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Preface

High energy accelerators are to provide us with new information on possible exten-

sions of the fundamental forces and/or fundamental constituents of matter. They pro-

vide us also with extensions of phase space domain where the predictions of the Standard

Model may be tested further.
Independently of the problem under consideration, one has to refer to the Standard

Model whether to test its validity or t o estimate its contribution äs background.

Although the Standard Model is rightly claimed to describe existing data, quanti-

tative predictions - especially those related to the QCD part, aro limited in precision.

Whenever in need of an estimation of a physical quantity (i.e. structure function, cross

section) from first prindples, one is faced with a choice of parton distributions, A pa-

rameters, evolution equations, threshold effects, etc..., not to mention structure function

defmition, radiative corrections and many others. Because of the variety of existing data

and approaches to extract information from measured physical quantities, it is extremely

hard to make an objective choice.

The purpose of our activities is to create a program which allows to calculate inclusive

differential cross section for ep scattering in the most genera] approach, so äs to match

the future experimental observations.' In doing so, we must access the proton, electron

and photon structure functions, parton-parton and photon-parton luminosities äs well

äs cross section formulae for all the various processes that build up the ep total cross

section.

In our approach we decided to collect "all" the available information, äs to be able to

estiniate the systematic (shall we say theoretical) error of our cross section calculation.

We have encountered many problems in understanding the consistency of various

approaches {i.e. leading order or next to leading order determination and evolution of

parton densities), in the definition of parton densities beyond the leading order, in the

treatment of exceptional kinematic regimes (i.e. low z), in the treatment of threshold

effects, etc...

In this note and aD the ones to follow, we intend to report the present status of the

main ingredients that we need in the determination of physical quantities for ep scattering

at the HERA collider. Our final goal, that we liope to achieve at a certain point, is to

take into account the experimental conditions for the ZEUS detector, hoping that this

step will lead to a realistic estimation of observable physical quantities. Needless to say

that if we manage to achieve this goal, we should be able to propose a good strategy

for determining structure functions, in the accessible kinematic region. At HERA, this



region will be up to a maximum square momentum transfer Q2 ~ 105 GeV2 and down

to x ^ 1(T4.
In the first note, we report our investigations of various parametrizations of parton

densities for the nucleon. The next note, in preparation, will deal with the electron and

photon structure functions. In the near future we plan to consider parton luminosities,

kinematic limits, heavy quark thresholds. We also keep in mind the need to implenienl

radiative corrections. In parallel we want to investigate some aspects of small x physics

at HERA.



I. Parton distributions in the nucleon

Abstract

This is the fürst of a series of reports that we intend to present under a
cominon title of "Some topics in ep scattering at HERA'\s one deals
vvith a coinprehensive review of available parton parametrizations for the
nucleon.

l Introduction

High statistics experiments on deep inelastic scattering and experiments with hadron
hadron beams have been performed in the last decade giving detailed information on the
structure functions of the nucleon [l], This information was used to derive the indivldual
quark and gluon distributions in the framework of the QCD improved parton model
[2-9;.

Parton distributions play a basic role in studies of inclusive hadronic processes at
present and future ranges of energy. Their specific featuies determine the behaviour of
hadronic cross sections at high energies. Any reliable estimation of a possible signal of
new physics will also depend on these ingredients. Therefore it is very important to
realize what we know presently about parton densities and to what accuracy. The level
of uncertainty attached to the parton densities depends of course on the experimental
errors . Another source of uncertainty Js associated with theoretical methods used in
extraction of parton densities at some reference energy scale and in the calculation of
their evolution to higher energies, beyond those currently available.

A variety of parton parametrizations exist in the literature. They differ among them-
selves in many respects, which results in sets of parton distributions with quite different
features.

The largest-Variation can be observed for the gluon distribution which is partly due to
the fact that there is still no direct measurement of gluons at present experiments. This
uncertainty is getting even larger if an extrapolation over a wide kinematical ränge is
performed. And this is precisely what is needed in Order to describe high energy hadronic
processes which, äs we expect, are dominated by gluon initiated subprocesses.

Recent studies have pointed out the limitation of QCD calculations based on the
leading order analysis [5-10]. The inclusion of corrections beyond the leading ones, seems



to be necessary to make reliable predictions for future accelerator energies, especially in

such kinematic regions äs the one defined by small x. In the calculations based on

the next to leading order approximation one deals with quantities which depend on the

renorrnalization scheine. Therefore in order to obtain a meaningful result for physical

cross secüons it is necessary to proceed with care in a selfconsistent manner.

For all these reasons, it is of interest to make an extended comparisoii of parton

densities obtained according to the different parton parametrizations available in the

Hterature. The purpose of this paper is to present a useful review of the existing sets of

parton distributions and their comparisons in interesting kinematic regions. We would

like to pay special attention to the theoretical assumptions used in their derivations. We

would also like to clarify the experimental input used for individual parametrizations,

since it innuences the final results for parton distributions.

We have investigated the most populär parametrizations, listed below:

Pl. Duke and Owens (DO) J4j-sets 1,2

P2. Eichten, Hinchliffe. Lane and Quigg (EHLQ) [5]-sets 1,2

P3. Martin, Roberts and Stirling (MRS) [6j-sets 1,2,3 and [7]-sets E',B'

P4. Diemoz, Ferroni, Longo and Martinelli (DFLM) [8]- set l (FXAVER), set 2 (FXN-
LLA)

P5. Glück, Godbole and Reya (GGR) [I0]-sets 1,2.

We describe in details the assumptions underlying each parametrization. This will

allow to use them with understanding in a systematic and selfconsistent manner in future

applications. We present the comparison of parton densities obtained according to the

prescriptions Pl—P5 in a wide ränge of x and <?2. This can be used for estimation of

the uncertainty of the predicted hadronic cross sections due to the difTerent choice of

parametrizations of parton distribution functions. Last but not least it will also consti-

tute some reference for the experimental results still to come, on parton distributions

within nucleons, e.g. at HERA.

We start by defining the kinematic variables which appear in deep-inelastic scattering

(See. 2). Section 3 contains some general remarks on the QCD improved parton model

analysis of the structure of the nucleon. In sections 4 and 5 a detailed description of

parametrizations P l— P 5 and their comparison with each other is presented. Results of

this work are finally summarized in See. 6.
The Fortran code for calculathig parton densities according to prescriptions P l—P5

is available via BITNET from the authors ( FlPCHA at DHHDESY3).



2 Deep inelastic ep scattering

The inelastic scattering process

e + p — * / + * (1)

where / is the scattered lepton. and X Stands for the final hadronic state, can be illustrated
äs in fig. Dl.

P

Fig. Dl. The deep inelastic process ep —» IX,

The wavy line in the diagram denotes the exchanged vector bosons: 7/^° for neutral
current (NC) interactions and W^ for charged current (CC) interactions.

At fixed incoiiüng energy the kinematics of this process is determined by two in-
dependent variables only. From the experimental point of view the most natural ones
are: the energy (Ei] and the angle (#;) of the final lepton state. There are also other,
often used, variables. Let pf be the four-momentum of the incoming electron, p;-of the
scattered lepton and P that of the incoming proton. The total invariant mass squared
i s equal t o

5 = (Pe -r P)2.

The momentum transfer variable Q2 is defined so äs to be positive:

(2)

(3)

where '±:' nieans that the masses of the electron and the scattered lepton are neglected
(a good approximation at HERA energies).



