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Introduction

Photoproduction of pions on nucleons is a useful way to
investigate strong interactions. At low energies the strong
final state interaction between the emitited pion and the
recoil nucleon dominates the behaviour of the photoproduc-
tion cross section. Theoretical analyses so far are mostly
concerned with these low energy phenomena. They are usually
based on the fixed momentum transfer dispersion approach of
Chew, Goldberger, Low and Nambu 1) or modifications of it
which start with the lMgndelstam representation 2). At
higher energies (above one GeV) theoretical investigations
are rather rare, In this energy range peripheral models
with exchange of pion,Ja—meson,o;—meson and meeson can be
applied. If these mesons are considered as dynamical bound
or resonant states they may exhibit the typical behaviour

found by Regge for nonrelativistic potential scattering 3).

4)have suggested that all strongly

In 1961 Chew and Frautschi
interacting particles may show this Regge behaviour and
several people 5) investigated the experimental consequences
of this hypothesis with respect to particular processes as
elastic n - =y,n = N -, and N - N - scattering together

with thé corresponding crossed reactions., For small momentum
transfer and for high enough energy these reactions should
be dominated by the Pomeranchuk Regge pole and should show
equal diffraction scattering 4)5). However, recent experi-
mental studies of small-angle elastic scattering of protons

on protons and nt on protons in the energy range 7 - 20 GeV



clearly demonstrate that the diffraction pattern of & p
and p - p scattering is different 6). But this difference
can be explained by assuming that besides the Pomeranchuk-
pole also the w -pole is present in this energy range 7).
Thus it cannot be excluded that even at rather high energies
the vector meson likeu},gaand‘f play an important role.
Therefore it seems to be worthwhile to consider reactions
where these vector mesons contribute only and not the
Pomeranchuk trajectory. Besides charge exchange pn -
scattering where = andfzare involved photoproduction of
single pions on nucleons seems to be most suitable. Here
small-angle scattering at high energies of the reaction

3~+ p -—2 D + 7° should be determined byoo,gpandjao and of
2r+ p -—2 n + it by nt andj=+. By measuring angular distri-

butions of these two processes information about the Regge

behaviour ofco,spandj,can be obtained.

In section I we discuss the relative contribution of various
mesons to photoproduction on protons and neutrons which
follow from isospin- and charge conjugation-invariance. The
proper continuation of helicity amplitudes in the channel
2~+ n == N + N into the complex angular momentum plane is
introduced in section II. In section III we apply the
Sommerfeld-Watson transformation to the expansion of the
scattering amplitude into these helicity amplitudes and
single out the contribution of special Regge poles. The
implication of these pole contributionsfor small-angle

*x
photoproduction is dealt with in section IV ).

*¥) After completion of this paper similar work on Regge
poles and photoproduction appeared: R.W,Childers and
W.G, Holladay: Phys.Rev,13%2, 1809 (1963) and G.Zweig:
Institute of Technology, Pasadena, preprint.
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§ 1. Application of Isospon- and G-Parity Invariance.

It is well known that the photoproduction amplitude con-
sidered in isospin space consists of three independent
amplitudes with different isospin transformation pr0pertié;.
In this section we want to study the contribution of various
mesons B characterized by their spin, parity, isospin and
G-parity if they are exchanged between theéy, n - and N,

N - pair ( see fig. 1 ). The matrix element 8pq Tor

photoproduction of pions

f+ Nl ———)N2 + T

may be written

fig. 1

5511 = (277-)4 g(&-ﬂ% "fz"])f/'f (FNQ-IJ'/L\(O),M;> (1)

where‘gpis the polarization vector of the photon and ju(O)
the electromagnetic current. We treat the coupling of the
electromagnetic field in first order perturbation theory.

Then the current can be decomposed in an isoscalar and an

isovector part :

3, = 9,050+ 5, V) (2)

The photoproduction amplitude T consists of the corresponding

isoscalar and isovector component T = T(S) + T(v). Since

jp is odd under charge conjugation transformation C, j“(s)
and j“(v) transform in the following way under G-parity

-1 2>
operation ( G = C eln t2, t isospin-operator )} :
G J“(S) G-l Py J“(S)
(3)
¢ 1 (V) o=l _ L (V)



The pions have negative G-parity. Therefore we have for

the right vertex in fig. 1

e szj/‘w d G

ﬁljﬁ(0)13>=0 Fr in=3 " amd Ep=e1
/A

We conclude that only such mesons B with positive (negative)
G-parity contribute to T(s) ( T(v)). Furthermore
< nlju(s)[3>'vanishes if B has isospin t = 0. Therefore

from all known mesons 8)

w07 17) , g (00", f@507), #4347

w(4707) p (47 07)
only the f£ contributes to T(S) and n,caandspcontribute to
T(V) ( as usual the symbols inparan:heses stand for (jP;tG)

where j = spin, P = parity, G = G-parity, t = isospin ).

The isospin dependence of T is usually removed by coﬁstruct—
ing all of the basid forms containing the isospin operators
Zﬁi&_ and'Zé for the nucleon. If one denotes the isospin
component of the outgoing pion by/3there are three indepen-

1),

dent nucleon isospin combinations possible

_'-

Jp
i
3F, = 475

rTw(S)

- [

=2 L5 (5)

Then we have

r° (6)

,T-l (v) — 17—1(+) g/:' —f-ll_,(m) 3/;-

with isospin independent amplitudes T(O),T(+) and T(_).
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Since m has t = 1 it can only contribute to T(") whereas the

contributions of w andspare contained in T(+).

