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Orbit deviations generated by f-type dislior .iouns

in an AG synchroiron

I. General equations.

With r{@ ) being the radial or vertical deviation of a particle
trajectory from the principal orbit and F(& )} being the distortion
produced by a homogeneous magnetic or electric deflecting field, the

equation of motion for this component is given by
r'(s) +K(e) - r(s) =F(3)

The general solution of this equation is given by the general solution
of the homogeneous equation plus a special solution of the inhomogeneous

equation and can be written as

G
r k) =ATEE ws {$lo)rB]-Jp(s) f F (x) 163 aim [¢(x)a¢(6>{ax (1)
with 8 =8+ (4 -1)L

In order to distinguish between different particle revolutions,
the arc length variable s, starting at a point s8=0 and being
measured along the principal orbit, is restricted to only one re-
volution in the above notation. L is the length of the principal
orbit and k - 1 is the number of completed revolutions¢!(6 ) and

[S(S ) are the phase and amplitude functions, with

1
ﬁ(s)=f5(s):m—)
The function F{ & ) represents the distortion.
A and B are constanls [ixed by the initial conditions r{o) and r'{o)o
It shall be generally assumed A = O in the following, looking at
particles only which move along the principal orbit when putting

on the deflecting field,

We now shall restrict ourselves to the special case of a distortion
F, which is independent of ¢ within the regions s, + (k-1)1%6 582+(k=1)L

{ku1,2,...) and which is zero everywhere outside these regions.
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Equation (1) with 4 = O can then be transformed into

A1 5
r (sh) = TBs) % e j £ T604) - Adu [¢(S)—¢(X)+Zdj}dx

(s+{hot)L 7 5, e AL (2)

The phase shift 2d is modulo 27 equul to the betatron phase

shift per revolution

2d=2T. AQ  wi¥h  AQ=Q-¢ .
Q being the number of betatron oscillations per revelution and
@ being the next smaller integer. Bquation (2) is valid for the ko0
revolution after the kth traverse through the deflecting field.
The corresponding equation which is valid for the'kth revolution
before traversing the deflecting field is obtained from egquation (2)
by replacing k by k-1 and({s) by ¢(s)+2

Sﬁ
r(sk)= I3 (s) g Fk—g W o {‘b(s)—‘b(x)*Zd(jH)(dx (2a)
70
> (s+(4<-1)£_4 5,,+(4{-1)L)

Assuming the relative cha“ge of the distortion to be small during
one revolution, the instuntaneous closed orbit?(gk)can be derived

by applying to equation (1) the boundary conditions

r(SJ’kM ) = (.S/k) and
(s k) =r' (sk) one gets
Sl
?(s,/k)'-‘ ZVE—(;% (F(x)_ JB(x) cos {¢(5)‘¢(x§+d}dx (3)
(+1

with 6=3 +(’k-’l)L

Assuming again a constant distortion F in the region Sq+('f(,f1)L Lg éSZf'(fk-’l)L,

equation (3) can be written as

?(Sﬁdbz—wﬁ%—-%f 1860 cos [qs(s)—qm)-dfdx 0

S.-
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Equations (2) and (4) are only valid outside the deflecting field.

They get a much simpler form by 1ntrodu01ng the following notations:

—-ime T
R I+I J = GﬂtfgIA

1 = 8,78, is the length of the deflecting field.
The trajectory (2) of a particle starting with r(0) = r'(0)

is then given by
K-4

(s - 2R B9 % Fieg s;h{?s(s)qq(;a--&f , (5)

and the closed orbit by

7 ls. ‘—%;%-" B(=) ms{¢s-J- n.?‘} (6)

For a short deflecting field centered about s , the integrands in
IC and Is can be assumed constant over the region of integration

and one has

R -5-4[5(550 j P~ ¢lsd)

For a deflecting field located in a straight section, apprcximations
for the phase and amplitude functions can be used, allowing IC and
Is t0 be evaluated in a closed form. Choosing s = © and¢>= 0 at the

beginning of the straight section, one gets for the integrals

L - {2550 —d\a(61+sz)} (76)
— 4
1, - ZWE:ﬂ (54*52) (7v)
B, andd, are the values of the functions [ (s) ando((s) = =~ % ﬁl(s)

at the beginning of the straight section.



