•3

ŝ

• 3

Interner Bericht DESY D3 - 87 März 1997

63851

Ergebnisse von Strahlenschutzmessungen am Deutschen Elektronen-Synchrotron DESY im Jahre 1996

Strahlenschutz - Gruppe D3

- -

Jahresbericht 1996

Ergebnisse von Strahlenschutzmessungen

Interner Bericht DESY D3-87 März 1997

Inhalt:

- 1. Übersicht über den Beschleunigerbetrieb
- 2. Personendosen
- 3. Ortsdosen außerhalb von Beschleunigerräumen
- 4. Aktivierungen in Beschleunigerräumen
- 5. Überwachung von Luft und Wasser
- 6. Tabellenanhang

-

٠

4

•

Annual Report 1996

Results of Radiation Protection Measurements

Internal Report DESY D3-87 March 1997

Contents:

- 1. Schedule of accelerator operation
- 2. Personal doses
- 3. Side doses outside of accelerator rooms
- 4. Activated components in accelerator rooms
- 5. Control of released air and water
- 6. Annex of tables

.

•

.

1. Beschleunigerbetrieb

Die Beschleuniger wurden im Jahre 1996 von April (HERA: Mai) bis zum 23. Dezember betrieben. Zur Beurteilung der gemessenen Dosiswerte sind in Tabelle 1 die ungefähren Nutzzeiten (einschließlich Inbetriebnahme, Zeiten für Maschinenentwicklung und kurzen Unterbrechungen), aufgeführt.

Die beiden Elektronen-Testlinacs TESLA und S-Band waren 1996 noch in der Aufbauphase. Strahlbetrieb wird erst 1997 erwartet.

Beschleuniger	Betriebszeit in Tagen	Energie in GeV	Max. Strom oder akkumul. Ladung
DESV2 (mit Lin2)	246	4 4 / 7 0	16 m 4
DEST2 (mit $Em2$)	240	4,4/7,0	1,0 mA
DORIS	188	4,4	340 Ah
PETRA-e	58	12	35 mA
PETRA-e HASYLAB6	38	12	37 Ah
HERA-e	154	26	48 Ah
DESV3 (mit Lin3)	238	75	180 m 4
	230	1,5	
PETRA-p	[70	40	80 mA
HERA-p	154	820	96 Ah

Tabelle 1: Daten über den Beschleunigerbetrieb 1996

2. Personendosen

Die Messung von Personendosen für Mitarbeiter, die Kontrollbereiche betreten oder mit radioaktiven Stoffen umgehen ist gesetzlich vorgeschrieben. Kontrollbereiche sind definiert als Bereiche, in denen eine Person bei einem Aufenthalt von 2000 Stunden pro Jahr eine Dosis von mehr als 15 mSv erhalten kann. Bei DESY gibt es keine Arbeitsplätze (d. i. ein Platz mit der Aufenthaltsdauer einer Person von etwa 40 Std. pro Woche) in Kontrollbereichen. Alle Kontrollbereiche werden nur gelegentlich betreten (Aufenthalt «40 h/w).

Kontrollbereiche entstehen bei DESY durch

- 1. Gammastrahlung, die von radioaktiven Stoffen erzeugt wird. Solche Stoffe sind entweder Beschleunigerkomponenten, die beim Betrieb eines Beschleunigers aktiviert wurden oder kommerzielle Strahlungsquellen. Die Messung der Dosis erfolgt durch Filmdosimeter, die von der amtlichen Meßstelle in Hamburg-Altona geliefert und ausgewertet werden.
- 2. Neutronen, die als Folge von Strahlverlusten während des Betriebs entstehen und in geringem Maße die Abschirmung durchdringen können. Zur Messung werden Kernspurfilme verwendet, die vom CERN geliefert und ausgewertet werden.

Eine Meßperiode beträgt 2 Monate. Im Mittel wurden pro Meßperiode 1096 DESY-Angehörige und langfristig bei DESY arbeitende Gäste regelmäßig überwacht. Darin enthalten sind 40 Angehörige des EMBL und 29 vom MPI.

	Gamma- filme	Neutronen- filme
Anzahl der über- wachten Personen	1096	71
Anzahl der Personen mit Jahresdosen: < 0,2 mSv $\ge 0,2 \text{ bis} < 1 \text{ mSv}$ $\ge 1 \text{ bis} < 5 \text{ mSv}$ $\ge 5 \text{ bis} < 15 \text{ mSv}$ $\ge 15 \text{ mSv}$	1045 50 1 0 0	60 11 0 0 0
Summe der Jahresdosen in mSv	17,2	3,5

Tabelle 2: Jahresdosen 1996 von DESY-Mitarbeitern

Die untere Nachweisgrenze der Dosisfilme beträgt 0,2 mSv. Im Kalenderjahr 1996 wurden bei 51 Personen Gamma-Dosiswerte und bei 11 Personen Neutronen-Dosiswerte von 0,2 mSv und darüber festgestellt. Die Aufteilung der Mitarbeiter in verschiedene Dosisgruppen sind in Tabelle 2 aufgeführt.

Die maximal zulässige Jahresdosis beträgt für beruflich strahlenexponierte Personen der Kategorie A 50 mSv, die der Kategorie B 15 mSv (1996 gehörten zur Kategorie A 14 Personen). Von diesen Grenzwerten sind wir auch im Jahr 1996 hinreichend weit entfernt.

Die Gesamt-Gammadosis der Belegschaft, definiert als Summe der festgestellten Gammadosen größer als 0,2 mSv, betrug 17,2 mSv, die Gesamt-Neutronendosis 3,5 mSv. Die Entwicklung der Personendosen in den letzten Jahren ist in Abbildung 1 dargestellt. Bei den Gammadosen ist ein Trend ist nicht zu erkennen. Der Mittelwert hat sich bei 21 mSv ($\pm 15\%$) eingepegelt. Die Neutronendosis ist seit Betriebsbeginn von HERA zunächst angestiegen und seit 1994 wieder gefallen, was auf zunehmende Erfahrung und Verbesserung von Abschirmung und Strahlführung zurückzuführen ist. Der Mittelwert der Gesamtdosis liegt seit 1991 bei 32 mSv ($\pm 10\%$).