With nucleons the following four pionphotoproduction pro-

cesses are possible

T 1
X_+ F —> n =T with amplitude /r+
—_—0 " n r/—r
y.{.-F) —> P-f‘ fl me
| G |
y_f_h e P-—(—TF—F 1 n /T’-_
n n "/_"'_
ytn — » +i° ni®
The relations between these four amplitudes and T(O) T(+)
H

and T(_) are well known. For completeness they are repeated

here :9) — -
e = i R R A B
Thow = Fpee + @
(7)
— = (6)
‘7—’;7“ - ‘-JTTU —t'ul—f]T
— - — 7 — €0)
lnre = - /

We denote the exchange contributions of the four mesons by
Ty, TQf), T(w) and T(¢). They can be detected in the four

reactions in proportions as following :

T+ = =T - 1T T ()

T = T (w) T (y) +T(r) (5)
T = 2T + Iz T ()
Tr o= T (w)«T(p) ="T"(r)

By experimental investigation of these four reactions it is

therefore principally possible to obtain T(n),TQf) and T(w)

+ T(y) seperately.

The Regge properties of @ plus f alone could be studied also

by pion photoproduction on nuclei with isotopic spin zero,

% B =



like deuterons and C nuclei., Of course other residua than

in photoproduction on nucleons are encountered this way.

It is clear that some of the mesons listed above are also
present infyn photoproduction. Let us oonsiderﬁ?production

in isospin space., We decompose the amplitude in two parts

v = p(8) T(V°$3 (9)
with two isospin independent amplitudes T(S) and T(v). The
two possible reactionsdr-+ p == D +n?(Tf,)andéﬁ+n~9n+r?(Tn)
are simply related to T(S) and T(V) s

0 = op(8) £ (v

7o,n

We consider exchange of a meson B as in fig, 1 with n re-
placed by/?. It follows immediately that B with isospin

t =0 (t =1 ) contributes to T(S)(T(v)) . (%) ang T(V)Z%
are the isoscalar and isovector part of T respectively.
Since?luﬂ;lmsitive G-parity B must have G = = 1 to make a
nonvanishing contribution to T(S). For T(V) it must have

G = + 1, Therefore T(S) is connected with B-exchange if

GB = =1 and T = 0 and T(V) if GB = + 1 and t = 1. The

candidates for T(S) are wand ¢ and for T(V) it is only thef .

In the following section we shall study the isospin indepen-
dent amplitudes. We shall restrict ourselves to a discussion
of pion production., But most of the results can be carried

over to 1?a~production quite easily since pion andqzhave the

same spin and parity.



§ 2 Continuation of the Partial Wave Amplitudes
for3r+ n —-——3 N + N into the complex angular

momentum plane.

We define the T - matrix for photoproduction of pions on

nucleons ;ﬁ + Nl ——-} N2+n by ¢

.:—":— _L_“J ——(.A)I_I—’ [-ufq =27
Sf" @) (4 E, Epe k)™ o 4t) S pirh-py)

denoting the momenta of the incoming nucleon and gamma by Py

(10)

and k respectively and the momenta of the outgoing nucleon
and pion by Po and q.

The most general form of the matrix T allowed by Lorentz

invariance has been constructed by Ball 2) :

&
T = 3 B (s N (pip, ko2 ) (11)
L=

Here s and t are the Mandelstam variables s = - (pl + k)2

T o= —(q—k)2 and u = -(p2-k)2 with 8 + t + u = om? +[42
(m nucleon mass, P pion mass) and the eight matrices N;
are all independentLorentz-invariant matrices which can be
formed with the four vectors pl,pz,k,g_andéy'where&;is the
polarization vector of the gamma and the ! are the Dirac
gamma matrices. These Ni can be found in Ball's paper 2).
The only property of the Ni needed for our discussion is
the fact that the Bi(s,t) as defined by equ (10) are free
from kinematical singularities. This has been explicitly
demonstrated in the appendix of ref., 2. It can be seen quite
easily that the matrix T expanded in terms of the matrices
Ni is not gauge invariant. This requirement yields the

following relations between the Bi's 2):

- 8 =



B2f3,k+33qok==0

(12)
where p = % (f& + 792).
It is convenient to express the gauge invariant T-matrix
by the CGLN matrices Mi
Y
1) (=1 (13)
where
M, = Ly 1 vk
My = iy (F‘Z 7'2'19‘& 9 %) (14)

My= o5 (e gk —ghkge)
My = 2y (85 phk —pehps— Crmgsypk)

The matrices Mi are explicitly gauge invariant. The amplitu-

des Ai(s,t) can be expressed by the Bi(s,t), The relations

are:
2
Ay = B2/q . X"
t=p
Ag = - By (15)
-
Ay = =3 Bg

B4 and ]3,7 do not contribute because of k-g=0 for real pho-
tons, Now A, has a kinematical singularity. It seems to be
generally true that gauge invariant amplitudes for reactions
with an odd number of photons have kinematical singularit}g;.
But the new singularity of Ay is only a pole in t. So for

fixed t the amplitudes Ai(s,t) have the same analytical pro-

perties in the variables s and u as the amplitudes Bi(s,t)°

- 0 =



= g

In order to derive asymptotic properties of the photoproduction
amplitude for high energies with the help of the Sommerfeld -
Watson transformation the analytic continuation of the partial
wave amplitudes to complex angular momentum in the t-channel
(?#+ T ——3 N + N ) must be found. For this purpose we start with

the Legendre expansion of the invariant amplitudes Bi(s,t)