The next variable, which can be interpreted äs the energy transfer to the final-state
hadronic system in the nucleon rest frame, is given by the relation:

P-q
v —

Mp " Mp
(Ee-Et cos2(0^2}) (4)

The dimensionless variables Bjorken-z and y are defined äs:

_ e

2P-q 2Mpv ~ Ep(Ee -E,cos2(6»,/2))

P- q 2P-q Ee-E,cos2(et/2)

The invariant mass W of the hadronic System takes the form

W2 ~(q-r P)2 = Q2!^ + Mp2. (7)
J

The physical region defined by M2 < W"2 < s implies some kinematic limits on the
variables defined above:

0 < x < l, 0 < y < l, 0 < Q2 < 2Mpv, 0 < v < (s - M*)/2MP (8)

In principle any two ofthose variables may be used for the description of deep inelastic
processes, but ( x , y ] and (z ,Q 2 ) are the most frequently used ones.

The cross sections for deep inelastic lepton-hadron scattering are commonly written
in terms of structure fuiictions which contain information about the internal structure of
the hadron. For example, the differential cross section for ep scattering mediated by the
neutral current is given in terms of the structure functions Fi.F%,F3 by the following
formula:

The above formula relating a to -Fj, F^i F$ suggests that measuring cross section is in
fact equivalent to measuring structure functions. The extraction of F, from the measured
cross sections is relatively straightforward although some technical difficulties have to be
solved, but those are not the orüy source of uncertainties innuencing the determinatiori
of structure functions. A more serious problem arises because of the radJative corrections
to the elementary upper vertex (see fig. Dl) , since those corrections change the relation



(9) between a and F;. Different approaches to radiative corrections used in the analysis

of deep inelastic experiments lead to different structure functions independently of the

initial data for cross sections. The determination of F, involves quite a lot of theoretical

ingredients in contrast to the otherwise directly measured a.

The structure functions F, depend on the process and in principle they may be very

different (e.g. in ep and vp scattering) and not directly related to each other. In the

quark-parton model they acquire an Interpretation and can be expressed in terms of

universal (process-independent) parton distributions.

A füll description of the structure of hadrons in the theory of strong interactions is still

missing. It is not possJble to obtain absolute predictions for Fj from first principles until

the confinement problem is solved. The quark-parton model äs well äs its QCD improved

Version describe only some aspects of the hadron structure which lead to relations between

F;, sum rules. asymptotic behaviour, etc. The QCD improved parton model predicts the

Q2-dependenre of structure functions, but the structure functions themselves have to be

determined from some experimental input.

3 Parton densities in the QCD improved parton model

The parton model has offered a first insight into the structure of hadrons. Ln this model,

in the infinite momentum frame, partons carrying a fraction x of the hadron (longitu-

dinal) momentuin are distributed in the hadron with densities which depend only on x

[12]. This scaling behaviour of parton distributions was observed in early deep inelastic

experiments [13].

More precise measurements have shown deviations from the above simple picture

based on the (naive) parton model. A new attempt to describe the hadron structure at

high energies led to the formulation of the so called QCD improved parton model, which

provides the framework for most studies of high energy processes at current and future

accelerators (see for example [14]).

In this approach partons-quarks and gluons are treated äs elementary objects of

the Quantum Chromodynamics (QCD) with the appropriate interactions. As a natural

consequence one has to take into account the creation and annihilation processes which

occur during the interaction of an external probe (e.g. virtual •), Z, or W in deep

inelastic scattering) with the hadron. In the deep inelastic scattering radiation of gluons

and qq pairs leads t o parton distributions which depend on Q2 - the virtuality of the

exchanged bosons (Q2 = —q2 > 0). These exchanged bosons (~,*, Z or W) play a role of



a "partonometer" with a resolution

Q'
(10)

The structure of hadron seen by the probe depends on the reference frame. It is greatly
simplified in the infinite momentum frame, where the hadron has large momentum. For
large Q2 partons from long chains of subsequent radiations can be "registered" by the
partonometer. There are many such partons and they are predominantly soft, since there
is little chance that after many decays, the final partons will carry large energy. The
partonometer with smaller Q2 sees rather few energetic partons from the early stage of

the parton cascade.
These features of parton distributions in the nucleon are described by the so called

ladder diagrams (fig. D2) which give a dominant contribution to the deep inelastic cross
section in perturbative QCD.

k %

Fig. D2. The ladder diagram describing ( in the physical gauge) the cross
section for the 7*9 interaction in the LLA. Four momenta of the virtual pho-
ton, the initial quark and exchanged partons are equal to q. p and fcj, ...,fcm

respectively. Gluons (quarks) are denoted by curly (solid) Hnes.The vertical
dashed line means that the amplitude M for the process 7*9 —• {partons}
(left part of the diagram) is multiplied by the complex conjugated one; M"
(right part), The cross section is obtained after the Integration of M\ over
the phase space allowed for the final particles.

The ladder diagram describes the development of one parton cascade interacting with a
partonometer. (Note that the probabilistic parton Interpretation requires the selection
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of a special gange}. The large contribution to the cross section or structure function at

large Q2 arises from an integration with respect to virtualities of products from sequential

decays with a strict order in a broad ränge of these virtualities:

k\\ k\ < € . - - « [*Ll! - *n-ll « \l - *n.L « l?' t11)/i2

where we have introduced the numbering of the decay products (momentum) *•, from

i - l to n; p is the momentum of the original quark, /;2 is a characteristic value of

virtuality above which a, may be assumed small, thus justifying the applicability of

perturbation theory. The quark interacting directly with the photon is the one with

momentum kn.

For the longitudinal momentum fractions Xi we have

xp - l > zi > x2... > xn = x. (12)

The leading contribution for large Q2 and z ~ 0(1) obtained in this way is of the type

where r — 0(1) means that x may be small but not too small, say 10~2 < x < 1.

The procedure which relies on keeping oiüy these dominant terms is called the leading

logarithmic approximation (LLA) (see [14,15]). The logic of this approximation lies in se-

lecting diagrams that contain the maximum power of In Q 2 in every order of perturbation

theory *. More predsely, for small QS we have

2l < l, ^M1)«!, 2 i ln(^)~l (H)
7T 7T Z 7T jU^

and all terms of order (of hi(Q2/^2))n must be taken into account. This means, that in

fact not QS, but a, ln(Q2/^2) becomes the real expansion parameter of the theory. This

parameter is not small and could be even bigger than .1. Therefore, äs we have mentioned

above, we have to- sum all terms containing this parameter and there exist appropriate

methods [15] to do it to all Orders.

So far we have discussed leading logarithmic terms depending only on Q2, since the
other kinematic variable appropriate for deep inelastic scattering - x is large, x ~ 0(1).

'in a field theory with massless gaugc bosons the maximum power of logarit.hms in each order of
perturbation calculations, is equal to 2: a, In2 Q2. These so called double logarithmic terms arise in very
specific physical situations and do not appear in the ctoss section for deep inelastic scattering.



Deep inelastic scattering at very small x (x < 1) and large Q2 requires similar

treatment of InfQ2///2) and ln(l/z) [16,17]. Keeping the leading logarithms of l/z (i.e.

(a, ln(l/x))n) leads to the leading logarithmic approximation in x - LLA(x) (in contrast

to the previous one which could he called LLA(Q2)). In the kinematic region of small

x double logarithmic contribution of the type (asln(l/z)ln(Q2/V2)) appear äs well.

They will arise from ladder diagrams with strong ordering in virtualities and in Xj

l > xi » a - 2 . . .x n_i >> xri - x. (15)

We would like to discuss in this paper leading and nexl-to-leading logarithmic terras for

the deep inelastic scattering for x — O(l) , postporüng the detailed discussion of small x

for a further note. Therefore we will always use the names: leading and next-to-leading

in respect to logarithms of Q2 without further explanation.