Außer den permanenten DESY-Mitarbeitern wurden für kürzere Zeit 3135 Filme an Gäste (z. B. Angehörige von anderen Instituten oder von Firmen) ausgegeben. In 6 Fällen waren die Dosen ≥ 0.2 mSv; sie lagen alle unter 0.4 mSv.

Insgesamt 24 Mitarbeiter und Angehörige des MPI und des 2. Physikalischen Instituts erhielten auf Wunsch **Fingerringe** mit 2 Thermolumineszenz-Dosimetern zur Messung der β - und der γ -Handdosis. Alle Jahresdosen lagen unter 2,3 mSv. Die maximal zulässige Handdosis beträgt 500 mSv/a.

Die Daten werden gemäß den gesetzlichen Bestimmungen 30 Jahre lang bei D3 aufbewahrt.

Kollektivdosis-Entwicklung

Abbildung 1: Entwicklung der Gesamtdosis der DESY-Belegschaft seit 1991

3. Ortsdosen außerhalb von Beschleunigerräumen

3.1 Passives Überwachungssystem

Die Ortsdosis in zugänglichen Bereichen wird mit integrierenden Festkörperdosimetern gemessen. Die Gründe hierfür sind:

- 1. An Protonenbeschleunigern spielen die Neutronendosen eine dominierende Rolle. Der Hauptbeitrag rührt von Neutronen mit Energien oberhalb von 20 MeV her und liegt damit außerhalb des Meßbereichs kommerzieller elektronischer Neutronenzähler.
- 2. Die Zeitstruktur des Strahlungsfeldes ist bei Protonenbeschleunigern, besonders an den Stellen hohen Strahlverlustes (z. B. an Ejektions- und Injektionsstellen) in starkem Maße gepulst (im Gegensatz zu Elektronenbeschleunigern). So beträgt z. B. beim Einschuß von Protonen in PETRA die Dauer des Strahlungspulses 1 μ s, und der Pulsabstand beträgt minimal 4 s. Damit ist eine quantitative Messungen mit Ionisationskammern oder Zählrohren nicht möglich. Festkörperdosimeter dagegen sind von der Zeitstruktur des Feldes unabhängig.

Zur Messung der Ortsdosen werden Detektoren verwendet, die aus Thermolumineszenz-Dosimetern (⁶LiF/⁷LiF) in verschiedenen Moderatoren bestehen sowie aus Spaltfragment-Dosimetern (Th-Folien in Verbindung mit Makrofol). Damit können **Neutronendosen** bei allen auftretenden Energien gemessen werden. Als Moderatoren werden Polyäthylen-Zylinder (15 cm Durchmesser, 15 cm Höhe) oder Polyäthylen-Kugeln (30 cm Durchmesser) verwendet. Die Kalibrierung der Detektoren erfolgte mit einem Neutronen-Spektrometer, das in der Lage ist, Spektren von thermischen Energien bis über 200 MeV zu messen. Solche Spektren wurden an einer Vielzahl von Stellen auf dem DESY-Gelände gemessen und so Kalibrationsfaktoren für typische Positionen, Moderatoren und Detektoren bestimmt.

Die Gammadosen werden aus den Meßwerten der ⁷LiF-Dosimeter gewonnen.

Insgesamt 205 Stellen wurden mit integrierenden Dosimetern auf dem DESY-Gelände, an der Geländegrenze und an einigen Stellen im Volkspark, oberhalb des HERA-Rings überwacht. Die Meßergebnisse sind in den Tabellen 7 bis 16 aufgeführt. Sie enthalten nicht den natürlichen Untergrund. Die Tabellen zeigen, daß die Einrichtung der Kontrollbereiche gerechtfertigt ist. Zu beachten ist, daß in allen Gebieten die Detektoren an Stellen aufgestellt wurden, an denen die höchsten Dosen zu erwarten sind, auch wenn die Aufenthaltswahrscheinlichkeit von Personen dort klein ist. Die Jahresdosen an Arbeitsplätzen sind daher erheblich kleiner als die Tabellenwerte.

An 13 Meßstationen an der Geländegrenze und oberhalb des HERA-Tunnels im Volkspark konnten keine Dosen oberhalb von 150 μ Sv/a festgestellt werden. Die Meßstelle nahe der PETRA-Halle Südost an der Grenze zum Industriegebiet ergab 410 μ Sv.

:

Zum Vergleich wurden 3 Meßstationen in Treia (Schleswig-Holstein) und ab Juli 1996 in HH-Fuhlsbüttel betrieben. Die mittlere Dosisleistung betrug für Gammastrahlung 120 μ Sv und für Neutronen weniger als 100 μ Sv.

In der Tabelle 3 sind die Daten der wichtigsten Bereiche zusammengefaßt. Dabei wurden die Meßergebnisse in den jeweiligen Gebieten gemittelt, um einen groben Überblick zu haben, auf welchem Dosisniveau man sich befindet. Ferner wurde ein Vergleich zum Vorjahr hergestellt (Dosis(1996)/Dosis(1995)).

Die Betriebsdauern von HERA und PETRA waren 1996 etwa 10 bis 20% kürzer als 1995, während DO-RIS etwa 10% länger lief. Die Linacs und Synchrotrons waren etwa gleich lang in Betrieb. Änderungen der Jahresdosen um diese Prozentsätze sind bei sonst gleichen Bedingungen zu erwarten.

