


Preface

High energy accelerators are to provide us with new information on possible exten-
sions of the fundamental forces and/or fundamental constituents of matter. They pro-
vide us also with extensions of phase space domain where the predictions of the Standard
Model may be tested further.

Independently of the problem under consideration. one has to refer to the Standard
Model whether to test its validity or to estimate its contribution as background.

Although the Standard Model is rightly claimed to describe existing data, quanti-
tative predictions - especially those related to the QCD part. are limited in precision.
Whenever in need of an estimation of a physical quantity (i.e. structure function, cross
section) from first principles, one is faced with a choice of parton distributions, A pa-
rameters, evolution equations, threshold effects, etc..., not to mention structure function
definition, radiative corrections and many others. Because of the variety of existing data
and approaches to extract information from measured physical quantities, it is extremely
hard to make an objective choice.

The purpose of our activities is to create a program which allows to calculate inclusive
differential cross section for ep scattering in the most general approach, so as to match
the future experimental observations.” In doing so, we must access the proton, electron
and photon structure functions, parton-parton and photon-parton luminosities as well
as cross section formulae for all the various processes that build up the ep total cross
section.

In our approach we decided to collect all” the available information, as to be able to
estimate the systematic (shall we say theoretical) error of our cross section calculation.

We have encountered many problems in understanding the consistency of various
approaches (i.e. leading order or next to leading order determination and evolution of
parton densities), in the definition of parton densities beyond the leading order, in the
treatment of exceptional kinematic regimes (i.e. low z), in the treatment of threshold
effects, etc...

In this note and all the ones to follow, we intend to report the present status of the
main ingredients that we need in the determination of physical quantities for ep scattering
at the HERA collider. Our final goal, that we hope to achieve at a certain point, is to
take into account the experimental conditions for the ZEUS detector, hoping that this
step will lead to a realistic estimation of observable physical quantities. Needless to say
that if we manage to achieve this goal, we should be able to propose a good strategy
for determining structure functions, in the accessible kinematic region. At HERA, this



region will be up to a maximum square momentum transfer Q2 ~ 10° GeV? and down
toz ~ 1074

In the first note, we report our investigations of various parametrizations of parton
densities for the nucleon. The next note, in preparation, will deal with the electron and
photon structure functions. In the near future we plan to consider parton luminosities.
kinematic limits, heavy quark thresholds. We also keep in mind the need to implement
radiative corrections. In parallel we want to investigate some aspects of small z physics
at HERA.



I. Parton distributions in the nucleon

Abstract

This is the first of a series of reports that we intend to present under a
common title of "Some topics in ep scattering at HERA”. This one deals
with a comprehensive review of available parton parametrizations for the

nucleon.

1 Introduction

High statistics experiments on deep inelastic scattering and experiments with hadron
hadron beams have been performed in the last decade giving detailed information on the
structure functions of the nucleon [1]. This information was used to derive the individual
quark and gluon distributions in the framework of the QCD improved parton model
[2-9].

Parton distributions play a basic role in studies of inclusive hadronic processes at
present and future ranges of energy. Their specific features determine the behaviour of
hadronic cross sections at high energies. Any reliable estimation of a possible signal of
new physics will also depend on these ingredients. Therefore it is very important to
realize what we know presently about parton densities and to what accuracy. The level
of uncertainty attached to the parton densities depends of course on the experimental
errors . Another source of uncertainty is associated with theoretical methods used in
extraction of parton densities at some reference energy scale and in the calculation of
their evolution to higher energies, beyond those currently available.

A variety of parton parametrizations exist in the literature. They differ among them-
selves in many respects, which results in sets of parton distributions with quite different
features.

The largest variation can be observed for the gluon distribution which is partly due to
the fact that there is still no direct measurement of gluons at present experiments. This
uncertainty is getting even larger if an extrapolation over a wide kinematical range is
performed. And this is precisely what is needed in order to describe high energy hadronic
processes which, as we expect, are dominated by gluon initiated subprocesses.

Recent studies have pointed out the limitation of QCD calculations based on the

leading order analysis [5-10]. The inclusion of corrections beyond the leading ones, seems



to be necessary to make reliable predictions for future accelerator energies, especially in
such kinematic regions as the one defined by small z. In the calculations based on
the next to leading order approximation one deals with quantities which depend on the
renormalization scheme. Therefore in order to obtain a meaningful result for physical
cross sections it is necessary to proceed with care in a selfconsistent manner.

For all these reasons, it is of interest to make an extended comparison of parton
densities obtained according to the different parton parametrizations available in the
literature. The purpose of this paper is to present a useful review of the existing sets of
parton distributions and their comparisons in interesting kinematic regions. We would
like to pay special attention to the theoretical assumptions used in their derivations. We
would also like to clarify the experimental input used for individual parametrizations,
since it influences the final results for parton distributions.

We have investigated the most popular parametrizations, listed below:

P1. Duke and Owens (DO) [4]-sets 1,2

P2. Eichten, Hinchliffe. Lane and Quigg (EHLQ) [5]-sets 1.2
P3. Martin, Roberts and Stirling (MRS) [6]-sets 1,2,3 and [7]-sets E’,B’

P4. Diemoz, Ferroni, Longo and Martinelli (DFLM) [8]- set 1 (FXAVER), set 2 (FXN-
LLA)

P5. Gliick, Godbole and Reya (GGR) [10]-sets 1,2.

We describe in details the assumptions underlying each parametrization. This will
allow to use them with understanding in a systematic and selfconsistent manner in future
applications. We present the comparison of parton densities obtained according to the
prescriptions P1-P5 in a wide range of z and Q*. This can be used for estimation of
the uncertainty of the predicted hadronic cross sections due to the different choice of
parametrizations of parton distribution functions. Last but not least it will also consti-
tute some reference for the experimental results still to come, on parton distributions
within nucleons, e.g. at HERA.

We start by defining the kinematic variables which appear in deep—inelastic scattering
(Sec. 2). Section 3 contains some general remarks on the QCD improved parton model
analysis of the structure of the nucleon. In sections 4 and 5 a detailed description of
parametrizations P1-P5 and their comparison with each other is presented. Results of
this work are finally summarized in Sec. 6.

The Fortran code for calculating parton densities according to prescriptions P1-P5

is available via BITNET from the authors ( FIPCHA at DHHDESY3).



2 Deep inelastic ep scattering
The inelastic scattering process

e+tp— 1+ X (1)
where [ is the scattered lepton and X stands for the final hadronic state, can be illustrated
as in fig. D1.
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Fig. D1. The deep inelastic process ep — [X.