I1. Deflecting field congstant in time

For & deflecting field B or E constant in time one has

z B
) i £ P
L F =€ =r(s)-r(s) =
<E
E' PV

regpectively. £ is the change of particle direction due to the

deflecting field. Evaluation of the sum in equation (5) leads to

r(s,k)-CRW —‘fﬁ“}i sfn{gé[s)Jk(k—/Dd.-i?’K (8)

This means that a constant deflecting field, turned on suddenlty,
induces an oscillation which undergoes a phase shift of -d=-T-aQ

at each traverse through the field. The amplitude of this oseillation
beats with a beating time of k = t;Q revolutions.

Equation (8) can also be written as follows

rls. k) =£7‘§S—*@ cos{ofs)-d-— 19'% - cos{o(s)Jr(kM)?_dWcr—ﬁ} (9)

The first term is the closed orbit (6): the motion can therefore
be described as a betstron oscillation of constant amplitude and

the normal phase increase 24 per revolution around the new closed

orbit.

III. Slowly rising deflecting field.

Phe distortion F may increase by A F each revolution. Then, with

&
F, = ko AF = k+ 2 /3 one gets from equation (5)

k
5K - —Ai%'ﬁ%’ B(s) I:k-c:os{ O(s\atﬁng'} - % coe!zﬂs)«»kcf-rl?i} (10)



The first term is the closed orbit corresponding to the momentary
distortion k- AF. The second term can be neglected compared to
. 1 1 .
——— s e A Q= - .
the first one for k» —gmo + E.-g. for AQ ) after 20 revolutions
the second term amounts to less than 10 % of the first term already.
This means, the particle substantially follows the equilibrium

orbit.

IV. Rf deflecting field with consiani fregquency.

The influence of an rf deflecting field 2) can be investigated by

inserting into equation (5) the distortion

Foo= Fo cos{%(k”n*“ﬁ:}

K

with f being the orbital frequency and W being the angular frequency
of the rfD‘& is the rf phase at the first traverse of the particle
through the field (k=1)o Particles consecutively arriving at the

rf field are distinguished by different %1, with q; = O corresponding
0 a particle arriving at maximum field. Irtroducing Enu 1°F0,

evaluation of equation (5) leads to

a0 4 R T [smild=E ] gl o=t e 5)- 4 ¢

(11)

&N [J—‘Lo’ i ) w o
+ ge’nk(d‘-g)) ‘ SMH[S) Hik-A2d-(k A)ld‘-”)_& ‘ﬁ,}__

The rf field induces a superposition of two oscillations, beating with
fJ.r'equencies"l"£,)—‘:f:;;7;,-!‘-’:'L and 2“#%§&L respectively and undergoing phase
shifts of-(f% +J) and{%% -J) respectively at each traverse through the
field.

In the resonant case d‘iﬂffZOmod W, which is equivalent to “Vaﬁr =

LlmEr aQlwith m=(0), 1,2, ..., equation (11) yields

(o) « 4 E.R VB [w sin { 1) + (k-024 ¥ . -

4.“5’“"2'(‘&“ ain [55(6) £ - f ] (12)



The second term in equation (12) can be neglected compared to the
first one for k» EI%*EE-Q Therefore, in the resonant case for a
large number k of revolutions the rf field induces a betatron
oscillation with the normal phase shift 2d per revolution and an
amplitude linearly rising with time. In this case, the rf phase
shift per revolution is also 2J ; the phase difference between

rf and betatron oscillation therefore remains constant.

The following two questions might illustrate the behaviour of

the beam under the influence of a resonant rf field for K 2 smz

1) What is the shape of the beam center line around the

synchrotron at a given instant 47

2) How does the beam center line move in a given observation

point?

Ve assume that the rf field has been turned on at t = 0 with
maximum amplitude. Those particles which have passed the field
at this moment correspond to the initial rf phase ,=0. The
initial phase of the other particles follows from the distance

between the particle and the rf field at t = Ot

g - vt {s et s |

Sd is the location of the rf field, s +{k-1)L - 84 the path length
from the first traverse of the field to the point of observation
and vt the path length covered between t = O and the instant t

of observation. Inserting the above expression for qg inte the
first term of equation (12) yields the following equation for the

center line rc of the beam:

r{sK) = k-—a-f’i-& ﬁ-(;)- sfn{¢(s)¢w4i%“(s-9d)~4ﬂf (13)

Here, the revolution number k is determined by s, t and the particle

velocity v. At a given observation point the beam center line

- 8



oscillates with the rf frequency éﬁ; about the principal orbit,

according to equation (13).