In our discussion of deep inelastic scattering we discard all corrections due to parton

and target masses and other so called higher twist efFects which are expected to have

(v2/Q2)n (n ~ Ii2,...) behaviour, and should vanish for Q2 —* oo.

To make our language more transparent for non-experts we would like to compare

difFerent approximations used in the perturbative calculations in QCD or in QED. For a

physical quantity R which depends on Q2 and some other variables

• the calculation of fixed Order corrections means that we calculate the following

terms in sequence

R = R0(a°3 + a]R! + a]R2 + ...) (16)

and keep the terms up to appropriate order. The first term is called the lowest or

Born term. Then the first and the second order corrections appear. Äj, J22,... are

functions (usually very complicated ones) of Q2 and other variables.

• the leading logarithmic approximation means that we keep all terms of the

type <lnnQ2:

R = R0(a°s + a] ki Q2R^ + a] In2 Q2R2 + a* In3 Q2E3 + ...) (17)

• the next-to-leading logarithmic approximation leads in addition to the series

of terms a" In""1 Q2, and up to next-to-leading logarithmic accuracy we have:

R = R0(a°a + a](lnQ2R, + R() + aj(ln2 Q2R2 + InQ2^) + ...) (18)

(all leading and next-to-leading terms must be summed).

10



• the double logarithmic approximation is based on the following perturbation

expansion:

R = R0(a°s + a] In2 Q2^ + a] In4 Q*R2 + a'ln6 Q*R3 + ...) (19)

where the sum has to be performed to all Orders.

In all above formulas functions R^R'^R, do not depend on Q2.

Going beyond LLA means taking into account also less dominant terms, e.g. NLL,

NNLL corrections. This structure of higher order corrections is presented graphically in

fig. D3.

InV In'Q1 ln2Q2 ln3Q2

Fig. D3. Stmcture of perturbative corrections. The horizontal lines show
the fixed order corrections. The leading logarithmic corrections LL are
represented by the inclined line. Lines showing the next-to— leading NLL,
the next-to— next~to-leading corrections NNLL, are parallel to the LL
line. Arrows indicate that the whole series has to be summed up ibr LL, NLL
and NNLL approximations: ^,a^]nnQ^ ^ajln"-1 Q2 and f>? In"'2 Q2,
respectively.

There is another widely used terrninology which difFers slightly from ours. Instead of

leading logarithmic approximation one uses the name - the leading order (LO) approxi-

mation and the same for the next-to-leading terms.

3.1 Leading logarithmic approximation.

As we have discussed before, in the QCD improved parton model the parton densities

appear äs effective densities depending on the energy scale Q2.

11



For deep inelastic scattering the leading logarithmic approximation (LLA) means

that [14]:

1) The measured structure functions Fi(x,Q2) are related to the Q2 dependent parton

densities by the naive parton model formulae.

In the LLA the original scaling parton densities are replaced by effective Q2 de-

pendent densities:

,Q2) , (20)

where Ag(x ,Q 2 ) contains all leading logarithms. The relation to measured struc-

ture functions remains äs for the parton model, namely:

2F1(z,<?2) = Fi(x,Q*)/x = £^g(z,Q2) (2l)

or in a more compact form

f,(x^} = ?2(xtQ*) = 5>^(z,g2}, (22)

where we have introduced the notation [18]:

(^1,^2,^3) = {2F1,F2/x,_F13)- (23)

2) The Q2 dependent parton densities obey the first order (or in other words one-loop)

Altarelli-Parisi (AP) evolution equations 2 with first order (or one-loop) Splitting

functions P • ':

/: (24)
2?r

^pGg(y}^(y^Q ) + PGG(y)G(y,Q ) J (2o)

where ^(z,Q2) denotes a quark or antiquark distribution and G(x,Q2)-the gluon

distribution. The Splitting functions Pah(x/y] describe the probability for a parton

6 of momentum fraction y to emit another parton a with a fraction x/y of the

parent parton momentum. In the LLA these functions are given by [14]:

3

l - z)+ 2
(26)

!Thesc equations were introduced already in 1972 by V.Gribov and L.Lvpatov [15

12



= ±(l-2z + ts*) (27)

(28)

2

4 12-2=
3

JCG(*) = 6 L ~ ( l - ; ) + - - + - —- + — - iU( i - i ) (29)
L - 2}+ 18 ' J

with the distribution 1/(1 - ~)+ being defmed by

(30)
r0 (l - 5)4 Jo l - Z

The evolution equations (24,25) can be expressed in a more compact form äs

J A \ ' V ) _ J V ^ t / r p f l ) / \-|Q ^ f k ( x /^)2\\ l V 'J6 •* j4 V ' T- /' \

aflnQ^/A^) STT

where f ^ ( x , Q 2 ) is the distribution of parton a in hadron ^4 (here A — proton),
and the symbol ® means the convolution integral

In the LLA the running coupling constant is calculated by solving the first order (or
one-loop) renormalization group equation

with
/3o = ll-|jVyi (34)

where JVy denotes the number of flavours and A is the QCD scale. By using this approx-
imation one obtains from the experimental data (see for example [9])

ALO ^ 200 MeV. (35)

By solving equations (33,34) one obtains the first order running coupling constant, which
is equal to:

13



The solution of equations (24,25) together with formula (36) allow the computation of
parton densities at any scale Q* once the initial conditions are known.

FOT hadron-hadron collisions the LLA involves the convolution of cross sections for
hard subprocesses calculated in the lowest order of the perturbation series expansion (i.e.
at the Born level) with the Q2 dependent parton densities äs described above in 1) and
2). To be more specific, the basic formula for a generic high energy inclusive hadronic
process

AB ^ C X (37)

takes in the parton model the following form:

CX = /A® <*ab^cX & /B, (38)

where f^(fß) is the distribution function of parton a(fr) in hadron A(B), and a is the
hard scattering cross section for the partonic subprocess. In the QCD improv«d parton
model the cross section (38) is equal in the leading logarithmic approximation to:

LLA ® vZZx ® fB\LLA (39)

where /^ HA denotes the distributions obeying the ftrst order evolution equations (see
point 2) above) 3.

3,2 Next— to— leading logarithrnic approximation.

The importance of the next-to~leading logarithmic corrections arises at higher energies.
In the next-to-leading logarithmic approximation (NLLA) besides the leading terms,
also less dominant contributions of the type

a>"-1(Q:V) (40)

are taken into account.
The existing analyses of deep inelastic scattering beyond LLA are limited to order

a, corrections to the parton densities and to the Splitting functions. This means that we
have here

q(x) -* 9{z,Q2) - q(x) + Ag(x,C?2) (41)

3The terminology Used here is in some scnse misleading, since not all ingredicnts in (39) are really
calculated in LLA-for example, for the parton cross section we takc the lowest order fotntulae. One
should rather say that eq. (39) is obtained in the leading order approach within the QCD improved
parton model. The consistent application of the LLA cross section (38) should take into account the
logarithmic structure also for ä.

14



where now A<f(x, Q2) contains leading and next-to-leading logarithms, and

*tj (x>~rij v3*) + '' ' 2~ ij ( z) ' (^v

In the next-to-leading logarithmic approximation applied to the deep inelastic scattering:

1) the expressions for the structure functions fi(x,Q2) in terms of parton densities

deviate, in principle, from the parton model formulae. e.g. for J-^'

2) the evolution equations include additional next-to-leading contributions P/.' (second

order or two-loop Splitting functions) [14]:

U*\Sf / DI l l / .. \ - -o \F / T l l ^ l / \. ^ D / s\'4\e particular form of these next-to-leading logarithmic corrections depends on the

(renormalization and factorization) scheme or in other words on the deflnition of parton

densities. Going from parton model distributions to the effective ones by keeping the

leading logarithmic contributions is a well defined procedure. since the coefficients of

the maximum power of InQ2 in each order of at do not depend on the method of

calculations 4. It is a matter of convention or definition how many other terms, which

are less dominant from the point of view of the LLA approximation, are incorporated

into the "renormalized" parton densities beyond leading logarithms. Let us discuss this

point in more details, since it will play an important role in the forthcoming analysis.

