
Interner Bericht
DESY Fl-82/01
August 1982

Eigentum der f\rCV Bibliothek
Propertyof l/CM librory

Zugang: _ *
Accessions:

Leihfrist:
Loan period:

DEZ. 1982

7 Tage
days

THE INPUT/OUTPUT SOFTWARE FOR THE 370/E EMULATOR

by

D. Notz

DESY behält sich alle Rechte für den Fall der Schutzrechtserteilung und für die wirtschaftliche
Verwertung der in diesem Bericht enthaltenen Informationen vor.

DESY reserves all rights for commercial use of Information included in this report, especially in
case of filing application for or grant of patent*.

"Die Verantwortung für den Inhalt dieses
Internen Berichtes liegt ausschließlich beim Verfasser"

The Input/Output Software for the 370/E Emulator

D. Notz

Deutsches Electronen-Synchrotron DESY, Hamburg

June 1982

Abstra_ct

The input/output programs of the 370/E emulator are described. The 370/E

is connected via a control Computer (NORD, TMS9900) to the IBM. We explain

in detail the buffer handling and the required modifications to run IBM

programs on the 370/E.

Contents

I .

I I . l

I I . 2

111.l

111.2

111.3

111.4

I V .

I V . l

I V . 2

I V . 3

I V . 4

IV.5

IV.6

I V . 7

IV .8

I V . 9

IV.10

I V . U

IV. 12

I V . 1 3

IV.14

I V . 1 5

IV.16

V.

V. l

V.2

V . 3

V.4

V . 5 .

V . 6 .

Introduction

FORTRAN Input/Output at the IBM

Input/Output at the 370/E

Submitting of JOBs to the 370/E fron the IBM

The Program in the 370/E

The Program in the Control Computer (NORD)

The Online Program in the IBM

The Buffer Handling Routines in the 370/E

FIOCS3. The 370/E FIOCS# Interface Routine

FI0370. The 370/E Buffer Handler

BFFRIB. Buffer from IBM

BUFSWI. Switch Buffers and send them to IBM

CHECOM. Wai t for Buffer and Check the Answer

CRUNBL. Create Uni t Block

DCBSET. Change Data Control Block

GETMAI. Get Space in Main Pool

IADDR. Compute Address

IBMTRA. Transfer Data to the IBM

IDSTL. Compute Distance between Variables

INSSEG. Insert Segment Word

MVCOH. Move Characters

REAADR. Compute Address for READ

RECADR. Compute Address for WRITE

FTRACE. Interrupt Routine for Traceback

The Subroutines for the Program of the Control Computer

JOBWT. Wai t for JOB

LAIBM. Load the IBM Module

MEMDMA. Transfer Blocks to/from the 370/E Memory

SVCWT. Wai t for SVC and Errors

INTHAD. Interrupt Handling

Service Routines in the NORD

- 2 -

VI. The Input/Output Routines in ttie IBM Online Program

VI.l ALCDYN. Allocate a Data Set

VI.E CALLOC. Interface for Allocate Dataset

VI.3 CKJOB. Wait for a Job and Check

VI .4 CLJOB. Close Job and Deallocate Files

VI.5 CONDYN. Connect Files

VI.6 DALDYH. Deallocate Files

VI.7 FPRINT. Write Records at the IBM

VI.8 IBCREQ. Handle IBCONft Request

VI.9 INCBUF. Fill Input Buffer

VI.10 RDFIOC. READ by FlOCStt

VII. Buffer Organization and Tables

VII.l Unit Assignment Table. COHMON/IHOUAC/

VII.2 The Buffer Pool Area for Unit Block and Buffers

VII.2.l The Control Block of the IBM Answer

VII.2.2 The Unit Block {ÜB}

VII.2.3 The Unit Buffers

VII.3 Unit Assignment Table for Input at the IBM

VII.4 The COMMON/CIBUF/ of the Online Program

VII,5 Job Control Information

VII.6 File for Job Queue

Appendix

I. Introduction

The 370/E emulator is a processor which is able to process IBM 370 code. It was

developed by H. Brafman and R. Fall at the Weizmann Institute, Rehovot, Israel.

One can therefore run programs either on the IBM or on the emulator without

recompiling or translating all programs. Programs which have been developed and

tested on an IBM can be downloaded to the 370/E without any change, It is not

necessary to translate the code äs it is needed on the 168/E emulator. Before

running a program on the 370/E one has to link it together with the 370/E

input/output routine. This is done by the linkage editor.

Like the IBM the 370/E has a memory which contains data and instructions and

which is a direct image of the IBM memory. Nearly all IBM instructions are

implemented. Only commercial instructions which work on non binary representations

of numbers are not implemented.

For the user the 370/E looks like a box, 60 cm long, 40 cm wide and 30 cm hight,

with one input/output cable. Inside this box one can find up to 14 boards.

1) Control board

2} Integer board

3} Floating point roantissa board

4) Floating point exponent board

5) Multiply board

6) Interface board

7) - 14) Memory boards for one Mbyte

The speed of the 370/E is of the order of 60 % - 75 % of an IBM 370/168

depending on the program and the IBM model.

This paper explains in chapters I to III the general ideas how input/output

is performed in FORTRAN programs by IBM and how the interface routines work

on the 370/E. Chapters IV - VI describe in more detail these routines and

chapter VII the buffer Organization and tables. This part of the manual is

useful for people who want to implement this System on the 370/E.

At DESY, the 370/E is connected via a NORD Computer and the DESY online net

to the IBM 370/168.

Online Net
IBM

370/168

Fig. l The 370/E is connected via PADAC to a NORD10 or NORD100. The NORD has

a connection to the IBM via a TMS microprocessor and an IBM 2701 unit

with parallel data adapter.