The wavy line in the diagram denotes the exchanged vector bosons: v/Z° for neutral
current (NC) interactions and W* for charged current (CC) interactions.

At fixed incoming energy the kinematics of this process is determined by two in-
dependent variables only. From the experimental point of view the most natural ones
are: the energy (E;) and the angle (6;) of the final lepton state. There are also other,
often used, variables. Let p, be the four-momentum of the incoming electron, p;—of the
scattered lepton and P that of the incoming proton. The total invariant mass squared

is equal to
s = (pe + P)*. (2)
The momentum transfer variable Q2 is defined so as to be positive:
Q= —¢* = ~(p. - p1)* ~ 4E.E sin’(6,/2) (3)

where '~ means that the masses of the electron and the scattered lepton are neglected

(a good approximation at HERA energies).



The next variable, which can be interpreted as the energy transfer to the final-state
hadronic system in the nucleon rest frame, is given by the relation:
P-q 2E,

= it (E. - Ey cos*(6,/2)) (4)

v =

The dimensionless variables Bjorken-z and y are defined as:

. Q*  Q*  E.Esin’(6)2) .
T = 9p.q 2My  E,(E. - Eicos’(6,/2))
P.-q 2P.-q E.— Ejcos*(6,/2)
y = - = (6)
P'Pt S El

The invariant mass W of the hadronic system takes the form

+ M2, (7)

The physical region defined by M: < W? < s implies some kinematic limits on the
variables defined above:

0<z<1, 0<y<1l, 0<Q*<2My, 0<v<(s—M))/2M, (8)

In principle any two of those variables may be used for the description of deep inelastic
processes, but (z,y) and (z,Q?) are the most frequently used ones.

The cross sections for deep inelastic lepton-hadron scattering are commonly written
in terms of structure functions which contain information about the internal structure of
the hadron. For example, the differential cross section for ep scattering mediated by the
neutral current is given in terms of the structure functions Fj. F,, F3 by the following
formula:

d*onc(eT) - 4ra’
dzdQ?  zQ?

2
{y’zFl(z,Q") +(1-9)F2(2,Q%) £ (y - %)TFs(I,Qz)}- (9)

The above formula relating o to Fy, F, F3 suggests that measuring cross section is in
fact equivalent to measuring structure functions. The extraction of F; from the measured
cross sections is relatively straightforward although some technical difficulties have to be
solved, but those are not the only source of uncertainties influencing the determination
of structure functions. A more serious problem arises because of the radiative corrections

to the elementary upper vertex (see fig. D1), since those corrections change the relation
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(9) between o and F;. Different approaches to radiative corrections used in the analysis
of deep inelastic experiments lead to different structure functions independently of the
initial data for cross sections. The determination of F; involves quite a lot of theoretical
ingredients in contrast to the otherwise directly measured o.

The structure functions F, depend on the process and in principle they may be very
different (e.g. in ep and vp scattering) and not directly related to each other. In the
quark-parton model they acquire an interpretation and can be expressed in terms of
universal (process-independent) parton distributions.

A full description of the structure of hadrons in the theory of strong interactions is still
missing. It is not possible to obtain absolute predictions for F; from first principles until
the confinement problem is solved. The quark—parton model as well as its QCD improved
version describe only some aspects of the hadron structure which lead to relations between
F,, sum rules, asymptotic behaviour, etc. The QCD improved parton model predicts the
Q%-dependence of structure functions, but the structure functions themselves have to be

determined from some experimental input.

3 Parton densities in the QCD improved parton model

The parton model has offered a first insight into the structure of hadrons. In this model,
in the infinite momentum frame, partons carrying a fraction z of the hadron (longitu-
dinal) momentum are distributed in the hadron with densities which depend only on z
[12]. This scaling behaviour of parton distributions was observed in early deep inelastic
experiments [13].

More precise measurements have shown deviations from the above simple picture
based on the (naive) parton model. A new attempt to describe the hadron structure at
high energies led to the formulation of the so called QCD improved parton model, which
provides the framework for most studies of high energy processes at current and future
accelerators (see for example [14]).

In this approach partons—quarks and gluons are treated as elementary objects of
the Quantum Chromodynamics (QCD) with the appropriate interactions. As a natural
consequence one has to take into account the creation and annihilation processes which
occur during the interaction of an external probe (e.g. virtual 9, Z, or W in deep
inelastic scattering) with the hadron. In the deep inelastic scattering radiation of gluons
and ¢ pairs leads to parton distributions which depend on Q? - the virtuality of the
exchanged bosons (Q?* = —q* > 0). These exchanged bosons (7%, Z or W) play a role of



a “partonometer” with a resolution

1
Ab~ ——. (10)

VQ?

The structure of hadron seen by the probe depends on the reference frame. It is greatly
simplified in the infinite momentum frame, where the hadron has large momentum. For
large Q? partons from long chains of subsequent radiations can be "registered” by the
partonometer. There are many such partons and they are predominantly soft, since there
is little chance that after many decays, the final partons will carry large energy. The
partonometer with smaller Q? sees rather few energetic partons from the early stage of
the parton cascade.

These features of parton distributions in the nucleon are described by the so called
ladder diagrams (fig. D2) which give a dominant contribution to the deep inelastic cross
section in perturbative QCD.

ki l ;

|
kq l

l \
p

Fig. D2. The ladder diagram describing ( in the physical gauge) the cross
section for the 9*¢ interaction in the LLA. Four momenta of the virtual pho-
ton, the initial quark and exchanged partons are equal to ¢. p and ky, ..., k,,
respectively. Gluons (quarks) are denoted by curly (solid) lines.The vertical
dashed line means that the amplitude M for the process y*q — {partons}
(left part of the diagram) is multiplied by the complex conjugated one: M*
(right part). The cross section is obtained after the integration of |[M|? over
the phase space allowed for the final particles.

The ladder diagram describes the development of one parton cascade interacting with a
partonometer. (Note that the probabilistic parton interpretation requires the selection



of a special gauge). The large contribution to the cross section or structure function at
large Q? arises from an integration with respect to virtualities of products from sequential

decays with a strict order in a broad range of these virtualities:

Wi pt gt € R~k € R~ R € IR~ R < g (1)
where we have introduced the numbering of the decay products (momentum) k; from
i = 1 to n; p is the momentum of the original quark, u? is a characteristic value of
virtuality above which a, may be assumed small, thus justifying the applicability of
perturbation theory. The quark interacting directly with the photon is the one with
momentum k.