Auffallende Änderungen sind in der Tabelle 3 an folgenden Stellen zu erkennen:

- 1. In den Räumen des ehemaligen Linac1 sind alle Dosen um etwa einen Faktor 50 kleiner geworden.
- 2. In der Halle2 haben sich die Dosen etwa verdoppelt.
- 3. Bei PETRA wurden die Dosen an den bisher kritischen Stellen der Halle SO, der Werkstatt G11 und der Halle O um etwa 30 bis 50% geringer.
- 4. In der HERA Halle W waren 1996 die Neutronendosen um etwa einen Faktor 10, die Gammadosen um einen Faktor 3 höher als 1995.
- 5. In der HERA Halle S erhöhten sich die Dosen um etwa einen Faktor 3. Sie liegen allerdings immer noch auf einem sehr niedrigen Niveau.

Die Änderungen der Punkte 1 und 2 sind wahrscheinlich darauf zurückzuführen daß nicht benötigte Protonen aus DESY3 mehr als bisher den Strahlabsorbern zugeführt wurden.

Punkt 3 ist durch die verbesserte Strahlführung im Einschußweg der Protonen bedingt.

In Punkt 4 spiegelt sich die beginnende Aktivität des Experiments HERA-B wider.

Punkt 5 ist nicht ganz klar, aber in Hinblick auf die geringen Dosen ohne Relevanz.

3.2 Aktives Überwachungssystem

Der Nachteil von integrierenden Dosimetern ist, daß die Information erst nach einer gewissen Meßzeit vorliegt. Deshalb kommt der ortsfesten Meßanlage, die mit elektronischen Neutronenzählern und photonenempfindlichen argongefüllten Ionisationskammern bestückt sind besondere Bedeutung zu. Die Meßgeräte dieser Anlage dienen als Monitore, um Änderungen in der Entwicklung des Strahlungspegels an 80 verschiedenen Meßorten zu erkennen und um evtl. Maßnahmen treffen zu können. Ihre Ergebnisse werden werktäglich ausgedruckt.

Die Monitore der Anlage sind außerdem in der Lage, aktiv in den Beschleunigerbetrieb einzugreifen und bei Überschreitung einer vorgewählten Schwelle die Maschine abzuschalten. Auf diese Weise wird verhindert, daß bei Strahlverlusten zu hohe Dosisleistungen längere Zeit unbemerkt anstehen. Das

	<u>.</u>	Dosis-	Dosis-	Verhältnis
Ber	eich	Kompo-	mittel	zum
		nente	in mSv	Vorjahr
Linac2		γ	2,0	1,1
DESY2/3	Lin1	n	0,7	0,02
,		γ	< 0,2	0,02
	Synch	n	20	1,4
		γ	2,0	0,9
	Halle1	n	50	0,8
		γ	10	0,7
	Halle2	n	80	2,2
		γ	15	2,2
PETRA	Halle SO	n	10	0,4
		γ	1	0,5
	Werkstatt	n	4	0,6
	G11	γ	1	0,7
	Halle O	n	2	0,5
		γ	0,1	0,4
	NO, NW,	n	1	0,8
	W, SW	γ	0,1	0,8
DORIS		γ	1	0,6
HERA	Halle O	n	0,5	0,8
		γ	0,1	1,2
	Halle S	n	0,5	3,1
		γ	0,1	1,0
	Halle W	n	5	9,6
		γ	0,5	2,6
1	Halle N	n	1	1,0
1		γ	0,1	0,8

.

.

,

.

Tabelle 3: Zusammenfassung und Tendenz der Ortsdosen 1996.

Überschreiten der vorgewählten "Alarmschwelle" geschieht im allgemeinen bei ungünstigen Strahlbedingungen, z. B. während Maschinenstudien, bei Maschinenanlauf oder bei Ausfall bestimmter Komponenten.

Im Bereich Linac2/3 und DESY2/3 werden dabei die Linacs ausgeschaltet. Bei DORIS und PETRA wird der Einschuß aus DESY2/3 unterbrochen. Bei HERA ist derzeit keine Maschinenbeeinflussung vorgesehen.

4. Aktivierungen in Beschleunigerräumen

4.1 Induzierte Radioaktivität

Am Ende von Betriebsperioden, wenn die Beschleunigerräume geöffnet werden, wird die Dosisleistung von Beschleunigerkomponenten, herrührend von induzierter Radioaktivität bestimmt. Das war 1996 nur einmal, Ende Dezember der Fall. Dazu werden Meßsonden in Verbindung mit Datenerfassungsgeräten benutzt und es wird entlang eines Beschleunigers, im Abstand von etwa 30 bis 40 cm (normaler Arbeitsabstand), gemessen. Die Messung wird im allgemeinen einige Stunden nach Betriebsende durchgeführt, damit kurzlebige Aktivitäten nicht erfaßt werden. Eine Liste mit diesen so festgestellten Restaktivitäten wird zur Information der Mitarbeiter im Kontrollraum veröffentlicht.

In der Tabelle 4 sind für jeden Beschleuniger die Gesamtzahl der Meßstellen angegeben und die Anzahl, die in 3 verschiedenen Dosisleistungsbereichen liegen. Außerdem ist der Bereich der Dosisleistung angegeben, in dem die 10 Meßstellen mit den höchsten Dosisleistungen liegen. Herausragende Stellen sind in der letzten Spalte aufgeführt.

Der Positronenkonverter im Linac2 ist die Stelle mit der höchsten Radioaktivität auf dem DESY-Gelände. Eine weitere Stelle, die Aufmerksamkeit erfordert ist das PIA Septum.

Im Beschleunigerraum Linac3 ist das Strahlungsniveau relativ gering. An allen Stellen wird weniger als 10 μ Sv/h bemessen. Einigen auffallende Stellen sind im Transportweg, der sich teilweise bereits im Beschleunigerraum DESY2/3 befindet.

Im Bereich **DESY2** und **DESY3** hat sich im Laufe der Zeit an einigen Stellen Radioaktivität mit längeren Halbwertszeiten aufgebaut. Der Strahlungspegel bleibt auch bei längerem Abschalten der Maschinen nahezu konstant. Herausragend sind alle Stellen, an denen Teilchen ejiziert werden.