The structure functions F,(x,Q2) (or .^(«jQ2)) are physical quantities which are

determined in deep inelastic experiments. They can not and do not depend on the

renormalization scheme used in the theoretical calculäüons. It is the quark or gluon den-

sities which, äs theoretical objects, have to be defined somehow and which are sensitive to

the details of the calculation methods. In the QCD improved parton model we Interpret

structure functions in terms of parton densities. Of course the relations between the data

of F{(x: Q2} and parton densities depend on the definition used for </(z, Q2) or G(z, Q2).

'On the other hand in the LLA there is a strong dependence of parton densities on the scale Parameter
A (scale ambiguity), which cannot be compensated by the other theoretical ingredients äs it happens in
the NLLA.

15



In the leading logarithmic analysis we are dealing with a scheme independent part of

higher Order corrections and therefore we do not have to worry about renormalization

scheme dependence. But for all next-to-leading considerations we inust proceed in a seif

consistenl rnanner in order to get predictions for physical cross sections.

For example, for the high energy process (37) the next to leading logarithmic approx-

imation requires the use of hard cross section a and parton densities defined in the same

scheine and ralciilated to a consistent order, since both of these ingredients arc scheme

(and scale) dependent. To be more precise-the hard cross section calculated up to first

order corrections should be convoluted with the distributioii function obtained in NLLA

(wi th second order Splitting functions):

f°- l o — !•>' order ,-, rb t Af\ ~ JA\NLLA ® <Tab~>cx ® JB NLLA (45)

1t is necessary to use here parton distributjons obtained according to the two-loop evo-

lution equations since only in this way leading and next-to-leading terms are evaluated

properly. In particular, at order as, the parton distributions will contain füll Ist order

corrections derived with the same accuracy äs a 5.

For consistency in the calculation performed in NLLA one should also use the ap-

propriate running coupling constant including two loop contributions. We will give the

NLLA formula for a, later.

One of the definitions [11] of parton distributions used in an analysis performed

beyond leading logarithmic approximation, is based on the requirernent that in terms

of the 'renormalized1 scale dependent parton densities q(x,Q2}, the naive parton model

formula holds for the structure function ^(x, Q2) with no corrections proportional to

a.(Q2) =
^2(z,Q2) = F 2 (x ,Q 2 ) /z - J>^(z,Q2) (46)

with the following relations between bare (parton) and renormalized quark densities:

where fq^ and fc^ are so called constant (i.e. independent on Q2) terms. Other structuxe

functions receive as corrections. For example, in terms of these densities, the electropro-

5The more consistent treatement of all next-to—leading logarithmic corrections will require calculation

of NLL terms also for er (see the footnote on page 13, where this point is discussed for LLA).

IG



duction structure function ^i(x,Q J) may be written äs

*, Q2) + «-A/, + 0(aJ), (48)- V^= L,
9,3

A/i ' y v" L ' y y

where

? ( * , < ? * ) . (49)

This definition, called the DIS scheine, is a very natural one for quark densities since a
large fraction of the Information on the structure of nucleons comes from measurements

of ^2 in deep inelastic scattering experiments. It has also further theoreücal advantages.
For the gluon distribution DIS does not offer any appropriate definition. Usually,

together with the above convention for quark distributions, one fixes the gluon density
beyond the LLA by demanding momentum conservation:

(50)
/ J

It has been stressed (see, e.g. [8,14]) t hat the definition of the gluon should be taken from

some strong interaction process, for example the two jet cross section in hadron—hadron
collision, which is not measured yet precisely enough.

The other convention or renormalization scheme for parton distribution beyond LLA
is called universal or MS renormahzation scheme since it is based on the modified minimal
subtraction scheme [19]. In this approach no specific process or quantity is favoured. In
all of them there are corrections of order a3 (or higher) to the naive parton model
formulae. The applicability to all orders of perturbation expansion is straightforward6.
In this scheme one obtains the second order coupling constant:

(51)
47T -ß

where ct3 ( Q 2 } h the first order a, given by eq.(36),

ßl = 102- 38Ar//3 (52)

and
A^ = 300 MeV. (53)

The second order MS Splitting functions can be found in rcfs [19,1l].
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4 Parton parametrizations

In order to describe the hadronic processes at high energies it is necessary to know

the individual parton distributions äs functions of x and Q1, Since theory does not

glve absolute predictions for parton distributions, they have to be obtained from some

experimental input and then the AP equations allow to determine those parton dis-

tributions at aity O~. even not accessible experimentally. However partoit distribu-

tions are not directly measured in the experiment; jt is the structure functions or

hadronic cross sections t hat are measured. although in a limited ränge of x and Q2

(0.015 < x < 0.75,0.5 < Q2 < 250 GeV 2) . Individual quark and gluon distributions in

the nucleon may be usually determined in a simple analytical form from those data with

some additional experimental and theoretical information.

The purpose of parametrizing the evolved parton distributions is to provide the user

with an easy access to the Solutions of the AP equations in any kinematic region, including

the one covered by the experimental data.

Several such parametrizations with analytical approximations for parton distribu-

tions are available, for example the DO and EHLQ ones. In other parametrizations the

resulting parton densities are in the form of (x^Q2) grids with Interpolation, e.g. the

MRS sets.

The parton parametrizations presented in this note have beeil obtained in two dif-

ferent approaches and with different sets of available data. One of the approaches is to

introduce the parton distribution at the level of the global fit. It means that the struc-

ture functions are parametrized at some reference value Q$ and then evolved numerically

in Q2 through the AP equations in the kinematic regions where they are measured. A

global fit is then performed to determine the best values for the starting parameters,

äs well äs for the QCD scale parameter A. A by-product of these fits performed on

the singlet structure function _F2 is a parametrization of the gluon distribution at the

reference scale Q$. Because deep inelastic scattering does not constrain significantly the

gluon distribution, a large variety of gluon behaviour is proposed in the literature. The

Parameters descnbing the gluon distribution are usually strongly correlated with the A

value obtained from the fit. It is a matter of taste which parametrization of gluon dis-

tributions is chosen—typically a "hard" or a usoft" one, each with its own A value (see

for example the MRS parametrization}. This is the approach of DO and MRS.

The other approach, e.g. the one of EHLQ and DFLM is to take the parametrization
of structure functions äs obtained in various experiments and disentangle the contribution
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of parton distributions at a reference Q% value. The evolution is then independent of the
data, and relies on the A value and gluon distribution äs determined from the original

fit.
A very compreherisive discussion of the influence of various assumptions used for the

evolution and the determination of structure functions, and the impact of systematic

uncertainties on the parametrizations is given by Wu-Ki Tung et al. in [11]. A weak

point of all the global parametrizations is that they include systematic errors in an

approxiinate way, or not at all, since the experimentalists are the only ones to know the

point-to-point correlations which are of prime importance for the slopes of structure

functions. The relative normalization of various data is another source of uncertainty

and i t is a question of taste which data to trust. This influences directly the overall

normalization of parton densities.

All in all, part of the disagreernent observed in various parametrizations is certainly

due to the choice of data. It makes it. even more interesting to look at the results,

since the observed differences are a measure of our knowledge and caniiot be sorted out

without additional new data, which hopefully, thanks to the tremendous theoretical and

experimental effort, will allow us to explore new domains with less uncertainty.