For the longitudinal momentum fractions z; we have

zo,~12>212>223...2 2, =12, (12)
The leading contribution for large Q? and z ~ O(1) obtained in this way is of the type
(o In(Q* /1)) (13)

where z ~ (1) means that z may be small but not too small, say 1072 < z < 1.
The procedure which relies on keeping only these dominant terms is called the leading
logarithmic approximation (LLA) (see [14,15]). The logic of this approximation lies in se-
lecting diagrams that contain the maximum power of In Q? in every order of perturbation
theory !. More precisely, for small a, we have
2
9;’<<1. 9”—’111(%)<<1, %m(%)w (14)
and all terms of order (a,In(Q?/u?))" must be taken into account. This means, that in
fact not a,, but a, In(Q?%/u*) becomes the real expansion parameter of the theory. This
parameter is not small and could be even bigger than 1. Therefore, as we have mentioned
above, we have to sum all terms containing this parameter and there exist appropriate
methods [15] to do it to all orders.
So far we have discussed leading logarithmic terms depending only on Q?, since the
other kinematic variable appropriate for deep inelastic scattering — z is large, z ~ O(1).

'In a field theory with massless gauge bosons the maximum power of logarithms in each order of
perturbation calculations, is equal to 2: a, In? Q2. These so called double logarithmic terms arise in very
specific physical situations and do not appear in the cross section for deep inelastic scattering.




Deep inelastic scattering at very small z (z < 1) and large Q? requires similar
treatment of In(Q?/u?) and In(1/z) [16,17]. Keeping the leading logarithms of 1/z (i.e.
(ayIn(1/z))") leads to the leading logarithmic approximation in z — LLA(z) (in contrast
to the previous one which could be called LLA(Q?)). In the kinematic region of small
z double logarithmic contribution of the type (a, ln(l/a:)ln(Qz/;zz))n appear as well.
They will arise from ladder diagrams with strong ordering in virtualities and in z;

1> 21> Tg...8p-1 > Ty = 2. (15)

We would like to discuss in this paper leading and next—to-leading logarithmic terms for
the deep inelastic scattering for = ~ O(1), postponing the detailed discussion of small z
for a further note. Therefore we will always use the names: leading and next-to-leading
in respect to logarithms of Q? without further explanation.

In our discussion of deep inelastic scattering we discard all corrections due to parton
and target masses and other so called higher twist effects which are expected to have
(1?/Q*)™ (n = 1,2,...) behaviour, and should vanish for Q% — .

To make our language more transparent for non-experts we would like to compare
different approximations used in the perturbative calculations in QCD or in QED. For a
physical quantity R which depends on Q* and some other variables

e the calculation of fixed order corrections means that we calculate the following

terms in sequence
R = Ro(a® +a'Ry +a’Ry +...) (16)

and keep the terms up to appropriate order. The first term is called the lowest or
Born term. Then the first and the second order corrections appear. Ry, Ry, ... are
functions (usually very complicated ones) of Q? and other variables.

e the leading logarithmic approximation means that we keep all terms of the
type a7 In™ Q%

R = Ro(c® + a'InQ*Ry + o?In? @Ry + a3 In* Q* Ry +...) (17)

e the next—to-leading logarithmic approximation leads in addition to the series
of terms af In""! Q2, and up to next-to-leading logarithmic accuracy we have:

R = Ro(@® + al(InQ?Ry + RY) + (I Q*R, + n Q*Ry) +...)  (18)

(all leading and next-to-leading terms must be summed).
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e the double logarithmic approximation is based on the following perturbation
expansion:
R = Ro(e® + alIn? Q’R,; + o?In* QR +a®Im® Q%R3 +...) (19)
where the sum has to be performed to all orders.

In all above formulas functions ]_?,.}-f:, R; do not depend on Q2.
Going bevond LLA means taking into account also less dominant terms, e.g. NLL,
NNLL corrections. This structure of higher order corrections is presented graphically in

fig. D3.

oz 'a? et Pl

Fig. D3. Structure of perturbative corrections. The horizontal lines show
the fixed order corrections. The leading logarithmic corrections LL are
represented by the inclined line. Lines showing the next—to—leading NLL,
the next—to—next—to—leading corrections NNLL, are parallel to the LL
line. Arrows indicate that the whole series has to be summed up for LL, NLL

and NNLL approximations: ¥ a?In" Q%, Y a?In""' Q? and 3 a7 In""2 Q2,
respectively.

There is another widely used terminology which differs slightly from ours. Instead of
leading logarithmic approximation one uses the name - the leading order (LO) approxi-
mation and the same for the next-to-leading terms.

3.1 Leading logarithmic approximation.

As we have discussed before, in the QCD improved parton model the parton densities

appear as effective densities depending on the energy scale Q2.
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For deep inelastic scattering the leading logarithmic approximation (LLA) means
that [14]:
1) The measured structure functions F;(z,Q?) are related to the Q? dependent parton
densities by the naive parton model formulae.

In the LLA the original scaling parton densities are replaced by effective Q? de-

pendent densities:
g(z) — q(2,Q%) = q(z) + Ag(2,Q7), (20)

where Ag(z,Q?) contains all leading logarithms. The relation to measured struc-
ture functions remains as for the parton model, namely:

2P (2,Q%) = Fy(2,Q)/z =Y elq(z,Q%) (21)

or in a more compact form

Fi(2,Q%) = Fal2,Q%) = 3 €q9(=, Q%) (22)
where we have introduced the notation [18]:

(flvf%}-(i)z(2F1’F2/st3)' (23)

2) The Q* dependent parton densities obey the first order (or in other words one-loop)
Altarelli-Parisi (AP) evolution equations 2 with first order (or one-loop) splitting
functions Pfjl):

d 1 3Q2 s * td

Yy
dG( ’Qg) ’Q2 ld T
mﬁmjz%glfhwﬁmwuwwmem

where ¢;(z,Q?) denotes a quark or antiquark distribution and G(z, Q@?)-the gluon
distribution. The splitting functions P(z/y) describe the probability for a parton
b of momentum fraction y to emit another parton a with a fraction z/y of the
parent parton momentum. In the LLA these functions are given by [14]:

l-i—z2

),y — | 1+2z
Far'(z) = 31(1—2)4

3 26(1 = z)] (26)

