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Abstract.

The classical non-relativistic phase space integral

for fixed energy, momentum, angular momentum and center

of mass is evaluated for large particle numbers by means of the
central limit theorem of statistics. The problem is treated
covariantly with respect to all transformations of the Gali-
lei group. As result we get_é.?_s as function of the invariantg*
corresponding to the c ms Energy EO and angular momentum LO

in the form

QuE,L) = Q) F(LYE,)

is the well-known phase space at fixed Energy, momqg?um
=2 3 7 3L,
and center of mass, and fﬁf@ta)..[%F;Eqi] exp( 37;§:E

is a normalized probability density for the angular momen-

‘..)2
tum LO 0



§ 1.

Introduction

Since FERMI's proposal 1) of a statistical model for
elementary particle reactions, there have been several
attempts to improve this approach in various directions 2).
We are particularly interested in a statistical theory
which takes fully into account the ten fundamental
conservation laws. While there has been some heuristic
discussion on the rble of conservation laws other than
energy and momentum for the production cross-section in
the statistical model 3), as yet little has been done in
a systematic approach and a concise method of evaluation
for this problem. In this paper we consider a classical
phase~space integral invariant under the full Galilei group
and evaluate it with the help of the central limit theorem
of statistics 4), We believe that the consequent treatment
of this simplified model will give some insight into the

relation between the space-time symmetry group and the

statistical method.

As is well-known, a classical mechanical system invariant
under the transformations of the Galilei group has the ten
integrals of motion corresponding to the conservation of
energy T, momentUJlTi angular momentum ﬁ;and.to the linear
time dependence of the center of mass coordinate ft In the
statistical treatment of an s-particle system with a certain
set of r conserved quantities Fiqxl,.,,u,xs;pl,..o.,ps),

i=l,...,7, the phase-space integral

s 3 3 (r) _
Qs(Ad)'“JAr) = '('“'(}Ic{ rii'p( X (S‘ (I_I'-AE) {1.1)
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plays as "structure function" a central rbéle 5)0 It i
assumed in this expression that the measure of the hyper-
surface determined by Fi(xl,oo,,xs;pl,ﬂnn,ps)=Ai is finite;
for the well-known case of an ideal gas in a box this
condition is guamnteed by the positiveness of the energy
and the spatial restrictions of the system. In a Galilei-
invariant theory these spatial restrictions can only apply
to the relative coordinates; while on the other hand the
motion of the center of mass coordinate is in general
unbounded. Therefore we have to restrict the integration
to that part of the phase-space which corresponds to a
fixed value of the center of mass coordinate. Since this
coordinate is cyclic, i.e., is linearly time dependent and
its conjugate momentum is a constant of motion, the thus
restricted phase-space integral becomes time independent.

In this sense the phase-space integral

o L ( _..1' 2
QUTBRT) - (i FEE
< $(3%-7)$"z% B)S‘?’?;F*?*r-"‘75‘??;?55)’

1.2)

takes into account the ten integrals of motion connected
with the Galllel group. The cut-off functlon(expf

(=1/2sR ):Z‘(X =x l)provides an invariant restriction
of the coo;glnate space, reflecting the idea of the inter-
action volume in the statistical model. We have chosen this

particular form for calculational reasons 6); one could as

well choose any other invariant short range cut-off.

In order to discuss the transformation properties of the

B



s B ow
B 4
structure functionSES(T,ﬁ;M,X) we begin in the following
section with some preliminaries on Galilei invariance.
We evaluate in section III this phase-space integral for
large particle numbers s by applying the central limit

theorem in a covariant manner.
Transformation Properties under the Galilei Group

The canonical coordinates of position and momentum of a

single particle of mass m and the time coordinate transform

as

Y
i

RX + Gt +b
Rp

tme (2.1)