The speed of the online net is of the order of 8 ;,sec/byte. In order to keep the

dead time for experiments on the net to a low level one should avoid transfer rates

above l transfer/sec where one can send -20 kbytes per transfer. This transfer

rate is sufficient to load programs from the IBM to the 370/E and to run CPU

intensive programs with low input/output rates. In this environment the NORD

only establishes the transfer of buffers between the 370/E and the IBM. It can

therefore be replaced by a microprocessor like the TMS 9900 for PADAC (PADAC is

the Standard Interface at DESY).

370/E

TM«,<xtftfT

s

\ , . ,,

IBM

370/168

Fig. 2 Offline application. A Monte Carlo program is loaded from the IBM.

Input/Output is done to the IBM discs.

- 4 -

In experiments the 370/E can get the input data from the online Computer which

must have a link to an IBM in order to get the programs.

From the programmers point of view all input/output of data can be performed

by a FORTRAN READ/WRITE Statement.

In this paper we describe the mechanisms to perform READ and WRITE and how

Information is exchanged between the 370/E and the IBM.

II.l FORTRAN Input/Output at the IBM

It i s our goal to run IBM programs on the 370/E without any changes. Any input

and Output should be done via READ/URITE Statements. For a better understanding

of the following chapters we describe in this section how input/output is

performed at the IBM.

Suppose you have a sirrple program like

I = 0
WRITE(6 ,2) I

2 FORMAT(1X, 'TEXT', I4)
STOP
END

The Compiler then generates several calls to the input/output packacje IBCOMtt :

64 (IBCOMfc) to initialize the Job

4 (IBCOM#) to initialize the write Operation
8 (IBCOMtt) to write I

16 (IBCOMft) to finish the write Operation

68 (IBCOMt!) to terminate the Job

IBCOM« calls FIOCS* to request a buffer. This buffer is filled with the

formatted information. FlOCStt requests via Supervisor calls (SVCs) space in memory

for the buffers and READ/WRITE operations fron the Supervisor (Fig. 3).

DEHNE FILE

SVC

Fig. 3 Input/Output in FORTRAN

U_.Z Input/Qutput at the 370/E

At the 370/E we use the same code äs on the IBM. If the user wants to perform

I/O via READ/WRITE the Compiler generated code calls IBCOMü. IBCOM« is also

called by the FORTRAN library if errors occur (l ike negative square roots).

IBCOMft then calls FlOCSf*. On the 370/E we use our FIQCS* to do the buffer

handling. For each I/O unit a unit block and two buffers are created in

COMMON/IHCBF2/. The s ize of the buffers and records are defined by the IHOUAC

table. If a buffer is füll for write it is sent to the IBM via the control

Computer. During this transfer a second buffer is filled. Instead of sending

the data to the IBM the control Computer can write the buffers also to its

local d iscs . For a READ,a buffer is requested from the IBM. Whi le the f i rst

reading is serviced a second buffer is filled by the IBM and sent to the 370/E.

- 6 -

370ft

User Program
WRITE(6

with
2) M

READ/HRITE
,K

1
IBCOMft, FORMATTING ROUTINES
ERROR HANDLING

1
FlOCStt BUFFER

(

HANDLER

^ {>
NORD, LSI11, TMS 9900

get complete buffer
and control Information

Control Computer

1. 2, Buffer of several writes

Stream nurnber, unit

"WRITE"

Request for IBCOM*t

IBM

1, 2, 6

1

Buffer ok

WRITE (6,2) Buffer
2 FORMAT(256(256A1))

Disc for Input/Outout

Fig. 4 A user's READ/WRITE results in filling a buffer which is then sent to

the IBM. The control Computer only transfers buffer to/from the IBM.

- 7 -'

The IBM online program handles the input/output of the 370/E. Output is done

directly via IBCOMtt by WRITE operations if the records in the buffers are

complete. For incomplete records the Segments are collected at the IBM and

written later on after the record is complete. The reading of data is more

complicated. Due to the pipelining of double buffers in the 370/E and the IBM

one has to know ahead how many words the user on the 370/E wants to read.

Input is therefore done by special routines which access FlOCStt at the IBM.

The «hole input/output procedure can be tested on the IBM if one uses two IBCOMbs

where one IßCOMtt and FIOCS* are renamed to CCOM and PIOCS«.

User

Progra«

IBCOMS FlOCStt

Modifica'
tion

Simulation
of Link to
IBM

Online
Program

2.IBCOM*
named
CCOM

! .FIOCS
lamed
>IOCS*

F1g. 5 One can test the input/output of the 370/E by simulating the IBM link and using

2 IBCOMfts withi n one Job.

III.l Submitting of JOBS to the 370/E from the IBM

In this chapter we describe how Jobs can be processed on the 370/E. Jobs are

prepared at the IBM by using an editor like TSO, NEWLIB or Wylbur. The following

description is only correct if the 370/E is running at DESY but it can be easily

modified for other installations.

1) The mainprogran must be written äs a subroutine with the name STA370. This

subroutine may have a STOP at the end instead of a RETURN Statement. CALL DCBSET

for each file. Compile the routine which may cal l other routines.

2} LINK the program. The first module which is loaded must be the System of the

370/E which then cal ls STA370.

Copy meniber SYST370E from TASSOl.SOURCE and TASSOl.LIBRARY into your library.