2These equations were introduced already in 1972 by V.Gribov and L.Lipatov [15].
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Psé)(z) = %(1—2:+2:2) (27)
2-2:+ 2%

e = 32 .
' =z - 11 N

A = sfn-as e e (G- e a) o

with the distribution 1/(1 — z). being defined by

! f(=) of(z) - f(1)
dz———— = dz—"——. 30
/(; (1-2z)y [) -z (30)
The evolution equations (24,25) can be expressed in a more compact form as
df3(2,Q%) _ (@) (1) & fb 2
d(lnQ?/A%) 2« [P (z)], ® falz,Q%), (31)

where f4(z,Q?) is the distribution of parton a in hadron A (here A = proton),
and the symbol ® means the convolution integral

p@f:[%yp(f) f(y,Q2)=/:%P(y)f(§,Qz)- (32)

In the LLA the running coupling constant is calculated by solving the first order (or
one-loop) renormalization group equation
da,
=~ (39)
dIn(Q?*/A?) 4m
with 5
Bo = 11—§Nf, (34)

where N; denotes the number of flavours and A is the QCD scale. By using this approx-
imation one obtains from the experimental data (see for example [9])

Aro ~ 200 MeV. (35)

By solving equations (33,34) one obtains the first order running coupling constant, which

is equal to:
(1) _ 4m

© T (@A) o

«
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The solution of equations (24,25) together with formula (36) allow the computation of
parton densities at any scale Q? once the initial conditions are known.

For hadron-hadron collisions the LLA involves the convolution of cross sections for
hard subprocesses calculated in the lowest order of the perturbation series expansion (i.e.
at the Born level) with the Q? dependent parton densities as described above in 1) and
2). To be more specific, the basic formula for a generic high energy inclusive hadronic

process
AB-CX (37)

takes in the parton model the following form:

OAB—~CX — f; ® aab—ocx ® f%a (38)

where f3(f%) is the distribution function of parton a(b) in hadron A(B), and & is the
hard scattering cross section for the partonic subprocess. In the QCD improved parton
model the cross section (38) is equal in the leading logarithmic approximation to:

oaB—cx = faloLa ® F87"x ® fhlLLa (39)

where f4|,14 denotes the distributions obeying the first order evolution equations (see
point 2) above) >.

3.2 Next—to—leading logarithmic approximation.

The importance of the next-to-leading logarithmic corrections arises at higher energies.
In the next-to-leading logarithmic approximation (NLLA) besides the leading terms,
also less dominant contributions of the type

af " H(Q* /) (40)

are taken into account.

The existing analyses of deep inelastic scattering beyond LLA are limited to order
a, corrections to the parton densities and to the splitting functions. This means that we
have here

a(z) — q(z,Q%) = ¢(z) + Ag(z,Q?) (41)

3The terminology used here is in some sense misleading, since not all ingredients in (39) are really
calculated in LLA-for example, for the parton cross section we take the lowest order formulac. One
should rather say that eq. (39) is obtained in the leading order approach within the QCD improved
parton model. The consistent application of the LLA cross section (38) should take into account the

logarithmic structure also for &.
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where now Ag(z, Q?) contains leading and next-to-leading logarithms, and

2
P(z) = PPe) + 252 pa) )

In the next—to-leading logarithmic approximation applied to the deep inelastic scattering:

1) the expressions for the structure functions Fi(z,Q?%) in terms of parton densities
deviate, in principle, from the parton model formulae. e.g. for F5:

Falz, Q) = > elq(z, Q%) + AR, (43)

9,9

2) the evolution equations include additional next—to-leading contributions P; jz) (second
order or two-loop splitting functions) [14]:

a 2 2 2 a
df’I:S;/‘ii) = 2097 | pong) 4 23] plae) 8 fi@eh) ()
The particular form of these next-to-leading logarithmic corrections depends on the
(renormalization and factorization) scheme or in other words on the definition of parton
densities. Going from parton model distributions to the effective ones by keeping the
leading logarithmic contributions is a well defined procedure, since the coefficients of
the maximum power of InQ? in each order of a, do not depend on the method of
calculations 4. It is a matter of convention or definition how many other terms, which
are less dominant from the point of view of the LLA approximation, are incorporated
into the "renormalized” parton densities beyond leading logarithms. Let us discuss this
point in more details, since it will play an important role in the forthcoming analysis.
The structure functions Fj(z,Q?) (or Fi(z,Q?)) are physical quantities which are
determined in deep inelastic experiments. They can not and do not depend on the
renormalization scheme used in the theoretical calculations. It is the quark or gluon den-
sities which, as theoretical objects, have to be defined somehow and which are sensitive to
the details of the calculation methods. In the QCD improved parton model we interpret
structure functions in terms of parton densities. Of course the relations between the data
of Fi(z,Q?) and parton densities depend on the definition used for g(z, Q?) or G(z,Q?).

YOn the other hand in the LLA there is a strong dependence of parton densities on the scale parameter
A (scale ambiguity), which cannot be compensated by the other theoretical ingredients as it happens in

the NLLA.




In the leading logarithmic analysis we are dealing with a scheme independent part of
higher order corrections and therefore we do not have to worry about renormalization
scheme dependence. But for all next-to-leading considerations we must proceed in a self
consistent manner in order to get predictions for physical cross sections.

For example. for the high energy process (37) the next to leading logarithmic approx-
imation requires the use of hard cross section & and parton densities defined in the same
scheme and calculated to a consistent order, since both of these ingredients are scheme
(and scale) dependent. To be more precise-the hard cross section calculated up to first
order corrections should be convoluted with the distribution function obtained in NLLA

(with second order splitting functions):

= d
oaB—cx = fSINLLA ® FHLIXT ® folnvira (45)

It is necessary to use here parton distributions obtained according to the two-loop evo-
lution equations since only in this way leading and next-to-leading terms are evaluated
properly. In particular, at order a,, the parton distributions will contain full 1st order
corrections derived with the same accuracy as G °.

For consistency in the calculation performed in NLLA one should also use the ap-
propriate running coupling constant including two loop contributions. We will give the
NLLA formula for a, later.