Bei **PETRA** findet man nur an 3 Stellen merkliche Aktivität. Das sind die Einschuß- und Ausschußstellen der Protonen und der Strahlabsorber. Alle anderen Stellen liegen unter 10 μ Sv/h.

Im HERA-Tunnel findet man eine merkliche Restaktivität nur in der Nähe des Protonen-Absorbers und am Protonen-Einschuß. An allen übrigen Meßstellen liegt die Dosisleistung unter $0.2 \ \mu Sv/h$.

DORIS ist in der Tabelle 4 nicht enthalten. Dort ist im Arbeitsabstand eine meßbare Dosisleistung nur in der Injektionszone vorhanden. Sie lag bei 5 μ Sv/h.

4.2 Kontamination

Zur Überwachung von staubförmigen Kontaminationen wurden an Orten, an denen mit aktivierten Beschleunigerkomponenten umgegangen wird oder radioaktive Abfälle gelagert werden Wischproben genommen und in einer sehr empfindlichen Apparatur ausgemessen. Alle Kontaminationen lagen unter der Nachweisgrenze von 0,01 Bq/cm². Der Grenzwert für eine zulässige Kontamination von Arbeitsplätzen in Kontrollbereichen ist 50 Bq/cm².

Beschleuniger	Anzahl Meßstellen	Anzahl Meßstellen im DL-Bereich:		DL-Bereich der 10 höchsten Meßstellen		ch der sten llen	Besondere Stellen	
		<u>≤</u> 1	1 bis ≤10	>10				
Linac2, PIA Linac3 DESY2 DESY3 PETRA HERA	27 15 54 48 179 303	7 9 20 5 157 294	11 5 25 29 16 9	9 1 9 14 6 0	370 13 63 440 120 4	bis bis bis bis bis	$10,0 \\ 0,4 \\ 9,5 \\ 16,0 \\ 5,9 \\ 0.9$	Konverter: 4600 Absorber: 29

Tabelle 4: Radioaktivität nach dem Öffnen der Beschleuniger im Dezember 1996. DL = gemessene Dosisleistung in μ Sv/h

5. Überwachung von Luft und Wasser

5.1 Luft

Bei der Aktivierung von Luft werden nur eine Reihe von kurzlebigen Isotopen gebildet (siehe Tabelle 5). Das sind (bis auf ⁴¹Ar, das jedoch nur in geringem Maße produziert wird) alles reine β -Strahler. Deshalb wird zur Luftüberwachung nur die β -Aktivität gemessen und daraus die effektive Äquivalentdosis berechnet.

Im Bereich der Synchrotrons **DESY2/3** wird die Luft im inneren Zugangsbereich kontinuierlich überwacht, da sich dort Personen aufhalten können. Die mittlere Konzentration im Zentrum der Synchrotrons betrug während des Betriebes 2,4 kBq/m³. Dies ergibt eine Dosisleistung von ca. 3 nSv/h. Die Luft wird nur bei Betriebspausen über 8 Ablüfter an die Umgebung abgegeben.

Die Messung der Konzentration der abgeblasenen Luft des Linac2 ergab über das Kalenderjahr ge-

Nuklid	Halbwertszeit in Minuten
¹¹ C	20,4
¹³ N	9,96
¹⁵ O	2,03
⁴¹ Ar	110

Tabelle 5: Radioaktive Nuklide, die bei der Aktivierung von Luft gebildet werden

mittelt 7,6 kBq/m³. Aus dem Mittelwert und einem Luftdurchsatz von 7000 m³/h kann man eine Submersionsdosis von weniger als 1 μ Sv/a an der Geländegrenze abschätzen. Damit liegt dieser Wert sicher unter dem zulässigen Wert von 300 μ Sv/a.

Die insgesamt vom Synchrotronraum und vom Linac2 in Luft abgegebene Aktivität betrug 1996 ca.0,5 TBq.

Die Aktivität der über **HERA**-West ausgeblasenen Luft aus dem HERA-Tunnel war 1996 kleiner als 500 Bq/m^3 pro Tag (das ist die Nachweisgrenze der Anlage).

5.2 Wasser

Das zur Versickerung gelangende Wasser von Kühltürmen wird im Hauptpumpwerk kontinuierlich auf Radioaktivität untersucht. Erhöhte Aktivität kann hier nur festgestellt werden, wenn ein Leck im Wärmetauscher entsteht. Der Wärmetauscher trennt den Kreislauf des Wassers, das die Beschleunigerkomponenten unmittelbar durchfließt vom Wasser, das zur Versickerung gelangt.

Die NaJ-Szintillationssonde hat 1996 ausschließlich Untergrund, etwa 130 Pulse pro Minute, gemessen. Dieser Wert ist relativ hoch und ist bedingt durch den tief im Erdreich liegenden Betonschacht. Die Folge ist, daß diese kontinuierliche Messung recht unempfindlich ist, denn dieser Untergrund entspricht einer Konzentration von 3,7 Bq/ ℓ . Den Messungen waren gelegentlich kleine Spitzen überlagert (maximal ca. 1800 Pulse pro Minute; Dauer 0,5 bis 5 Stunden), die im allgemeinen zeitlich mit Niederschlägen zusammenfielen und auf natürliche Radioaktivität im Regenwasser zurückzuführen sind.

Wesentlich empfindlicher sind die *diskontinuierlichen* Messungen der Konzentration der β -Strahler mittels des Eindampfverfahrens. Sie werden monatlich mit Wasserproben aus den **Kühltürmen** DESY 1 + 2 durchgeführt. In 1 bis 2 Stunden nach der Entnahme ergaben sich Konzentrationswerte zwischen 0,19 und 1,1 Bq/ ℓ . Hier handelt es sich um kurzlebige Nuklide aus den natürlichen Zerfallsreihen. Auch im Grundwasser kann man diese Konzentration messen, im Regenwasser sogar bis zum 1000-fachen dieses Wertes (verursacht durch Auswaschen von Radon). Nach einer Wartezeit von 24 Stunden sind alle diese Werte auf die Nachweisgrenze von ca. 100 mBq/ ℓ abgesunken.