If you link the program from the terminal under NEWLIB then define:

MEMBER = SYST370E

LIBRARY = your library containing STA370

other libraries

MODULE NAHE = any name, i.E. E370TEMP

If the program is linked in a batch Job:

// EXEC PCL

//LKED.SYSLIN DD DSN = TASSOl .L IBRARY(SYST370E),DISP=SHR
// DD
// DD

//LKED.SYSLMOD DD DSN = xxxxxx.yyyy (E370TEMP),DISP=SHR

^ a n y name
your library

3) The linked System load module must be submitted to the Job queue of the

370/E. One has to prepare a file which contains all the Job control cards

for the program and the öata sets. The format is f ixed.

Example:

//F1BNOTOO JOB TIME=10
//STEPOO EXEC PGM=xxxxxx.yyyy(E370TEMP)

//LISTFILE DD DSN=xxxxxx.LIST. File name for listing

//FT08F001 DD DSN=;txxxxx.yyy. File name for unit 8

//FT09F001 DD DSN=xxxxxx.yyy. File name for unit 9.

Assume the control cards are in file ZZZ.AAA

4) The Job can than be submitted by

a) CALL 'TASSOl.LIBRARY(SUB;i370E)'

type in name of file containing Job control cards:

ZZZ.AAA

- 9 -

b} //JOBLIB DD DSN=TASS01.LIBRARY,DISP=SHR
// EXEC PGM=$UBr:370E
//FT05F001 DD *
ZZZ.AAA

5} If the Job has finished on the 370/E you may inspect the printed results with

LIST 'xxxxxx.LIST' or

PRINT 'xxxxxx.LIST'

III.2 The Progratn in the 370/E

In the following three sections we describe the structure of the programs in

the 370/E, in the NORD and in the IBM.

The first part of the user program in the 370/E must contain the system E37SYS.

E37SYS has a reference to the user 's program STA370. Inside of E37SYS are on

fixed locations pointers to the various programs and tables. These pointers are

used by the control Computer to do input/outout and to handle Interrupts. The

general structure of E37SYS is shown in Fig. 6.

When the program is started the registers are resetted and IBCOH« is initialized.

Control is then passed to STA370. For an input/output Operation information is

exchanged via COHMON/CPLIST/LISTPT,LISTPF. LISTTO contains addresses and lengths

of blocks which are sent to the IBM via the control processor. LISTFR points to the

addresses «here the answer from the IBM should be «ritten. After several WRITEs

a buffer is füll.

The 370/E generates a Supervisor call SVC1 and stops:

The NORD reads LISTPT, the pointer to LISTTO, Then control information and buffers

are transferred via DMA to the NORD. The NORD also reads LISTFR indicating «here

the answer from the IBM should be placed.

The processor is then restarted. 1t generates an SVC2 to wai t for the answer of

the IBM. The NORD then transfers the IBM buffer into the 370/E (Fig. 7). In the new
interface SVC1 and SVC2 will be replaced by SIO.

If the processor stops due to an error condition (addressing error, divide check)

the NORD places the actual address, the length of the last instruction, the

condition code and an Interrupt code at the PSH locations and Starts the processor

at the Interrupt Service routine. This routine saves the registers and makes a

trace back. According to the Option table IHOUATBL execution continues or

terminates.

- 10 -

Address
(Hex)

Pointer to LISTTO. {Buffer to IBM)

Pointer to LISTFR (Buffer from IBM)

0 Reset registers
jump to MAINZ
Save area

78 COHMON/CPLIST/LISTPT

7C LISTPF

80 Text 'SYST370E82/05/28

VIHCBUF Pointer to COMMON/IHCBUF

VIHCBF2 Pointer to COMMON/IHCBF3/
for buffers and blocks

VIHOUAC Pointer to unit table for LRECL, BLKSIZE, IRECFM

VIHOUAT Pointer to Option table for error handling (CALL ERRSET)

PSWADO Program Status word. Address.

PSWLCC Program Status «ord. Length. Condition Code

INTCODE Interrupt code

VINTSERV Entry point for Interrupt service routine

REGSAV Save area for registers

FLTSAV Save area for floating point registers

Interrupt service routine

MAIN? set up IBCOM*

IHOUAC Unit table

Buffer handler Interface routine

MVCOM Service routines

Fiy. 6 Layout of the System for the 370/E. The pointers are on fixed

locations and are known by the control Computer.

370/E

i

-*

Reset Registers

— LISTPF

LISTFR
A(IPARFR)
L(IPARFR)
0
0

LISTTO

L(IBMHAD)
A(IPARTO)
L(IPARTO)

A(IBUFFR)

L(IBUFFR)
0
0

IBM header

Parameter to IBM

Buffer to IBM

IBCOM*

SVC1

svcz
Hardware
Interrupt

Pl

m

4

.=

- u -
NORD

R*ad LISTPT

Copy
Buffers

Read LISTPF
Read LISTFR

Start 370/E

Buffers to
IBM or OISC

Buffers from
IBM

i Hai t for SVC2
Copy Buffer
from IBM

Start processor

, Read Address
Start processor
at interrupt
service routine

-Q'

IBM

ONL370

READP
READ()
«RITE()

WRITEP

DISCS

-8
-8
-8

- 12 -

!_!_!.3 The Program in the Controj^ Computer (HORrj|

There are several possibilities for a control Computer for the 370/E. It could

be a microprocessor (TMS 9900, NORD100/E emulator) without any discs, a mini-

Computer (LST11, PDP11, NORD10) with terminals and smal l discs or a large

Computer (V A X) with big discs. In all cases one needs a link to an IBM to

transfer the linked load modules. Input/Output to files can be performed via

an IBM if a fast link is available or to local discs or tapes of the control

Computer.