B, (s,t) = %(2,@ 1) B;(£,t) B, (cos 6y) (16)

We assume that the invariant amplitudes satisfy dispersion

relations for fixed momentum transfer t :

o0 . ), 20 ciui T '(u)( '4)
ds" . B, (sit) _[ — ¢ bl
2 _— — & I I
bé (S/f) :h«‘[ );_ﬂ' S""S +('"+/")Z Uu-—-u (17)
Since Bi(ﬂ,t) = % Bi(s,t) 3{ (cos Qt) d cos 0,

we obtain for intéger values ofjgfrom representation equ (17)

B =g [ 3 W6 0, (e
’ J &htﬁ)z P 1)
v u' (“) | ‘._ ‘,.W?_f_ ZEQ'
— C‘—T— P B (Wit) 06{—“ o )
(Im+/“)

where E and k' and cos Qt are given by :

- _ & |- p - ) / (19)
E=4, B=If | s-mb- 2B dpheq,
The analytic continuation of Bi(xﬁt) to complex-gcan be defined

by equ (18). ThenBi(zit) i@ regular for Ref>0. But the second
term in equ (18) is not suitable for a Sommerfeld-Watson trans-
formation because of the factorf{coming from the Legendre function

of the second kind

- 10 -
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11)

Following Squires we define therefore a direct and an

exchange part of Bi(fgt) ( £ = integer ) :
B (4t) = B D + By
(20)

B (?'
where —)le (()’-L-) 4 E‘ J AsZmB (o LL/Q(J m-«-,?}‘ﬁ)
Uﬁfﬂ) (21)

and

clu ("’J / - W-Z'fZPg,
BS(0t) = H,j 3. B, lu w( =)
(PM‘/U
It can be shown that these two functions have the same

asymptotic behaviour for [&l— co 11).

In general the dispersion relation equ (17) for Bi(s,t) will
not hold without subtractions. But if a subtracted dispersion
relation is assumed we can conclude that the Bi(e,t) are
regular for Red>N>0 ( N integer )., In the same way Bid(f,t)
and Bie(f,t) are regular for Re £ > N, It is clear that the
separation in a direct and in an exchange part is also

possible if the dispersion relations are written in a sub-—

tracted form.

Regge proved that the partial wave amplitudes in potential
scattering are meromorphic for Re,5_> - % 3). It has been
speculated that also in relativistic field theory partial
wave amplitudes might be meromorphic as a function of &
for Re L positive. Following these suggestions we make the

strong assumption that all Bi(f,t) are meromorphic in.Af

for -(A +1){ ReL<pNwith A » 0,

Since for fixed t the amplitudes Ai(s,t) have the same ana-
lytical properties in the variables s and u as the Bi(s,t),

we can conclude that the Ai(f,t) defined by
- 11 -



w Nl -

A (st) = %: (2e+0)R; (4¢) B (e« 8,)

(22)

have also analytic continuations in the VariableAfwhich are
regular for Redﬁ) N and are meromorphic in the domain

- (A +1) { Re L 4N,

To establish a connection between the poles in the angular
momentummplane and known particles or resonances present as
intermediate particles in the t-channel the partial wave
projections of the invariant amplitudes are not useful. For
this purpose we consider the partial wave projections

pds™ () of the helicity amplitude T - which are defined

X AN

by 12%2)

>

rm ™ ¢ ,———,J,m ) 7
/1\7 = JZ(J+%) I (t) "PM,X—T(MQ“} (23)

Here the d%u(x) are the usual rotation functions as found

for instance in ref. 13. The helicity amplitudes are related

to the invariant amplitudes by :

(g4l L&

= T (p) 22 A1 (&.) u (p) (24)

i
%
if the right side is evaluated in the cm - system of the
reaction ?V+ n —-—2 N + N . m =+ 1 stands for the polarizat-
ion of the photon and)\and-x-are the helicities of the nu-
cleon and the antinucleon respectively. If the vector %32

is parallel to the z - axis of our coordinate system the

spins of nucleon and antinucleon are as follows :

A y " p w (W)
=41 £ y, =+ 5 ;
- 2 3 2 / 2, =~ P
~ _ . Vo 4
)= +7 < g + 2 Yy b
@ @
fig. 2

- 1% -
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The notation of the momenta of nucleon, antinucleon, pion
and photon can be seen in fig, 2, j 1s now the total angular
momentum of the channe13r+ T or N + ﬁ. Mnally we shall aprly
the Sommerfeld-Watson tranformation to an expansion of the
scattering matrix elements into total angular momentum states.
An aralytic continuation of the %é{m(t) to complex j can be
performed with the help of the continuation of the partial
wave amplitudes Ai(e,t) to compleX/Z considered before., For

real £ and J we have the following relation :

'T;J_)\'m[f)z 2 & me ) (2ee) (26)

jtd e o —
x C(LA],0m) C (41,0 r-X)
The relation equ (26) can be derived quite easily by means of

functions G, (s,t) first introduced by Ball 2)

« The Gi(s,t)
are rotational invariant functions in the c.m=system re-
ducing the S-matrix element for27+ T ——3 N + N to Pauli
spinor form.