Zusammenfassend ergibt sich also, daß durch das Ablaufwasser keine künstliche Aktivität in den Boden gelangt ist.

Eine sehr geringe Aktivitätsmenge wird an das Schmutzwassersiel abgegeben, wenn die Füllungen in den Ionenaustauschern der Kühlkreisläufe regeneriert werden. Vor dem Einleiten des entstehenden Regenerats wird die β -Aktivitätskonzentration bestimmt, im Mittel wurden 4 Bq/ ℓ gemessen. Die damit im Jahr 1996 abgegebene Aktivitätsmenge betrug 80 kBq.

Zur Kontrolle wird die Aktivität des Kühlwasser gelegentlich aus den geschlossenen Kreisläufen mit dem Eindampfverfahren gemessen. Die Ergebnisse zeigt Tabelle 6. Die Werte sind so gering, daß auch bei etwaigen Leckagen keine besonderen Vorkehrungen notwendig sind.

Um eine mögliche Aktivierung von Erdreich und Grundwasser durch den **HERA**-Betrieb zu erkennen, wurde am 25.3.1991 (also vor der Aufnahme des Strahlbetriebs von HERA) eine Bohrung ca. 0,5 m neben den HERA-Tunnel nahe dem Protonenabsorber niedergebracht. Dieser Bohrung wurden je 2 Proben von Grundwasser und Erde entnommen. Ein Probenpaar (Wasser und Erde) wird seitdem bei D3 aufbewahrt (Referenzproben) und das andere wurde wieder in dem Bohrloch deponiert. In Abständen von ca. 1 bis 2 Jahren werden die Proben aus dem Bohrloch hervorgeholt, ihre Aktivität bestimmt, und anschließend werden sie wieder deponiert. Die Referenzproben werden zum Vergleich immer mitgemessen, um apparative Schwankungen zu erkennen. Die Abbildungen 2 und 3 zeigen die Ergebnisse dieser Aktivitätsbestimmungen seit 1991. Eine vom HERA-Betrieb herrührende Aktivierung konnte bisher nicht nachgewiesen werden.

Bereich der	Aktivitäts-
Kreisläufe	konzentration (Bq/ℓ)
DESY2/3 und Linac2/3 PETRA HERA	0,03 0,07 0,22

.

4

Tabelle 6: Radioaktivität in verschiedenen Kühlkreisläufen

Abbildung 2: Untersuchung einer Erdprobe auf Radioaktivität. Die Probe wurde in der Nähe des HERA-Protonenabsorbers entnommen. Sie wird verglichen mit einer Referenzprobe, die 1991 an der gleichen Stelle entnommen wurde.

Aktivität von HERA Grundwasser-Proben

Abbildung 3: Untersuchung einer Wasserprobe auf Radioaktivität. Die Probe wurde in der Nähe des HERA-Protonenabsorbers entnommen. Sie wird verglichen mit einer Referenzprobe, die 1991 an der gleichen Stelle entnommen wurde.

6. Anhang

In den folgenden Tabellen sind die Ergebnisse der Ortsdosismessungen kompiliert, aufgeschlüsselt nach Gamma- und Neutronendosen. Wenn keine Neutronendosis eingetragen ist. war diese Stelle nicht mit einem Neutronendosimeter ausgestattet. Die Dosen sind Jahresdosen, aufsummiert aus monatlichen Einzelmessungen.

Verwendete Abkürzungen:

(K) = Kontrollbereich(Sp) = Sperrbereich

Bei den Kreisbeschleunigern bedeuten die Bezeichnungen *links* oder *rechts* die Richtung vom Kreismittelpunkt aus gesehen.

Pos.Nr.	Standort		Dosis in mSv		
			Neutronen	Gamma	
	Linac2				
21	Modulatorhalle, nahe Klystron 12	(K)		0,48	
22	Modulatorhalle, Wand zum Converter	(K)		4,2	
23	Modulatorhalle, Wand zur Werkstatt	(K)		5,8	
120	Im Keller unter dem Teststand	(K)		1,0	
121	Modulatorhalle, auf dem Teststand	(K)	< 0,7	0,96	
122	HF-Einspeisung auf Teststand	(Sp)		140	
123	Abschirmung Teststand, Gangseite	(K)		0,47	
124	Abschirmung Teststand, Strahlachse	(K)		2,3	
	Linac3				
108	Betriebsraum		1,4	< 0,2	
109	Interlocktür rechts, 45 m ¹⁾		1,6	1,2	
	DESY2/3				
1	Ehemaliger HKR		0.53	< 0.2	
2	Radialkanal 8, Interlocktür	(K)	1,6	0,62	
3	SER, nahe Abschirmung zum Synchr.	(K)	68	5,1	
11	Linac 1, Laborraum, am Labortisch	(K)	1,5	< 0,2	
12	Linac 1, Pumpenraum	(K)	0,23	< 0,2	
13	Linac 1, Kontrollraum	(K)	0,27	0,48	
14	Linac 1, Modulatorraum	(K)	0,67	< 0,2	
		· ·			

Tabelle 7: Jahresdosen 1996 der Bereiche Linac2, Linac3, DESY2/3 ¹) = von der H⁻-Quelle an gerechnet.