Due to this large variety the program in the control processor should be äs

small äs possible. The program in the NORD1Q at DESY is shown in Fig. 8

LAIBM loads the Online program at the IBM using the protocol for the DESY online

net. JOBWT sends a message to the online program and waits for a Job. If there

is a Job in the queue the files are allocated and the Code is downloaded to the

370/E. The program then waits for interrupts of the 370/E in SVCWT.

For SVC1 the NORD reads the buffer addresses, transfers the buffer from the

370/E to the NORD and restarts the processor.

For SVC2 the 370/E is wait ing for a buffer. The NORD knows from the previous SVC1

to which location the input buffer should be stored. After the buffer transfer

the 370/E is restarted. A SVC5 indicates the end of a Job. The NORD can dose

the files and ask for another Job.

If the processor stops due to an error the NORD places the address and condition

code into a fixed location of the 370/E and Starts an interrupt Service routine

in the 370/E. This routine can then do a traceback and abort the program . This

works under the assumption that this psrt of program is not destroyed. It is a lso

poss ib l t - that the NORD produces a DUMP of reristers anc. memory at the IBM.

Fig. 7 Information exchange between 370/E. NORD and IBM. The 370/E

generates a SVC1 if 1t wantsto transfer a buffer and a SVC2 to

wait for the answer.

NORD
- 13 -

370/E

370/E

MEMDHA

Transfer
Data to
370/E

SVCWT

Wait for
SVC or
Error

, 1
Program i s
loaded.
Start 370/E

Transfer
buffers

LAIBM

Load IBM
Online
Program

JOBWT

Wait for
JOB in IBM

Allocate file1

at IBM
Download
Program

IBM

Fig. 3 Program in control Computer. Load program and transfer buffers.

- 14 -

III.4. The Online Program In the IBM

The Online Program is loaded at the IBM by the Supervisor for the online net.

It is then started and waits for Interrupts of the NORD.

The NORD sends a message and waits for a Job. CKJQB is then called and reads

the disc for the 370/E Job queue. If there is a Job waiting the NORD requests

allocation of files. CKJOB allocates the files. The filenames are also taken

from the Job queue disc. The Online program knows which files are allocated and

which dataset Organisation is used for each file. Then the loadmodule is

allocated and transferred to the 370/E via the NORD. As the online program knows

the size of the program and the allocated files the unit table in the loadmodule

can be updated. The 370/E therefore gets tne information about files and can

abort the Job if an illegal file is referenced.

The IBM now waits for buffers and reads or writes them to the different files.

At the end of a Job all buffers are closed and the files are deallocated.

IBM
Online Program

E370 ONL1

Wait for Job

Download
Program

Transfer buffers

CKJOB

Read Jobqueue

Allocate files

Modify
Loadmodule

Submit Job

0

IBCREQ

I/O Request

WRITE
RDFIOC

Jobqueue

0
e
0

Fig. 9 IBM online program. Files are

input/output performed.

allocated, loadmodule downloaded and

3
7

0
/f

IB
M

Fig.
10

Layout
of

program
s

for
in

p
u

t/o
u

tp
u

t.
T

he 370/E
-

and the
IB

M
-part

can run äs
a sin

g
le program

 at
the

IBM
 for

te
stin

g
.

a
.

<*-
•—

O
, l—

°f
*
J

C

C

-
1

 O
O

. U
-

4
-1
3

4->

.—

i.

L

o.-—

»

r
tj

(D
 C

S

3

3

-r

-
*
J
 =

3

3

 -^
-

-Ü

l
Q

-
l/l

O
-
O

-
C

-
^

Q
.
Q

.
C

L
)
3

!
"

a
p

^

U
J

-
^

-•-

-
-^

OJ

Example 1:

- 17 -

Output with variable record format

I = 12
URITE(6,2)I

2 FQRMAT(^1X,7H MESSAGE. 14^

U bytes = l,- bytes

Ca l l s to FIOCS*

Initialization 'FF'
(Formatted
Output)

HRITE

Register 2
before FIOCSt=

Pointer to unit

C
(12 bytes are
filled in buffer)

Register 2 Register 3
after FIOCS*

OB65F8
(Address of
Buffer)

OB6608
(Address of
next buffer)

85
(= 133 Bytes for
one l ine)

35

BUFFER

SDW S D W

n

bMESSAGEbb!2

t
1 C(=1210)byte

SDW

s

next record

k

B65Fo B65F8 B6608

BDW = Block descriptor word
SDW = Segment descriptor word

Example 2 : Input with f ixed record format

DIMENSION CARD(20)
READ(5,4) CARD

4 FORMA;(10A4/10A4)

Calls to FIOCS&

Initialization 'FO'

*EAD

Register 2
before FlOCSt*

Pointer to Unit

Register 2 Register 3
after FIOCS^

B4250

B42AO

5016

(= 80 bytes on
card)

50

BUFFER for f ixed records

1.
»-10A4

card
— »eK

2.
A4

card

B4250 B42AO

- 18 -

For control Information the Parameters look äs follows

BALR 0,1 Jump to FIOCS*
DC AL1(3)
DC AL1(0) for BACKSPACE

(1) for REWIND
(Z) for END-OF-FILE

To close all data sets we have at the end

BALR 0,1 Jump to FlOCSri
DC ALI(4)
DC AL1(0)

IV. l FIOCS3. The 37D/E FIQCS- Interface Routine

FIOCS3 is an assembler routine which fulfills the linkage conventions of

IBCOMt. I t 's entry points are FIOCS= and FIOCSBEP. All registers are saved in

an internal save area SAVE1. The parameters are then decoded and control

is passed to FI0370. FI0370 and all buffer handling routines are written in

FORTRAN. The return addresses of IBCOMtt for end-of-file condition

(READ(1,END=4)B) are stored internally. If an endfile occurs the registers

are restored and control is passed directly to the user's program. In case the

user has not specified the END-parameter execution is terminated.