T +b

o

upon transition from one inertial system to another. Here

R denotes a three-dimensional space rotation, ?'the relative
velocity of the two reference systems, ﬁba spatial and bo

a time displacement. The transformations g=(R,7:?lbo) with

the multiplication rule
- —» 2 { "?, "-", / I = -y 77 =, =¥ /
(RI‘D‘J b) bo)(Rl{U-/ b/bo) = (RR) ?7+R?)', b+b°v 'f'RbJ b‘E;b"l) )
.la
- = - < =l -3 —l,=> —
(R}'U', b;bo) :(R}"‘R 'U'/-—R (b"bcvé —bo)
(1,990) =4
form the Galilei group. It is a ten-~dimensional Lie-group

-
which is generated by the infinitesimal rotations M,

- —_
accelerations N, space translations PPand time translations

T, with the commutation relations



EM‘" MJ’] = &7 My , [P, 7’3] =0 [ ¥ Ag_] - F

(2:2)
[M‘:’ Nd] B E;J'k Nk / [M':) Pd] =E‘;j'KPK) [M; T] = P:.’
[M,T] =0, [RT] =0
[, 7] =0 (2.2a)
ek
—2 =2 —
b —bnrr. b P -UA/
(Q)/U" b, bo) —> € ! & e(R) (2.%)

Q(R):QZM‘
Except for (2.2a) the commutation relations agree with the
Poisson brackets of classical mechanics for energy T, linear
— =
momentum P, angular momentum M and center of mass motion

e .
N=mX-Pt. These P.B. together with the equation of motion

dF _ 2F __[ﬁﬂ F]
At Dt / AP8 (2.4)

= =2 =
P

immediately demonstrate that A=(T,P,M,N) is a constant of

motion.,.

The P.B. corresponding to (2.2a) is given by

[NL)'%JP: ’mfg.:j (2.5)

where m is the total mass of the system. It is therefore
advantageous to extend the system of the C.R. (2.2) to a Lie

algebra by introducing an additional infinitesimal generator

Q which has the C.R.

I_-Nii‘%} = acg"d' ) [-ME;&J = [N;,@J =[PE)@] =[T1@J=O‘ (2.6)

This corresponds to an extension of the Galilei group by phase

transformations exp (QO) which lie in the center of the

55—
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extended group ("central extension")”° Hence in an irreducible
representation of the extended Galilei group Q is a constant
multiple of the unit matrix, and by choosing Q=m we get back

a representation of the C.R. (2.2) and (2.5).

The adjoint representation of the extended Galilei group
leads to transformations for the infinitesimal generators
which are the same as those for the integrals of motion
(T,?:ﬁ,ﬁlm)z(ﬂi). From the C.R. (2.2), (2.6) the adjoint

representation

. -1

A, = 9 Ay = Z:[)&(SJAK

may be explicitely calculated:

T 2T« TRP + 7R
_.)’ :RE))+?;)62
. -7 Y — =3 . - =2
7 = R+ b x(RP) - Tx (RW) - Q U xb (2.7)

P = RN - b,RE + (b-h7)Q

Q =&

= =5 =3

where (Ai):(T,P,M,N,Q) here denotes the infinitesimal
generators. It is easily verified that the integrals of

motion Ai, in the one-particle case

-

— - -
T — ‘/!.-— p 2 M = X x P
m
~>. > - (2.8)
’{) = ?5" /v = M X - P

transform in the same way as the infinitesimal generators,

provided the canonical coordinates and time transform as in

-



(2.1) and Q is put equal to m.

From the Ai one can construct three independent invariantsg)

under the extended Galilei group:

E =QT -4pP* -QE, (2.9a)
Z)z = ((>?/\7l> + Px /\_/))2 = C?Z[cz (2.9b)
Q (2.9¢)

which have the physical meaning of CMS total energy EO, total

=3
angular momentum Lg, and total mass Q.