Introducing now in "smooth approximation

bl «~ 2ERE {s-sq) + gled)

equation (15) represents a sine wave, modulated by U&(Q:

s §) ~ k- €°ZR vﬁ_(e? eﬁn{; wi +‘\t,“ (z'i\”&£iw)(s~sd)-491+(§(sd)§

\/ .
The wavelength is Q{ r wW[2F . In the special case(ﬁ=2Tﬁh¥ i@
for an rf frequency equal to the betatron frequency, T, does, in
smooth approximation, not depend on s, and the beam center line
is a "¢irele", breathing with the rf frequency‘%% .
Looking at the resonance term in equation {11) in the vicinity of
Lt .
a resonance, e.goéwufO, one gets for the amplitude
(7%

e, R B ain k(F-F7)

|l"| Y ain {d-£%)

Phe first beating maximum occurs at

L

- dad
I ax PR NG —

K

L)

with the amplitude

K van
ek [By Kmar

{i

||
Lagl+FS
In the special case of an rf frequency 53 equal %o the orbit

frequency f modulo 2T , equation (11) reduces to

o) = €, cost, R [P oL - in (419 + (k-4

which is equation (8) with £:&, cosY, since in this case a particle

finds the same field proportiocnal to cos‘ﬂ,at each traverse.

Yol



In smooth approximation, the resonant term in equation (12) can also
be obtained by a different approach, as shown by K.W. Robinson”’.
At the kth traverse of the particle through the rf deflecting field,

the directional change EkAimposed on its trajectory is, in the

{2
resonant casethi1 -0 mod W, given by

Ex - &, COS{(K"'{)Z(;{-‘-PO} =&, cos ’3‘(-{, (k)

The betatron amplitude at the rf deflector may, in smooth approximation,

be written as

P(K) = v, (K cos (K‘A)Zervﬁ + efk)t L Y (k)cossi?‘{b (k) (14)

with © (<) being the difference between the betatron phase and the rf

phase at the kth traverse.
A directional change & will induce a maximum amplitude increase

ar, = & B with -E = 2wa

Tg is the smooth approximation amplitude function.

Figure 1. Hﬂ

ah
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Assuming AlVe to be small c¢compared to t,

s

it can be seen from figure -
that the following equations hold:

mﬁf‘f— - - 8,,“—5)- o9 '\9‘.(:_ siin 49"[3,
— (15)
%%?.= _Q%i am8%4c03&$+2é-

Replacing p by W g + 6

and averaging equations (15) over one
period of cos . L , one gets

%(L - 8‘1& ‘:T\"'\Q

_ (16)
do . F-P oies0
AK 21y

The solutions of (16) are given by

o(k) - arc iq {*g B, - £.b K }

pa v, axseh

eos® | by (EgR) £ B ke Sn0,
""(m:—AEB"sTé'(ﬂ"E) e, 5 K o A 1

(7)

r1 and 0 ] are the initial values of ro andfafor k =

= 0, i.e. before
the first traverse through the rf field.
FPor a large number k of revolutions one has

— oo for -%E éAﬁﬂ < %%
tivn g B (K} =

K> oo too dor Foga-T

In both cases O (k) therefore approaches-*%%.
Varying the initial phase 91 between %; and- - {or between - ELI

2
andf-%g), the amplitude ro(k) correspondingly varies between

£.P
(o [K)mfn = T -k - v, and ( )
_ 18
o LeB

11



These results agree with those obtained above in smooth approximation
for a large k and a short deflecting field, since in this case
with R = hg):9UE' and é(sd)—7r$ equation (12) transforms into

r(%hm = éfﬁ--k-gn%k~ﬂ26+%% (19)
for 6-*29_ = 0 mod ¥.

Adding to this, according to equation (1), an initial betatron

oscillation

r*(sd,k) = 1, cos{(k-d)?_(“‘ﬂ, +943 |

one gets exactly the equations (17). Tie phase shift between r

in equation (19) and the rf distortion Fy = F, cos{(Kwﬂldt*f%

is always ”-%.

So far we have Jeen deiling with an rf distortion turned on suddenly
with its full amplitude. The case of a linearly rising »f amplitude

according to

Fo = k-aR cos{jf(kwl)**‘ﬁ,}
shall only briefly be mentioned. Introducing F, into equation (5),
one gets again equation (11) for the dominating terms, with £,

being replaced by K2 -aAF . The additional terms can be neglected

i

for k» Sin odF °

V. Rf deflecting field with linearly changing frequency

4)

As has been previously shown by Geiger '/, the case of a linearly

changing frequency can also be reated in a relatively simple way.
Using again the formalism developed in part I, a formula will be
derived which describes the particle trajectories in the vicinity

of a resonance.