The helicity amplitudes are linear combinations of the four

functions G, with cos Qt—dependent coefficients :

2)

4 A o

TTT;?'= D A, 5 (c0&) c;AX“° G, (5,2
) s

AN m
The C, are independent of t and cos 9, and have the
property AY b “A,—Tan
C = —
¢ (28)

which follows from parity conservation :

(___,PH ,-/_-,--P'h I’H‘“}\'f’:_)\-—

i, 2% (=) (29)

- 13 -
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On the other hand the Gi(s,t) are linearly related to the

four amplitudes Ai(s,t) with t-dependent coefficients Aéy H

6&- (S,f)—-—-_ Z Jé!:‘:’/z,} Q(;’(S:ZL) (30)

If we define

o Y - __h’l

SMNm s AL (51)

& o 5 ¢ b“
I

and insert the Legendre expansion equ (22) of Ai(s,t) into

equ (30) and express the product of two d-functions encount-
13),

ered by means of the Clebsch-Gordan series

' J! (32)
1 1=
V/" },'/4'

equ (26) follows with the help of equ (23). Equ (26) now

vap' ) ) 3
0 O 'y v-v) €O ) 4T,
2:;: Ji0 3, v T, Av-vf/*‘/“

defines an analytic continuation of the amplitudes Ti’m(t)
to complex j if for Ai(E,t) the analytic continuati;z\to
complex,g introduced above is used. Since the product of
Clebsch_Gordan coefficients times o+ 1 appearing in equ
(26) has no singularities for Re j> O the T%ﬁm(t) are mero._
morphic in j for Re j > 0. This follows frgL the analytical
properties of the Ai(f,t) as functions of £ ( Ai(f,t)

meromorphic for Re /6)/ - (A+ 1), A>0 )

§ 3 The Sommerfeld-Watson transformation for the
Invariant Amplitudes.

Pirst we want to derive the expansion of +the amplitudes

Ai(s,t) in terms of partial wave projections 9™ of the
N

helicity amplitudes., The structure of this expansion which
was proposed by Gell-lann for the general case of two body

14)

reactions y s

- 14 -
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H(sf)*z 2 {t ) o () (53)
X,

where the aG (f) are linear combinations of the TA%jm

(see equ (3%6) ). In this context it is sufficient to restrict

],

m to m = 1 because the ?A%C are linearly related to the

T sl according to equ (29),
AR g qu (29)

We derive the expansion equ (33) with the help of the funct-
ions Gi(s,t) which are very simply related to the helicity
amplitudes (see equ (27) ). From an inversion of equ (30)
the Ai(s,t) can be expressed by the Gi(s,t), These relations

are :

_ dim £ Gy~ (2m-12) 6
A, ‘(z-/f)(t—ew)[F (F 2~ (2m-12) 6,)

A = e DIz (J? 6, - (QVH—J?)@“‘#'W@)

2 (&~ p2) (- (34)
B = e 1 S G,
3 (t—/&)ﬁ‘-?}”

v_j&iblf_,____ﬁ (th ég + tth—JEi) éi,)

H‘f - (Z "/47') (t—4m*>)
Ball has also derived the formulas for the expansion of the
Gi(s,t) in total angular momentum states : These formulas

for all four Gi(s,t) are 2)

6, = - Q:(J+ 4) d;’ ?’(mgt)

(35)
6= - z(ﬁ;’)[ a( J“i (;P. Jﬂ (+) P )}
63+ 6, = - Z() *2)d JS?J'{

—Z(Jw’) fdd 2 G /J+;g‘+4)’@_”1)_dJ?73.”)7

- 15 =
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The A j% which are only functions of t are identical with

the following linear combinations of the TA §’l $
d-iw-: A {7—1&.1 5 ,—/—,j,i

) 75 (j+4) Bt &) -

3 ’ :

JHE il f’T’J'i + Tdd

J (25 (j+1) Tt ) Loy

The branch points at j = 0, =1 cancel with a corresponding
factor Vj(j+l) contained in the Clebsch-Gordan coefficients
0, - 1 iiﬁﬁbjl(2)cancel against
1i

in equ (26). The poles at j =

a factor j(j+l) contained in Zj and Zj2i respectively.

Now we combine equ (34) and equ (35), then the functions

3,1 = .
Zj ’ (t,Xt) follow ( cos 0, = X, ) ¢

equ (37) see next page :

- 16 -
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A4 : -
2. _ ‘qc B F " ’_)‘” , i
J —é_/uz) (‘é""-fmz} (J IJ+”I + (J + i) /Pj-—/,)

1 P2
2‘ — CPLVH J‘F' : 4 '__)”
¢ (- p®) (t~ 4 2) U+ %) f
39 s L ek | 4
el (%), “
_ — Jd . A=
J (#-p2) (£-9d) , % g
Z 4{= - A 2‘44 ~ 22 A 241
\ z ‘5 %. - T £ %
32 31 42 3 (33)
2 =_4 32 2. =-2 g7
J z i ( J z 7
iy
2'43:_ Jt—ql’hz 2.24 '2‘-23):' Jt" ‘{yy,l Z 414
J L IF d & =4 1=
3 ¢33
2 =72 =0
41,«__ A i Y i 2
%aj — 2Am 2J ; .23‘ T 2 %%
3“{__ 2__1/_»1_ 23’7 44
2J - g J ) gj =0

We notice that Z;v’l(t,xt) have a definiteparity for

Xy —— ~Xy directly rclated to the parity of the Legendre

functions ( Pj(x) = (-1)9Y Pj(—x». Therefore the terms in the

expansion equ (33) have definitely so called j-parity.