4.1 Duke-Owens (DO)

This is a leading order (LO) type of parametrization. It is a simple, convenient one -

available in a compact, analytic form. In the fitting procedure at the reference scale QQ =

4 GeV2 the following deep inelastic data were used: SLAC'79, CDHS'83 and EMC'81,

äs well äs dimuon: CFS'81, ISR'82 and J/*'79 data. Because of systematic overall

normalization disagreement between different data sets, all of them were renormalized

to the EMC'81 data. In addition, cuts of x > 0.1 and Q2 > Q\e imposed. The other

assumptions were:

• NJ — 4, i.e. bottom and top quark distributions were not provided;

• the charm coritent at the reference scale was neglected: c — c — 0 at Ql\ an 5£7(3) Symmetrie sea was assumed, i.e. the stränge quark distribution s(x) was

set, equal to the light sea distribution,

Two sets of parton distributions are provided, corresponding to different shapes of the

gluon distribution and consequently different values of aä(A):
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Set l (soft) with A = 200 MeV and xG(x, Ql) - (l + 9z)(l - xf;

Set 2 (hard) with A = 400 MeV and xG(x,Q20] - (l + 9z)( l - x}\e O2-dependence enters into formulae for parton distributions through the variable

5 = lnlln(Q2 /A2)/ ln((?g/A2)J

which varies slowly with changing Q2. The valence quark distributions are expressed in

the form:

x(uv + d v ) = Awz^l - ZPU + lud*)

xdv =Ndx'*(l-xy*(l+idx)

while sea and gluon distributions are parametrized äs follows:

Axa(\ x)b(l 4- dx + /3z2 + 7z3).

All parameters appearing in the above formulae are polynomials in s up to the 2-nd
order.

The ränge of applicability is äs follows:

0 < x < l

4 GeV2 < Q2 <- 106 GeV2.

According to the authors the accuracy is

at a few-percent level for Q2 up to about l TeV2 for the bulk of the x ränge

from 0 to 1. The only exception to this is for the gluon and sea di'stributions
at large x values where the distributions are already extremely small,

4.2 Eichten-Hinchliffe-Lane-Quigg (EHLQ)

This is also a leading order (LO) parametrization. Primarily CDHS'83 data were used in

the fitting procedure at the input scale Ql = 5 GeV2. The Integration of the evolution
equations was performed nuinerically, therefore no füll ränge of x was required. The

parametrization is based on the expansion in terms of orthogonal polynomials P n ( y } -
The small x region, which is very important for applications at high energies, was treated
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separately. For this reason the x ränge has been divided at x — 0.1. For x > 0.1 the
distribution functions were parametrized äs

For smaller x (r •-'. 0.1). polynomials in ln(x) were used instead of polynomials in x.
Depending on the shape of the gluon distribution, there are two sets:

Set l (sof t) with A = 200 MeV; xG(x,Ql) -< (2.62 4- 9.17z)(l - a')5'9;

Sei 2 (hard) with A = 290 MeV; xG(x,Q%) - (1.25+ 15.57x)(l - a1)6'03.

This parametrization provides parton distributions for Nj = 6. At QQ = 5 GeV2 heavy
quarks (c, b, t) are neglected and the value of A has been determined for JV/ = 4.
Distributions of heavy quarks above their production threshold Q2(l — z } j z > 4rn2 were
obtained by including explicit heavy quark mass dependence in the corresponding gluon
to quark Splitting functions. The masses of the heavy quarks are: Mb — 5.5 GeV and
Mt = 30 GeV. The ränge of applicabiüty is äs follows:

10~4 < x < l

5 GeV2 < Q2 < 108 GeV2.

4.3 Martin-Roberts-Stirling (MRS)

This parametrization uses next to leading order QCD (NLLA) in the MS scheme.
The original version [6] was based on EMC'85,'86,'87 data, together with those from
CDHSW'86 and CCCFE.R'84 with appropriate renormaljzation (of order 10 %). It con-
sist of three sets that differ in the form of the gluon distribution at the reference scale
Ql = 4 GeV2, where Nf = 3:

MRS1 (soft); xG(x, Ql) - (l - x)5 and Aj^ = 107 MeV ;

MRS2 (hard); xG(x, Q20) - (l - x) 4 ( l + 9z) and Aj^ = 250 MeV;

MRS3 l x ; xGx,Q^ l ^ x l - x4l + 9x a n d A - 1 7 8 MeV.

In addition, the sea is 5?7(3) Symmetrie i.e. xq — xü — xd — xs — xs.
Recently [7] the authors have refmed set l (MRSl), using the BCDMS data instead

of the EMC ones. They found that neutrino (CDHSW'86) and muon (BCDMS'87) data
are compatihle-no renormalization of the former is needed. New sets, including either
EiVK"86.'87 or BCDMS'87 data, were derived:
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MRSE' with Ajy^ = 100 MeV;

MRSB' with A^£ - 200 MeV.

In the fitting procedure, for both sets of parton parametrizations also the new NMC'88
measurements of F2n/F2p, äs well äs neutrino (CDHSW'86, CFRR'88) and dimuon (E605'89)
data were used. The gluon distrlbution at Q$ = 4 GeV2 is taken to be: x G ( x ^ Q l ) -
(l - z'}4 '4- For the bottom quark a fixed threshold in Q2 at 4Aff)2 = 100 GeV2 for all x is
assumed. The ränge of appUcability is äs follows:

10~4 < x < l

5 GeV2 < Q2 < 1.31 *106

The authors conclude that

... the comparison with DreM-Yan data appears to favour the 'BCDMS'
parton distributions (i.e. MRSß'J.

4.4 Diemoz-Ferroni-Longo-Martinelli (DFLM)

This parametrization consists of several sets of parton densities corresponding to different
assumptions concerning the input parton densities (uncertainties from deep inelastic
data) and to different order of perturbative QCD calculations (LO or NLLA). The next-
to-leading order Version of this parametrization is formulated in the DIS scheme. As
input for the QCD evolution of the gluon, the valence and the sea densities, the data
from the neutrino experiments: BEBC'85, CCFRR'83, CHARM'83 and CDHS'83 at
Qv — 10 GeV2 were used. There are some specific assumptions:

• dv/Uv = 7-(l — y-)-, where T was fitted to be r = 0.57;

• s = 0.2(ü + d) = 0.4ü;

In the evolution procedure, corrections due to threshold effects for heavy flavours were in-
cluded. Particularly, at Q$ charm threshold was already opened (JVy — 4) but c(x,Qo) fe

0. Masses of the heavy quarks are äs follows: M^ - 4.5 GeV and Mt ~ 40 GeV. The
heavy flavour distributions are valid only for values of Q2 larger than the threshold
(Q2 > M£) in spite of the fact that this parametrization rnay give in any case results
also for lower Q2.
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Depending on the order, in which QCD evolution was performed, the authors favour

two sets:

FXAVER (LO) with A^ = 200 MeV;

FXNLLA (NLLO) with A^ = 300 MeV.

The parton densities are available in the following ränge:

5. * 10"5 < x < 0.95

10 GeV2 < Q2 ' 108 GeV2 .

4.5 Glück-Godbole-Reya (GGR)

The last parametrization discussed here provides two qualitatively different sets. The
first one, GGRl. has been evaluated dynamically using the assumption that at some
low resolution scale the nucleon consists of valence quarks only. The valence quarks
in turn generate radiatively the gluons and the sea quark pairs, and their distributions
are described by the leading-order Renormalization Group evolution equation. In this
scheme only input valence densities UV(X>QQ) and d v ( x ^ Q ^ ) are required and they are
taken the same äs determined by DFLM at Qo — 10 GeV2. The resulting predictions for
G(z ,Q 2 ) and qtea(z-,Q2) do not involve any additional assumptions.