USER

READ

(2,END=4)

FIOCS3

FIOCS4

•Save Registers

•Save Return for Endfile

Decode Parameters

' l lINIT READ WRITE

Compute
UNIT No.

CONTROL

Compute
UNIT No.

CLOSE

CALL FI0370(REGISTERS, UNIT, PARI, PAR2, IERROR)

If ENDFILE(IERROR=1) pass control to user or
abort execution by call to FI0370 with IPAR1=5

IV. 2 FI0370. The 370/E Duffer Handler

FI0370 is the steering routine for input/output buffer handling.

- 19 -

CALL FI0370(IREG, IUNIT, IPAR1, IPAR2, IRCODE)

DIMENSION IREG(ll)
As we have seen above the main Information between IBCOHt* and FlOCStt is

passed via registers. FI0370 has therefore access to registers 2 and 3:

IAD = IREG(2) = Register 2.

IUNIT is the current unit number

IPAR1 = 0 for initialization of an READ/WRITE Operation
= l for READ data
= Z for WRITE data

for BACKSPACE, REWIND, EOF
to close all buffers
for abnormal end.

= 3
= 4
= 5

IPAR2 = ' F O ' , ' F F ' , ' 0 0 ' , ' O F 1 for formatted/unformatted input/output

IRCODE = return flag = 0 if there was no error
l for end-of-file.

When FI0370 is called the first time it requests space in the buffer pool for

the control words of the IBM answer. These words indicate on which unit the

IBM has lastly processed and what error conditions occurred.

IPAR1 = 0

Initialize an input/output Operation. If the unit was not used before a unit

block (ÜB) and two buffers are created in the buffer pool COMMON/IHCBF2/. All

buffers which are exchanged between the 370/E and the IBM are organized internally

like records with variable format. If the actual Organisation is fixed, unknown

or formatted only complete records are placed into a block.

For input data sets REAADR is called to read the address and length for the

next buffer. For the first READ of a unit two requests are sent to the IBM

one after another to fill two blocks. After receiving of the first buffer

control is passed to the user's program while the second buffer is f i l led

at the IBM and transferred to the 370/E simultaneously. This method of double

buffering minimizes dead time.

For Output data sets RECADR is called to return the address and length of the

next buffer. If a buffer is complete it is sent to the IBM while the second

buffer is filled.

IPAR1 = l

Entry for READ. Call REAADR for the next buffer address. For an end-of-file set

the return code and pass control to the user's program.

IPAR1 = 2

Entry tor WRITE. Register 1 contains record length of the previous record. This

record length is inserted in the segment descriptor word SDW of a data buffer.

RECADR is called to compute the address and max. length for the next buffer for

WRITE. Spanned records with Segments in different files are also marked by the SDW

in the two righthanded bytes . This information is filled by IBCOMtt. The record

length LRECL of the unit assignment table is updated. LRECL contains the

longest record length plus 4 for the SDW or BLOCKSIZE minus 4. This

modification is necessary in order to send the segments of a logical record to

the IBM without interleaving of segments of other units (see FPRINT). At the

IBM incomplete logical records are col lected in one local array and are

written at once if the record is complete.

JLxam_p1e_._3: Write short

DIMENSION A(l) , B (2) , C (3) , D(4)

WRITE(1)A

B 5
D D
U W

S
D
W

WRITE(1

S
D
W

)B

WRITE(1)C

S
D
W

WRITE(1)D

S
D
W

WRITE(1)0

X
longest record No space for a

complete record

B S
D D
W W

S
D
U

WRITE(1)D

S
D
W

V

S
D
W

RITE(1)D

\
y/

/ \D

WRITE(1)D

- 21 -

jxample 4; Wri te long records

DIMENSION H(100)

WRITE{2)H

B
D
14

S
D
W

longest record (H (I J , I = l, 40)

B
0
W

S
D
W

(H (I) , I = 41 - 80)

(H { I) , I = 81, 100) No space for a record of
length LRECL

At the IBM spanned records are stored in array LOCAL and written after the last

segment has reached the IBM

At IBM: LOGICAL * l LOCAL (32768)

• v • » . v «v, ., <
H(l - 40) H(41 - 80) H(81-100)

WRITE(UNIT) (LOCAL(I) , I = l, 400) (4 bytes in l word)

IPAR1 = 3

Backspace, Rewind and end file are requested. If the unit is reserved for

Output the last buffer is sent to the IBM. Afterwards a control pattern is

transferred to the IBM to do the BACKSPACE, REWIND or ENDFILE at the IBM.

For input data sets only a REWIND and ENDFILE control pattern is transferred

to the IBM.

BACKSPACE for input files cause a lot of Problems due to pipelining. Therefore

BACKSPACE for input files is not allowed and an error message wi l l be printed.

- 22 -

IPAR1 = 4
Close all buffers. The Output buffers still containing some information are

sent to the IBM. Afterwards a control pattern is passed to the IBM. This wil l

cause a STOP 4 at the IBM after an answer has been sent to the 370/E. The

370/E a lso halts afterwards.

IPAR1 = 5

This entry point is used if an end-of-file occurs and no END parameter is

specified in the READ Statement. An error message is printed. Afterwards all

Output buffers will be sent to the IBM and execution terminates (ABEND).

Error Messages

FI0370 UNIT OUT OF RANGE if the unit number is less than l or greater than 99.

FI0370 SCC B37: No more buffer space available in COMMON/IHCBF2/.