÷

Pos.Nr.	Standort	Dosis in mSv		
			Neutronen	Gamma
	Halle 1			
101 102 103 104 105	Kranluke Aussen, Ostseite, grüner Container Innen, Kragdecke, Ostseite Zwischen Linac3 und Absch. DESY2/3 Gebäude 20c, Aufenthaltsraum	(K) (K) (K)	21 120 23 49 1,3	3,6 22 3,6 6,2 <0,2
	Halle 2			n
151 152 153 154 155 156 157 158	Strahl 22, in der Meßhütte Strahl 24, in der Meßhütte Kranluke Kragdecke Südseite Südseite der Halle 2, außen Teststrahl 21, rechts, 3 m. ¹⁾ Teststrahl 22, rechts, 4 m. Teststrahl 24/1, rechts, 4 m.	(K) (K)	3,0 2,5 130 410 76 6,5 8,2 14	< 0,2 0,25 18 73 17 0,45 0,75 0,95
50	Bunker 1 Interlocktür zum Tunnel		0,83	0,29
60 61 62	Bunker 2 An der Abschirmung zum Synchrotron Nahe zusätzlicher Abschirmmauer Kondensatorgarten bei Geb. 30c	(Sp) (K) (K)	3,5 0,47 0,67	0,92 < 0,2 0,51

Tabelle 8: Jahresdosen 1996 der Bereiche Halle1, Halle2, Bunker1 und Bunker2 ¹⁾ Von der Abschirmmauer des Ringes an gerechnet.

,

Bag Na	Standart		Dosis in mSv		
POS.INT.	Standort		Neutronen	Gamma	
	· · · · · · · · · · · · · · · · · · ·		recutionen		
	PETRA Halle Süd-Ost				
800	Übergang, Brüstung		25	3,2	
801	Innen rechts, Interlocktür		10	0,56	
802	Innen links, im Elektronikschrank	(K)	6,9	1,2	
803	Innen links, Wand zum P-Weg	(K)	15	2,4	
804	Innen Mitte, unter der Treppe		9,9	1,0	
805	Aussen links, an der Abschirmmauer		$4,\!5$	0,26	
806	Im Gashaus, rechts unten, Fußboden	(K)	2,3	0,65	
	Werkstatt G11 auf dem PETRA-Tunnel				
810	Auf Abschirmung, Fußboden, rechts	(K)	11	2.5	
811	Auf Abschirmung, Fußbodens, links	(\mathbf{K})	2.9	0.6	
812	Innen rechts, 1.5 m vom Zaun, Drehbank	()	1,9	0.25	
813	Innen Mitte, 1,5 m vom Zaun, Richtbank		0,67	0,34	
	PETRA Halle Ost				
820	Gästehaus 15 A, außen		0,16	< 0,2	
830	Übergang, Brüstung		4,1	0,32	
831	Innen Mitte, Zaun vor der Interlocktür		1,7	0,30	
832	Aussen Mitte, Tunnelwand		1,1	< 0,2	
833	Innen rechts, Tunnelwand		0,88	< 0,2	
	PETRA Halle Nord-Ost				
840	Übergang, Brüstung		0.83	< 0.2	
841	Innen Mitte, am Aufgang		0,40	< 0,2	
842	Aussen Mitte, Tunnelwand		0.21	< 0,2	
	· · · · · · · · · · · · · · · · · · ·		-,	,	

ŗ

÷

L

Tabelle 9: Jahresdosen des Bereichs PETRA

Pos.Nr.	Standort	Dosis in	mSv
		Neutronen	Gamma
	PETRA Hallen Nord		
850 852	NL, Interlocktür PR-Weg NR, rechts am Gitter	0,34 0.16	< 0,2 < 0.2
	PETRA Halle Nord-West		
860	Übergang, Brüstung	1,2	< 0,2
861	Innen links, Interlocktür	0,90	< 0,2
863	Innen rechts oben, 2. Raum	0,40	< 0,2
	PETRA Halle West		
870	Übergang, Brüstung	1,3	0,37
871	Innen rechts, Interlocktür	0,67	< 0,2
872	Aussen Mitte, Abschirmmauer	0,60	< 0,2
	PETRA Halle Süd-West		
880	Übergang, Brüstung	0,40	< 0,2
881	Innen links, Interlocktür	1,3	< 0,2
	Warenannahme		
890	Im Keller, nahe Tunnel an der Wand	3,9	0,62

Tabelle 10: Jahresdosen des Bereichs PETRA

•

. ._

Pos.Nr.	Standort	Dosis in	mSv
		Neutronen	Gamma
	HERA Halle West		
911	Innen 1.Galerie, links am Gitter	4,2	$0,\!67$
912	Innen 1.Galerie, rechts neben Interlocktür	6,9	$0,\!25$
913	Außen Erdgeschoß , links am Gitter	6,2	0,53
914	Außen Erdgeschoß, Mitte am Gitter	5,7	0,34
918	Außen, 1. Galerie rechts am Gitter	17	0,70
919	Kontrollraum 4. Stock	2,2	0,59
920	Kontrollraum 5. Stock	2,0	0,57
921	HF-Halle 6.Stock, am Rohr für Laserstrahl	0,37	0,25
	,		
	HERA Tunnel	· · · · · ·	
923	Laborgebäude 1 D, Keller, Verbindungsgang	0,67	< 0,2
924	Anbau Halle 1 (IKR-Werkstatt)	< 0,5	0,31
	HERA Halle Nord		
996	Innen Erdgeschaß Eyn-Hütte innen rechts	0.75	< 0.2
923	Innen, Erdgeschoß, Exp. Hütte innen, links	0,10	< 0,2
929	Innen Hüttendach Geländermitte	0.80	< 0.2
931	Innen Myonenplattform linke Galerieecke	4.0	0.37
932	Innen, Myonenplattform, rechte Galerieecke	0.94	0.29
935	Mitte. Detektorgalerie, unter schrägem Bohr	1.6	0.23
936	Mitte, Detektorgalerie, beim Ventil	0.96	0.38
938	Mitte Elektronikolattform Spalt im Eisen	0,00	< 0.2
940	Außen, Myonenplattform, linke Galerieecke	3.8	0.18
941	Außen Myonenplattform rechte Galerieecke	0.97	< 0.2
943	Außen 3 Galerie an der Wand	0,01	0.28
945	Außen 1 Galerie links an der Wand	0 00	0.20
Q16	Außen 1 Galerie rechts an der Wand	0.54	< <u>0.20</u>
047	Außen Erdgeschoß Heliumplatte Schrank	0,04	< 0,2
0/0	Mitta Frederichoß Durchgang		
515	Minute, Drugesenob, Durengang	~ <i>v</i> , •	~ 0,2
1			