The second set. GGR2, was produced in the conventional manner, i.e. with input
G(x, QQ] and q ( x , QQ) distributions (takenfrom [8]). At the input scale the stränge quark
distribution was taken to be s — s = OAü.

In the Q2 evolution for both of these sets only three light (Nf — 3) flavours were
included. The distributions for the heavy quarks h ~ c,b,t were calculated from the
formula:

which gives a good description of processes involving heavy quarks for Q2 > 100
This parametrization is valid for:

i 5IQ~° < x < 0.95

10 GeV2 < Q2 < 106 GeV2 .

As was pointed out in [10]:



... the dynamically predicted G(x,Q2) and q ( x , Q 2 ) turn out to be much
steeper and larger in the very small x region (x < l(P2j than the conventionaJ

distributions.

The two sets differ distinctly in the predictions for Ff in the low-z region. Recent
preliminary data from the EMC collaboration (EMC'89) support the results of the con-
ventional one.

5 Results of different parametrizations

5.1 Parton densities

Before we start a detailed comparison of predictions of various parametrizations some
words of caution are needed, since parton densities are not physical observables and
additional theoretical assumptions have to be used in their determination. All existing
parametrizations can be divided into two main groups depending on the approach used
- LLA or NLLA. It is in principle meaningless to compare parton densities obtained in
NLLA in different renormalization schemes since they are not physical observables. Only
after convolution with hard processes cross sections, which also depend on the scheine,
one obtains scheme independent predictions for physical quantities. For example, the
proper formula for the cross section would be ( schematically )

fjfg ® °w$- t54)

On the other hand there is a unique transformation of one set of quark distribution
functions into another one, defined in a different manner, e.g.

ä(«)« (55)

where C^ and Cg are known coefficients. Only after this transformation, a proper com-
parison between different parametrizations can be made (see for example [11]).

There are also objections against the procedure in which one uses distribution func-
tions obtained in the NLLA, but with the lowest order (Born) expressions for v in the
prediction for hadronic cross sections:

o- = f NLLA ® ö-ßorn (wrong). (56)

Although not all of the existing approaches are theoretically consistent, they have been

used in many applications. Therefore it seems to be useful to esümate the actual size of
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the difFerences between the commonly used schemes for various parton distributions in
important kinematic regions.

The significance of the second order evolution in the small z region was pointed out in
Ref.j 11 i. Therefore it is of interest to compare the LLA approach with the NLLA in order
to gain confidence in the predictions at high energies. A very useful comparison has been
made in Ref.[l l] , where the results of difFerent evolutions (leading and next-to-leading)
are presented with a fixed input parametrization.

Now we will start to present the predictions of parametrizations Pl—P5 for parton
densities of the proton for 10 GeV2 < Q2 < 104 GeV2 and for 10~4 < x < l. The
ar-dependence of parton distributions is compared at Q2 ~ 10,100 and 104 GeV2 and is
shown in figures I.1-I.8, I1.1-II.9 and II1.1-III.10, respectively. In figures IV.1-IV.7 the
Q2-dependence of parton distributions is presented only in the DFLM2 parametrization
at fixed values of x = 10~4,10"3,10~2,10"1. After the main part of OUT study was
nnished, a new MRS parametrization appeared (MRSE' and MRSB') which difFers sub-
stantially from the older ones. In the figs. V.1-V.6 we compare the previous predictions
of the MRSl parametrization with new MRSE', MRSB' versions for parton distributions
at Q2 = 10,102,103,104 GeV2.

The individual parton contributions, i.e. the valence up quark at Q2 ~ 10 GeV2, are
presented in the way which allows to compare the difFerent sets within each parametriza-
tion P1-P5 (see four Windows in fig. I.la). In a separate picture the comparison is made

for the same parton distribution of the difFerent parametrizations P1-P4 by taking the
set favoured by the authors (see fig. I.lb). We take usually the DOl, EHLQl, MRSl
and DFLM2 parametrizations äs a representative sample. In this "mixed" picture we do
not include the GGR parametrization since it is shown in the previous figure (window
4) together with the DFLM1,2 parametrizations. From this comparison one can easily
figure out some of the specific features of difFerent parametrizations.

This method of presentation was used for all distributions at Q2 — 10,102,104 GeV2.
In figures I-II1 the x-dependence of respective parton distributions at each value of Q2

is shown äs follows:

• valence up quark xuv(x,Q2}—figs.: I.la,b, II.la,b, III.la,b;

• valence down quark xdv(x, Q2]— figs.: I.2a,b, II.2a,b, III.2a,b;

• light sea xu3(x,Q2) = xda(x,Q2) = xü(x ,Q 2 ) = xd(x, Q2)—figs.: I.3a,b, II.3a,b,



• Strange quark xs(z,Q2)—figs.: I.4a,b, II.4a,b, III.4a,b;

• charm quark xc(x, Q2)—figs.: I.5a,b, II.5a,b, II.5a,b;

• bottom quark z&(x,Q2)—figs.: II.6a,b, III.6a,b;

• top quark xt(x, Q2)— figs.: II1.7a,b;

• gluon xG(x,Q2}—figs.: I.6a.b, I1.7a,b. II1.8a,b.

The ratio dvjuv is compared for the representative sets of the parametrizations in figs.

1.7, II.8, III.9a,b. For one particular parametrization-the DFLM2, the compahson of the

valence quarks, the sea and the gluon content of the proton is presented in figs. 1.8, II.9,

III.10a,b. Note that for higher energies we used both linear and logarithmic scales.

The valence quark distributions xuv and xdv peak at x around 0.15 for Q"2 — 10 GeV2

(figs l.lb, I.2b). The position of the peak difFers slightly for different parametrizations.

The differences in the height are much bigger. The same may be observed at higher

Q2. There is an expected shift of the position of the peak towards smaller values of

x with increasing Q2, e.g. for Q2 = 104 GeV2 the peaks in xuv and xdv occur at

x < 0.01 (figs III.Ib, III.2b). The biggest value of xuv at the peak is predicted by the

EHLQl parametrization and the smallest by the DOl. For xdv the Situation is reversed.

Predictions given by other parametrizations lie between these two.

The plots for light sea distributions show that the EHLQ parametrization predicts

lower values than the other three-especially at very small-x.

Large differences may be observed in the stränge quark distributions (see figs I.4b,

II.4b). For lower Q2 — 10 GeV2 the EHLQ and the DFLM parametrizations give similar

results whereas MRS1 is close to DOl. This is due to the underlying assumption of

xs = xü = xd in the latter ones. At higher Q2 they start to split up leading to a factor 2

difference between MRSl and EHLQl at (x,Q2) = (10~4,102 GeV2). For MRSE', and

especially MRSB', the difference is much smaller (fig.V.3).

The charm distribution for Q2 = 10 GeV2 is rather large at small x in the MRSl

parametrization—much larger than in the EHLQl. But MRSE' gives smaller values

(fig.V.4). At this scale the charm distribution in the DFLM parametrization is negligible.

At higher Q2 DFLM2 and MRSl tend to give similar results, a bit bigger than EHLQl.

Predictions of the DO parametrization with respect to other ones vary quite much for

different Q2.

The bottom quark distribution is not parametrized in the DO sets and for the EHLQ

it is negligible at Q2 ~ 102 GeV2. The predictions of the MRSl and DFLM2 parametriza-
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tions differ at this scale very much—by a factor of 9 at x = 10 4 (and by a factor of
22 for MRSE'). It is mainly related to the different assumptions concerning threshold
effects.

