along the spiral.



We now introduce the functions

which is shown in figure 1 to be the distance between  $\mathbf{v}_0$  and  $\mathbf{v}_0$ , and the "angle"

$$\chi(v_o \rightarrow v) = \text{arc tg } \frac{f(v) - f(v_o)}{f(v) - f(v_o)}$$

With the aid of this notation, equation (23) can finally be written

$$H(s,k) = \frac{\epsilon_{o}R}{2} \left( \beta(s) \left| \frac{\epsilon_{d}}{\Delta \omega} \right| \cdot T(v_{o} \Rightarrow v) \sin \left( \phi(s) + (k-4)2d - v^{A}F_{\phi} \pm \frac{\Delta \omega}{2f} \kappa_{o}^{2} F_{\phi}^{2} \left( v_{o} \Rightarrow v \right) \right) \right)$$
(26)

with 
$$v_0 = -\sqrt{\frac{(\Delta \omega)}{\pi \cdot k}} \cdot k_0$$
 and  $v = \sqrt{\frac{(\Delta \omega)}{\pi \cdot k}} \cdot (k-\lambda - k_0)$ 

Equation (26) holds for  $\Delta\omega>0$ , i.e. for increasing frequency. For decreasing frequency ( $\Delta\omega<0$ ) the signs of  $v_o$  and v and consequently of  $\chi$  have to be reserved.

In the case of v and  $v_o$  being located in the central part of Cornu's spiral, where it is approximately linear, one has the amplitude factor

$$\frac{\pi \ell}{(\Delta \omega)} \cdot T(v_0 \Rightarrow v) \approx \frac{\pi \ell}{(\Delta \omega)} \cdot (v - v_0) = k - 1$$

and the phase \( \) is practically zero. Equation (26) then transforms into the resonance term of equation (12).

The behaviour of the beam when passing a resonance shall be quantitatively illustrated by two examples.

For 
$$\frac{k_o \cdot \Delta \omega}{k} = \frac{1}{2D}$$
 and  $k = k_o = 40$ 

one gets an amplitude factor  $\sqrt{\frac{\pi \cdot k}{(\Delta \omega)}} \cdot T = 38.2$  instead of the factor k - 1 = 39 which one would have in the case of a constant resonant rf frequency.

For smaller frequency shifts per turn, i.e. for larger revolution numbers  $\mathbf{k}_0$ , the deviation increases strongly.

For 
$$\frac{k_0 \cdot \Delta \omega}{\ell} = \frac{1}{20}$$
 and  $k = k_0 = 200$ 

one gets an amplitude factor  $\sqrt{\frac{\pi \ell}{(\Delta \omega)}} \cdot T \cdot 61.4$  instead of the factor k-1=199 for a constant resonant rf frequency.

F. Brasse K.G. Steffen

#### References

- 1) K.G. Steffen: CEA-45
- 2) see also e.g. M. Geiger: CERN-PS/Int. RF 59-2
- 3) K.W. Robinson: CEA-72
- 4) M. Geiger: private communication, to be published as a second part of 2)
- 5) Jahnke-Embde: Tafeln höherer Funktionen, p. 35