One of the definitions [11] of parton distributions used in an analysis performed
beyond leading logarithmic approximation. is based on the requirement that in terms
of the ’renormalized’ scale dependent parton densities g(z,Q?), the naive parton model
formula holds for the structure function F(z,Q?) with no corrections proportional to
as(@2):

Fa(z,Q%) = Fa(2,Q%)/z = 3_ega(2, Q%) (46)

with the following relations between bare (parton) and renormalized quark densities:
14 . 2 .
¢i(z,Q%) = <1:‘(ﬂf)+/z ;y{[g;hl(%)f’qq(g) +aafq.z(§)]q(y)
2
e m(G) P () + atea(5)] e}, (47)

where fg 2 and fg,2 are so called constant (i.e. independent on Q?) terms. Other structure
functions receive a, corrections. For example, in terms of these densities, the electropro-

®The more consistent treatement of all next—to—leading logarithmic corrections will require calculation
of NLL terms also for & (see the footnote on page 13, where this point is discussed for LLA).
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duction structure function F;(z,Q?) may be written as
fl(zﬁQz) = ZCEQ(z5Q2)+asAf1 + 0(03)7 (48)
94
where

Af = Lf%{gﬂnﬂz)nﬂgﬂmLQ%

T (Z‘é) [fG.l(z) = fu.z(%)] G(I.Qz)}. (49)

'

This definition, called the DIS scheme, is a very natural one for quark densities since a

large fraction of the information on the structure of nucleons comes from measurements

of F, in deep inelastic scattering experiments. It has also further theoretical advantages.
For the gluon distribution DIS does not offer any appropriate definition. Usually,

together with the above convention for quark distributions, one fixes the gluon density

beyond the LLA by demanding momentum conservation:

/01 dr z {}:[q,(z,y) + qf(;c,Q2)] +G(x,Q2)} = 1. (50)
f

It has been stressed (see, e.g. [8,14]) that the definition of the gluon should be taken from
some strong interaction process, for example the two jet cross section in hadron—hadron
collision, which is not measured yet precisely enough.

The other convention or renormalization scheme for parton distribution beyond LLA
is called universal or MS renormalization scheme since it is based on the modified minimal
subtraction scheme [19]. In this approach no specific process or quantity is favoured. In
all of them there are corrections of order a, (or higher) to the naive parton model
formulae. The applicability to all orders of perturbation expansion is straightforward®.
In this scheme one obtains the second order coupling constant:

a(@) A

ol?(Q?%) = alM(Q?) [1 - =" InIn(Q*/A?)|, (51)
: ar fo

where a(,l)(Qz) is the first order a, given by eq.(36),
By =102 — 38N;/3 (52)

and

Azrs = 300 MeV. (53)

®The second order MS splitting functions can be found in refs [19,11].
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4 Parton parametrizations

In order to describe the hadronic processes at high energies it is necessary to know
the individual parton distributions as functions of z and Q% Since theory does not
give absolute predictions for parton distributions. they have to be obtained from some
experimental input and then the AP equations allow to determine those parton dis-
tributions at any Q7. even mnot accessible experimentally. However parton distribu-
tions are not directly measured in the experiment: it is the structure functions or
hadronic cross sections that are measured. although in a limited range of  and Q2
(0.015 < = < 0.75,0.5 < Q% < 250 GeV?). Individual quark and gluon distributions in
the nucleon may be usually determined in a simple analytical form from those data with
some additional experimental and theoretical information.

The purpose of parametrizing the evolved parton distributions is to provide the user
with an easy access to the solutions of the AP equations in any kinematic region, including
the one covered by the experimental data.

Several such parametrizations with analytical approximations for parton distribu-
tions are available, for example the DO and EHLQ ones. In other parametrizations the
resulting parton densities are in the form of (z,Q?) grids with interpolation, e.g. the
MRS sets.

The parton parametrizations presented in this note have been obtained in two dif-
ferent approaches and with different sets of available data. One of the approaches is to
introduce the parton distribution at the level of the global fit. It means that the struc-
ture functions are parametrized at some reference value Q? and then evolved numerically
in Q? through the AP equations in the kinematic regions where they are measured. A
global fit is then performed to determine the best values for the starting parameters,
as well as for the QCD scale parameter A. A by-product of these fits performed on
the singlet structure function F, is a parametrization of the gluon distribution at the
reference scale Q3. Because deep inelastic scattering does not constrain significantly the
gluon distribution, a large variety of gluon behaviour is proposed in the literature. The
parameters describing the gluon distribution are usually strongly correlated with the A
value obtained from the fit. It is a matter of taste which parametrization of gluon dis-
tributions is chosen—typically a “hard” or a “soft” one, each with its own A value (see
for example the MRS parametrization). This is the approach of DO and MRS.

The other approach, e.g. the one of EHLQ and DFLM is to take the parametrization
of structure functions as obtained in various experiments and disentangle the contribution




of parton distributions at a reference Q2 value. The evolution is then independent of the
data. and relies on the A value and gluon distribution as determined from the original
fit.

A very comprehensive discussion of the influence of various assumptions used for the
evolution and the determination of structure functions, and the impact of systematic
uncertainties on the parametrizations is given by Wu-Ki Tung et al. in [11]. A weak
point of all the global parametrizations is that they include systematic errors in an
approximate way, or not at all, since the experimentalists are the only ones to know the
point—to—point correlations which are of prime importance for the slopes of structure
functions. The relative normalization of various data is another source of uncertainty
and it is a question of taste which data to trust. This influences directly the overall
normalization of parton densities.

All in all, part of the disagreement observed in various parametrizations is certainly
due to the choice of data. It makes it even more interesting to look at the results,
since the observed differences are a measure of our knowledge and cannot be sorted out
without additional new data, which hopefully, thanks to the tremendous theoretical and
experimental effort, will allow us to explore new domains with less uncertainty.

4.1 Duke-Owens (DO)

This is a leading order (LO) type of parametrization. It is a simple, convenient one —
available in a compact, analytic form. In the fitting procedure at the reference scale Q3 =
4 GeV? the following deep inelastic data were used: SLAC’79, CDHS’83 and EMC’81,
as well as dimuon: CFS’81, ISR’82 and J/¥’79 data. Because of systematic overall
normalization disagreement between different data sets, all of them were renormalized
to the EMC’81 data. In addition, cuts of z > 0.1 and Q? > Q} were imposed. The other
assumptions were:

e N; = 4,i.e. bottom and top quark distributions were not provided;
e the charin content at the reference scale was neglected: ¢ = ¢ = 0 at Q3;

e an SU(3) symmetric sea was assumed, i.e. the strange quark distribution s(z) was
set equal to the light sea distribution.

Two sets of parton distributions are provided, corresponding to different shapes of the
gluon distribution and consequently different values of a,(A):
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Set 1 (soft) with A = 200 MeV and z2G(z, Q%) ~ (1 +9z)(1 - z)%;
Set 2 (hard) with A = 400 MeV and 2G(z,Q3) ~ (1+ 9z)(1 — z)*.
The Q?-dependence enters into formulae for parton distributions through the variable
§ = Inlln(Q*/A%)/In(Q3/A%)]

which varies slowly with changing Q. The valence quark distributions are expressed in

the form:

z(uy + dy) = Nugz™ (1 — 2)™(1 + YuaT)
zd, = Ngz™(1 — 2)™(1 4 747)

while sea and gluon distributions are parametrized as follows:
Az%(1 — 2)%(1 + dz + Bz? + v23).