= 1Y =
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Directy connected with this fact is the occurrence of
special combinations of the ?K%’l instead of these functions

itself as coefficients of the Zj‘wl in this eguation.

In section 2 we mentioned that the Bi(g,t) must be divided
into two parts Bid(ﬁ,t) and Bie(g,t) to make the Sommerfeld-
Watson transformation possibke. The complete Bi(ﬁ,t) is

then given by

B, (£,t) = Bi(+)(€,t) Bid(ﬁ,t) + Bie(ﬁ,t) for even ¢
(38)

B, (¢,8) = B, (7 (4,) = B,%(0,%) - B,°(4,%)  for oaa ¢

The Bid(e,t) and Bie(élt) hav e been defined earlier in

equ (21). Instead of the branches Bid(Q,t) and Bie(éZt) we
have introduced Bi(+)(£,t) and Bi(-)(f,t) which are connec-—
ted with even and odeAZ. Of course for these two branches
we can also perform the Sommerfeld-Watson transformation if
if we can apply it to the sum over the Bid(?,t) and the

+

sum over the Bie(f,t) separately. But the Bi(")(f,t) can be
easily related to the even and odd part ofOij(t) for which

we shall use to following notation

o(j)f(ﬂ['f) — OJJ‘X[f} for even j

LX) _ X for odd
d} /¥) = d& (f) J

They are obtained from equ (26) if this equation is consid-

(39)

ered for even and odd j separately. Because/g= ji 1,] the
two branches of Bi(e,t) appear ( Ai(ﬁ,t) can be replaced by
the Bi(?,t) by means of equ (15) ) in these two :quations.
Equ (36) gives theotjazfor even or odd j in terms of the

even and odd part of T J’l. This way two distinet analytic

- 18 -
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continuations ofcxjm?t) are introduced,one which interpolates
ab.a%t) for even j, one for odd j. The two continuations are
related to the two continuations of B, (A?t) for even and oddxe
called By & )Cf, ) (equ (38) ). Our next task is to rewrite the

. +),
expansion (33) in such a form that the two branchesctj%m%ﬁappean

The expansion (3%) can be written :

_ 200 .2.’[ 2@ >0
Ailst)=2 fZ 472 iy + Z 477 2, (4 %) § ash

Since
' x( se!
(—4}J Exs Zd /f/'_)(t) = % (il X+)
wherefaa= t 1, depending on the indices2€and i the form,equ(40)

is equivalent to the following expression :

, o x¢
Ao (st = 2 f 4X"% J%[faez Z e 2 (k)]
+ Al 4 [ag 27 0x0 - 272 %]

It is well known that this sum is identical with a contour inte-
gral, the integration path surrounding the real axis in clock

wise directions s

B, (st) = =3 % jojufﬁ‘””[h 2"t 1) o

+ 20, ] e df7 L [ey 21~ 2] tix] ]

Here the functionsoe( ( )are analytical continuations ofciaaft+)
to complex JEEA, defined by the continuation of equ (36),(26),
(38) and (21) considered for even and odd J separately as

explained above.

Following Regge we transform the integral in equ (42) by moving
the integration path to a line parallel to the imaginary axis
with ReA = ~A(A > 0). Then the Ai(s,t) are equal to integrals
from -/A- i &Oto -+ 1 0Pin addition to the residues of the

poles encircled by moving the integration path :
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) =L5 d ) x(t) X! ;
p (S-t 2’ M T A 0{) g [EXL {{f_x‘t)“(‘?;f(fjxt)]
—A-Loo
X (43)
o dX0 4 [ 2y Grr) = 2 ‘U xe)] {
. A 2 [ % ¢

d+

In equ (43) we have written for the residues of the ampli-

ik

tudesOC oe(* )(t) at the poles A= %i, that is
e (h-de) 477 = S
A—>dy
>t
The residueﬁd:t and the poles & , are functions of t.
5)

As has been done for other processes we investigate the

asymptotic behaviour of the Ai(s,t) for large s but finite t.

Xt is related to s and t by

2

s = m" + % ( t - u2)

(45)

(t-0%) ¢/ & = an®
7%

Thus for ss,(m ,t) the variable X, increases as :

5 (46)
(t - 1) t - 4m

A [ (4+F)
Gy — = XA gy (47)
I W o ( )

Because of

the pole term dominates over the integral in the limit s —--3
as long asd (t)> -A. In the foilowing we shall consider only
the dominating pole trajectories which meet this condition. I+t
follows from equ (43),(46),(47) together with equ (37) that
the Ai(s,t) behave for s —-->cC as

X ()

Ai(s,t)f~'s for all i. (48)
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(here and in the following considerations the indices + are
omitted). In equ (37) only the terms proportional Eé,and gx,+1
are important for s —=< o=,

In the following we shall evaluate the contributions of one

single Regge pole to Ai(s,t).

