Interner Bericht Eigentum der DESY Bibliothek
DESY F1-82/01 Property of library

August 1982 Zugang: _ 4 pro 4089

Accessions:
Leihfrist: 7 Tage
Loan period: days

THE INPUT/OUTPUT SOFTWARE FOR THE 370/E EMULATOR

D. Notz

.]

DESY behilt sich alle Rechte fiir den Fall der Schutzrechtserteilung und fiir die wirtschaftliche
Verwertung der in diesem Bericht enthaitenen Informationen vor.

DESY reserves al! rights for commercial use of information inciuded in this report, especiaily in
case of filing application for or grant of patents,

“Die Verantwortung fiir den Inhalt dieses
Internen Berichtes liegt ausschlieBlich beim Verfasser”

The Input/Output Software for the 370/E Emulator
by
0. Notz
Deutsches Electronen-Synchrotron DESY, Hamburg
June 1982

Abstract

The input/output programs of the 370/E emulator are described. The 370/E
is connected via a control computer {NORD, TMS9900) to the IBM. We explain
in detail the buffer handling and the required modifications to run IBM
programs on the 370/E.

I1.1
I1.2
I11.1
1I1.2
I11.3
I11.4

v,
IV.
Iv.
Iv.
Iv.
Iv.
Iv.
Iv.
v,
Iv.
v.
V.
V.12
Iv.13
Iv.14
V.15
IV.16

WL N B W N

—
- O

V.1l
V.2
V.3
V.4
V.5,
v.6.

Contents

Introduction

FORTRAN Input/Qutput at the IBM

Input/Output at the 370/E

Submitting of JOBs to the 370/E from the IBM
The Program in the 370/E

The Program in the Control Computer (NORD)
The Online Program in the IBM

The Buffer Handling Routines in the 370/t
FIOCS3. The 370/E FIOCS# Interface Routine
FID370. The 370/E Buffer Handler

BFFRIB. Buffer from IBM

BUFSWI. Switch Buffers and send them to IBM
CHECOM. Wait for Buffer and Check the Answer
CRUNBL. Create Unit Block

DCBSET. Change Data Control Block

GETMAI. Get Space in Main Pool

IADDR. Compute Address

IBMTRA. Transfer Data to the IBM

IDSTL. Compute Distance between Variables
INSSEG. Insert Segment Hord

MVCOM. Move Characters

REAADR. Compute Address for READ

RECADR. Compute Address for WRITE

FTRACE. Interrupt Routine for Traceback

The Subroutines for the Program of the Control Computer

JOBWT. Wait for JOB

LAIBM. Load the IBM Module

MEMDMA. Transfer Blocks to/from the 370/E Memory
SVCWT. MWait for SVC and Errors

INTHAD. Interrupt Handling

Service Routines in the NORD

vI.
vI.
VI.
vI.
VI,
VI.
vi.
VI,
vI.
vI.
vI.

W o~ N 3 & W N e

—
o

VII.

VIIL.
VII.
VII.
VII.
VIl
VII.
VII.
VII.
VII.

- i -

The Input/Output Routines in the IBM Online Program

ALCDYN. Allocate a Data Set

CALLOC. Interface for Allocate Dataset
CKJOB. Wait for a Job and Check
CLJOB. Close Job and Deallocate Files
CONDYN. Connect Files

DALDYN. Deallocate Files

FPRINT. Write Records at the IBM
IBCREQ. Handle IBCOM# Request

INCBUF. Fill Input Buffer

RDFIOC. READ by FIOCS#

Buffer Organization and Tables

Unit Assignment Table. COMMON/IHOUAC/

The Buffer Pool Area for Unit Block and Buffers
The Control Block of the IBM Answer

The Unit Block {UB})

The Unit Buffers

Unit Assignment Table for Input at the IBM

The COMMON/CIBUF/ of the Ontine Program

Job Control Information

File for Job Queue

Appendix

I. Introduction

The 370/E emulator is a processor which is able to process IBM 370 code. It was
developed by H. Brafman and R. Fall at the Weizmann Institute, Rehovot, Israel.
One can therefore run programs either on the IBM or on the emulator without
recompiling or translating all programs. Programs which have been developed and
tested on an IBM can be downloaded to the 370/E without any change. It is not
necessary to translate the code as it is needed on the 168/E emulator. Before
running a program on the 370/E one has to link it together with the 370/t
input/output routine. This is done by the linkage editor.

Like the IBM the 370/E has a memory which contains data and instructions and
which is a direct image of the IBM memory. Nearly all IBM instructions are
implemented. Only commercial instructions which work on non binary representations
of numbers are not implemented.

For the user the 370/E looks like a box, 60 cm long, 40 cm wide and 30 cm hight,
with one input/output cable. Inside this box one can find up to 14 boards.

1) Control board

2} Integer board

3} Floating point mantissa board

4) Floating point exponent board

5) Multiply board

6) Interface board

7) - 14) Memory boards for one Mbyte

The speed of the 370/E is of the order of 60 % - 75 % of an IBM 370/168
depending on the program and the IBM model,

This paper explains in chapters I to III the general ideas how input/output
is performed in FORTRAN programs by IBM and how the interface routines work
on the 370/E. Chapters IV - VI describe in more detail these routines and
chapter VII the buffer organization and tables. This part of the manual is
useful for people who want to implement this system on the 370/E.

At DESY, the 370/E is connected via a NORD computer and the DESY online net
to the IBM 370/168.

-3 -
IBM
370/E .
| l Online Net 370/168
PADAC
Interface
NORD
Terminal

Fig. 1 The 370/E is connected via PADAC to a NORDIC or NORD100. The NORD has
a connection to the IBM via a TMS microprocessor and an IBM 2701 unit
with parallel data adapter.

The speed of the online net is of the order of 8 usec/byte. In order to keep the
dead time for experiments on the net to a low level one should avoid transfer rates
above 1 transfer/sec where one can send ~20 kbytes per transfer. This transfer
rate is sufficient to load programs from the IBM to the 370/E and to run CPU
intensive programs with low input/output rates. In this environment the NORD

only establishes the transfer of buffers between the 370/E and the IBM. It can
therefore be replaced by a microprocessor like the TMS 9900 for PADAC (PADAC is

the standard interface at DESY).

In experiments the 370/E can get the input data from the online computer which
must have a 1ink to an IBM in order to get the programs.

From the programmers point of view all input/output of data can be performed
by a FORTRAN READ/WRITE statement.

In this paper we describe the mechanisms to perform READ and WRITE and how
information is exchanged between the 37G/E and the IBM.

1.1 FORTRAN Input/Output at the IBM

370/€ i ”
I [4, Online Net — | 370/168

Tl459966/r

Fig. 2 0ffline application. A Monte Carlo program is loaded from the IBM.
Input/Output is done to the IBM discs.

It is our goal to run IBM programs on the 370/E without any changes. Any input
and output should be done via READ/WRITE statements. For a better understanding
of the following chapters we describe in this section how input/output is
performed at the IBM.

Suppose you have a simple program like

1:=0
WRITE(6,2)1

2 FORMAT(1X,'TEXT',14)
STOP
END

The compiler then generates several calls to the input/output package IBCOM# :
64 (IBCOMy) to initialize the job

4 (IBCOMY) to initialize the write operation
8 (I1BCOM#) to write I
16 (IBCOM#) to finish the write operation

68 (IBCOMY) to terminate the job
IBCOME calls FIOCSE to request a buffer. This buffer is filled with the
formatted information. FIOCSk requests via supervisor calls (SVCs) space in memory
for the buffers and READ/WRITE operations from the supervisor (Fig. 3).

-5 - -6 -
370/E
DEFINE FILE User Program with READ/WRITE
Compiler WRITE(6,2) 1,J,K
generated
Code IBCOMy, FORMATTING ROUTINES

ERROR HANDLING
f«—> swc I
FIOCSH# BUFFER HANDLER

1BCOM#
[HOFCOM

IHDIOSE
Direct access

Endfile, Rewind,

STOP, Backspace {}

MHMELIST sy rronaeL F10Cs# > SV NORD, LSI11, TMS 9900 Control computer
IHOFCOS get complete buffer

and control information

1, 2, 6,... Buffer of several writes
THOFCVTH [.] B
Stream number, unit
"WRITE"
List-
i Request for IBCOMg
jrected THOLDF 10 -
Read/Hrite

<
=

Fig. 3 Input/Output in FORTRAN

1BM
1,2, 6 Buffer ok
| S——
[1.2 Input/Output at the 370/E
WRITE (6,2) Buffer
At the 370/E we use the same code as on the I8M. If the user wants to perform 2 FORMAT(256(256A1))

1/0 via READ/WRITE the compiler generated code calls IBCOM#. IBCOM# is also
called by the FORTRAN library if errors occur (like negative square roots).
IBCOM# then calls FIOCS#. On the 370/E we use our FIOCS# to do the buffer
handling. For each I/0 unit a unit block and two buffers are created in
COMMON/IHCBF2/. The size of the buffers and records are defined by the IHOUAC Disc for Input/Outout
table. If a buffer is full for write it is sent to the IBM via the control
computer. During this transfer a second buffer is filled. Instead of sending
the data to the IBM the control computer can write the buffers also to its
local discs. For a READ,a buffer is requested from the IBM. While the first
reading s serviced a second buffer is filled by the IBM and sent to the 370/E.

Fig. 4 A user's READ/WRITE results in filling a buffer which is then sent to
the IBM. The control computer only tranmsfers buffer to/from the IBM.

The IBM online pragram handles the input/output of the 370/E. Output is done
directly via IBCOM# by WRITE operations if the records in the buffers are
complete. For incomplete records the segments are collected at the IBM and
written later on after the record is complete. The reading of data is more
complicated. Due to the pipelining of double buffers in the 370/E and the I1BM
one has to know ahead how many words the user on the 370/E wants to read.
Input is therefore done by special routines which access FIOCSE at the IBM.

The whole input/output procedure can be tested on the IBM if one uses two [BCOM&s
where one [B8COM# and FIOCS# are renamed to CCOM and PIOCS#.

p .FIOCS=
User IBCOM# FIOCS# Simulation Online 2.1BCOM#| pamed
difi of Link to Program named PI0CS
Program Mo ificad IBM CCOM
tion
Fig. 5 One can test the input/output of the 370/E by simulating the IBM link and using

2 1BCOMis within ane jab.