All parameters appearing in the above formulae are polynomials in § up to the 2-nd
order.
The range of applicability is as follows:

0< =z <1
4 GeVZ< Q? <~ 10° GeV2.

According to the authors the accuracy is

at a few—percent level for Q* up to about 1 TeV? for the bulk of the z range
from 0 to 1. The only exception to this is for the gluon and sea distributions
at large r values where the distributions are already extremely small.

4.2 Eichten-Hinchliffe-Lane-Quigg (EHLQ)

This is also a leading order (LO) parametrization. Primarily CDHS’83 data were used in
the fitting procedure at the input scale Q% = 5 GeVZ%. The integration of the evolution
equations was performed numerically, therefore no full range of = was required. The
parametrization is based on the expansion in terms of orthogonal polynomials P, (y).

The small = region, which is very important for applications at high energies, was treated
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separately. For this reason the z range has been divided at z = 0.1. For ¢ > 0.1 the

distribution functions were parametrized as

f(2,0%) =27 (1 - 2) ZC’J In(Q?/A%))

For smaller # (2 < 0.1), polynomials in In(z) were used instead of polynomials in z.
Depending on the shape of the gluon distribution, there are two sets:

Set 1 (soft) with A = 200 MeV; 2G(z,Q%) ~ (2.62+ 9.17x)(1 - ) i
Set 2 (hard) with A = 290 MeV; zG(z,Q3) ~ (1.25+ 15.5Tz)(1 - )68,

This parametrization provides parton distributions for Ny = 6. At Q% = 5 GeV? heavy
quarks (c, b, t) are neglected and the value of A has been determined for Ny = 4.
Distributions of heavy quarks above their production threshold Q*(1 - z)/z > 4m? were
obtained by including explicit heavy quark mass dependence in the corresponding gluon
to quark splitting functions. The masses of the heavy quarks are: M, = 5.5 GeV and
M, = 30 GeV. The range of applicability is as follows:

107'< z <1
5GeV2< QF < 10° GeVZ

4.3 Martin-Roberts-Stirling (MRS)

This parametrization uses next to leading order QCD (NLLA) in the MS scheme.
The original version [6] was based on EMC’85,’86,’87 data, together with those from
CDHSW’86 and CCCFRR’84 with appropriate renormalization (of order 10 %). It con-
sist of three sets that differ in the form of the gluon distribution at the reference scale
Q2% = 4 GeV?, where Ny = 3:

MRS]1 (soft); 2G(z,Q2) ~ (1 — z)® and Ay = 107 MeV ;
MRS2 (hard); 2G(z,Q3) ~ (1 ~z)*(1 4 9z) and Azrs = 250 MeV;

MRS3 (1//(z)); 2G(z, Q%) ~ 1//(z)(1 - z) )*(1 + 92) and Az = 178 MeV.

In addition, the sea is SU(3) symmetric i.e. z§ = zU = zd = =5 = zs.

Recently [7] the authors have refined set 1 (MRS1), using the BCDMS data instead
of the EMC ones. They found that neutrino (CDHSW’86) and muon (BCDMS’87) data
are compatible-no renormalization of the former is needed. New sets, including either
EMC’86.’87 or BCDMS’87 data, were derived:
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MRSE’ with Ay = 100 MeV;
MRSB’ with Agrz = 200 MeV.

In the fitting procedure, for both sets of parton parametrizations also the new NMC’88
measurements of Fj' /Fy, as well as neutrino (CDHSW’86, CFRR’88) and dimuon (E605°89)
data were used. The gluon distribution at Q2% = 4 GeV? is taken to be: zG(z ,Q3) ~

(1 — 2)**. For the bottom quark a fixed threshold in Q* at 4 M} = 100 GeV? for all z is
assumed. The range of applicability is as follows:

1074« = <1
5GeV2 < Q? < 1.31%10° GeVZ.

The authors conclude that

the comparison with Drell-Yan data appears to favour the ‘BCDMS’
parton distributions (i.e. MRSB’).

4.4 Diemoz-Ferroni-Longo-Martinelli (DFLM)

This parametrization consists of several sets of parton densities corresponding to different
assumptions concerning the input parton densities (uncertainties from deep inelastic
data) and to different order of perturbative QCD calculations (LO or NLLA). The next—
to-leading order version of this parametrization is formulated in the DIS scheme. As
input for the QCD evolution of the gluon, the valence and the sea densities, the data
from the neutrino experiments: BEBC’85, CCFRR’83, CHARM’83 and CDHS’83 at
Qi=10 GeV? were used. There are some specific assumptions:

e d,/u, = 7(1 — z), where 7 was fitted to be r = 0.57;
e 5=02(a+d) =
o 2G ~ (1 - 0.182)(1 — z)*%.

In the evolution procedure, corrections due to threshold effects for heavy flavours were in-
cluded. Particularly, at Q2 charm threshold was already opened (Ny = 4) but ¢(z,Q3) =
0. Masses of the heavy quarks are as follows: M, = 4.5 GeV and M, = 40 GeV. The
heavy flavour distributions are valid only for values of Q? larger than the threshold
(Q* > M}?) in spite of the fact that this parametrization may give in any case results

also for lower Q2.




Depending on the order, in which QCD evolution was performed, the authors favour

two sets:
FXAVER (LO) with Agr5 = 200 MeV;
FXNLLA (NLLO) with Agz = 300 MeV.

The parton densities are available in the following range:

5 %x107° < =z < 0.95
10 GeVZ < Q? < 10® GeV2.

4.5 Gliick-Godbole-Reya (GGR)

The last parametrization discussed here provides two qualitatively different sets. The
first one, GGR1, has been evaluated dynamically using the assumption that at some
low resolution scale the nucleon consists of valence quarks only. The valence quarks
in turn generate radiatively the gluons and the sea quark pairs, and their distributions
are described by the leading—order Renormalization Group evolution equation. In this
scheme only input valence densities u,(z,Q2) and d,(z,Q32) are required and they are
taken the same as determined by DFLM at Q2 = 10 GeV?. The resulting predictions for
G(z,Q?) and gseq(2,Q?*) do not involve any additional assumptions.

The second set. GGR2, was produced in the conventional manner, i.e. with input
G(z,Q}) and g(z, Q%) distributions (taken from [8]). At the input scale the strange quark
distribution was taken to be s = § = 0.4%.