With these remarks we can establish the invariance of our
phase-space integral (1.2). Consider for this purpose the

integral
2

s A S
(TR R ) = m'f M, Lrdic) €355, [z 27 )
’ B iy B ) EE s 2.10)
* Sz 5 -B) SUE K wfa ) STE wib4)2)

- ey 3
For N=smX-Pt this integral is equal to (1.2)., In the form (2.10)

the spase-space integral can easily be shown to be Galilei-
invariant. If injﬁ we transform A according to (2.7) with Q=sm,
then this transformation can be compensated by a corresponding
transformation in the integration variables, since the Jacobian
is unity and the_gutuoff invariant. In particular,g?t is time
independent:get?§2 . As a Galilei invariant function

e 0
=D =» =3 =%

gzo(TsPeﬁsN)=§2(T,?,M,f) is a function only of the basic

invariants:fZ(ngz’,Q)e

In order to evaluate our phase-space integral in a covariant

manner we have to include the transformations contragredient

to the adjoint representation (2,.7) in our discussion of



s T =
—7 P - -
invariance properties. Leté::CV,W ,/t,\/ ,@) be a contravariant

vector; then it transforms under the extended Galilel group as:
i

' T
- e =, —) =3
. RW - + b < (RR) + b,RY

—7

—>
p= Rp N ’ (2.11)
V' = RY 4 ¥ x (%ﬁJ
- - -3 5 i
W' o= & - TRT +2l_‘fr- bRV . b (& /3)

By construction

-

s - B T30 62
(€, A) = T + 7P -+/<-M~+V/V & (2.12)

is an invariant. In place of (2.9) we now have the invariants
q’,f?z andf:;.

Finally we shall need the invariants of the A and § under the

"homogenous Galilei group" (R,V,0,0) 9‘;). For the A these are

-5 -"2 - =)

QR,E,L*N", MN

(2.13)
and for é

-7, =V P

= = =)
==t ~ Ty A+ x'?'()
o, f R (Freaem) (T

2

(2.14)
§ %. The Application of the Central Limit Theorem.

In the following we want to evaluate the phase-space integral
(1.2) resp. (2.10) in the limit of large particle numbers s.
Due to the center of mass S-function we may replace the

exponent of the cut-off %(xi-xj)g by 2(823{%—}(2)
obtain

TS _3(s-1) K/)z/ R — sy BN
'Q'S(T" P, M)N/&) = ™ T € i RS(T/P/ MJ N;Q)

and thus

R (TP, W) S(@-sm) =

n (3.1)
o == hl} 2, 2, 12 - - 3 A 2 Y
= [T Wrdindyre e Stqm)(S(z L -7) § Us,7-P) Stasfixer—i )

« §U(Z V) S(24:-0))
B = MQ f



where we have added the mass S -function to facilitate
invariance considerations. As the cut-off function in the
integrand now factorizes, the integral may be evaluated
with help of the central limit theorem following the method
of KhinchinB) and its higher dimensional generalizations

of Lurgat and Mazurlo).

In line with this method we introduce the generating

function of the system defined as

(%s(g) - ggo(u)A (A&) QS(A)
(3.2)

-3 -2

A:(TJE)JM)N}@); é( N}/""_;VOJ)
As an immediate consequence of the form of (3.1),§§S(§ )

factorizes into single particle generating functions

S
p(£) = [we)] g
with
i - (a, k)
W(g) = [fd" e e ( S(a)
- = o V%
g(u) 5 (€~anx|o)£(w————)c§‘(q, M) (3.4)
o = (“’)i?; é: R:’q)
Now we can define the function
(Af) —
U “(A) = ———@ e QA S(Q-sm) (5.5
From (3.1) and (3.3) we get
$ o (a,/f) (i) s
. E o ¢ 3
U (A) = -] [, ¢ A) (5.6)
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which is positive and normalized to unity; hence it can
be interpreted as probability density (frequency function)
for the sum A=§ai of' s independent eleven-dimensional
random vector quantities with individual probability

densities
A AxE)
Ugla) = L, e S () (3.7)
Therefore we may evaluate (3.6) by applying the central
limit theorem of statistics. Since from (3.3%) and (3.%)

follows

S S@sm) = e rewula) (5.0

we thus obtain an approximation for the phase-space
integral (3%.1) in the 1limit of large s.