-8 -

111.1 Submitting of JOBs to the 370/E from the IBM

In this chapter we describe how jobs can be processed on the 370/E. Jobs are
prepared at the IBM by using an editor like TSO, NEWLIB or Wylbur. The following
description is only correct if the 370/E is running at DESY but it can be easily
modified for other installations.

1) The mainprogram must be written as a subroutine with the name STA370. This
subroutine may have a STOP at the end instead of a RETURN statement. CALL DCBSET
for each file. Compile the routine which may call other routines.

2

~—

LINK the program. The first module which is loaded must be the system of the
370/E which then calls STA370.
Copy member SYST370E from TASSO1.SOURCE and TASSO1.LIBRARY into your library.

If you link the program from the terminal under NEWLIB then define:
MEMBER = SYST370E
LIBRARY = your library containing STA370
other libraries
MODULE NAME = any name, i.E. E370TEMP

1f the program is linked in a batch job:
// EXEC FCL

//LKEb.SYSLIN DD OSH = TASSO1.LIBRARY(SYST370E),DISP=SHR
/{ DD

// DD

//LKED.SYSLMOD DD OSN = xxxxxx.yyyy (E370TEMP),DISP=SHR

any name
your library

The linked system Toad module must be submitted to the job queue of the
370/E. One has to prepare a file which contains all the job control cards
for the program and the data sets. The format is fixed.

w
~—

Example:

//F1BNOTO0 JOB TIME=10
//STEPOO EXEC PGM=xxxxxx.yyyy{E370TEMP)

//LISTFILE 0D DSN=xxxxxx.LIST. File name for listing
//FTO8FO01 DD DSN=xxxxxx.yyy. File name for unit 8
//FTO9FO01 DD DSN;xxxxxx.yyy. File name for unit 9.
Assume the control cards are in file ZZZ.AAA

4) The job can than be submitted by
a) CALL ‘TASSOL.LIBRARY{SUB:370t)’
type in name of file containing job control cards:

IZ7.AAA

~—

-9 -

b} //JOBLIB DD DSN=TASSOL.LIBRARY,DISP=SHR
// EXEC PGM=SUBM370E
//FTO5F001 DD »
177.AMA

5} If the job has finished on the 370/E you may inspect the printed results with

LIST 'xxxxxx.LIST' or
PRINT 'xxxxxx.LIST'

111.2 The Program in the 370/E

In the following three sections we describe the structure of the programs in
the 370/E, in the NORD and in the IBM.

The first part of the user program in the 370/E must contain the system E37SYS.
£37SYS has a reference to the user's program STA370. Inside of E£37SYS are on
fixed locations pointers to the various programs and tables. These pointers are
used by the control computer to do input/outout and to handle interrupts. The
general structure of E37SYS is shown in Fig. 6.

When the program is started the registers are resetted and IBCOM=z is initialized.
Control is then passed to STA370. For an input/output operation information is
exchanged via COMMON/CPLIST/LISTPT,LISTPF, LISTTO contains addresses and lengths

of blocks which are sent to the IBM via the control processor. LISTFR points to the

addresses where the answer from the IBM should be written. After several WRITES

a buffer is full.

The 370/E generates a supervisor call SVC1 and stops:

The NORD reads LISTPT, the pointer to LISTTQ. Then control information and buffers
are transferred via DMA to the NORD. The NORD also reads LISTFR indicating where
the answer from the IBM should be placed.

The processor is then restarted. 1t generates an SVC2 to wait for the answer of

the IBM. The NORD then transfers the IBM buffer into the 370/E (Fig. 7). In the new

interface SVC1 and SVC2 will be replaced by SIO.

If the processor stops due to an error condition (addressing error, divide check)
the NORD places the actual address, the length of the last instruction, the
condition code and an interrupt code at the PSW Tocations and starts the processor
at the interrupt service routine. This routine saves the registers and makes a
trace back. According to the option table THOUATBL execution continues or
terminates.

10 -

Address
{Hex)
0 Reset registers
jump to MAINZ
Save area
78 COMMON/CPLIST/LISTPT Pointer to LISTTO. (Buffer to [BM)
7C LISTPF Pointer to LISTFR (Buffer from IBM)
80 Text 'SYST370E82/05/28
VIHCBUF Pointer to COMMON/IHCBUF
VIHCBF?2 Pointer to COMMON/IHCBF2/
for buffers and blocks
VIHOUAC Pointer to unit table for LRECL, BLKSIZE, IRECFM
VIHOUAT Pointer to option table for error handling (CALL ERRSET)
PSWADD Program status word. Address.
PSWLCC Program status word. Length. Cendition Code
INTCODE Interrupt code
VINTSERY Entry point for interrupt service routine
REGSAY Save area for registers
FLTSAV Save area for floating point registers

Interrupt service routine

MAIN2 set up IBCOMx

THOUAC Unit table

FI0CS# Buffer handler interface routine
MVCOM Service routines

Fig. 6

Jocations and are known by the control computer.

Layout of the system for the 370/E. The pointers are on fixed

.11 - -12 -

works under the assumption that this pari of program is not destroyed. It is also
possible that the NORD produces a DUMP of recisters anu memory at the IBIM.

370/E NORD IBM
I111.3 The Program in the Control Computer (NORD)
Reset Registers ONL370 .
There are several possibilities for a control computer for the 370/E. It could
Entry SVC1 be a microprocessor (TMS 9900, NORD1OO/E emulator) without any discs, a mini-
LISTPT Read LISTPY computer (LST1l, PDP11, NORD1O) with terminals and small discs or a large
|~ LISTPF computer (VAX) with big discs. In all cases one needs a link to an IBM to
¢ ¢ e ¢ transfer the linked load modules. Input/Output to files can be performed via
e service . -
Interrup =lJ ng¥ers an IBM if a fast link is available or to Jocal discs or tapes of the control
LISTFR r' computer.
A{IPARFR) L_ Due to this large variety the program in the control processor should be as
L{IPARFR) "] - Read LISTPF . . - Lo
0 Read LISTFR small as possible. The program in the NORD1Q at DESY is shown in Fig. 8
0
L—g LISTTO LAIBM loads the Online program at the IBM using the protocol for the DESY online
A{IBMHAD) Start 370/E)))
L{ IBMHAD) DISCS net. JOBWT sends a message to the online program and waits for a job. If there
A{IPARTO) guffers to b————>{READP is a job in the queue the files are allocated and the code is downloaded to the
L(IPAR;(;) IBM or DOISC _8 SE‘I\%()) _8 370/E. The program then waits for interrupts of the 370/F in SVCWT.
—{ A(IBUFFR) ' For SVC1 the NORD reads the pbuffer addresses, transfers the buffer from the
L (IBUFFR) Buffers from
0 1BM — WRITEP 370/E to the NORD and restarts the processor.
0 For SVC2 the 370/f is waiting for a buffer. The NORD knows from the previous SVC1
) "_*Sffj to which location the input buffer should be stored. After the buffer transfer
IBM header ~ Wait for SVC2 _ - .
= Copy Buffer the 370/E is restarted. A SVC5 indicates the end of a job. The NORD can close
L1yl Parameter to IBM from IBM the files and ask for another job.
» If the processor stops due to an error the NORD places the address and condition
<44 Start processor -
, code into a fixed location of the 370/E and starts an interrupt service routine
Buffer to IBM }- ' in the 370/E. This routine can then do a traceback and abort the program . This
pud

L User program

18COM&
SYC1 —
svcz

Read Address
Hardware Start processor
Interrupt

at interrupt
service routine

Fig. 7 Information exchange between 370/E, NORD and IBM. The 370/t
generates a SVC1 if it wantsto transfer a buffer and a SVC2Z to
wait for the answer.

NORD

MEMDMA

Transfer
370/ & ;);;;E to

LAIBM
Load IBM

Online
Program

IBMON

E=—> 18M

r

SVCWT

Wait for
370/E €& svc or
Error

Fig. 3 Program in control computer. Load program and transfer buffers.

Program is
loaded.
Start 370/E

JOBWT

Wait for
JOB in IBM

Allocate files
at [BM

Download
Program

Transfer
buffers

- 14 -

111.4. The Online Program in the IBM

The Online Program is loaded at the IBM by the supervisor for the online net.

It is then started and waits for interrupts of the NORD.

The NORD sends a message and waits for a job. CKJOB is then called and reads

the disc for the 370/E job queue. If there is a job waiting the NORD requests
allocation of files. CKJOB allocates the files. The filenames are also taken
from the job queue disc. The Online program knows which files are allocated and
which dataset organisation is used for each file. Then the loadmodule is
allocated and transferred to the 370/E via the NORD. As the online program knows
the size of the program and the allocated files the unit table in the loadmodule
can be updated. The 370/E therefore gets the information about files and can
abort the job if an illegal file is referenced.

The IBM now waits for buffers and reads or writes them to the different files.
At the end of a job all buffers are closed and the files are deallocated.

IBM
Online Program
£370 ONL1 CKJOB Submit job
Wait for job .4 Read Jobgueue
Jobgueue
Allocate files 8
Download Modi fy
Program Loadmodule
gl READP]
[BCREQ
- Transfer buffers 1
NORD(370/E) 1/0 Request
e | e
WRITEP RDFIOC

Fig. 9 IBM online program. Files are allocated, loadmodule downloaded and

input/output performed.

- 15 -

1v. The Buffer Handling Routines in the 370/E

In Fig. 3 we have shown how input/output is organized in FORTRAN programs. In
the following chapters the buffer routines are expiained in more detail. The
linkage between different routines is shown in Fig. 10.

The compiler generates several calls to IBCOMk depending on the READ/WRITE
requests:

IBCOM# + O: Initialize READ with FORMAT

+ 4 WRITE " "

+ 8: Input/OQutput a variable

+ 12: Input/Cutput an array

+ 16: Finish current input/output operation
+ 20: Initialize READ without FORMAT

+ 24 " WRITE " "

+ 28: Input/Qutput a variable

+ 32: Input/Output an array

+ 36: Finish current input/output operation
+ 40: Backspace

+ 44: Rewind

+ 48: End-of-file

+ 52: STOP

+ 56: PAUSE

+

+ 64: Initialize JOB

+ 68: Terminate JOB

+308: Partial array handler

IBCOME passes control to the system {GETMAIN, FREEMAIN, ABEND, DELETE, EXTRACT,

LOAD, [HOSTAE, SPIE, STAE, WIOR) to interrupt the supervisor and to Joad

service routines for an abnormal end. IBCOM= then calls FIOCS= for input/output

buffer handling . For the 370/€ FIOCS% is completely rewritten.