We have from equ (43)

T pld
Z/nnﬂd
The asymptotic expressions of %i 1 are derived starting from

equ (37) and equ (48). They are :

A1 ' ?_J_” i
/l/ —X,) = é/b ha VI A r/-) (_ X1
C @ty

4 4_a (50)
— ()//M/ZL)(— )% &
Here we have introduced the coefficient :
4_4 Lt 241 l‘ #
y= 0T L ety ) G
! A+1
In the same way we obtain
7, %t =0 (%79 (52)
e 1
Z *3 .
2, 7t (5,-x) =g 7H () (=t) 57 7 (53)
where
d 4 ~dd
31 = z*2 2in %ir(d 2) 2 - ) 21 %2 =
y (t)= E1 = 2 e 04(2 i(‘f ) @402 o
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For %xfxl(t =X ) (i =2,3,4) the asymptotic expressions are

e3811y obtained using the relations equ (37) between the E?

204 (t,-%) =~ £ = J/'M/z‘) (—t)?_ o4t (55)
Ef - 0O(s*?) L (56)
2 t-x,) = o x) = - F B en) = T ST s
zj = 6(s* 2) o
M 1 d=-1
) = [ o gt en
201 (f Xt)' 2 4/f X-f) M/ZL/( ZL/ S gt (60)
2= o(s*) b4 0
2 (4 xe) = S 2 (4 xe) = <2 y T L) (61)
A {

We notice that in the limit of large s all amplitudes Ai(s,t)

are proportional to tae(t) whereéw(t) depends on the trajectory

ol (t).

§ 4. Cross Section for Single Regge Poles.

The differential cross section for photoproduction in the
barycentric system is usually expressed as :

«J_Q',izj——k?(??b (62)
o kT

R

is given by :

A -2 — —> ; -, T
o 0/ A S U PR L

(5= ®)( —‘TZ)}; "f"[;'i( 77 é)d-

(63)

q&

Equ (62) stands for the cross section of unpolarized photons
—
and unpolarized nucleons in the initial and final state. &

is the polarization vector of the photon. We substitute equ(63)

- 22 =
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into equ (62), the result is :

R d T 2 s e
2 =TT (4- @) 2R(FFY

(64)

+2 O E T+ R (5% T 5 )-t-wR (5]

ThHe F. are functions of A A2,A3 and A4. The relations are

1!

derived in ref, 1 and 2, In the limit of large s they are :

?(+) =F, +F, = % H‘/

2y T
)gg:*l -F = Jén_ 44

(+) =73 s~ S _
G mj'j +j-r4 = B (A3 A4)
_.j = A,
167

In the limit s =~2 <2 we can write for the differential

cross section :

do _ /at H/’u. (1- w6) % [F71°
do

oo 4169 1R (FP6L F767) (-6 Cn@)

(65)

(66)

c—J l]

Slnce t is considered finite we have to express {JL and coso

by s and t. For s --2 o2 we have :

_ 2t
cos@ = 1 + ==

and therefore for equ (66)

d A . 2
o L fnlt -2 1R,

__-f[ 19{.' /93'—/'79/2 + Re (HQ(Q;—-H:)_ A, Q:‘)___i‘i_‘/

Vle see that the cross section for large s behaves like

§2(X (t)-1

(67)

(68)

A,l*

) since all Ai"/SOQ(t) -1 according to equ (48). This

factor gives rise to a diffraction like dependence which is

= 0% =
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modified by extra factors t&,contained in the amplitudes Ai

and in the cross section explicitly.

Formula equ (68) will be applied now to the exchange of the
prominent candidates, a resonance with spin J = 1~ which
shall represent theJ’, the w~ or thegp—meson and a particle

with spin j = 00 which will stand for the pion.

It must be asked whether all helicity amplitudes really appear

|
in Ay,Ay,Az and A,. Ve notice that c(j was eliminated because

it is multiplied with expansion functions %x_zl which vanish

stronger for s —--3 © than the contributions multiplied by
olj x(ac= 1,3 and 4). The Oi,j‘%’are related to the helicity
31
A
It can be seen that they describe transitions to triplet or

amplitudes T, of the reaction 2v+ a --3 N + N by equ (36).

2

singlet states of the Nﬁ—system with definite parity nf.dg?gxa

and & 3° lead to triplet states with parity (-1)9, (=1)3*1 ana
(=--1)‘j respectively. OCj4 describes sihglet transitions with
ne = (l)j+lo These statements follow immediately from the
definition of OOj% in terms of helicity amplitudes and the
property of Nﬁ - helicity states against the parity operation

p 12)

plimA A = (<17 [gm, -A, =X (69)
Therefore transitions to triplet Nﬁmstates with negative
(positive) parity and odd (even) total angular momentum j are
described by’aijl and OLJB whereas Gﬁj2 contributes to triplet
transitions with positive (negative) parity and odd (even) j.
It is clear that the exchange of particles with j = 1~ can

only contribute to onl and O(/j3° Pseudoscalar particles like

- DA, -
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the pion should contribute only to 05j4 if a term with j = 0
is present in the expansion Ai(s,t) into helicity states

( equ (33) ).

This is not the case because of the transversality of the
photon. The sum in equ (33) starts with j = 1. Nevertheless
the statement that pion exchange is determined by G(j4 alone

remains truweas will be shown later.

The discussion above shows that for j fixed the particular
aéjgf are connected with definite parity and spin of the

Nﬁ-system. If now the total angular momentum j is continued
to complex values these relations between 2 on one side and

parity and spin on the other side remain fixed.

From other reactions it is known that the j = 1 resonances
have negative signature. This is in agreement with the con-

struction following equ (40) of section 3.