For the leading term in s the central limit theoremll)

gives

= & [A-AGIA,-A ]

§=(,a\.) [a7) fud B, ]"J""”" S(@-sm) (3.9)

where the mean value is given by

o bo 0 log
o (foln AU 2a%E) 28I

A.(5) >t 5 e

and the reduced dispersion matrix by

gﬂv(g) = f“'f"‘wA (Af*"aﬁtf))(Av'Zy@)) usé(A)

?"34’(5)— Sm (3.11)

r‘)ggf DE, 0F

-1 =
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As the dispersion of q with the distributionc%(aJ is zero,
the distribution of Q becomes a 5‘—funotion and hence in
the Gaussian there appears only a reduced ten-dimensional

dispersion matrix (M,V=1,...,10).

From this short sketch of the "Khinchin Method" we see

that the essential point is the replacement of the non-
normalizable < (a) by the normalizable probability density
g (a), where § is arbitrary in the range of definition of
the Laplace transform of $(a). The expression (3%.8) for

the phase-space integral is independent of these provided
Uz(A) is the exact probability density of the A. With the
approximative expression (3.9) this is only true up to terms

of the neglected order in s.

The expression for_ges(A) according to (3%.8) - (3.11) is

determined by ¥ (&), which with (3.4) can be written as

L e 3.3 43-> —Ta-_éh_i -ﬁ"ﬁ)-—g(ﬁ’xﬁ')_ ;)E)—Ef
12)

We evaluate this integral with help of the formula

o -2z LT % W ot 17!
ffd7g gFIRC0E Tt WY
6d¢fﬁy“- (3.13%)

T

27,2, ) 0T (o) T () gkt r

-2 =)
In our case we have ZT=(?,?}.)), VZTz(ﬂ', ¥ ) and [ can be

written as a hyper-matrix

= =)
T Che Y g S (3.14)
/—'1 = [ e y
“am P Y

with
-11-
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o o o o o 4 -1 ©
5, = [ o o-{] 52:: o o o‘] S' [; 0 @
1 © 1 o ! 4 © 0

(&)

The following formulas simplify calculations:

(XS)Y = Xx7 (51585
_a - i <>g?)
) X (x (3‘015b)
al -
- —35 2 ( x)
Ke +(5xJ] ("* %)) (3.15¢)

With these we get

g(g) = (3.16)

m(|31+/&xﬂ) _é_ﬂiﬁi——
ﬂ(ﬂ Qm’"/s) 4(/,‘1 20 T/B2

(T 2%a) -

3
(2w 7) m
D oep (7
i (T
Bz Bl /t

The Laplace transform (3.13) of §(a) is defined for positive-

definite [ , which is the case if and only if

2 2

8"
2 <7 (%.17)

0=

Therefore this inequality fixes the range of definition of
S (8.

Let us consider now the transformation properties of € (a)

and §(€). By removing in (3.1) the factor exp(ﬁ2/sB2) from

the Galilei-invariant phase-space 1ntegral.§BS(T,P,M,N,Q),
. —~ -4,-’,9 0 .

we obtain an (2 5(T,P,M,N,Q) no longer invariant under the

full group. As discussed in section Q;; ﬁ2 is however

invariant under the "homogeneous Galilei group"; therefore

the same holds forsz.s(T,gnﬁ}ﬁ,Q) and for § (a). By treating

g}_as a vector transforming contravariant to au We obtain

~15-
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fer the Laplace transform ¢ (E)ofg(a) the same trans-
formation properties as those of §(a). In fact we see from
(2.14) and (3.16) that & (§) depends only on the invariants

(2.14) of the homogeneous Galilei group.