12 -
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In the distortion

kA

Fo = F cos{ﬂ o (@ dv + Y. (20)

o
0

the rf angular freguency W mey be linearly changing with the

revolution number according to

lT) = Wy + aw (T -k,) (20a)
()
Wye is the resonant frequency as given by 2d —Jfﬂ- = 0 mod 2%,
A is the increase of the rf angular freguency per revolution,
th

and the resonance is reached at the ko traverse. Inserting egquation

(20) into equation (5), one gets

Y(S.' K) = ‘—E—F;,}'?R— \,5(9) - axp L{g&(s) elk-DNad- - %} ¥

1% [zxp{ *F} :: exp _}:{ 1 jz +(UOres r?O‘@d - ALk, j} (21)
21
+c><l’{ L\]o:; ’J:) exp .i;- { A'Lw éz N (wres"zcﬁ')?i - awke El.g:l

The complex notation has been chosen here for conveniencej we mean only

the real part of the expression on the right.

In passing the resonance 2d§ +Wye = 0 mod 2% the first term in
equation (21) will be the dominating term, while the second term will
be dominating in passing the resonance 2d¢"“ﬂts mod 29 , as can be
seen form the result of part IV. Thus, for passing a resonance

eguation (21) can be written as

o0 = S5 B0 ept[p9 e ledza- 7 - F

K-A

FiAW . ,
SR St et

(22)
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The sum in this equation can be approximated by an integral if the

derivative of the exponent with respect to j is small compared to

L, il if

i 4
ax (’ai"ko) S T eq . ;{, %i

4 2

tol k) - W oo | =

Therefore, W (k) has to stay c¢lose to the resonant frequency for

this approximation. Equation (22) then transforms into

K-4

Lo 2 o~
rla. k) = “%E‘ Bls) zxp-’u{tﬂsh(kthf-& 23 -f{- -[(z F TE‘{T '2kat} I (23)
0

The integral in equation (25) can be expressed by means of Fresnel's

integrals
v

¥
f (V) = J £os %Tl dr and jof\') 'J sin %.i T dv (25)
0 0

which e.g. are tabulated in Jahnke-Embde 5)0
Plotting S(v) over C{(v) in Cartesian coordinates, one gets Cornu's

spiral which is shown in figure 2; In this graph, the argument v

appears to be the arc length measured along the spiral.

A(O1

Figure 2.

lv)
>
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We now introduce the functlons

Tly, 5 9 - ’(m o) v (-9

which 1s shown in figure 1 to be the distance betwsen v, and v, and

the '"angle"

. e (I (A
Livsn = eele g0

With the aid of this notation, equation (23) oan finally be writhen

s
o, k) - 5_%_“ ﬁ'ﬁg% CTiv, 9 V) sln{(ﬁiﬁ-*‘(k—ﬂ'ldﬁ\?'\:tﬂ, & %f koz FX (v, -7\0} (26)
o] {awa)
with v, = 7#%% ko and
(8w) (-4 -k
v o= - : o
Equation (26) holds for Aty > O , i.e. for inoreasing frequendy.

For decoreasing frequency (Awo < 0} the signs of v, and v and

consequently oiﬂx have to be reserved.

In the oase of v and v_ being located in the ocentral part of Gornu's

gplral, where it is approximately linear, one hag the amplitude

factor
wf T o B v) = k-
l—fﬁ) Tly, #v) =2 7o) Av-v) = k-4 ]

and the phase I is practioally zero. Bquation {26) then transforms
into the resonance term of equation (12).
The behaviour of the beam when passing a resonance shall be quantitatively

illustrated by two examples.

_Ii_ﬂ_n_'mé.g?m and k - k¢ = ‘*D

-

4
Tor Ty



—_
one gets an amplitude factor a;$ +T < 2382 instead of the factor
k - 1 = 39 which one would have in the case of a constant resonant
rf freguency.

For smaller frequency shifts per turn, i.e. for larger revolution

numbers ko’ the deviation increases strongly.

Ko AL

; - A k= k, = 200
For ¥‘ 7 and a

one gets an amplitude factor fah}'-r = b4 instead of the factor

k - 1 = 199 for a constant resonant rf fregiency.

¥, Brasse
K.G. Steffen
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