For the top quark distribution there are only results in the EHLQ, DFLM and GGR
parametrizations. As is seen from fig.III.7b, DFLM predicts bigger values than EHLQ.

As we expected. very different answers for the gluon distributions can be obtained
even within ihe saine parametrization. At larger Q" the differences become more trans-
parent ( f igs Il.Tb, III.8b) since we enter here the small x-region. This region is par-
ticularly sensitive to the type of analysis: leading or next-to-leading Order. We would
expect (see Tung paper [11])

that the well known rapid growth of the gluon distribution at small x seen in
the usual leading order will be dumped by inclusion of next to leading terms.

This can be seen in the comparison of the EHLQ and the DFLM gluon distributions. As
for the MUS behaviour, an error recently was found in this parametrization ([7]) which
affects the x < 10~2 region. So the correct behaviour of this parametrization (especially
in the small-x region) for the gluon äs well äs for other distributions should be invoked
from figs V.1-V.6.

The comparison of the dv/uv ratio (figs 1.7, II.8, III.9a,b) shows that different assurnp-
tions concerning valence quark distribution at the input scale Q% lead to large differences
in this ratio. For example, at Q2 -. 104 GeV2 the two extreme distributions(EHLQl and
DO1) differ by a factor of 4 at x = 10~4.

Finally, we compare valence, sea and gluon contributions to the proton structure
functions in the DFLM2 scheme. At Q2 — 10 GeV2 the first crossover between valence
and sea distributions occurs at x ~-> 0.05, the second one between the valence and gluon
terms may be seen at x — 0.2 (fig.1.8). With increasing Q2 the first crossover shifts to
larger values of x, whereas the second one to smaller x (figs II.9, ILlOa).

Plots of parton distributions äs a function of Q2 at fixed x (figs IV.1-IV.7) illustrate
the general behaviour of these functions in the ränge of 10 GeV2 < Q2 < 104 GeV2. The
behaviour of heavy fiavours (figs IV.4-IV.6) should be taken with some caution, because
of the threshold effects, which are iiicluded differently by different authors.

In summary, all discussed parametrizations behave similarly in the medium and large-
x region but differ significantly for small-x. Since the small-x region gives a large
contribution to the hadronic cross sections at high energy it is extremely important
clarify the Situation here. HERA is especially suitable for this purpose since it extends
the accessible ränge of x down to x ~~ 10~~4.



5.2 Structure function F2

It is of interest to compare the predictions of various parametrizations for the .F2 structure

function with data. As mentioned previously, the F2 can be determined directly from the

data äs opposed to parton densities. and the predictions for F2 should not depend on the

rcnormalization scheme. This means that the next-to-leading parametrizations obtained

within different Scheines should lead to the samc results for _F2. In principle they should

describe the data with a better accuracy than the leading logarithmic parametrization

with a much lesser dependence on the scale parameter A.

In practice the Situation is not so dear since different parametrizations follow different

fitting procedures and are based on different data sets. It is in general expected that the

parton parametrizations based on more precise data fitted with next-to-leading approach

should be of better quality.

The comparison between the predictions for the electromagnetic and weak FZ given

by parametrizations Pl—P5 and the appropriate data is presented in figs VI.l, VI.2.

The interest of this comparison lies in the fact that those data, but for the EMC data,

have not been used in the determination of these parametrizations,

In figs VI.la,b we present the F%m from deep inelastic charged lepton interactions

and in figs VI.2a,b we show the F% äs a function of <?2 at several x values. A large spread

of data is observed, especially in the small x regions. The same is true for the predictions

of the dlfferent parametrizations. The spread in the experimental results is due to large

systematic errors and therefore makes it difficult to conclude which parametrization to

prefer. The band of the parametrization results overlap with most of the data. It seems

to be difficult to describe the behaviour of the neutrino data for the smallest x region

(x - 0.015). For both F2m and F% none of the predictions can reproduce the strong Q2

dependence shown by the data in the region of small Q2 (Q2 < 20 GeV2) and large x

(x > 0.5). This may suggest the necessity to include some additional mechanism such äs

higher-twist effects.

The HERA experiments will provide information about the structure function in a

new domain of x and Q2. The kinematk limits will be extended enorrnously, reaching a

maximum square momentum transfer of Q2 ~- 104 GeV2 and x äs low äs 10~4. Unfortu-

nately there will be no overlap region with the present day deep inelastic experiments.



6 Conclusions

The purpose of this note was to get more insight into the results of different parametriza-
tions of parton distributions in the nucleon, äs obtained by various groups in a QCD
analysis of existing data. It is quite clear that the differences observed among those
pararaetrizations are due pariially to the different approaches at the level of pertur-

bative QCD and partially to the different sets of available structure function measure-
ments. This can be seen in figs VI.l,2 where the jF2 structure function has been recon-
structed from the parton densities, following the prescriptions of the authors of various
parametrizations, and compared to the Jätest experimental results [20]. The differences
in slopes arise from the underlying QCD approximations. The difference in the overall
normalization depends on the set of data used for the determination of structure func-
tions. A comparison of the predictions for the F2 and the data show clearly that there
is no way to choose objectively any of the available parametrizations äs the inherent
differences are compatible with experimental uncertainties.

The size of the differences among various parametrizations of parton densities is
impressive enough äs to take it seriously into consideration in those analyses which use
parton distributions äs their input.
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Fig. I.2a. The valence down quark distribution id^(x,O^) at Q* = 10 GeV2 äs a function of j. for
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10 GeV1 obtained in various paiametrizations: EHLQl. DOl. MRS], DFLM2.
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Fig. I.4a. The stränge quark distribution xs(r.Q^) al Q- = 10 GeV7 äs a function of i, for various
paiamelmations: EHLQl,2, DOK2, MRSl.2,3, DFLMl.2 and GGR.
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Fig. I.4b. Comparison of ihe stränge quark dislributions rs(i,Q3) at Q"1 - 10 GeV1

oblained in various parametrizaiions: EHLQ1. D01, MRSl. DFLM2.
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Fig. I.Sa. The charm quark djstribution rc(r.(?2) at O5 = 10 GeV2 äs a function of i, for various
parametrizations: EHLQ1.2, D0l,2, MRS1.2.3, DFLMl.2 and GGR.
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Fig. I.5b. Comparison of the charm quark disiributions ic(t,O2} at O1 = 10 GeV2

obtained in various paramelrizations: EHLQl. D01. MRSl. DFLM2.
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Fig. I.6a. The gluon distributjon rG( r ,Ö 3 ) at <?2 = 10 GeV3 äs a function of x, for vaiious
parametrizations: EHLQl.2, DOl.2. MUSl.2.3. DFLMl.2 and GGR.
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Fig. I.6b. Comparison of t h« gluon distributlons xG{x,Q2) at C?1 = 10 GeV2 obtained

in various parametrizations: EHLQl, DOl. MRS1. DFLM2.
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Fig. 1.8. C'oinparison of the vaJence quark distribuiion T[UB — rf„j, the sea quark distribution 2i\u +
d-s-f-rb+t] and the gluon distr ibut ion xG of DFLM2 parametmation at Oa = 10 GeV2
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Fig. II. Ja. The valence up quark distribution lu^/ .O^) al 0: - l O2 GeV2 äs a funetion of z, for
various parametriaaiions: EHLQl.2. D0l,2. MRSl.2.3. DFLMl.2 and GGR.
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Fig. II.Ib. C'omparison of the valence up quark distributions zvv(t,Q3) at. Q* -
IQ- GeV; oblained in various parametrizations: EHLQl, DOL MR.S1, DFLM2.
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Fig. II.2a. The valence down <juark distr ihulion zdv(r.Q*) at Q- ~ 10J Ge\'2 äs a function of z. for
various parametmations: EHLQl.2. D01.2. MRSl.2.3, DFLMl.2 and GGR.
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Fig. II.2b. Cornparison of ihe valence down quark dJstributions x t t j ( x t Q2) at Q'2 -
10! GeV2 oblained in various paramelrizations: EHLQl, DOl, MRSl, DFLM2.