FI0370 NO BACKSPACE: The user wants to backspace an input unit

FI0370 NO ENDFILE .STOP.UNIT xxx : No endfile exi t specif ied in READ.

Service Routines for Buffer Handling and Input/Qutput

IV. 3. 6FFRIB Buffer from IBM

This routine is called by REAADR and requests for input f i les the next buffer

from the IBM. The control Parameters to the IBM are:

IPARTO(l) = l , IBCOMft request

IPARTO(2) = l , READ

IPARTO(3) = Unit number

IPARTO(4) = ABYTE + BBYTE + CBYTE + DBYTE
ABYTE = (' F O ' , ' 0 0 1)

IPARTO(5) = BLKSIZE

IPARTO(6) = RECFM + BUFNO + LRECL

Informat ion to IBM

L I S T T O (1 , 1) = address of the control parameters

I n f o r m a t i o n from IBM

LISTFR(l.l) = address of the IBM answer

LISTFR(1,2) = address of the Buffer to which the IBM data are written

The routine does not wait for the IBM answer. Execution continues.

- 23 -
- 24 -

BUFSWI Switch Buffers and send them to IBM

This routine is called by RECADR if a buffer is füll, by INSSEG for the

last segment or by FI037Q to send the buffers to the Hit; for ciosinn

or control (REWIND,BACKSPACE,ENDFILE).

The current output buffer is transferred to the IBM and the second output

buffer is prepared for control Parameters to IBM:

IPARTO(l) = l , IBCOM* request

IPARTO(2) = 2 , WRITE

IPARTO{3) = Unit nunber

IPARTO(4) = ABYTE + BBYTE + CBYTE + DBYTE
ABYTE = ('FF','OF')

IPARTO(5) - BLKS1ZE

IPARTO(6) = RECFM t BUFNO + LRECL

Information to IBM

USTTO(1,1} = address of the control Parameters

LISTTO(1,2) = address of the buffer to IBM

Information from IBM

LISTFR(l.l) = address of IBM answer

The routine does not wait for the IBM answer. Execution continues.

IV. 5. CHECOM _ Mait_jF_Qj:_Buf_fer antKhecl^_the_Answer

This routine is called by IBMTRA to finish the previous IBM transfer and by

FI0370 if execution terminates.

We have Seen in BFFRIB and BUFSWI that execution continues after an IBM

transfer has been started. CHECOM generates a SVC2, waits until the transfer

is finished and checks the answer for errors. In future a TIO will be generated.

The IBM waiting flag IBWAIT is zero if the data arealready transferred and

the answer was checked before. In ttiis case CHECOM doesn't do anything.

When data are sent to the IBM the 370/E program teils the NORD on which

locations the answer should be written. This Information is used to transfer

data back to the 370/E. The answer of the IBM also contains the unit number

so that the error information can be placed into the unit block. In this way

end-of-file conditions are detected by the corresponding READ Statement (Fig. 11),

IV. 6. CRUNBL Create Unit Block

This routine is called by FI0370 and creates a unit b lock . It reserves space

in COMMON/IHCBF2/ for the unit block and space for two buffers of length

BLKSIZE. The address of the unit block is inserted in the unit assignment table.

IV. 7. DCBSET Change data control block

See description of unit assignment table for further details.

DCBSET(IUNIT,IBLK,LRECL,IBUFNO,IRECFM)

IUNIT = Unit number

IBLK = Block size in bytes.

For formatted or f ixed records: IBLK > LRECL +4max
For all record formats : IBLK < 32767

< IBM link limits
(space in TMS9900)

< Dual port memory s ize-30

LRECL = Record length = 80 for cards. (For fixed records internally stored äs
= 137 for line printer
= event length, < IBLK-4

IBUFNO = 2

IRECFM = Record format. See unit assignment table

= 90Z = 144 for FB fixed blocked

= 54Z = 84 for VBA variable blocked wi th ANS printer control

= 58Z = 88 for VBS for event data

LRECL =

I V . GETHAI Get space in main pool

GETNAI(LGBYTE,IADDR,IERR,IHIER) reserves space in COMMON/IHCB;:2/.

LGBYTE = No. of bytes being requested

IHIER = l if buffer in dual port memory
= 0 if buffer elsewhere

IADDR is the FORTRAN array address mithin IARBUF. The first word is not used

because an address of l in the unit assignment table indicates a closed unit.

All requests are getting buffers on a double word boundary.

IV. 9. IADDR Compute Address

IADDR is a function and computes the address of a variable. It is part of the

MVCOM control section.

Example: DIMENSION A(200)
Starts at location B4FOO

16

IA = IADOR(A(2})
IA = B4F04 is the address of A (2)

- 26 -

IV. 10. IBMTRA Transfer Data to the IBM

This routine prepares Parameters for the interface and the control Computer.

The routine is cal led by BFFRIB.BFTOIB for buffers and by FI0370 for errors,

ciosing and control requests. IBMTRA prepares a header block IBMHAD which is

sent in front to the IBCOM? information.

CALL IBMTRA(LISTTO,LISTFR)

LISTTO(l . l) = Address of 1PARTO
(2.1) = Length of IPARTO = 6 words (32 bit)
(1.2) = Address of buffer to IBM
(2.2) = Length of buffer to IBM
(1 .3) = 0
(2 ,3) = 0

LISTFR(l. l) - Address where IPARFR is written
(2.1) = length of IPARFR = 10
(1.2) = buffer from IBM
(2 .2) = length of buffer from IBM
(1.3) = 0
(2 ,3) = 0

The header information which is sent to the IBM contains:

IBMHAD(l) = No. of 32 bit words

(2) - 821 identifier

(3) = length of LISTTO = 4 (without the two zeros at the end)

(4) = length of LISTFR = 4 (" " ")

: = L I S T T O (" " ")
LISTFR (" " ")

Before data are transferred to the IBM CHECOM is ca l led to transfer the

answer of the previous request from the IBM to the 370/E.