For each READ/WRITE IBCOM# passes to FIOCSH in Regester 2 a pointer to the
data set reference number. In addition the following parameters are passed:

BALR 0,1 Jump to FIOCS&
DC AL1{0)
0c AL1{F0,FF,00,0F)

This information is then used to compute the address and length of the next
buffer.

By

-W8I 3y3 pue -3/0/¢ 3yl -2ndino/andur Joy sweaboud 0 3noke] QO
;(0[5

-buLISal 403 WEI dy: 3e weuboud 3| 6uls © S UNU ued jded
Wal
—A

«a O
oS3
(=X el
(= B B
rme —
o
L1:]
(=%
m v O [m m M Gl —
= ~ - o o — e — : (>4
n ©o O = Il m ZZO SO [}
(=) o w = T = — e L) (9 o
x ® m = e (= — [%] =
w [=] — o I I
- -
Py
— XX = — o]
= < I m | == m 12|
D OO o N pd
N O > > I
MmO (==} m [o=]
(] = - [} x -
. . |
_ L
< m
= = *
o =)
™= aa M
= O %] ol
om = —
— w
T P I
» -
- T
=
o
(L3N () wr
38 2l El_lS
5
c 3 [— »
o @ o [—
o = —
v
% mIw o — = (= o
— =m I = = ® m ;2
= oxX O — © O — T3 o
© 'ﬂv—l("; bl = ol e B &
E~ —_—Z < — m m-o o=
—rou —) © =m
m > =
O
(na)
-
© =
= o)
— o]
= [t
— |
H O
= O
< R=1
O
[=]
=

(#3201 4) WOOAN
#5001d r—l 01404

Example 1:

[=12
WRITE(6,2)I1

- 17 -

2 FORMAT(1X,7H MESSAGE, 14}

12 bytes = L16 bytes

Output with variable record format

- 18 -

For control information the parameters look as follows:

BALR 0,1 Jump to FIOCSH
DC ALI(3)
nC AL1(0) for BACKSPACE
(1) for REWIND
{2) for END-OF-FILE

To close all data sets we have at the end

BALR 0,1 Jump to FIOCS#
DC AL1(4)
D ALL{D)

1IV.1 FI0CS3. The 370/E FIOCS= Interface Routine

before FIOCS#

after FIOCSH

Calls to FIOCS# Register 2 Register 2 Register 3
before FIOCSk after FIOCS#

Initialization 'FF’ Pointer to unit 0865F8 85

(Formatted {Address of (= 133 Bytes for

Output) Buffer) one line)
MRITE C 0B6608 35

(12 bytes are (Address of
filled in buffer) next buffer)
BUFFER
Fuw I SOW [bMESSAGE bb12 [SOW | next record
It 3 J
Y
C(=1210)bytes
B65Fo B65F8 B6608
BOW = Block descriptor word
SDW = Segment descriptor word
Example 2 : Input with fixed record format
DIMENSION CARD{20)
READ(5,4) CARD
4 FORMAT(10A4/10A4)

Calls to FIOCSH Register 2 Register 2 Register 3

Initialization 'FO' Pointer to Unit B4250 5016
(= 80 bytes on
card)
READ B42A0 50

BUFFER for fixed records

1. card

e—10A4 —4e10A4 —

2. card

B4250 B42A0

F10CS3 is an assembler routine which fulfills the linkage conventions of
IBCOM=, It's entry points are FIOCS= and FIOCSBEP. A1) registers are saved in
an internal save area SAVEL. The parameters are then decoded and control

is passed to FI0370. FI0370 and all buffer handling routines are written in
FORTRAN. The return addresses of IBCOM# for end-of-file condition
(READ(1,END=4)B) are stored internally. If an endfile occurs the registers

are restored and control is passed directly to the user's program. In case the
user has not specified the END-parameter execution is terminated.

USER IBCOM# F10CS3
—> > FI10CS4
READ ~—fSave Registers
(2, END=0)T P Tpsave Return for Endfile

Decode Parameters

| |
INIT READ WRITE ~ CONTROL CLOSE

Compute Compute
UNIT No. UNIT No.

CALL FIO370(REGISTERS, UNIT, PAR1, PAR2, IERROR)

< If ENDFILE(IERROR=1) pass control to user or

abort execution by call to FI0370 with IPAR1=5

IV. 2 FI0370. The 370/E Buffer Handler

FI0370 is the steering routine for input/output buffer handling.

- 19 -

CALL FIO370(IREG, IUNIT, IPAR1, IPAR2, IRCODE)

DIMENSION IREG(11)
As we have seen above the main information between IBCOME and FIOCS# is
passed via registers. FI0370 has therefore access to registers 2 and 3:
IAD = IREG(2) = Register 2.

JUNIT is the current unit number
IPAR] for initialization of an READ/WRITE operation
for READ data

for WRITE data

for BACKSPACE, REWIND, EOF

to close all buffers

for abnormal end.

[U U U TR 1}
N W N O

IPAR2 = 'FO',‘FF','00','OF' for formatted/unformatted input/output

IRCODE = return flag = 0 1if there was no error

1 for end-of-file.
When FI0370 is called the first time it requests space in the buffer pool for
the control words of the IBM answer. These words indicate on which unit the
1BM has lastly processed and what error conditions occurred.
IPAR] = 0
Initialize an input/output operation. If the unit was not used before a unit
block {UB) and two buffers are created in the buffer pool COMMON/IHCBFZ/. A1l
buffers which are exchanged between the 370/E and the IBM are organized internally
1ike records with variable format. If the actual organisation is fixed, unknown
or formatted only complete records are placed into a block.
For input data sets REAADR is called to read the address and length for the
next buffer. For the first READ of a unit two requests are sent to the IBM
one after another to fill two blocks. After receiving of the first buffer
control is passed to the user's program while the second buffer is filled
at the IBM and transferred to the 370/E simultaneously. This method of double
buffering minimizes dead time.
For output data sets RECADR is called to return the address and length of the
next buffer. If a buffer is complete it is sent to the IBM while the second
buffer is filled.
IPAR] = 1
Entry for READ. Call REAADR for the next buffer address. For an end-of-file set
the return code and pass control to the user's program.
IPARL = 2
Entry for WRITE. Register 2 contains record length of the previous record. This
record length is inserted in the segment descriptor word SDW of a data buffer.

- 20 -

RECADR is called to compute the address and max. length for the next buffer for
WRITE, Spanned records with segments in different files are also marked by the SDW
in the two righthanded bytes. This information is filled by IBCOM#. The record
length LRECL of the unit assignment table is updated. LRECL contains the

longest record length plus 4 for the SDW or BLOCKSIZE minus 4. This

modification is necessary in order to send the segments of a logical record to

the IBM without interleaving of segments of other units (see FPRINT). At the

[BM incomplete logical records are collected in one local array and are

written at once if the record is complete.

Example 3: Write short records
DIMENSION A{1), B(2), C(3), D(4)

WRITE(1)A
WRITE(1)B
WRITE(1)C
PRITE(I)D %RITE(I)D
T T
8ls| s s|! 5| 3
D[D D D D D
WiW W W W W
e A — ——
longest record No space for a
complete record
Ay
B[S S S S
D|D D D D
W[W W W W
i | i |
WRITE(1)D WRITE(L)D
WRITE{1)D WRITE(1)D

- 21 -

Example 4: Write long records
DIMENSION H(100)
WRITE{2)H
!

u

r O w
Tow

v
longest record (H(I}, I =1, 40)

B|S
01D
WiW
(H {I}, T =41 - 80)
B|S
DD
WK
3 v /s v -
(H{1}, I =81, 100) No space for a record of

length LRECL

At the IBM spanned records are stored in array LOCAL and written after the Tast
segment has reached the IBM

At IBM: LOGICAL #+ 1 LOCAL (32768)

- - - — o7 ;
H(1 - 40) H(41 - 80) H(81-100)
_V ’

WRITE(UNIT)(LOCAL(1), I = 1, 400) (4 bytes in 1 word)

IPARL = 3

Backspace, Rewind and end file are requested. If the unit is reserved for
output the last buffer is sent to the IBM. Afterwards a control pattern is
transferred to the IBM to do the BACKSPACE, REWIND or ENDFILE at the IBM.

For input data sets only a REWIND and ENDFILE contro) pattern is transferred
to the IBM.

BACKSPACE for input files cause a lot of problems due to pipelining. Therefore
BACKSPACE for input files is not allowed and an error message will be printed.

- 22 -

IPAR] = 4

Close all buffers. The output buffers still containing some information are
sent to the IBM. Afterwards a control pattern is passed to the IBM. This will
cause a STOP 4 at the IBM after an answer has been sent to the 370/E. The
370/E also halts afterwards.

IPAR] = 5

This entry point is used if an end-of-file occurs and no END parameter is
specified in the READ statement. An error message is printed. Afterwards all
output buffers will be sent to the IBM and execution terminates (ABEND}.

Error Messages

FI0370 UNIT OUT OF RANGE if the unit number is less than 1 or greater than 99.
F10370 SCC B37: No more buffer space available in COMMON/IHCBFZ2/.

F10370 NO BACKSPACE: The user wants to backspace an input unit

F10370 NO ENDFILE .STOP.UNIT xxx: No endfile exit specified in READ.

Service Routines for Buffer Handling and Input/Output

IV. 3. BFFRIB Buffer from IBM

This routine is called by REAADR and requests for input files the next buffer
from the [BM. The control parameters to the IBM are:

[PARTO(1) = 1 , IBCOM# request
[PARTO(2) = 1 , READ
IPARTO(3) = Unit number

IPARTO(4) = ABYTE + BBYTE + CBYTE + DBYTE
ABYTE = ('FO','00')

BLKSIZE

RECFM + BUFNO + LRECL

IPARTO(5)
IPARTO(6)

Information to IBM

LISTTO(1,1} = address of the control parameters

Information from IBM

LISTFR(1,1) = address of the IBM answer

LISTFR(1,2) = address of the Buffer to which the IBM data are written

The routine does not wait for the IBM answer. Execution continues.

