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Abstract:

The method of amplitude and phase functions used in AG synchro-
tron theory is generalized for application in high energy beam

transport system.

The beam is represented by phase ellipses and the ellipse para-
meters are transformed through the system. A complete description
of the beam as a whole rather than of single particle trajecto-

ries is thus obtained.

The +1ethod allows a guick estimate of the cost of a system and
appears to be useful in looking for'closemtoﬂoptimum systems
satisfying given experimental requirements. Some suggestions
are made concerning the use of an analog computer for treating

this problem.



Introduction

One of the main problems in designing a beam transport system
for high energy particles is to satisfy the conditions required
by the experiment with a minimum of cost. For this purpose, an
unconfortably large number of paramecters is usually available,
making the problem of optimizing a beam transport gsystem very
difficult.

Unfortunately, the standard method of tracing individual partic-
les by means of linear transformations (represented by two-by-
two matrices) does in general not permit an easy evaluation of
the cost of a system. One would like to have a formalism which
yields the envelope of a whole beam rather than single particle
trajectories, giving a direct display of the beam diameter along
the entire flight path and thus allowing a quick estimate of the

neccessary magnet apertures and cost,

The method of amplitude and phase functions used in AG synchro-
tron theory can be extended to serve this purpose and, moreover,

allows ray tracing as well whenever desired.

Beam Representation by Phase Ellipses

A beam of monoenergetic particles with no appreciable coupling
between horizontal and vertical motion can be adequately des-
cribed by means of density distributions in the horizontal and
vertical phase planes. All'particles of interest are contained
within an area bounded by a closed curve in each phase plane.
The method considered here consists in transforming these enve-
lope curves through the system under consideration.

The simplest envelope curves to be used for this purpose are
parallelograms and ellipses, since they retaln their character
throughout the linear transformations involved. Here, we shall
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consider ellipses only, since they are better adapted to a
transformation through a beam transport system designed for mini-
mum cost than parallelograms with their sharp corners. In addi-
tion, they have a higher symmetry and can be described by only

3 parameter.

With s being the coordinate along the optical axis and y(s) and

y'(s) = %% the transverse deviation and angular divergence of a

particle respectively, we write all e:lipses in &a normalized

form
2 =
X“]’ +2-d\‘7\/'+{%‘\/ = £ (1)
with By —ott = A

Then, the constants 8‘ B, vy have simple geometrical meanings

(see figure 1):

. 4
"emittance" & = = F

with P being the area of the ellipse;

"half width" y - \e Yo

"half divergence” Ymax q;; JX’

The constant oK also can be given a useful geometrical inter-
pretation, if we assume the beam represented by the ellipse to
be moving in a (field free) drift space. We call the point on
the trajectory, in which the ellipse is on principal axes, a
"waist", since the beam width has & minimum there., The distance
of the waist from the point under consideration is then given by

"waist distance" t - -%? )



wnere

t > 0 ¢ waist ahead, i.e. beam "converging"
t <0 waist in rear, i.e. beam "diverging".
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Fig. 1: Phase plane ellipse

Generalized Amplitude and Phase Punctions

We shall now investigate how the ellipse parameters B, & and y
transform through the system. The trajectory of an individual

particle is a solution of

. _ e %%
v'() + Klo -yl =0  with Kile = 5 (2)
and may be given by the familiar transformation
(<) als) b(<) Yo
Y - (3a)
y (s cfs) dfs) Yo



where
@ = dla - da
(3b)
dls) = Bl = 4

Using (3%a), the transformation of the ellipse parameters can

then be expressed by the linear transformation

Bla) a” - 2ah b* Bo
als) = -ac (ad +be) -bd . oo (4)
y{s) c* -2¢d d? %

where B, , <, o charsciserizge the initial ellipse.

From (3b), one obtains

ale) = -4 pls) (5)

and from the normalization introduced ih eq. (1)

lo - Auh (6)

Thus, all ellipse parameters can be expressed by the amplitude
function B and its first derivative. The emittance &€ is a con-

gstant of the motion, as follows from ad - be = 1.

If we consider B, and ¥ to be known functions of s, the tra-
jectory y(s) of each particle starting from some point on the

initial ellipse is a solution of eq. (1) and can be written



in the form

y(a) = Ei'ﬁigam(@Q+C) (1)

g

with ¢l - ¢°+S -T;{?g dr (7a)

o

the constant C being determinded by the initial conditions.
¢ is called the phase function.
The direction of the trajectory is

VE§=——%%%-%mwgnd+a@c%w@4%- (8)

Inserting y(s) and its second derivative into eq. (2) yields
a differential equation for (s):

vyis) + «<(s) T K(s\-lg(s) = 0 (9)

Egs., (9) and (5) can also be obtained by differentiating eq.
(1) and eliminating y" by means of eq. (2).

If we express the constants £ and C in eq. (7) by the initial
conditions Yo and yé , the matrix elements a, b, ¢, d in eq,
(3) can be derived in terms of ¢, p and & :

Los(¢'¢3+dos&(¢-dJ B, sinl¢-%)
y@) ‘ Yo

(3c)

7=l

—% {(d\-cio) cos{ -0} %{008(05 -¢,)

Y{s) Yo

+(4 +o\do)6'|n(¢-¢a)} ~dsin(g - ¢o)-£



The functions ¢, B, ot as introduced here are a slight gene-
ralization of the corresponding functions used in AG synchrotron
theory. They depend on s,B, and«, , whereas in the synchrotron
they are functions of s only. In the latter case their dependence
on B, and &, is eliminated by the condition that the synchrotron
amplitude function ﬁsyn be periodic with the machine structure,

In periodic systems, Bsyn is proportional to the square of the
maximum transmissible beam envelope. In non-periodic beam trans-
port systems, however, the maximum ellipse accepted will, in
general, be larger and have a shape and orientation quite diffe-
rent from the one defined by %Synu It is found by varying the
initial ellipse and using the more general function Bls;Bs o)
instead of gsyn’ the latter being useful in dealing with peri-

odic structures only.