IV, 11. IDSTL

- 27 -

Compute Distance between Variables

This function is used to transfer data from one array to another one. It is part

of the control section MVCOH.

Example 5^ Of the second array only the address is known.

COMMON/C/IADV
DIMENSION A{200}

C Compute address of A
IADV - I A D D R (A (l } j

SUBROUTINE TWO
COHMON/C/IADV

DIMENSION B(100)
C Compute distance between A and B

10 = IDSTL(B , IADV) /4

Memory
A [l)

t
cat ion 500

A (I Ö O) 6(1)

1000

B(100)

IADV = 500

C B { l - aZ5) points to A (l)
C Copy data from B to A

30 2 I = 1,100
2 B (H - I D) = B (I)

IV. 12. INSSEG Insert Segment Word

INSSEG(IREG) inserts the segment descriptor word after a record is filled by

IBCQMtt and Updates the record offset. The length of the segment is given by

register 2 in IREG(2). If this segment is not the first segment of a logical

record the buffer is sent to the IBM by BUFSWI to fulfill FPRINT conditions

for multisegment records.

JV . 13. HVCOM Hove Charac te rs_

This routine moves bytes from one array to another one.

DIMENSION TO(IOO), FROM(IOO)

CALL MVCOM(TO,FROM,400)

moves 400 bytes from array FROM to array TO. This routine is needed often

because the source or destination address may not coineide with the füll word

boundary. If your output record is only 15 bytes long the fol lowing segment descrip-

tor is not on a füll word boundary. MVCOM is used to set the SDU in such a case.

REAADR Compute Address for REAO

REAADR(IREG,IRCODE) is ca l l ed by FI0370 and returns the address and the length

of the next segment in registers 2 and 3. If a buffer is finished the third one

is requested from the IBM whi le the second one was already f i l led and will be

used now.

IV. 15. RECADR Compute Address for WRITE

RECADR(IREG, IERR) computes the address and the length for the next record.

RECADR is cal led by FI0370. Füll buffers are sent to the IBM by BUFSWI and

the next buffer is f i l led.

IV. 16. FTRACE Interrupt Routine for Tracebeck

FTRACE is called for Hardware Interrupts by INTSRV or by FI0370 for input/output

errors. It performs a traceback (div ide check, overflow) and may abort the

program if the error counter reaches its maximum. Via COMMON/CPLIST/ the program

has access to the program Status word PSW, the interrupt code and the registers.

As FTRACE may be cal led a lso from FI0370 it may not do any WRITE or formatting.

Input/output is therefore done by ca l l ing the buffer routines directly. After

return the interrupt Service routine gives a SVC6.

- 29 -

V. The Subroutines in the Program of the Control Computer

In the NORD «e use features which are specific to NORD Software and to the DESY

Installation. We therefore describe first the main routines and explain afterwards

the special Service routines. The layout of the NORD program is shown in Fig. 8.

As the input/output to the IBM and to the 370/E is via DMA the program must be

fixed in the NORD memory.

V. 1. JOBUT. Halt for JOB

JOBWT sends a control pattern IPARTO to the IBM program which passes control to

CKJOB:

IPARTO(l) = 2

IPARTO(2) - 0 : Wai t for a Job

IPARTO(2) = 2 : Al locate files at the IBM

IPARTO(2) = l : Load System load module

When the IBM has a Job available for processing JOBWT asks for al locat ion of

fi les. If all f i les are avai lable the loadmodule is downloaded from the IBM and

stored into the 370/E.

If a file allocation error occurs the next Job is taken.

V. 2. LAIBM. Load the IBM module

LAIBM sends a message to the IBM-supervisor to load the correct program at the IBM.

' C H A N G E ' : Unload the current program and call the Supervisor

'LOAD E3700NL11: Load the online program for the 370/E

The loading of a pronram takes some time. Therefore several loops are needed to

wait until the program at the IBM i s ready for execution.

V. 3. MEMDMA. Transfer b locks to/from the 370/E Memory

The transfer of information between the NORD and the 370/E is controlled via

MEMDMA. If less than 100 bytes are transferred we use programmed I/O. For larger

blocks DMA is used. The routine takes the characteristics of the interface (l ike

window register for LSI11) into account.

- 30 -

V. 4. SVCHT. Wai t for SVC and Errors

Every 20 msec this routine checks the Status of the processor. When the processor

stops the SVC code and backplane registers are read out. In future this routine

wil l measure the CPU time of the processor's program in order to interrupt

processing in the case of dead loops.

V . 5 . INTHAD Interrupt Handling

If SVCWT detects an error (d iv ide check, overf low, addressing) INTHAD is

called. IfJTHAD has access to the backplane registers and the interrupt address

of the 370/E. Using the contents of the backplane registers one can compute

the type of interrupt. The address, the instruct ion length and the Interrupt

type are loaded into the 370/E processor and the 370/E is s tar ted at the Start

address of the interrupt Service routine.

SVC6 indicates the return of the interrupt. Execution continues one instruction

behind the interrupt address. If the interrupt routine is entered twice without

the occurrence of a return (SVC6) of the previous interrupt the NORD aborts the

Job at the ^.70 and terminates execution.