ŧ

3

,

t

Tabelle 11: Jahresdosen des Bereichs HERA

Pos.Nr.	Standort	Dosis in	mSv
		Neutronen	Gamma
	HERA Halle Ost		
950	Innen, 1. Galerie, rechts Interlocktür	0,75	< 0,2
951	Innen, 1. Galerie, links, Interlocktür	0,64	< 0,2
952	Außen, Mitte, untere Plattform	0,55	0,20
953	Außen, obere Plattform nahe Tunnel	0,47	0,30
954	Mitte, Durchgang	$0,\!48$	< 0,2
955	Außen, 1. Galerie, rechts auf der Kabelpritsche	< 0,4	0,20
956	Außen, 1. Galerie, links am Pfosten	$0,\!41$	< 0,2
957	Außen, Erdgeschoß links, HERMES-Raum	$1,\!6$	0,26
	HERA Halle Süd		
975	Innen, Erdgeschoß, rechts, Träger ZEUS-Joch	0,57	< 0,2
978	Innen, 1. Galerie links, Wand in der Hütte	0,34	< 0,2
980	Innen, Rucksack, mittlere Etage, unter der Decke	0,61	< 0,2
981	Innen, Rucksack, obere Etage, links	0,52	< 0,2
982	Innen, Rucksack, obere Etage, rechts	0,45	< 0,2
985	Innen, ZEUS-Balkon links	0,40	< 0,2
986	Innen, ZEUS-Balkon rechts	0,55	< 0,2
988	Mitte, Durchgang	0,80	$0,\!20$
990	Außen, Erdgeschoß , links am Geländer	$0,\!61$	< 0,2
991	Außen, Erdgeschoß, rechts am Geländer	0,47	< 0,2
992	Außen, 1. Galerie, rechtes Gitter	$0,\!23$	< 0,2
995	Außen, ZEUS-Balkon links	0,55	< 0,2
996	Außen, ZEUS-Balkon rechts	0,46	< 0,2

Tabelle	12:	Jahresdosen	des	Bereichs	HERA
---------	-----	-------------	----------------------	----------	------

Pos Nr	Standort	Dosis in mSv	
1 0.5.1.1.1		Neutronen	Gamma
	DORIS		
301	MHF-Labor, an der Wand Richtung DORIS		0,34
302	Hallenmitte, Wand zur Versorgungshalle		< 0,2
303	An der Interlocktür Südseite		0,32
304	HF-Keller 3, neben der Interlocktür (K)		0,87
305	HF-Keller 3, vor den Kabeldurchführungen (K)		0,25
306	HF-Keller 4, vor den Kabeldurchführungen (K)		0,22
307	HF-Keller 1, unter der 1. Deckenöffnung (K)		2,2
308	HF-Keller 1, unter der 2. Deckenöffnung (K)	0,85	0,35
309	HF-Keller 1, Kabeldurchführung (K)		0,71
310	HF-Keller 2, unter der 1. Deckenöffnung (K)	0,28	< 0,2
311	HF-Keller 2, unter der 2. Deckenöffnung (K)		7,1
312	HF-Keller 2, Kabeldurchführung (K)		0,34
	HASYLAB1		
320	Links Strahlhöhe 0 m an der Abschirmwand ¹⁾		0.40
321	Links, Strahlhöhe, 3 m. an der Blejabschirmung		0.39
322	Bechts, Strahlhöhe, 3 m, an der Blejabschirmung		0.32
323	Rechts, Strahlhöhe, 0 m, an der Abschirmwand		0.31
324	Rechts, Strahlhöhe, 0 m, außen an der Abschwand		0.60
325	Links. Strahlhöhe, 15 m, an der Abschirmwand		0.23
326	Rechts, Strahlhöhe, 15 m, an der Abschirmwand		0.36
327	Rechts, Strahlhöhe, 10 m, an der Abschirmwand	0.39	< 0.2
328	Rechts, Strahlhöhe, 15 m, an der Abschirmwand	0,34	< 0,2
		,	
	HASYLAB2 und 2A		
330	Im Arbeitsraum, am Fenster		0.29
331	Im Meßraum am Pfeiler neben der Treppe	1	0.31
335	Container, auf der DORIS-Abschirmung	1	0.31
		1	

ş

L

Tabelle 13: Jahresdosen des Bereichs DORIS und HASYLAB1 und 2 ¹⁾ Die Entfernungsangaben sind von der Abschirmmauer des Ringes an gerechnet.

<u> ----</u>

Pos.Nr.	Standort	Dosis in mSv		
		Neutronen	Gamma	
	HASYLAB 3			
340 341 342 350 352 353 360	W1, links, 7 m, Abschirmung Höhe Spiegelk., ¹⁾ W1, oben, 10 m,Abschirmung unter dem Strahlrohr W1, rechts, 15 m, an der Gebietsabschirmung B1, links, 10 m, an der Gebietsabschirmung C1, oben, 3 m, Bühne an der Abschirmung C1, rechts, 18 m, am Strahlende D1, links, 1 m, an der Interlocktür	0,76	$\begin{array}{c} 0,29\\ 0,28\\ 0,22\\ < 0,2\\ 0,33\\ 0,24\\ 0,30\\ 0,21 \end{array}$	
361 362 363 370 371 372 373 380 381 384 385	 D1, links, 12 m, am Gelander der Zwischenplattform D4, rechts, 6 m, an der Gebietsabschirmung D3, rechts, 3 m, außen neben Beamstop E1, links, 6 m, am Drahtzaun E2, links, 14 m, am Drahtzaun F4, rechts, 6 m, am T-Träger der ob. Plattform F2, oben, 7 m, am 1. grünen Gestell G1, links, 0 m, an der DORIS-Abschirmwand G2, links, 7 m, an der Interlocktür I, rechts, 4 m, außen an der Meßhütte I, rechts, 2 m, an der Spiegelkammer in Strahlhöhe 		$\begin{array}{c} 0,21\\ 0,37\\ 0,26\\ 0,27\\ 0,35\\ 0,25\\ < 0,2\\ 0,57\\ 0,54\\ 0,41\\ 0,31\\ \end{array}$	