Besides the trajectory function dL(t);Eon(t) we encounter
two unknown functions 3rl(t) andéré(t) to be defined later.
This reflects the fact that two independent coupling constants
appear in the coupling of a vector meson to the Nﬁ—system, for
instance the so called "charge" and the "anomalous moment"
coupling constant. In terms of these coupling constants

( fl and f2) the amplitudes for exchange of an "elementary"

Vectorj’—meson with mass mj,zand width /} in lowest order

perturbation theory are :

p=-t 2 A  A=-71A,

i | [
N R : (70)
A
- — o ‘
Ay =0 / Ay = 2 =i [limp =T - 25 =
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Herejx is the ¢ - m-2%coupling constant, By comparison with

equ (49) up to equ (61) the constants A“fl and;&f2 can be re-

lated to the residues_ﬂw at t = m 592. Furthermore Reo(,f(mg 2)=1
. 2 ! 2

and f} is related to Ima(f(nlj ) and Recif(nlf )

as has been written down in ref. 5 for instance.

The differential cross section for "elementary"pf - exchange

o (mt[E]) o

This formula is easily derived by substituting the Ai(s,t)

in the limit 8 === o2is :

&Ef 4 A

e

At 3AT | mp -l e

(equ (70) ) into the cross section formula equ (68).

Now we want to derive the cross section for the exchange of a
1~ particle called P meson in the following as a Regge pole.

We mentioned already that in this case only the amplitudes Ole
andC'Cj3 contribute. Therefore as residues only/gl and/33 appear.
Starting from equ (49) and substituting the asymptotic ex-
pressions for %iwi, given in equ (50) - (59), the complete

amplitudes for £ exchange in the limit s ~-2 =< are :

-éira( oy =1 Z(&p+1)
= ﬂwandf (Zi f) SJJ’ G;zj g letj

= T 4 3/+
whore  f,(¢) = (2] ez ﬂ%* /3/"‘}/’7 v (73)

Qz‘:“ LA, A,=0 (74)

/
_ 1 (dp=1)
By = s, (4- €7%) STTEDTT 0
(76)

with S I )9 YY) %L)
% X”ﬂ)/& (£)=2my (2 f3

(72)

3
==
I
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The residue functionsgri(t) and2%2(t) are defined in a way

that the amplitudes Al’AQ and A4 behave near t = mj’z as the
amplitudes of the "elementary"ewritten down in equ (70).
Therefore we expectgﬁ(t)andyé(ﬂ tobe relatively constant near
the pole. Whether this is still the case in the physical region
t <0, we are interested in, is an open question. In particular

because of the _ appearing inéré(t) one might think

V=t

1/2
thatéré(t) changes rapidly with t, This (=t)" can as well
be of kinematical origin ( see equation for %il in equ (37) )

and then might be compensated by a factor ?@ infﬂl(t).

We remark that the relstions A3 = 0 and A2 = - % Al are valid

for a g-meson "elementary" as well as a Regge pole.

Now we calculate the cross section with the amplitudes in equ

(72) ~ (76). The result is :
— —-::T!_a(g,

G ] o= £ Adp—1) o

o= E e st ey

—

It 32

(##)

« Sl =1 lts

le see that the formula for Regge pole exchange (equ (77) ) is

distinguished from tho"elementary"‘f—exchange by the following

properties :

1) The pole term which changes strongly with t is replaced
/[ . e-—l:h_df(f)
differs from 1.

2
by / which is lessldependent if dp (1)

2) the factor (-t) which causes a minimum of in the for-

do
dt .
ward direction is reduced to (—t)oif with a t-dependent

exponent Oﬁf(t) <1,
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3) the cross section decreases with energy as S 2@t3(t) ~1)
the decrease depends on t. In n - gy m = N or N = N
scattering the equivalent factor is responsible for

shrinking of the diffraction peak,

If we write with an arbitrary constant SO

B ’ ~ B —Jﬁ4f
T;(zf) _ 3,,_2_ 5 2(d, 1)/1 € /Y{g,/ﬁ/"iz‘/fy?/t)lz) (78)

/)"H\'v 77-0(!:

and approximatecff(t) for small t by :
af(t) =dlg (0) + tet g (0)

the cross section for large s and very small t Dbecomes

) -2 (14— dp(o))
T Y A

If Ff(t) is lessfdependent than the rest the characteristic

dp(0) o) S
E/ZL) éﬁ GZZ—df{)ﬁ”"é (79)

angular dependence is given by a diffraction pattern modified

by the factor (=tf(?(o),

The discussion of pion exchange, elementary or as Regge pole,
becomes complicated by the fact that the exchange graph fig. 1
for B replaced by the pion is not gauge invariant., Therefore
in the sum equ (3%) a term with j = O which could be related
to the pion is not present. To get some insight into the
problem we shall start the discussion with the charge part of
the amplitude in lowest order perturbation theory ( also
with respect to the strong interactions ). Then the amplitude

T is given by the sum of the three Feynman-graphs presented

in fig., 3

- T -
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A 7 P I

s € \
! % Lo
/N l\ I

fig. 3

with coupling constants e for the charge and g for m-N-coupling.
First we write down the isospin decomposition of these graphs.
If the isospin independent matrixelements of the graphs in
fig. 3 are Dl,D2 and D3 respectively, their sum is identical

to:

Te

B} Lot 0y 4 L o
Born = (D1 + D2) 5 (%5+%B ) + 5 %ﬁ (Dl - D, + 2D3) (80)
+
with isospon matrices %B-’ %Bo defined in section 1. It is well
known that Dl + D2 and Dl - D2 + D3 are gauge invariant.