- 23 -

Iv. 1. BUFSWI Switch Buffers and send them to 1BM

This routine is called by RECADR if a buffer is full, by INSSEG for the
last segment or by F10370 to send the buffers to the IBH for closinn
or control (REWIND,BACKSPACE,ENDFILE).
The current output buffer is transferred to the IBM and the second output
buffer is prepared for control parameters to IBM:

IPARTO(1) =1, 1BCOM# request

IPARTO(2) 2 , WRITE

1PARTO(3} Unit number

IPARTO(4) = ABYTE + BBYTE + CBYTE + DBYTE

ABYTE = ('FF','0OF')
TPARTO(5) BLKSIZE
IPARTO(6) = RECFM + BUFNO + LRECL

i

W

Information to IBM

LISTTO(1,1} = address of the control parameters

LISTTO(1,2) = address of the buffer to IBM

Information from IBM

LISTFR(1,1) = address of IBM answer

The routine does not wait for the IBM answer. Execution continues.

1vV. 5. CHECOM Wait for Buffer and Check the Answer

This routine is called by IBMIRA to finish the previous IBM transfer and by

F10370 if execution terminates.

We have seen in BFFRIB and BUFSWI that execution continues after an IBM
transfer has been started. CHECOM generates a $YC2, waits until the transfer
is finished and checks the answer for errors. In future 2 T10 will be generated.
The IBM waiting flag IBWAIT is zero if the data are already transferred and

the answer was checked before. In this case CHECOM doesn’t do anything.

when data are sent to the IBM the 370/E program tells the NORD on which
locations the answer should be written. This information is used to transfer
data back to the 370/E. The answer of the IBM also contains the unit number

so that the error information can be placed into the unit block. In this way

end-of-file conditions are detected by the corresponding READ statement (Fig. 1l1).

«qol auo vl butuuna sue sjaed

y30q 4t 3/0/¢ pue wedboud aurjuc WGT U3IMIBG WODIHD Aq BIBP JO J3jsued]

by

11

- 24 -
o [es p_ g m I
i c w2 | =223 ™ 8
-+ <= - =0 2 =
e —h — O —HE
o o m = ® Y 3
s © @ =50 =
~ - o 3 ~
e [= - Pas —
(= = x
| (=3 IS
— w
==
™~
~
o
T
m
S
=3 S5 | S
~ - 0O —
-+ o
™
(= —
— v a0
[=] o w
Ial=) =
= @
>
2
@
=]
o+
o
o o
] X
g S
= (&)
= N3
<3
. -
- = ~—
< fes. o an —
Sﬁ g; o m o ao wn
- = 3 3 33 -
= = = o own o
wown
XXX
== et
® D -
5 S
® ®
@
—— 3
® T
(=3
mD
hna s
o o

U937 LIM a& p[ngqs

8Q plnoys eiep Su3ym s35S34ppy YHISI]

/4n84910 /NOWWO02

weaboud 3/0:¢

weudoad 3uL|ug

-5 -

1V, 6. CRUNBL Create Unit Block

This routine is called by FI0370 and creates a unit block. It reserves space
in COMMON/IHCBF2/ for the unit block and space for two buffers of length

BLKSIZE. The address of the unit block is inserted in the unit assignment table.

1V. 7. DCBSET Change data control block

See description of unit assignment table for further details.
OCBSET(IUNIT, IBLK,LRECL, IBUFNO, IRECFM)
IUNIT Unit number
IBLK = Block size in bytes.
For formatted or fixed records: IBLK 2 LRECLmaX+4

For all record formats . IBLK < 32767
< IBM link limits
{space in TMS9900)
< Dual port memory size -30

s

LRECL = Record length = 80 for cards. {For fixed records internally stored as
= 137 for line printer \ LRECL = 84)
= event length, < IBLK-4

IBUFNO = 2

IRECFM = Record format. See unit assignment table
= 90Z = 144 for FB fixed blocked
= 547 = 84 for VBA variable blocked with ANS printer control
= 58Z = 88 for VBS for event data

IV, 8. GETMAI Get space in main pool

GETMAI(LGBYTE, IADDR, IERR, IHIER) reserves space in COMMON/IHCB+2/.
LGBYTE No. of bytes being requested
IHIER

1 if buffer in dual port memory
0 if buffer elsewhere

IADDR is the FORTRAN array address within IARBUF. The first word is not used
because an address of 1 in the unit assignment table indicates & closed unit.

A1l requests are getting buffers on a double word boundary.

_Iv, 9. TIADDR Compute Address

IADDR is a function and computes the address of a variable. It is part of the
MVCOM control section.
Example: DIMENSION A(200)

starts at location B4FOO

IA = IADDR(A(2))
IA = B4F04 is the address of A(2)

16

- 26 -

1v. 10. 1BMTRA Transfer Data to the IBM

This routine prepares parameters for the interface and the control computer.
The routine is called by BFFRIB,BFTOIB for buffers and by FI0370 for errors,
closing and control requests. IBMTRA prepares a header block IBMHAD which is
sent in front to the IBCOMs information.

CALL IBMTRA(LISTTO,LISTFR)

LISTTO(1,1) = Address of IPARTO
(2,1) = Length of IPARTO = 6 words (32 bit)
(1,2) = Address of buffer to IBM
(2,2) = Length of buffer to IBM
(1,3) =0
{2,3) = 0
LISTFR(1,1) = Address where IPARFR is written
{2,1) = length of IPARFR = 10
(1,2) = buffer from [BM
{2,2) = length of buffer from IBM
(1,3) = 0
(2,3) =0

The header information which is sent to the IBM contains:

IBMHAD(1) = No. of 32 bit words
(2) = 821 identifier
(3) = length of LISTTO = 4 (without the two zeros at the end)
(84) = length of LISTFR =4 (! ° ")
= LISTTO { " . ")
LISTFR (! " ")

Before data are transferred to the IBM CHECOM is called to transfer the
answer of the previous request from the [BM to the 370/E.

- 27 -

Iv, 11. IDSTL Compute Distance between Variables

This function is used to transfer data from one array to ancther one. It is part
of the control section MVCOM,

Example 5: Of the second array only the address is known.

COMMON/C/ 1ADV
DIMENSTION A{200)

C Compute address of A
TADV = TADDR(A(1})

SUBROUTINE TWO
COMMON/C/ TADV

DIMENSION B(100)
C Compute distance between A and B
10 = IDSTL(B,IADV)/4

Memory
AT A{100Y IB(l) B(100)
tocation 500 1000
TADY = 500
ID = (500 - 1000)74 = -5C0;4
C B{1-125) points to A{1)
C Copy data from B to A

021 =1,100
2 B(I+IB) = B(I)

IV, 12, INSSEG Insert Segment Word

INSSEG(IREG) inserts the segment descriptor word after a record is filled by
IBCOM# and updates the record offset. The length of the segment is given by

register 2 in IREG(2). If this segment is not the first segment of a logical
record the buffer is sent to the IBM by BUFSWI to fulfill FPRINT conditions

for multisegment records.

IV, 13. MVCOM Move Characters

This routine moves bytes from one array to another one.

DIMENSION TO(100), FROM({100)

CALL MVCOM(TO,FROM,400)
moves 400 bytes from array FROM to array TO. This routine is needed often
because the source or destination address may not coincide with the full word

boundary. If your output record is only 15 bytes Jong the following segment descrip-

tor is not on a full word boundary. MVCOM is used to set the SDN in such a case.

- 28 -

IV. 14, REAADR Compute Address for READ

REAADR(IREG, IRCODE) is called by FI0370 and retuwrns the address and the length
of the next segment in registers 2 and 3. If a buffer is finished the third one
is requested from the IBM while the second one was already filled and will be
used now.

Iv. 15. RECADR Compute Address for WRITE

RECADR({ IREG,IERR} computes the address and the length for the next record.
RECADR is called by FI0370. Full buffers are sent to the IBM by BUFSWI and
the next buffer is filled.

IV, 16. FTRACE Interrupt Routine for Tracebeck

FTRACE is called for hardware interrupts by INTSRV or by FI0370 for input/output
errors. It performs a traceback {divide check, overflow) and may abort the
program if the error counter reaches its maximum. Via COMMON/CPLIST/ the program
has access to the program status word PSW, the interrupt code and the registers.
As FTRACE may be called also from FI0370 it may not do any WRITE or formatting.
Input/output is therefore done by calling the buffer routines directly. After
return the interrupt service routine gives a SV(6.

- 29 -

V. The Subroutines in the Program of the Control Computer

In the NORD we use features which are specific to NORD software and to the DESY
instaliation. We therefore describe first the main routines and explain afterwards
the special service routines. The layout of the NORD program is shown in Fig. 8.
As the input/output to the IBM and to the 370/E is via DMA the program must be
fixed in the NORD memory.

V. 1. JOBWT. Wait for JOB

JOBWT sends a control pattern IPARTO to the IBM program which passes control to
CKJOB:

IPARTO(1) = 2

JIPARTO(2) = 0 : Wait for a job

IPARTO(2) = 2 : Allocate files at the IBM
IPARTO(2) = 1 : Load system load module

When the IBM has a job available for processing JOBWT asks for allocation of
files. If all files are available the loadmedule is downloaded from the IBM and
stored into the 370/t.

If a file allocation error occurs the next job is taken.

V. 2. LAIBM. Load the IBM module

LAIBM sends a message to the IBM-supervisor to load the correct program at the IBM.

‘CHANGE': Unload the current program and call the supervisor
'LOAD E3700NL1': Load the online program for the 370/E

The Toading of a proaram takes some time. Therefore several loops are needed to
wait until the program at the IBM is ready for execution.

V. 3. MEMDMA. Transfer blocks to/from the 370/E Memory

The transfer of information between the NORD and the 370/E is controlled via
MEMDMA. If less than 100 bytes are transferred we use programmed [/0. For larger
blocks DMA is used. The routine takes the characteristics of the interface (like
window register for LSI11) into account.

- 30 -

V. 4. SVCWT. Wait for SVC and Errors

Every 20 msec this routine checks the status of the processor. When the processor
stops the SVC code and backplane registers are read out. In future this routine

will measure the CPU time of the processor's program in order to interrupt

processing in the case of dead Toops.