Tabelle 14: Jahresdosen des Bereichs HASYLAB3

¹) Die Entfernungsangaben sind von der Abschirmmauer des Ringes an gerechnet.

Pos.Nr.	Nr. Standort		Dosis in mSv	
			Neutronen	Gamma
	HASYLAB4			-
387	BW1, links, 3 m, Abschirmmauer Strahlhöhe ¹⁾			$0,\!58$
388	BW1, links, 3 m, Abschirmmauer 25 cm u. Strahlhöhe			0,60
389	BW1, links, 7 m, oben am Geländer			0,60
390	BW1, links, 6 m, neben der 2. Interlocktür		0,23	0,24
391	BW1, rechts, 12 m, am Geländer über Abschirmung			0,47
392	BW1, oben, 2 m, auf der Abschirmung	(K)		0,74
393	BW1, links, 5 m, neben der Interlocktür			0,52
394	BW1, links, 12 m, am Elektronikschrank			0,40
395	BW1, oben, 12 m, auf der Abschirmung	(K)	$0,\!80$	0,33
396	BW1, rechts, 15 m, am Geländer vor dem Fenster			0,52
397	BW2/2, links, 15 m, am Pfeiler, Interlocktür		1	0,34
398	BW3, links, 10 m, an der Abschirmung			0,30
399	BW4, links, 5 m, an der Interlocktür			0,50
	HASYLAB5			
415	BW5, links, 10 m, neben der Interlocktür			0.57
416	BW6, links, 10 m, an der Abschirmwand			0.44
417	BW6/NG1, links, 18 m, an der Abschirmung			0.46
418	BW6, Mitte, 25 m, direkt am Strahlende			0.40
420	BW7, links, 20 m, am Strahlende			0.51
421	K/NG3, links, 5 m, an der Interlocktür			0.72
422	K/NG3, links, 6 m, an der Abschirmung			0.67
423	HG1-K, links, 6 m, an der Interlocktür			0.43
424	NG2-K, links, 7 m, an der Abschirmwand			0,45
425	NG3-K, rechts, 7 m, neben der Interlocktür			0,60
426	NG3-K, rechts, 10 m, an der Abschirmwand		1	0,49
430	L, links, 4 m, an der Abschirmwand			0,38
431	L, links, 10 m, an der Abschirmwand		-	0,45
432	L, links, 12 m, am Strahlende			0,42
433	L, rechts, 8 m, an der Abschirmwand			0.47
				-, -

Tabelle 15: Jahresdosen der Bereiche HASYLAB4 und 5 ¹⁾ Die Entfernungsangaben sind von der Abschirmmauer des Ringes an gerechnet.

Pos.Nr.	Standort	Dosis in mSv		
		Neutronen	Gamma	
	HASYLAB 6			
700 460 461 462 463 464 465	Auf dem Schrank vor der Interlocktür Außen links, Hallenwand, neben dem Aufstieg Str 1.1, links, nahe Interlocktür an der Wand Str 1.2, links, 8m, an der Abschirmung, Strahlhöhe Str 1.1, links, 15m, Kontrollraum, Wand zum Strahl Str 1.2, links, 20m, Kontrollraum, Wand zum Strahl Hallenwand, außen rechts, zum PETRA Tunnel	0,13	< 0.2 1,2 0,41 0,22 0,33 0,32 1,1	
	Halle 3			
130 131 132 133	Meßhütte Cavity-Teststand Vertikaler Teststand 1, auf der Abschirmung Vertikaler Teststand 2, auf der Abschirmung Horizontaler Teststand, Richtung Sender	0,22 0,27 0,21 0,21	$< 0.2 \ 0.34 \ < 0.2 \ < 0.2 \ < 0.2 \ < 0.2$	
	Geländegrenze			
$511 \\ 521 \\ 522 \\ 531 \\ 551 \\ 552 \\ 562 \\ 571 \\ 580 \\ 581 \\ 582 \\ 595 \\ 596 \\ 597 \\ $	Am Zaun nahe PETRA Halle SO Eingang Notkestieg Gästehaus 1 Bei der Halle Süd-West Halle Nord-West, zur Tennishalle Halle Nord-West, zum Blomkamp Halle Nord-West, zum Blomkamp Halle Nord-Ost, auf dem Wall Halle Nord-Ost, am Zaun 2. Institut, an einem Verkehrsschild Zwischen Zyklotron und 2. Institut Eingang Luruper Chaussee HERA, über Tunnel, Zaun am Schwimmbad HERA, über Tunnel, am Parkplatz HERA, über Tunnel, Hellgrundweg	$\begin{array}{c c} 0,41\\ 0,12\\ 0,12\\ 0,13\\ < 0,1\\ 0,12\\ 0,12\\ 0,12\\ 0,12\\ 0,10\\ 0,17\\ < 0,1\\ < 0,1\\ < 0,1\\ < 0,1\\ < 0,1\\ < 0,1\\ \end{array}$	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 <	

ŧ.

ę

J

Tabelle 16: Jahresdosen der Bereiche HASYLAB6, Halle3 und Betriebsgrenzen