In the Q? evolution for both of these sets only three light (N; = 3) flavours were
included. The distributions for the heavy quarks h = ¢,b,t were calculated from the
formula:

2y _} 2y _ @(Q7) Q) Mty z 2
h(z, Q%) = hz,q") = 22 m(ME)L_quc(y)G(y,Q)

which gives a good description of processes involving heavy quarks for Q% > 100 M,f
This parametrization is valid for:

10°°< 2 <095
10 GeV2 < Q? < 10° GeV2.

As was pointed out in [10]:




the dynamically predicted G(z,Q?) and g(z,Q?) turn out to be much
steeper and larger in the very small z region (z < 1072) than the conventional

distributions.

The two sets differ distinctly in the predictions for F,” in the low-z region. Recent
preliminary data from the EMC collaboration (EMC’89) support the results of the con-

ventional one.

5 Results of different parametrizations

5.1 Parton densities

Before we start a detailed comparison of predictions of various parametrizations some
words of caution are needed, since parton densities are not physical observables and
additional theoretical assumptions have to be used in their determination. All existing
parametrizations can be divided into two main groups depending on the approach used
— LLA or NLLA. It is in principle meaningless to compare parton densities obtained in
NLLA in different renormalization schemes since they are not physical observables. Only
after convolution with hard processes cross sections, which also depend on the scheme,
one obtains scheme independent predictions for physical quantities. For example, the
proper formula for the cross section would be (schematically)

o = fp1s ® Gp1s = f3r5 ® 0313 (54)
On the other hand there is a unique transformation of one set of quark distribution
functions into another one, defined in a different manner, e.g.

Qg Q, v
fors =1+ 2703(1‘)) ® fist 2_7,629(2) ® firs (55)

where CZ and C% are known coefficients. Only after this transformation, a proper com-
parison between different parametrizations can be made (see for example [11]).

There are also objections against the procedure in which one uses distribution func-
tions obtained in the NLLA, but with the lowest order (Born) expressions for & in the

prediction for hadronic cross sections:

g = leLLA ® 6Born (wrong). (56)

Although not all of the existing approaches are theoretically consistent, they have been
used in many applications. Therefore it seems to be useful to estimate the actual size of
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the differences between the commonly used schemes for various parton distributions in
important kinematic regions.

The significance of the second order evolution in the small z region was pointed out in
Ref.[11]. Therefore it is of interest to compare the LLA approach with the NLLA in order
to gain confidence in the predictions at high energies. A very useful comparison has been
made in Ref.[11], where the results of different evolutions (leading and next-to-leading)
are presented with a fixed input parametrization.

Now we will start to present the predictions of parametrizations P1—P5 for parton
densities of the proton for 10 GeV? < Q% < 10* GeV? and for 107* < z < 1. The
z—dependence of parton distributions is compared at Q* = 10,100 and 10* GeV? and is
shown in figures 1.1-1.8, IL.1-11.9 and II1.1-1I1.10, respectively. In figures IV.1-IV.7 the
Q%-dependence of parton distributions is presented only in the DFLM2 parametrization
at fixed values of z = 107%,1072,1072,10"!. After the main part of our study was
finished, a new MRS parametrization appeared (MRSE’ and MRSB’) which differs sub-
stantially from the older ones. In the figs. V.1-V.6 we compare the previous predictions
of the MRS1 parametrization with new MRSE’, MRSB’ versions for parton distributions
at Q% = 10,102%,10%,10* GeVZ.

The individual parton contributions, i.e. the valence up quark at Q% =10 GeV?, are
presented in the way which allows to compare the different sets within each parametriza-
tion P1-P5 (see four windows in fig. I.1a). In a separate picture the comparison is made
for the same parton distribution of the different parametrizations P1-P4 by taking the
set favoured by the authors (see fig. I.1b). We take usually the DO1, EHLQ1, MRS1
and DFLM2 parametrizations as a representative sample. In this ”"mixed” picture we do
not include the GGR parametrization since it is shown in the previous figure (window
4) together with the DFLM1,2 parametrizations. From this comparison one can easily
figure out some of the specific features of different parametrizations.

This method of presentation was used for all distributions at Q* =10,10%,10* GeVZ.
In figures I-II1 the z—dependence of respective parton distributions at each value of o2

is shown as follows:
e valence up quark zu,(z,Q?)—figs.: I.1a,b, IL.1a,b, IIl.1a,b;
e valence down quark zd,(z,Q?*)—figs.: 1.2a,b, I1.2a,b, 111.2a,b;

o light sea zu,(z,Q?) = zd,(z,Q?) = zu(z,Q?) = zd(z,Q?)—figs.: 1.3a,b, I1.3a,b,
I11.3a.,b;




strange quark zs(z, Q?%)—figs.: L.4a,b, I1.4a,b, I1L.4a,b;

e charm quark zc(z,Q%)—figs.: 1.5a,b, IL.5a,b, I1.5a,b;

bottom quark zb(z, Q%)—figs.: IL.6a,b, I1L.6a,b;

top quark zt(z,Q?*)—figs.: IIl.7a,b;

gluon zG(z,Q*)—figs.: L6a.b, I1.7a,b, I11.8a,b.

The ratio d,/u, is compared for the representative sets of the parametrizations in figs.
1.7, 11.8, I11.9a,b. For one particular parametrization-the DFLM2, the comparison of the
valence quarks, the sea and the gluon content of the proton is presented in figs. 1.8, I1.9,
I11.10a,b. Note that for higher energies we used both linear and logarithmic scales.

The valence quark distributions zu, and zd, peak at z around 0.15 for Q% =10 GeV?
(figs 1.1b, 1.2b). The position of the peak differs slightly for different parametrizations.
The differences in the height are much bigger. The same may be observed at higher
Q2. There is an expected shift of the position of the peak towards smaller values of
z with increasing Q2, e.g. for Q* = 10* GeV? the peaks in zu, and zd, occur at
z < 0.01 (figs ITL.1b, I11.2b). The biggest value of zu, at the peak is predicted by the
EHLQ1 parametrization and the smallest by the DO1. For zd, the situation is reversed.
Predictions given by other parametrizations lie between these two.

The plots for light sea distributions show that the EHLQ parametrization predicts
lower values than the other three—especially at very small-z.

Large differences may be observed in the strange quark distributions (see figs 1.4b,
11.4b). For lower Q2 = 10 GeV* the EHLQ and the DFLM parametrizations give similar
results whereas MRS1 is close to DO1. This is due to the underlying assumption of
zs = 2@ = zd in the latter ones. At higher Q? they start to split up leading to a factor 2
difference between MRS1 and EHLQ1 at (z,Q?%) = (107%,10? GeV?). For MRSE’, and
especially MRSB’, the difference is much smaller (fig.V.3).