V.5. INTHAD Interrupt Handliing

If SYCWT detects an error (divide check, overficw, addressing) INTHAD is
called. INTHAD has access to the backplane registers and the interrupt address
of the 370/E. Using the contents of the backplane registers one can compute
the type of interrupt. The address, the instruction length and the interrupt
type are loaded into the 370/FE processor and the 370/ is started at the start
address of the interrupt service routine.

SVC6 indicates the return of the interrupt. Execution continues one instruction

behind the interrupt address. If the interrupt routine is entered twice without

the occurrence of a return (SVC6)} of the previous interrupt the NORD aborts the

job at the 270 and terminates execution.

V.6. Service Routines in the NORD

CLOSE
FIXC(ISEG, IPAGE)
HOLD(MS ,1)
HOLD(IS.?)
IBMON(1,L1ST, 7, [ER)
IPEEK(IREG)

IPOKE(IREG, IDAT)
MEMR/MEMW (IADR, DAT)
OPEN

POWER(LER)
RESRV(TUNIT,Y,0)
RELES(IUNIT,?)
SRUN(TADR)
UNFIX(ISEG)

ZASEB

Close a file
Fix a contiguous segment starting on address IPAGE

Wait MS-20 msec
Wait IS sec

WRITE/READ to/from IBM.

LIST contains addresses and length of buffers
Read a register from the 370/E interface
Write into a register from the 370/t interface
Read/Write to 370/E memory

Open file to read unit number for terminal
Initialze 370/E

Reserve a terminal for input/output

Release a terminal for input/output

Start 370/f at address IADR

Unfix a segment in the HORD

Convert ASCII/EBCDIC

- 31 - - 32 -

VI. The Input/Output Routines in the IBM Online Program

The structure of the IBM Gnline Program is shown in Fig. 9. The program is started Data are transferred from the 370/E to the IBM by

from the NORD via an interrupt to the IEM online supervisor. It then goes into CALL READP(ARRAY, ICOUNT, IACT, £1, £2, &3, &4)
a WAIT and waits for interrupts of the NORD. ARRAY is the field where the data are written
The general structure of the online program can be recognized by this figure: ICOUNT contains the maximum number of bytes to be transferred
IACT contains the number of bytes which are actually transferred.
IACT < ICOUNT.IACT is always a multiple of 64 words of 16 bits.
£3700NL1 RETURNL: Time out
RETURNZ2: No read request
WATT RETURN3: Transfer error
wait for
a request RETURN4: Do a STOP
370/E READP The answer of the IBM is sent to the 370/E by a
to read CALL WRITEP{ARRAY, ICOUNT)
data from
370/t Example 6:
DIMENSION TOIBM(100), FRIBM(50)
100 CALL WAIT(PCD, £500, £200, €300, £100)
WRITEP 200 CALL READP(TOIBM, 400, IACT, £100, €100, &100, £500)
to write :
data to :)
370/E Data from the 370/E are in TOIBM
Put answer into FRIBM
GOTC 100
300 CALL WRITEP(FRIBM, 200)
. . . . GOTG 100
After the start of the program it waits for an interrupt of the 370/t in the 500 STOP

routine WAIT, END
CALL WAIT(PCD, £1, £2, €3, €4)
Relevant for us are returns 1, 2 and 3:

VI. 1. ALCDYN. Allocate a data set

RETURNL: The online program should finish by a STOP. If it does not finish

it will be aborted. This exit is used to remove the job if there The two subroutines ALCDYN and DALOYN serve to allocate and unallocate data
is no transfer between IBM and 370/E for half hour, sets dynamically at execution time and may be called by FORTRAN
programs.

RETURNZ: A read request was given by the 370/E to transfer data to the IBM.
{The IBM reads data from the 370/E). CALL READP afterwards. CALL ALCDYN{DON,DSN,UNIT,VOLUME,DISP,SPACE,DSORG, DCB, ERRORS)

DDN - character string of fixed length 8 - DDNAME

DSN - character string of fixed length 44 - Data set name
UNIT - character string of fixed length 8 - Unit name
VOLUME - character string of fixed length 6 - Volume name

RETURN3: A write request was given. CALL WRITEP to transfer data to the 370/E.

BowWw N

- 33 - - 3% -

5. DISP(3) - array of 3 character strings of fixed length 8 -
disposition parameter for allocation.
DISP(1): status specification: OLD | MOD | NEW | SHR
DISP(2): normal disposition: KEEP | DELETE | CATLG | UNCATLG VI. 2. CALLOC__Interface for Allocate dataset
DISP(3): conditional disposition: KEEP | DELETE | CATLG ! UNCATLG

The routines to allocate a dataset needs many parameters. CALLOC gets the

6. SPACE{10) - array of 10 half words - relevant information for a dataset from the job queue, unpacks the information
SPACE(1): space unit specification: and allocates a file. If the unit is reserved the old file is deallocated and
- -1 space unit not defined (SPACE(2...4) will be a second allocate is carried out. Some information about file allocation is
>0 average block size ignored) printed to the printing unit
= -7360 or 'T’ tracks —_ i
= -15552 or 'C’ cylinders INTEGER%2 NER(3}

LOGICAL*1 LOGIN{78)
. A CALL CALLOC(LOGIN,NER,IUNIT)
SPACE(B): SeCDnda"y allocation quant]ty INFUTS LOGIN = DES(RIPTO" OF LA'T. LPCICAL * 1, PACKELD FOPMET

- di i i LIGIN{) LH1T NULMPER
SPACE(4}: directory allocation quantity for PO data set g Stavencr '“_"“HF (2 = FTO1F00:)

SPACE(2): primary allocation quantity

e g
ot

SPACE(5): "release unused space" parameter (RLSE) cise = 19z tf ;
30 = tfv })FIRST PARAMETEF
=1 release unused space 40 = 1P)
+ 1 = ¥rlP)
=0 do not release unused space 4+ 2 = CTLETC)
+ 3 = Er*lg .) STCOND PARAVETCP
+ 4 = MCATLE
7. DSORG - half word - 14) = X*40°" FHYSICAL SEOUENTIAL
. v . . . L] v . Y E
Data set organization specification for allocation: (5+¢) = s’prE[22',",.’;5,:{I$13v.- T*==730(4*C*=-156502
(T+8) = PRIMAFY ALLCCATID®
= -1 not set (9410} = SECUNLCARY ALLGCATICH
. +12 = A Y
= 512 or x'0200°P0_(partitioned) . “5412)) : 3'8%‘1?2L5n
= 16384 or x'4000'PS(physical sequential) gé?-gg; = YJE‘I_’#"['FAST' on e ,
Actual DSORG is always returned in this field. (50-72) - DSNAPMF
(?73~74) = DCB FLFKFS1ZC
8. DCB(22) - array of 22 half words - {75=7¢) = DBC LFECL
) (77) = RECFH = B8 (SYALDAPRD CR SPANNIDI+16(N0)
DCB parameters for allocation: 4 C4CV) + 128 (F) + 192 {1)
= 0y IF CCB FFPHF DATA SCT
DCB(1): to specify the record format give the sum of all relevant iy = PRINTING ULI%. IF JEROD MO PRINT OUT
numbers from the following list:
8 standard fixed or spanned variable (S)

16 blocked (B)
64 variable (V)
128 fixed (F)

192 undefined (U)

Examples: to specify RECFM=VB set DCB(1)=80, to specify
RECFM=VBS set DCB{1)=88.

DCB(2): BLKSIZE value
DCB(3): LRECL value
DCB(4): BUFNGC value

- 35 - -3 -

VI. 3. CKJOB Wait for a Job and Check

VI. 5. CONDYN Connect files

CKJOB is called from the NORD. It checks the job queue if there is a job waiting If one wants to read two files like a single file one can connect these

for processing. The disc for the job queue is allocated and searched for a job. files like:

j ntrol i 1 i h i i
The job co rjo information js tl ?n read and files will be allocated. Then the //GO.FTOIF001 DD DSN =
load module is read. The control information of the load module is used to /! DD DSN =

compute the size of the program and to get the addresses where the segments of

' CONDYN can concatenate up to 20 files.
the program should be loaded into the 370/E. According to the allocated files

the unit table is updated to inform the 370/E about the available files. CALL CALL CONDYN(NDDN,DDNS, IPERM,ERRORS)
INTEGER#4 IPARTO(6), IPARFR(10),1BUFFR{5000) 1. NDDN - half word -
CALL CKJOB(IPARTO,IPARFR,IBUFFR) number of files to be concatenated (2 < NDON < 20)
INPUT: IPARTO(1) = 2 LOOK FOR JOBS AND ALLOCATE FILES 2. DDNS - character string of fixed length 8#NDON -
= Kk 0 .
IPARTO(2) g: :a:g ;SS'E“Jng MUDULE Tp Tuk 370/€ array of ddnames of files to be concatenated; each ddname is to
TE FILES AND SEND RESULT TO 370~/ .)
IPARTO(3) = 55 .‘B%’OS’I‘LS ngE ALLOCATED be 8 bytes long (eventually padded right with blanks).
= 0 FOR PRESENT JOB» I FOR PREVIOUS JUB 3. 1PERM
OUTPUT: IPARFRU1) = 2+ ANSWER OF glt.lgg 1Ry LATER . - half word -
IPARFR(2) = ?: }ﬁ%gﬁ }g 2 JgB VAITING requested type of concatenation:
= STEM LOAD MODULE 1S SENT
= g: 2;0 oF EVST[M LOAD MODULE = 0 : non-permanent
= 4+ FILE ALLOCATED = 1 : permanent
IPARFR{3) = O0O» NO Em:ogrrs: ‘8%'3?‘;‘»'«';"305%5?
1PAKFR{4) = }E::t&é) OF A‘Ctocnuu; ROUY ;P:E Qps) NOTE: Permanently concatenated files cannot be de-concatenated
= XT FILE (IN J2 ® WORD)] i)
1PARFRI(S) = 55:;6:‘31!32&" ¢ dynamically; only dynamic un-allocation will be possible.
= FILE NUMBER FOR ALLDCATION
IPARFR(6) = Agungs{sclu 370/ FOR VEXT FILE
= Joa TIM
Z FILE ALLOCATION OKo.{0)s END OF ALLOCATICN (1}]
IPAKFR{T) = LENGTH OF TYEXT FILE * VI. 6. DALDYN Deallocate files
IBUFFR = YEXT FILE FOR LOAD MODLE. LBUFFR{5000)
= NAME OF JOB - . . . s
= NAME OF FILE Unallocation of data sets by ddname at execution time. Dataset disposition at
CALLING SEQUENCES WALT FOR JOB allocation time is executed at unallocation time and may be altered using
ALLOCATE FI1LES)
READ LOAD MODULT subroutine DALDYN:

CALL CALL DALDYN(DDN,OVDISP,ERRCRS)

1. DDN - character string of fixed length 8 -
VI. 4. CLJOB Close job and deallocate files ddname of file to be unallocated.
2. OVDISP - character string of fixed length 8 -
At the end of a user's program all files are closed and deallocated. Than the overriding dispositi fg dat t tngb ’ n
osition for data set to be :
online program will be unloaded to release all buffers (STOP4) P nallocated

OVDISP = KEEP | DELETE | CATLG ! UNCATLG

VI. 7,

- 37 -

FPRINT Write Records at the IBM

FPRINT gets a complete block from the 370/E, searches for logical records and
outputs them.