One pion exchanged characterized by a pole term A
2
t -

is only contained in D; - D, + 2D3. Therefore "elementary"
n-exchange contributes only to the isospin invariant amplitude

T(_)but nottoT(+Lnd T(O) as was already affirmed in section 1.

The next step is to find out which invariant functions Ai(s,t)
are present in % (Dl - D, + 2D3) %ﬁ_. The only amplitude with

a pole in t at t = u2 is A2. It is equal to :

2s + t - 2m2— u2

Ay = eg (81)
(s = %) (u-m?) (t=p?)

That only A, contains a pole is already clear since D3 is pro-

2
portional to 33 which is related to the gauge invariant ampli-
tude A, only ( see equ (12) and (15)). A2ﬁus"1 as expected

for spin O "elementary" particles (equ (38) ).
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Farlier it was mentioned that m-exchange contributes only to
G(j4. We expand the expression equ (8l) into functions

zj2”2(t,xt) defined in equ (37). The result is
A 5t cA32 =dd3® = 0 for all j,

oA 5 -

t 1

NOf -

t 1/2 .
where b = ——————2) and j = 2,446, ~—————n
t - 4m
This proves the statement made earlier that for pion exchange
Otjl =C{j2 =Cij3 = 0 andG(j4 = Qs Furthermorec(j4 = 0 for

j odd consistent with positive signature of the pion.

It is interesting to calculate the cross section for
"elementary" m-exchange in the limit s --> 00 . We substitute
the asymptotic A2 into equ (68), the result is :
de_ 4 ey’ 4 2__£ (83)
dt s Slff:ﬂﬁ
Now we derive the formula of the angular distribution for
Regge exchange of the pion, Sincec(n = 0 for T = p2 we expect
dn(t)(o in the physical region of7+ Ny == n + N,. There-
fore from equ (48) it follows that the pion contribution de-
creases stronger with energy than the cross section originating
from the vector mesons. Since physical amplitudes for photo-
production on protons or neutrons are linear combinations of
pion and vector meson amplitudes, comparison with experiment
must start with the appropriate combinations defined by equ (8)
To compare with elementary pion exchange discussed earlier

we give the formula for pion Regge exchange alone.

= B0 =
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First the amplitude for this case is :

I “zﬁdr dﬂ&' d}'?j
&ﬁ;%;(i+€ )y " g 92 (84)

where  g(t) = (—t)_l/22w31 (t)/§4(t> (85)

Concerning the factor (—t)"l/2 in the residue function g(t)
we refer to the similar situation in £ -exchange. g(t) is
defined such that Ag(s,t) reduces to A, in equ (81) if

8 =—32o”and t --> p2. Then the cross section for n-Regge

exchange 1is

—fdy 2
o i dp—1 A +2
which reduces near t = 0 to :

(86)

EL(}"‘: (ﬁ)_z(i"’(”{m)( f)dnm)—eﬂ 621&0(”!/0) . %’0 ) (87)

dt So
with

di (1) = dy () +7 4/ (0 (88)
and

/) I | 4+ e ~iTdy
/}-/ZL} = (89)

ries 32 29n T dy

2 2 (1—-dp ()
! 94t s,
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Conclusions

The cross section formulas we have derived for p-meson and
pion Regge exchange make some prediction about the behaviour
of the angular distribution as a function of s and t in the
forward direction, The study of the s-dependence tells us
something about the Regge trajectories near t = 0. We tried
also to obtain a result about the t-dependence of the cross
section. This is given by two factors, first the rather
definite factor ezto('lns SO which depends on the derivative
A" of the trajectory, second a factor (ﬂnt)ﬁy(t) F(t) where
2V(t) depends on the trajectory functiona((t). (—t);r(t)
factored out to make F (t)==constant near the pole, Whether
this behaviour of F(%t) survives in the physical region t<£0
is not known. From this point of view the factor (—t)ér(t)
appears somewhat arbitrary. 1t is an interesting problem to

look whether the cross section goes to zero for t --2 0

as proposed here and to determine the exponent 2P(t).

We think that the pion is not important for rery high energies
as explained in the last section. Then the hypothesis of
dominance Off y X = and w-meson exchange correlates the cross
sections for the four reactionsg?# Nl——a N2 + ni,o as given

by equ (8) of section 1. In particular the situation is very
simple if only one Regge pole dominates., For instance if

only the f£ is present we have

(A, : (35),. < (=) (i) = 2:4:2 4

On the other side if (o + f dominate we have

) = (39, (e (i),

dt /o dt/ it dt - 32 -
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Addendum to:

PHOTOPRODUCTION OF PIONS IN FORWARD
DIRECTION AND REGGE POLES

von

G. Kramer und P, Stichel
Physikalisches Institut der Universitdt Hamburg

In formula equ (20) and equ (21) the kinematic singularities with

16)

respect to t should be separated in the following form:

B W)= (2 pk’)‘f Eid’e (2, 1)

If now the residues pf (t) in equ (44) are defined with respect to

Bd e(—f, t) instead of B_id’ ®® t) the factor (- t) ¥ in equ (77) and equ
(79) respectively and the factor (-t) T in equ (86) and equ (87) re-
spectively do not appear. Of course, the t-dependence of the new

functions ¥ l(t), ;\Y—Z (t) and "é(t) is still undetermined,

16) K. Bardakci: Phys.Rev, 127, 1832 (1962)