The charm distribution for Q2 = 10 GeV? is rather large at small z in the MRS1
parametrization—much larger than in the EHLQ1. But MRSE’ gives smaller values
(fig.V.4). At this scale the charm distribution in the DFLM parametrization is negligible.
At higher Q? DFLM2 and MRS1 tend to give similar results, a bit bigger than EHLQ1.
Predictions of the DO parametrization with respect to other ones vary quite much for
different Q2.

The bottom quark distribution is not parametrized in the DO sets and for the EHLQ
it is negligible at Q% = 10? GeV?. The predictions of the MRS1 and DFLM2 parametriza-
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tions differ at this scale very much—by a factor of 9 at 2 = 10~* (and by a factor of
22 for MRSE"). It is mainly related to the different assumptions concerning threshold
effects.

For the top quark distribution there are only results in the EHLQ, DFLM and GGR
parametrizations. As is seen from fig.111.7b, DFLM predicts bigger values than EHLQ.

As we expected. very different answers for the gluon distributions can be obtained
even within the same parametrization. At larger Q* the differences become more trans-
parent (figs I1.7b, 111.8b) since we enter here the small z-region. This region is par-
ticularly sensitive to the type of analysis: leading or next-to-leading order. We would

expect (see Tung paper [11])

that the well known rapid growth of the gluon distribution at small z seen in
the usual leading order will be dumped by inclusion of next to leading terms.

This can be seen in the comparison of the EHLQ and the DFLM gluon distributions. As
for the MRS behaviour, an error recently was found in this parametrization ([7]) which
affects the z < 1072 region. So the correct behaviour of this parametrization (especially
in the small-z region) for the gluon as well as for other distributions should be invoked
from figs V.1-V.6.

The comparison of the d, /u, ratio (ﬁgs 1.7, I1.8, II1.9a,b) shows that different assump-
tions concerning valence quark distribution at the input scale Q2 lead to large differences
in this ratio. For example, at Q% = 10* GeV? the two extreme distributions(EHLQ1 and
DO1) differ by a factor of 4 at z = 107%.

Finally, we compare valence, sea and gluon contributions to the proton structure
functions in the DFLM2 scheme. At Q% = 10 GeV? the first crossover between valence
and sea distributions occurs at z ~ 0.05, the second one between the valence and gluon
terms may be seen at z ~ 0.2 (fig.I.8). With increasing Q? the first crossover shifts to
larger values of z, whereas the second one to smaller z (figs I1.9, I1.10a).

Plots of parton distributions as a function of Q@ at fixed z (figs IV.1-IV.7) illustrate
the general behaviour of these functions in the range of 10 GeV? < Q? < 10* GeV?. The
behaviour of heavy flavours (figs IV.4-1V.6) should be taken with some caution, because
of the threshold effects, which are included differently by different authors.

In summary, all discussed parametrizations behave similarly in the medium and large-
o region but differ significantly for small-z. Since the small-z region gives a large
contribution to the hadronic cross sections at high energy it is extremely important
clarify the situation here. HERA is especially suitable for this purpose since it extends

the accessible range of z down to z ~ 1074
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5.2 Structure function F,

It is of interest to compare the predictions of various parametrizations for the F, structure
function with data. As mentioned previously, the F can be determined directly from the
data as opposed to parton densities. and the predictions for F, should not depend on the
renormalization scheme. This means that the next—to-leading parametrizations obtained
within different schemes should lead to the same results for F3. In principle they should
describe the data with a better accuracy than the leading logarithiic parametrization
with a much lesser dependence on the scale parameter A.

In practice the situation is not so clear since different parametrizations follow different
fitting procedures and are based on different data sets. It is in general expected that the
parton parametrizations based on more precise data fitted with next—to—leading approach
should be of better quality.

The comparison between the predictions for the electromagnetic and weak F given
by parametrizations P1-P5 and the appropriate data is presented in figs VL1, VL2.
The interest of this comparison lies in the fact that those data, but for the EMC data,
have not been used in the determination of these parametrizations.

In figs VI.1a,b we present the F§™ from deep inelastic charged lepton interactions
and in figs V1.2a,b we show the F} as a function of Q? at several z values. A large spread
of data is observed, especially in the small z regions. The same is true for the predictions
of the different parametrizations. The spread in the experimental results is due to large
systematic errors and therefore makes it difficult to conclude which parametrization to
prefer. The band of the parametrization results overlap with most of the data. It seems
to be difficult to describe the behaviour of the neutrino data for the smallest z region
(z = 0.015). For both F§™ and Fj none of the predictions can reproduce the strong Q?
dependence shown by the data in the region of small Q* (Q? < 20 GeV?) and large z
(z > 0.5). This may suggest the necessity to include some additional mechanism such as
higher—twist effects.

The HERA experiments will provide information about the structure function in a
new domain of z and Q2. The kinematic limits will be extended enormously, reaching a
maximum square momentum transfer of Q% ~ 10* GeV? and z as low as 107*. Unfortu-

nately there will be no overlap region with the present day deep inelastic experiments.

28




6 Conclusions

The purpose of this note was to get more insight into the results of different parametriza-
tions of parton distributions in the nucleon, as obtained by various groups in a QCD
analysis of existing data. It is quite clear that the differences observed among those
parametrizations are due partially to the different approaches at the level of pertur-
bative QCD and partially to the different sets of available structure function measure-
ments. This can be seen in figs VI.1.2 where the F, structure function has been recon-
structed from the parton densities, following the prescriptions of the authors of various
parametrizations, and compared to the latest experimental results [20]. The differences
in slopes arise from the underlying QCD approximations. The difference in the overall
normalization depends on the set of data used for the determination of structure func-
tions. A comparison of the predictions for the F, and the data show clearly that there
is no way to choose objectively any of the available parametrizations as the inherent
differences are compatible with experimental uncertainties.

The size of the differences among various parametrizations of parton densities is
impressive enough as to take it seriously into consideration in those analyses which use
parton distributions as their input.
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Fig. 1.1a. The valence up quark distribution zu.(z.Q%) at Q* = 10 GeV'? as a function of z, for
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Fig. L.1b.  Comparison of the valence up quark distributions ruy(r.Q?) at Q* =
10 Ge\® obrained in various parametrizations: EHLQ1. DO1. MRS1. DFLM2.
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