FPRINT(IUNIT,LBUF,IFORM)

UNIT
LBUF
[FORM

unit number
Buffer from 370/t

0, write without format control

1, write with format control.

Stand alone records are written directly, spanned records are copied to a local

array. A write is then given after the record is complete. Therefore spanned

records must be sent to the IBM without interference of other units.

Example 7:
g 1. 2. Rec.
Li[0] Record 1[1. Seg.

2 Record
2. Segment

Buffers from 370/E

0 2 Rec
W 213. Seg.

LOCAL

WRITE 1, Record

WRITE 2. Record

- 38 -

vI. O, IBCREQ Handle IBCOMz Requests

IBCREQ(IPARTO, IBUFTO, IPARFR, IBUFFR)
A1l IBCOM= requests INPUT,OUTPUT,BACKSPACE,REWIND,ENDFILE are handled by this
routine, The routine is called by the IBM online program E3700NL1.
IPARTO contains the parameters sent to the IBM,
IBUFTO is the buffer to the IBM for output
IPARFR contains the answer from the IBM and control information
IBUFFR is the buffer from the IBM to the 370/E for input.
IPARTO(1) = 1 [BCOM# request

(2) =1 READ
= 2 WRITE
= 3 CONTROL
{3} = unit number
{4) = ABYTE or = 1, BACKSPACE
= 2, REWIND
= 3, ENDFILL
{5) = BLKSIZE
(6) = LRECL
IPARFR{4) = 0, no error

= 1, end-of-file.

VI. 9. INCBUF Fi1l Input Buffer

In order to avoid high dead time the IBM fills input buffers already before the
user at the 370/E gives an actual READ command. For the very first READ
statement the user program has to wait until the IBM has filled a buffer. But
while execution continues at the 370/E the IBM fills the next buffer. There-
fore the IBM program does not know, how many words the user at the 370/E would
1ike to read and whether the format is fixed for cards or variable for events.
The usual FORTRAN input techniques do not help us in this case. We therefare

-39 - - 40 -

wrote extra input routines using FIOCS# at the IBM,

INCBUF (IUNIT, IFORM, IPARFR,LBUFFR)
is called by IBCREQ and fills a complete input buffer for TUNIT.

TUNIT = Unit number VI.i0. RDFIOC READ by FIOCS#
IFORM =0 for unformatted input

=1 for formatted input fixed records) For input datasets we cannot use FORTRAN READs because the IBM does not know
[PARFR - Par::gﬁzrgsf:z;e?sarom ABYTE which is sent in IPARTO in advance how many words should be read. Read is therefore performed by FIOCSs.
IPARFR(4) = 1 for end-of-file RDFIOC(IUNIT,IFORM,HAMS) requests the address and the length for the next
LBUFFR = Buffer which is sent to the 370/E

The first word in the buffer contains the block descriptor segment of IUNIT. FIOCS# returns in registers 2 and 3 the address and the length.

word and is used to determine the block size. This word is This information is stored into array NANS:
modified for end-of-file conditions in the last record.

The block which is transferred to the 370/E is organized as a variable record INTEGER#2 NANS

for all data set formats: Information like record length or format is taken Rﬁngg;g i }” Address of next segment
from the unit assignment table for input datasets. If the input device has a NANS(3) = length of segment
fixed record format complete records are placed into a block. NANS(4) = 0. No error. Used for segment offset.
Example 8: = -1, End-of-file
IBM blocks (fixed): NANS(5) = Code from segment descriptor word = 0, 1, 2 or 3 for complete,
first, last or middle segment
l J l I ! | [l NANS(6) = Record format. Taken from the data control block of the unit block
\\NUNRD(B IDNIT) - 80 —— ROFIDC also modifies the ENDFILE and ERROR words and register save area in
’ - Waid for next transfer [BCOM# for proper return in case of end-of-file conditions. IHOUATBL contains

the IBM unit assignment table and is needed to compute the address of the
unit block in order to get the dataset format.

370/E block:
] BT B 8
4 ;

D i

W

Variable records are copied to the 370/E buffer. Care must be taken for spanned
records and the segment descriptors for the 370/E must be marked correctly.

I8M blocks (variable):

J'first segment tmidd]e segment ast segment
B 1.Record 2.Rec. B 2. Record Bl j2.Rec| [3.Rec
D| 0 1 D|3 D] 2 0
W W
370/E block

B 1.Record B

D| Of 1 Di2 0 0

W W

kirst segment #%st segment

- 41 - - 32 -

Endfile condition: VII. Buffer organization and Tables

Modifi- |--=--—93 Save area }_ The unit assignment table is organized like IHOUATBL. It has entries for
cation - - =~=3 ENDFILE . . R . .
- - —-3 ERROR 100 units. Of these only 99 units are allowed while unit number 100 is used
FIOCS#& to point to the area of the IBM answer.
gg;urn &—— Eg;urn The unit assignment table looks as follows:
COMMON/ THOUAC/ HUPRES , HUMHUN, ISTDUN, IUNAS (4,100)
If the 370/E is connected to a non IBM computer RDFIOC must be modified. In INTEGER*2 NUPRES,NUMHUN
this case RDOFIOC must know the format of data for several units: HUPRES = Present unit number
Example: NUMHUN = Maximum number of units ¥ 16
SUBROUTINE RDFIOC(IUNIT,IFORM,NANS) ISTDUN = Standard units for ERROR,READ,PRINT,PUNCH
INTEGER*2 NANS(6),NZ(2) = 706050607
COMMON/CRC/LENG,EVENT(1000) IUNAS{1,..) = Address of unit block in COMMON/IHCBF2/.
DIMENSION CARD{20) The address is the FORTRAN array address in IARBUF.
Egﬂ%ﬁtg:gg Eﬁ‘z‘?%l}#"c} IUNAS(1,...) = 2 if the unit block starts at IARBUF(2).
€ Address of "buffer” IUHAS(1,...) = 1 if no unit hlock was created.
IZ = 1ADDR(CARD) TUNAS(2,...) = [THOASYNC i
NANS{1) = NZ(1) not used BLKSIZE
NANS{2) = HZ(2)
C No error TUNAS(3,...) = [IRECFM 'Buf no '
NANS(4) = 0 =2 LRECLI
¢ ﬁzwglg§e=r8cord The blocksize may be chosen independently of the biocksize of the data
IF (IUNIT.NE.5) GOTO 2 ‘ definition card (// DD). It depends on the memory space, the characteristics
C CARDS. of the IBM tink and the IBM online program. If it is too small one has many
80 bytes per card
NANS{3) = 80 transfers between the 370/E and the IBM. For a 370/E with dual port memory
¢ sigg?ﬁ) " for input/output the blocksize should not exceed the size of that memory ninus 30.
READ(S,Q.END - B)CARD [RECFM defines the record format
4 FORMAT(20A4) IRECFM = 204 = 4 = ANS printer control
GOTO 99 = 208 = 8 = spanned
8 NANS(4) = -1 = 210 = 16 = blocked
GOTO 99 = 240 = 64 = variable
2 CONTINUE = 280 = 128 = fixed
C = ZC0 = 192 = undefined

Next unit
. Typical formats are 88 for VBS, 128 for F, 196 for UA or 84 for VBA. The
buffers between 370/E and IBM are all organized as VB. For fixed, unknown or
ANS records only complete records are placed into a block while spanned
records may be used for variable records.

LRECLI is the record length. For fixed records it should have the size as speci-
fied on the IBM data definition card +4 (i.e. LRECLI = 84 =254 for cards).

- 483 -

LRECL should have the length of the longest record {i.e. LRECL = 137 for line
printer) but should be less or equal to BLOCKSIZE-4. During execution LRECL
is updated to the longest record.

pata control block definitions can be changed by a

CALL DCBSET{IUNIT,IBLK,LRECL,IBUFNO,IRECFM)

For fixed records LRECLI = LRECL + 4,

V11.2. The buffer pool area for unit blocks and buffers

A1l buffers and unit blocks are stored in

COMMON/ IHCBUF /LGBYTE ,LBUSED(3) /IHCBF2/IARBUF(10000)
Common for unit blocks and buffer space

LGBYTE length of IARBUF in bytes = 40000
LBUSED{1) = No. of words used

TARBUF = unit blocks, buffer space.

Space is allocated in IARBUF by a

CALL GETMAI(LBYTE,TADDR,IERR,IHIER)
IHIER defines whether the buffers should reside in the dual port memory or in
the normal memory. At present all buffers are located in one contiguous array
and only LBUSED(1l) is used.

viI.2.1 The control block of the IBM answer

The control block of the IBM is 10 words long and contains:

IPARFR(1) = 1
IPARFR{2) = 1, 2, 3 for READ, WRITE, CONTROL
IPARFR(3} = IUNIT which was processed at the IBM
IPARFR{4} = 0 no error

1 end-of-file

2 1/0 error

3 FIOCSH(IBM) error.

Unit no. 100 of the unit assignment table points to this area.

VII. 2.2 The unit block (UB)

The unit block describes the position and status of the input/output buffers.
The address in the unit assignment table points to the unit block. If the
address is 1 the unit was not opened before and & unit block must be created.