xü(=xd) (Q2=100 GeV2)
EHLQ

.E -

.1 -

.0 .2

MBS
* l i—i—i—|—i—i—i—j—i—i—i—i—i—i—i

Fig. II.3o. The up(down) antjquark distribution r ü ( y . Ü ;](rrf( i . O 2 ) j at Q2 -~ 10: GeV3 äs a function
of f. for various parametrizations: EHLQl.2. DOl.2, MRSl.2.3. DFLMl.2 and GGR.
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Fig. II.3b. Comparison of t he up (down) antiquarli distributions xü(x,Q2) ( r d ( z , O 2 j )
al Q2 = 102 GeV2 obtained in various parametmations: EHLQl, DOl, MRSl, DFLM2.
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Fig. II.6a. The bonom quark distrjbution jb(i.Q-) at O: - l O1 GeV : äs a function of x. for various
parameirizations: MRSl.2.3. DFLMl.2 and GGR.
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Fig. II.6b. Coinparifon of the bottom quark distributions xb(t, O1) at Q'2 - 10" GeV
obtained in MRSl. DFLM2 parametrizations.
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Fig. II.7a. The gluon distribution xG(r.Q2} at O2 - 1ÜS G* V2 äs a furiction of r. for v&rious
parametmanons: EHLQl.2, DO1.2. MRSl.2.3. DFLMl.2 and GGR.
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Fig. II.7b. C'omparison of the gluon distributions iG(x,Q*) at Q3 = 101 GeV2 ob-
tained in various parametrizaiions: EHLQl, D01, MRSl, DFLM2.
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Fig. II.8. The ratjo for valence down and up quarks djstributions d^x.O2)/^!^1} at Q2 =
10! GeV2 predicled by various parametrizations: EHLQl. DOl, MRSl and DFLM2.

Fig. II.fl. Comparison of the valence quark djstribution z[u„ + <f„!, the sea quark djstribution 2r[ü -'-
£/-*-; t -rc + b+t] and the gluon djstribution f G of DFLM2 parametrization at Q2 = 103 GeV1.
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Fig. III.U. The valence up quark distribution xu u ( r .<? 2 ) at O: = 10^ OV: äs a funct ion of f . for
various parametrizations: EHLQl.2. D01.2. MRSl.2.3. DFLMl.2 and GCR.
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Fig. III.Ib. Comparison of fhe valence up quark dUtr ibu t ions xuv(x,Q ) ai <?! =
101 GeV1 obtained in various parametrizations: EHLQl. DOL MRSl, DFLM2.
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Fig. III.2b. Comparii-on of the valeiice down quark distributions x u j ( z ^ Q 2 ) at Q2 =
10* GeV* obtained in various parametrizations: EHLQl, DOl. MRSl, DFLM2.
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Fig. III.3b. Comparisonof t h e u p (down) aniiquark distribxiiions xü(x. O2) (zd(;r. Q 2 ) )

ai Q- = 104 GeV2 obiained in various paramemzations: EHLQl, DOl, MRSl. DFLM2.
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Fig. III.6a. The bottom quark distribution ib(r.(?!) at O2 = 10* GeV1 äs a function of r, for various
parametrizations: EHLQl.2. MRSl.2.3. DFLMl.2 and GGR.

Fig. III.6b. Comparisonofth« bottom quark distributions *&(z.<?2) at O"1 - 10* GeV2

obtained in various parameirizations: EHLQl, MRSl, DFLM2.
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Fig. III.8a. The gluon distrihution ?G(r.Q2) at O2 = 10* GeV2 äs a function of x, for various
parameimaiions: EHLQ l,2. DOl.2, MRSl.2.3. DFLM1.2 and GGR.
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Fig. III.8b. Compamon of the gluon distributions xG(r,QJ) at Q2 = 10* GeV2

obtained in various paramelrizatiems: EHLQl. D01. MRS1, DFLM2.
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Fig. III.9a. The ratio for valence down and up quarks distributions dv(x.Q*)/vv(x, t?3} at l?2 -
1)0 GeV1 predicied by various paramemzations: EHLQl, DO1, MRSl and DFLM2 — linear r-scale.

Fig. III.9b. The raiio for valence down and up quarks distributions d^x. O2 )/uv(x. Q2} at Q2 =
1)0 GeY; predicted by variou? paranieirizaiions: EHLQl. DOl. MRSl and DFLM2 — logarithinic
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Fig. IV.2. The Q7 evolution of ihe down valence quarlv distr ibution xd,:(x,Q2) in the
DFLM2 pararnetrization ai j- - 10~*. 10"3.10~2.0.1.
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Fig. IV.S. The Q2 e-volution of the light sea distribulion 2z(ü + d + *) in the DFLM2
parameinzation at r = 10"*.10"3,10"I.0.1.
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Fig- IV.4. The Q- evolution of the tharm quark distribution ic(z, Q2) in the pFLM2
paramelrization at x = IQ~4.IQ~^,10~2,0.1.
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Fig. IV.5. The Q* evolution of the boitom quark distribution z6(z,^2) in the DFLM2
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Fig. IV.6. The O7 evolution of th« top quark distribution xf(r.(?J) in the DFLM2
paramemzation at r = IQ~4,10~3,10~3. 0.1.
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parametrization at x = 10"4,10~3,10~2, 0.1.
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Fig. V.l. Comparison of the old (MRS1) and the new (MRSE' and MRSB1}
vfrsions of the MRS paramelrization for the up \-alence quark ru„(x,Q ) at
<?2 = 10,103,103,104GeV2.

Fig. V.2. Comparison of the old (MRSl) and the new (MRSE! and MRSB')
versions of the MRS parametrization for the down valence quark zd^z, Q1) at
Q1 = 10,102,103,104GeV2.
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Fig. V.3. Comparison of the old (MRSl) and the new (MRSE' and MRSB')
versions of the MRS parametrization for the up anliquark löfr,^?3) at Q =
10,102,103,10'1GeV3.
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Fig. V.4. Comparison of the old (MRSl) and the new (MRSE' and MRSB1)
versions of the MRS parametrizatioa for the charm quark ic(x,Q2) at Q2 =
10,102,103,10*GeV:.
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Fig. V.5. Comparison of the old (MRSl) and the new (MRSE' and MRSB')
versions of the MRS puametrization for ihc bottom quark xb(x,Q7) at Q3 =
10a,10s,10<G«V1.

Fig. V.6. Comparisonof the old (MRSl) and the new (MRSE' and MRSB') ver-
sions of the MRS parametrization for the gluon xG(x,Q1) at Q3 = 10,103,103,10*GeV*.
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Fig. Vl.la. Comparison between the predictions of parametrizations P1-P5 for Ff

and the data [20] for several values of i..
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Fig. VI.Ib. Comparison between the predictions of parametrizations Pl—P5 for F|'
and the data [20] for several values of z.
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Fig. VI.2a. Coinpanson between the predictions of parametrizations P1-P5 for F%

and the data [20] for several values of x. The data of EMC on iron and of BCDMS on

carbon are multiplied by 18/5.
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Fig. VI.2b. Comparison between the predictions of parametrizations P1-P5 for F%
and the data [20] for several values of x. The data of EMC on iron and of BCDMS on
carbon are multiplied by 18/5.