With S’(f) now explicitely given, we want to evaluate SES
in the limit of large s. For this we have to determine a
particular £ , which satisfies condition (3.17). We will not
alter the transformation properties of the approximation
for £2 S if we choose as f;t a function of Arbtransforming
covariantly under the full Galilei group:

£ - w25 oL , ,2Q (3.18)

it == c)A ﬁo)/ﬂ\,.L o)A/«

where « ,#,¥ depend only on the invariants E,EQ,Q. Such a
covariant choice which for all AF_is in the region of

definition (3.17) is given by
- 35S QE _ P O T
(E,.)—— (QA )—:’,E(Q 0T) (319

With this § we get from (3.10) the first moments K; (€):

"2
= (T P 0062) 3,20
Df}‘- §ﬁ=§M) ( J J 7 ( )
In the expression (3.19) for £ we have chosen = 3s/2FE in
order to get Eﬁ(gjzAﬂhfor/kzl,,.u,4u With this we partially

4) who in a simpler case can

follow a procedure of Khinchin
choose € such as to make Kﬁ_(§) =4, for all/ue For the reduced

dispersion matrix (3.11) we get with (3.16) and (3%.19)

—1%—



— _ ’é’u)(— o
[_'B,A,,(g)] . &) 7 (3.21)
O" Bu)(éJ
—> —> -2
PHE QP .~ g*[2 £ PSS _1p2
BYg) = lEL » ’24 i B“’(g)—%— e A L
SSQ @P /62‘3 -151..) Q
| J I

where we have used the same notation as in (3.14) and (3.15).

With the help of the formula (3.15) it is a straight-forward
calculation to determine

N Q"" S‘LBD—E&
O{e%(BN) T 3T @

(3.22)
and ; N
0 _ s L NT

A _ - ey s o ——

FAN A-AG)AAE) = 55 F Tie (3.23)
Inserting these results in the expression (3.8) we get for
AT

@ -‘?1 w —
QUE,L}) = QUE)F(L,E) (5.24)
with
3 2 2 %(S'l)
« o e o (TR mE)
Q7 (E) = et/”‘,u (é’") T 2F (3.24a)
S 27 2,5 S Eo ‘
and
» .3 __[*
=, 3 ) T hmRE, °
= — e °
F(Eo)Lo) ( L"(E,'RJ’EO (3,24b)

as the desired approximation of the Galilei invariant phase-
space integral for large s.

v
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§ 4. Conclusions

With formula (3.24) we have in our model obtained an
expression for the phase-space integral which has quite the
expected form:

(a) By the covariant choice of € our approximation
,jEZ(EO,f;) of S S(Eo,ff) became explicitly covariant under
the full Galilei group. (b) The expression forﬁag(Eo;fg)
factorizeslj) covariantly ingzg(Eo) and an angular momentum
factor F(EO,'fg). Here"ﬁzz(Eo) is the asymptotic form of
the well-known non-relativistic phase-space integral at
constant energy, momentum, center of mass, and with a
Gaussian cut-off. This can easily be seen from the exact

forml4) % (5-1)

A [zwlﬁﬁufi]
IS_QIS(Eo) = F(%(S"J) . 53 Eo

by applying Stirling's formula to the (M-function.
-
(c) The function F(EO,Lg)is normalized for all Ej:
. 3-.> - _.72-
(L, F(ELLY) = 4

-
and thus the probability density of the angular momentum L _.

)
Its dispersion @ is

8 — %M?on

~>
and hence at a given energy the probability for an Lg)o‘f

is very small. TFor 35 fixed, F(Eo,ﬁg) as a function of E,

has a maximum at

é = LO /2.“’\@1

o

In our model the momentum mean square value of a particle is

-
92=2mEo/s, the mean square value of its distance from the

-15-
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center of mass ¥2=3R2/2 and that of the sine of the angle @
between ? and X is‘;;;29=2/3a Hence the probability that-fg
takes on a particular valuej?g is a maximum if the energy Eo
is such thatj?§=2mR2EO=s(§x§32, i.e. if_[?i is s times the

single particle mean square angular momentum.

Keeping in mind that our model does not include relativistic
and quantum effects, we nevertheless believe that it gives
the essential features of phase-space integrals with fixed
angular momentum in addition to energy and momentum

conservation.l5)
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