- 44 -

A unit block has the following form

IADDU = IUNAS(1,IUNIT)
TARBUF (IADDU + 0) = ABYTE + BBYTE + CBYTE + DBYTE

IADDU + O ABYTE T BBYTE [CBYTE | DBYTE
+1 Address of buffer 1
+ 2 Address of buffer 2
+3 Address of current buffer

+ 4 Record offset within buffer

+5 IDECB = 0, 1, 2

+ 6 No. of current buffer = 1, 2

+ 7 U Address of 1. Buffer to IBM |
+ 8 0 Address of Z. Buffer to TBM
ABYTE = Parameter 2 of FI0370
= 'FO','FF','00','OF* for formatted/unformatted input/output
BBYTE = 1 for end-of-file
CBYTE = 1 for opened data set
DBYTE = O

For a given unit two buffers for data are created. Within a buffer the offset
pointer points to the last byte which is used. It is set to 4 for an empty
buffer because 4 bytes are needed for the blockdescriptor.

IDECB = 0, no buffer sent to IBM
1, buffer 1 sent to IBM
2, buffer 2 sent to IBM

A unit block is created by
CALL CRUNBL{ABYTE,IERROR}

VII. 2.3 The unit buffers

For each unit two buffers are reserved in the buffer pool. Each buffer is
organized as variable blocked records with block and segment descriptor
words (BDW,SDW)

- 45 - 4o -

Unit assianment table

Block length in bytes < BLKSIZE
N

/ \ BUKSTZE | LRECL
S t length in bytes
, egment leng N Y ’ Addres_s
SDW 1. Record SDW Z. Record to unit
block
—— — Unit 100
4 bytes each 4 bytes
BDW 3Tock Tength] TED | Buffer pool area
“IBM
[EOF = 1 if this is the last block before answer
an end-of-file occurred
(Non IBM standard)
SDW I | Unit block
ABYTE
?egmint 1CODE 0 Buffer 1
ens Buffer 2
ICODE = 0, stand alone record current buf fer
; : Offset = 100
= 1, first of a multisegment record IDEB = 2
= 2, last of a multisegment record current buffer
= 3, neither first nor last segment. 0
The layout of buffers and pointers is shown in Fig. 12. — Address of IBM buffer
BLOCKS
BOW
SOW
W
L — BN

next Unit BLOCK

Fig. 12 Buffers and Pointers

- 47 -

VII.3. Unit Assignment Table for Input at the IBM

For input units a special table at the IBM is needed because input is not
done via IBCOM# but via FIOCS#.

COMMON/ THCUNR/NUNRD(6,99)

INTEGER®*2 NUNRD
NUNRD(1+2 , TUNIT}

I

Address of current segment

= Register 2 from FIOCSH
HUNRD(3, IUNIT) = length of current segment or record
NUNRD(4, IUNIT) = 0. A read was successfull

= -1, end-of-fite

< -1, FIOCSs error

0. Segment offset pointer. The following words are not
yet copied to the 370/E buffer

Segment descriptor word

0, complete segment
1, first segment

2, last segment

3, middle segment

Record format. Taken from IBM DCB in unit block.

v

NUNRD{5, IUNIT)

U LI

NUNRD(6 , TUNIT)

- 48 -

VII.4. The COMMON/CIBUF/ of the Online Program

COMMON/C IBUF / IBMBUF {5000)
I8MBUF(1) = Number of 32 bit words including this word
(2) = 821 = code
(3} = NUMTO = No. of different blocks sent to IBM
(4) = NUMFR = " " " sent from I[BM to 370/t
(5) = Address of PARTO (Address in 370/E memory}
(6) = 1length of PARTO
(7) = Address of BUFTO (Address in 370/E memory)
(8) = length of BUFTQ
(9) = Address of PARFR (Address in 370/E where data are written)
{10) = Tlength of PARFR
(11) = PARTO(1)

length of PARTO = IBMBUF(6)
(16) = PARTO(6)
(17) = BUFTO(1)
: Jength of BUFTO = IBMBUF(8)
(116) = BUFTO(100)
(117) = PARFR(1)
; length of PARFR = IBMBUF({10)
(126) = PARFR(10)

- 49 -

VII.5. Job Control [nformation

The job control information i.e.

//F1BNOTO0 JOB TIME=1

//STEPOO EXEC PGM=F1BNOT.TSOLIBL{J370)
//LISTFILE DD DSN=F1BNOT.LIST3
//FTO3F001 DD DSN=F1BNOT.INP

is stored into

INTEGER*4 NJOB(4)
LOGICAL*1 LBUFFR(78,11)

NJOB(1)-(3) = 'FIBNOT' = Job name

NJOB{4) = Time in minutes
LBUFFR(1,1) = File information for load module
LBUFFR{1,2) = " " " List file
LBUFFR{1,3) = " " "ofite 1
LBUFFR(1,4) = " z " file 2
For each file:
LOGINtE) = UNIT NUMPER
(2) = SEQUENCE NUMPEP (2 = FTO1F002)
{3} = pIsP = 10 = CL[]
20 = ¥0C }
J6 = KTW YFIRST PLPAMETLYF
A0 = oM)
41 =¥7rre }
+ 2 = rFLfTE
+ 3 = CrTLG
4+ 4 LFC‘YL)
(4) = X*A0° PHYS]CPL SCﬂUEHTlAL
X'OZ‘ PARTITICONECD
(5¢46) = SPACE =] s CUPNTITY 4 Te==THC»
{7+8) = PRI"AFV ALLCCATION
(9410) = SECUNTARY ALLOCATTION
($11412) = DIRECTCRY
{13+14) = 0 OR 1(RLSE)
(15-20) = VYOLUNME
{21~-2¢8) = UNI‘ Z*FAST® DR * .
tZO'VZ} = DSNAMI
73-74) = DCB ELVS]ZT
{(15-76} = 0BC L{FE
(rn =

€AtV)
On IF DCB TFOM DAYVA SEC

-
-~
-]
-
(I}

)
} SECOKD PARAMCTEP

(4§
RECFM = 8 {SYANDATD OR SPANNIDI+16(D)
+ 128 (T) + 192 (U}

- 50 -

VII.6. File for Job Queue

The file for the job queue is a direct organized data set (Fig. 13).
The first record contains a counter indicating how many jobs are processed.
This record is only modified by the online routine CKJOB. The second record
indicates how many jobs are requested. All remaining records contain the job
control information for each job. If the end of the disc is reached the first
job files will be overwritten if they are already processed. Otherwise the
queue is full.

NDONE NREQ JOB7 J0B8 JoB3 Jos4 J0B5 JOB6
5 8

l L) free free 44441

Fig. 13 Organization of job queue

- 5] -

Appendix

A 1. A Program to Test the 370/E

In order to test the processor a test program was written which generates per
transfer 500 random numbers, ALOG, SQRT, ARSIN, SIN, COS, TAN, EXP and fills
an array A(10,500). 20 000 bytes are then transferred from the IBM to the

TMS 9900, the control processor of the online net {15 psec/16 bit word). At
the end of this transfer data are sent to the NORD (10 usec/16 bit word). When
data are transferred in the opposite direction from the NORD via the TMS9900 to
the IBM the two transfers overlap for higher speed.

The NORD transfers data to the 370/E and starts it. In order to minimize time
the 370/E requests from the IBM the next block with results by transferring

10 control words to the IBM (Fig. Al).

The 370/E is then started, the ten words are sent to the IBM and the IBM is
activated. The NORD then waits for the end of the IBM transfer and the end

of the 370/t computation.

A.2. A Program to Test Error Handling

In order to test the error handling of the 370/E we wrote a small program which
does FORTRAN 1/0 and contains some errors. The program source code is shown in
Fig. A2. It is compiled and linked at the IBM. The listing of the linkage editor
is given in Fig. A3. A1l buffer handling routines and the system of the 370/E

is loaded at the beginning. The job is then submitted and executed at the 370/E.
Qutput is transferred to the IBM and printed on a LISTFILE (Fig. Ad). Software
errors Tike negative square roots are handled by the FORTRAN library and hardware
interrupts like divide checks are controlled by an interrupt service routine.
Execution might terminate for address errors or continue for divide checks.

A 3. Some Remarks

1) The 370/E can be connected to each computer. Input/output to tapes and line
printers can be controlled by this computer as long as the buffer formats
are treated correctly. Error messages are printed in the known IBM format.
In order to develop and load programs a link to an IBM is needed.

2) There are some restrictions for programmers using assembler language. Due to
pipelining it is not allowed to modify the following instruction and to
execute it afterwards.

3) It might be possible to support also direct access 1/0.

- 52 -

4) There is no access to system control blocks. It is complicated to transfer
them from the IBM as the addresses of a job in the IBM and in the 370/t are
different.

5) To connect the 370/E to IBM we use at DESY a 2701 unit with parallel data
adapter. One might think of available interfaces like MODCOM, S/1 or NOVA
to connect the 370/ to the IBM channel.

6) When one compares results of the 370/E and the IBM one must use the same
COMPILERS. The same FORTRAN library but a different compiler can give
different results:

it = Z40170E9A
COS(R=2%3.141592) = Z40D81733 for IEKAAD
A = 740081731 for FORTRANQ
This code is different
in both compilers

7) The processor was tested with the program described in Al, With the bit
slice 2901A we found two wrongly calculated exponent functions per 4 Mill,
numbers, with the 2901B no error was found for 40 Mill. numbers.

8) The new interface has the following features: If a SVC, a program interrupt

or an external interrupt occurs the old program status word PSW is saved on
locations 32, 40 or 24. The program branches to the address given by the

new PSW defined in locations 96 , 104 or 88.

Input/output is performed in the following way: Like LISTTQ and LISTFR a set
of channel command words CCW describe the 1/0 commands, the addresses and
lengths of buffers. The channel address word for channel zero in permanent
storage location 72 points to the first CCW. The processor gives a start I/0
operation and stops. The control processor has to read the channel device
address (in ARH + ARL), sets the sinale cycle bit and clocks for CAW (in

ARH + ARL), 1. CCW and 2. CCW (in DBH + DBL). If the channel is not available
the control computer returns the channel status word CSW (in DBH and DBL)
and sets the condition code. The processor is started again. The end of data
transfer is signaled by an interrupt or tested by the test 1/0 command TI0.