Similarly,

-+

4
(16(51 O'do) = QSD B(TJBO;“J dv

is the generalized phase function. Wherever needed,; it can- be
used for getting information on individual particle trajectories,
location of images etc. In general,; however, we shall be mainly
interested in the behaviour of the beam as a whole, as descri-

bed by b and its derivative.

Optimizing procedures

The cost of a beam transport system is strongly dependent on
the beam cross section within magnets. Special attention should
therefore be given to obtaining the optimum shape of the beam
envelope, A system satisfying the requirements of a particular

experiment will be called oytimized, if it is

a) conducting a givei emittance at minimum cost

or b) conducting a maximum emittance through a given
set of lenses.
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For a conventional quadrupole lens with a pole tip diameter
2-r, the maxinum rectangular beam cross section accepted by the
lens has an ares of 2r2ﬂ This is within-limits independent of
the ratio of beam width to beam height due to the hyperbolic

shape of the pole faces (see figure 2).
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Fig, 2: Quadrupole magnetl cross section

Therefore, the cost of the lens is a function of the product
(%v)- Bﬁ)) only, i.e. of the product of horizontal and vertical
beam envelope. Por the purpose of a rough estimate, the cost
may be assumed to be proportiona. to the magnetic field volume
V, normalized by setting e - £M -y

The volume V is found by computing the maximum value of
™ . gl in each magnet, multiplying it by the length L of
the magnet and adding these values up for all magnets in the

system:
V - ZL L"L ( \l ‘-s(ﬂ , B{z})mx (10)

V is a function not only of the lens parameters, but also of the
initial oonditionsiﬁﬂ, fﬂldoba,déﬂ describing the bean.



In looking for a minimum value of the field volume V, ohne
therefore has to vary the initial beam conditions as well as

the lens parameters. In a system with a target as a beam source,
the former corresponds fto changing the target size and distance
and the locations and sizes of beam limiting apertures, while
the latter means changing the strengths and locations of lenses.
If the target size is given by Ymax 10 one component, and if a
certain emittance € is required for reasons of intensity, the

amplitude function at the target is determined by

Y wax
ﬁ’o - 8.
Then,
1 oty
8o Bo ¥ Pe

At the target, the divergence {E--Jg; has its minimum value for
A, = 0, i.,e, for the ellipse being on principal axes. Varying o,

for instance between the limits

“‘5 < g"i's

the divergence varies by more than a factor of three, and the
corresponding variety of initial beam conditions can be expec-

ted to contain all cases of practical interest.

In principle, the optimizing prccedures according to a) or b)

can now be described ag follows:

a) Vary the lens parameters and initial conditions,
calculate the beam characteristics as displayed by
Eﬂugand ﬁﬁhQ and find a number of solutions which
fulfill the special requirements dictated by the ex-
periment., Calculate the field volume V of each of these

solutions and choose the one with minimal cost.
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b) Proceed as described under a). To each of the solu-
tions satisfying the reguirements of the experiment
compute the maximum product of horizontal and verti-
cal emittances accepted by the system for the assumed
initial conditions. This product is given by

%

()f] ) (2.)) _ s . t“;_
(E £ = minimum of W (11)

max

The right hand side refers to the (ith) lens which is

the one limiting the aperture of the system. Choose the
(x) E(z) )

system with the maximum value of (& X

ethods of computation

The optimizing procedufe involves computation of the amplitude
function for a large number of parameter combinations, since

one does not want to unduly restrict the range of useful solu-
tions by introducing arbitrary symmetry conditions etc. On the
other hand one has to keep time and effort for finding practica-
ble solutions within reasonable limits. Therefore, the aid of

a computer seems indispensable.

Using an analog computer, a programm of the type described sub-

sequently might be practical:

With the aid of two analog circuits, compute the amplitude func-
tions ﬁ(ﬂ and ‘#ﬁ by solving the differential equations (9) for
both components simultaneously. For this purpose, generate the
function K(s), which represents the lens parameters, in a step
function generator and feed it with opposite signs into the two
circuits. Compute the product function ({gﬂ- %ﬁ)) by a multi-
plying circuit, and the phase functions ¢(9 and ¢(ﬂ ; as defined
in eq., (7a), by two additional integrators.



Operate the analog computer repetitively (e.g. a few runs per
second) and display the functions R“ﬂ ﬁu7}(gﬁq-]¥ﬁ) and

the lens structure K(s) in four lines on an oscilloscope screen.
Alternatively, the functions &, ¥ and ¢ for both components

may be displayed.

Vary the lens parameters and initial beam conditions and look
for favourable solutions. It is thought that the displayed func-
tions will allow an immediate estimate of the relative me>its

of a system.

A printout of lens parameters and initial conditions will per-
mit storage of useful solutions and, at a later time, a recom-
putation with lower speed, higher accuracy and with a graphical

display of the curves characterizing the system.

By this method a large number of parameter combinations can be
surveyed guickly. Since the effeclts of changing a parameter

are immediately visible, one expects that an operator with
skill and intuition will be able to find close-to-optimum solu-

tions to a given problem within a reasonable time.

With a digital computer, one would use the matrix formulation
(4) i stead of the differential equation (9) for computation

of B s). Setting up a general digital computer program on

beam optimizing appears to be rather cumbersome if one wants

to include all the boundary conditions and the i.rge nurber

of parameters involved in a given problem. However, one might
hope to learn from the analog computer how to introduce simpli-
fying assumptions without loosing solutions of practical inte-

rest,