Yoy

wesboad 1537 © 404 weabeip Gurwty

20

v

9'0

80

5as O]I

H

M

- 53 -

9 —
O
~
— m
=
= o
[l
o [ad
a <
a2 <
o s
<
2]
— j) 3
=]
&
-
@ & ol
= —
o+ =]
R
w -
g -\\~\\\N
=
~ © o
m 3
(583
b g
2
wn
\\n &
(o]
<
— w I
j= ~ 11
= o %l
~
g m
“ o 8
pa a =
< - (=]
[t - [
< “w
" -~
[=
~
[aal

J3sw 011

a7 A

0YON-0066SHL

HasWw 091

s3ah

0066SWL-KA1

[4

- 54 -

02/07/82 20702006206 MEMBER NAME STA3TL

SUBKOUTINE STA3T)

(1SOLEb)

FOR

(-------o-------—---o------——------------ - e - -

<

[a1% 4

14

10

20

DIMENSION ADREL)
PRINT SIN AND (DS
Pl=delalbw2
DU ¢ 1=1+180+10
RAD=1%P1/180
SN=SIN(RADL)
(S=COS{RAL)
aRITE(O+4)] oSN (S
FORMATLLIX o184 ¢4F LD es)

CUNTINUE
FLOAT DIVIDE
A=3.
b=0
C=A/sB
MRITE(O2G)AsbaC
FURMATCLXe*AFILR DIVIDE CHECK *+3F10 .5)

1XEC DIVIDE

=5
“=0
k=179
INI‘t(O-bll.
FURMATIIR"A R FIXED DIVIDE *«310)

OVERFLOW
LLUV=1.E00
LUVL=EOV#ED
WRITEC(G6+10)EQVsEDYVL
FORMAT(AX o *OVERFL® s2E15.7)

UNDERF LOW

LUN=1.E=bC
EUNV=EUNSEUN

BRONG UNIT

iRllE(Onlél

WRITE{(Ge)2)

fURhAI(ll-'AFItR WRONG UNIT®)
NEGATIVE SQRTY

IER NEGATIVE SQRT*s2F15.5)
ADDRESS EXCEPTION

BEFURE AUDRESS VIOLATION®)

FInlSH®)

Foa-LEVEL LINKAGE EDITOR OPTIONS SPECIF IED MAPSLISTS IIE={AIBK 424K)
SIZE=14485612024578)

VARIABLE OPIIONS UstkD -

1E40000 SETSS1 18218300
1£40000 INCLWDE NtlLlBll1I370£)

CONTROL SECTION

NA ME ORIGIN
MAIND 00
CPL1ST 70
WAINZ 120
SYCALL b8
INTSRY 1E8
READP 218
LHOUAC 220
FLOCSY 678
4vCOM A0S
1A0DR ACO
IDSTL ACS
IREG]IS AED
BFFR1B AFO
BUFSV¥I Dos
CHEC DN FoB
CRUNBL 1130
FI10370 1380
1Ml RA 1DCu
REAADR 2168
IECADR 2420
FIRACE 2700
YPRERR 2ET0
=ETMAL 3060
2CBSET 3230
INSSER 3300
LAND * 3570
ITHIECOMHS 3580
FILUAPS & 43C0
THOLONHS S 4ACO
FHOUAEBLS 53A8
SI1A3T70 s SVvED
IHOFCYTHS SAD0
IHJEFNTHS o700
IHOVOPT # of DO
copsus » 7%08
IMOERRM o T9E0
1NJFCON 18 8006
1MOFCONDS 8420
1HIFTEN » 6CD8
FHOE TRCHe 8EF8
1HCBUF D1AB
IHCBF2 V1B
TSTCOM 120F8
CEBWAT 1200

EVTRY ADDRLSS
TITAL LENGTH

]

00
12L08

£30
6ll
VAL
636
CFa

600
53
ADA
624
410
(111
220
2AE

10
a0

r-d

ENTRY
RANE

FlOoCsbep

MODULE MaP
LOCAT ION NAME
arme

Buffer routines and 370/E system

I0R
1BCOM»
INTSWTICH

SEGUD A SL

ADCONS
FCVLOUTP
FLYIQUIP
FCYCOUTP
ADCOND»

ARLITHS

ERRMON
FUCONL2
FQCONOS
FIEnS
IHDTRCH

BN
A5E4
4328

4DD2

19E0
8008
Ba20
acoe
SEFB

FO10(5F

FCVYADUTP
FCYI0UTP
FCYLOUTP
ADCON]S

INTOSMCH

ADJSHTCH

1HOERRE

ERRTRA

Space for buffers and pointers

SSESLITOTI MNP NOW REDL!LCU IN DATA SET
S

AUTHORIZATION

Fig. A3, Listing of the linkage editor.

[]v 3

LOCATION

36A0

5BJC
586C

[T{49
69

6bo s

79F8

6F00

- 56 -

JUB SF LBNOT
TINE H 1 MIN
START VIME :02/07/82 00.34

MODJLE MNAME:D FIBNOI.YSULIBL(E370]EIP)
LIST FILE SF18NDT.LISTATOE

//60.FTOPFO01 DD DSN=E 1BNUT.COMVES

/7 D1ISP=(S5MR KELP KEEP) +DS~ORG= 16384
ERROR 0004 0410 0000

//70.FTOPFO003 DD D3IN= FIBNOF CuUNvYBS

/77 D1SP={SHR KEEP EEP }+sDS~0ORG= 16384
/7/76D.FT08FGO1 DO DSN FIBNDI CONFB
/7 D15P={S5HR KELP KEEP) +DS-0RG= 16384

ERROR 0004 0410 0000
//EO.FTOBFOOI DD 05“=FIBNOI-CDNFB

7/ D15P=(¢S KEEP EEP) sDS-ORG= 16364
IIGJ.F'BOFOOI 1] DSN—FIBNDT-ISOLIBL(ES?DTLNP)
/7 D1SP={SHR KEEP KELEP) +D5-026= 612
1 +1746E-01 9998

11 <1908 +9Bl0

21 +35B4 «9330

3L .5150C «8b7c

41 L6361 o THAT

51 7771 +06293

b +8740 «4845

T1 «945L 3250

8l 9877 e 1564

91 9998 =« TABE-D]

101 9810 -«1908

111 «.933¢ ~e 3584

121 8572 -aB150

131 7567 ~e0b01

181 8293 - TI71

151 «ABAS -« 8740

401 <3250 ~e 9405

171 1504 ~«9B877

FLIATING POINT DIVIDE

PS¢ 0D008A90 IL*CC 000000

TRACEBALK ROUTINE (ALLED fRU“ 1SN REGe 14
¥

PRERR 0013130006
FIRACE 60000202
STAJTi A0005A90
STAJTO 50000186
MALINZ $000000C
AFTER DIVIDE CHE(K3.0000 «0 3.0000

FIXED POINT DIVIDE
PSs 0O000BACC JL4CC 0O00O0LA
TRACE3ACK ROUTINE CALLED FROM 1SN REGe 14

YPRERR 0011300606
FIRACE 60000202
STA3T71 A0 006A00
bIASTD 50000180

5000000C

AFTER fl!LD DIIIDE] 0 S

ElPONLNI UVERFLOW
PSE 0000BEOA 1L*+CC 0GOOO0CO!
TRACEBACX ROUTINE CALLED FRUR ISN REGs 14

YPRERR 00513006
FIRACE 40000202
STA371 40005490
STA3TO 500001806
MALINZ 5000000C

OVERFL 0.1000000E¢4061 0.74%8339C-34
AFTER WRONG UN1T

-

From 1BM
Online Job
Allocate files

Hardware interrupts

REG. 16
00002£70
00002 700
00006 800
000059€£0
00000 320

REGes 15
00002E70
00002 700
00008800
000059E0
00000 120

REG. 15
00002E70
00002 700

00000 120

Fig. A4. Output of the 370/E on LISTFILE at the IBM

REGe]

00000000

REG. 0
00000000
00000000
40000 1AA
A00001AA
00000000

REGe 0
00000000
00000000

00000000

RE 6e 1
00002790
P1119ADA
00000000
A00001AA
00000005

REGe 1
00002790
30000005
00000000
400001AA
00000005

RE Go 1
00002790
00000005
00000000
A00003AA
00000005

- 57 -

Fig. Ad. continued

IN32511 SORT ARG=-0.1000000€¢01s LT ZERC
VRACEBACK ROUTINE CALLED FROM ISN RELe 14

SART w030 40008854
STA3TL o002 40005490
>TA370 50000186
NAINg 5000000C

STANDARD FIXUP TAKEN ¢ EXECUTION CONT INU ING
132511 SQRT ARG=-0.,2000000E403. L1 JERD
TRACEBACK ROUVINE CALLED FROM ISN REGe 14

SART 0030 5000886C
STA3TL 0vo2 400C05A90
STA3TO 5000016
MALNG 5000000C

STANDARD xup th& N » EILLUIIDN (DNIINUING
AFTER NEGA I¥E 5SQR 1.000 414
BEFORE ADDRESS VIOLATION

ADDRESS EXCEPTIUN 0Cs
PS¢ 00008BEO IL®CC 000G0OCO2
TRACEBACK ROUTIM CALLED FROM 15N REGe 14
YPRERR [}

0113006
FIRACL 40000202
STA3T1 40005A90
STA3 70 50000180

MAINZ $000000C
EXRECUTION TERWMINATED

Software interrupts

REGe 15
00000 6A8
00008800
000059ED
00000 120

REGe. 15
GOC0DOAB
00008800
000059E0
00000120

REG. 15
00002€70
40002700
00008800
000059E0
00000120

REG. o
00000000
400001AA
400001AA
00000000

REG. [
000000060
A400001AA
40000 1AA
00000000

REG. o
00000000
0ACOBBFO
S00001AA
4000031AA
00010000

REGe 3
88000000
00000000
400001AA
0000000%

REG.)
20000000
000000V0
400001AA
0000000CY

RE G 1
200027w0
00000041
00000000
4000014AA
0000000%

- 58 -

Acknowledgement

I would 1like to thank H. Brafman, R. Fall and R. Yaari for the development

of the 370/E processor. This paper was strongly influenced by J. Hart (RAL)

and his investigation of IBCOM# and FIOCS# . The routines for dynamic allocation
of files were written by P. Schilling (DESY, R2).