V.6. Service Routines in the NORD

CLOSE

FIXC(ISEG,IPAGE)

HOLD(MS,1)
HOLD(IS,2)

IBMON(1,LIST,|,IER)

IPEEK(IREG)

IPOKE(IREG.IDAT)

MEMR/MEMW(IADR,DAT)

OPEN

POWER(IER)

RESRV(IUNIT,?,0)

RELES(IUNIT,

SRUN(IADR)

UNFIX(ISEG)

ZASEB

Close a filp
Fix a contiguous segment starting on address IPAGE

Wai t M S - 2 Q msec
W a i t IS sec

WRITE/READ to/from IBM.

LIST contains addresses and length of buffers

Read a register from the 370/E interface

Wri te into a register from the 370/E interface

Read/Write to 370/E memory

Open f i le to read unit number for terminal

Init ialze 370/E

Reserve a terminal for input/output

Release a terminal for input/output

Start 370/E at address IADR

Unfix a segment in the NORD

Convert ASCII/EBCDIC

- 31 -

VJ. The Input/Output Routings Jn_the IBM Online Program

The structure of the IBM Online Program is shown in Fig. 9. The program is started

from the NORD via an interrupt to the IBM online Supervisor. It then goes into

a WAIT and waits for Interrupts of the NORD.

The general structure of the online program can be recognized by this figure:

370/E

E3700NL1

WAIT
wait for
a request

READP
to read
data from
370/E

WRITEP
to write
data to
370/E

After the Start of the program it waits for an interrupt of the 370/E in the

routine WAIT.

CALL UAIT(PCD. £l. £2. Q. 6.4)

Relevant for us are returns l, 2 and 3:

RETURN1: The online program should finish by a STOP. If it does not finish

it will be aborted. This exit is used to remove the Job if there

is no transfer between IBM and 370/E for half hour.

RETURN2: A read request was given by the 370/E to transfer data to the IBM.

(The IBM reads data from the 370/E). CALL READP afterwards.

RETURN3: A write request was given. CALL WRITEP to transfer data to the 370/E.

- 32 -

Data are transferred from the 370/E to the IBM by

CALL READP(ARRAY. ICOUNT, IACT, Q, £2, £3. £4}

ARRAY is the field where the data are written

ICOUNT contains the maximum number of bytes to be transferred

IACT contains the number of bytes which are actually transferred.

IACT ^ICOUNT.IACT is always a multiple of 64 words of 16 bits,

RETURN1: Time out

RETURN2: No read request

RETURN3: Transfer error

RETURN4: Do a STOP

The answer of the IBM is sent to the 370/E by a

CALL HRITEPfARRAY, ICOUNT)

ExampJ_e_ 6:

DIMENSION TOIBH(IOO), FRIBM(SO)

100 CALL WAIT{PCD, £500, £200, £00, £.100}

200 CALL READP(TOIBM, 400, IACT,^100, $100, £100, £500}

Data from the 370/E are in T01BM
Put answer into FRIBM
GOTO 100

300 CALL WRITEP(FRIBM, 200)
GOTO 100

500 STOP
END

VI. 1. ALCDYN. Al locate a data set

The two subroutines ALCDYN and DALDYN serve to allocate and unallocate data

sets dynamically at execution time and may be called by FORTRAN

programs.

CALL ALCDYN{DON,DSN,UNIT,VOLUME,DISP,SPACE,D$ORG,DCB,ERRORS}

1. DDN - character string of fixed length 8 - DDNAME

2. DSN - character string of f ixed length 44 - Data set name

3. UNIT - character string of fixed length 8 - Uni t name

4. VOLUME - character string of fixed length 6 - Volume name

- 33 -

DISP(3) - array of 3 character strings of fixed length 8 -

disposition parameter for allocation.

Status specif ication: OLD

normal disposition: KEEP

DISP(l) :

DISP(2) :

D ISP(3) :

SPACE(IO) - array of 10 half words -

SPACE(l) : space unit specification:

MOD NEW SHR

DELETE i CATLG UNCATLG

conditional disposition: KEEP DELETE CATLG ! UNCATLG

SPACE(2) :

SPACE(3) :

SPACE(4) :

S P A C E (5) :

= -1 space unit not defined (SPJ
> 0 average block s ize
= -7360 or ' T ' tracks
= -15552 or 'C' cylinders

primary al location quantity

secondary allocation quantity

directory allocation quantity for PO data set

"release unused space" parameter (RLSE)

= 1 release unused space

= 0 do not release unused space

ignored

7. DSORG - half Word -

Data set organization specif ication for allocation:

= - l not set
= 512 or x '0200'PO (partitioned)
= 16384 or x ' f lOOO1PS(physical sequential)
Actual DSORG is always returned in this field.

8. DCB(22) - array of 22 half words -

DCB parameters for allocation:

DCB(l): to specify the record format give the sum of all relevant
numbers front the following list:

8 Standard fixed or spanned variable (S)
16 blocked (B)
64 variable (V)
128 fixed (F)
192 undefined (U)

Examples: to specify RECFM^VB set DCB(1)=80, to specify
RECFM=VBS set DCB(1}=88.

DCB(2) : BLKSIZE value

D C B (3) : LRECL value

DCB(4) : BUFNO value

- 34 -

VI. 2. CALLOC Interface for A l loca te dataset

The routines to al locate a dataset needs many parameters. CALLOC gets the

relevant information for a dataset from the Job queue, unpacks the information

and al locates a file. If the unit is reserved the old file is deallocated and

a second allocate is carried out. Some information about file al location is

printed to the printing unit

INTEGER»2 NER(3)
LOGICAL*! LOGIN{78)

CALL CALLOC(LOGIN,NER,IUNIT)

u.r-ui: LDGin = crscRiPTor or
L3GIN(I) = U11T NLHPER

(2) =
(j) = r i SP rtr

* i.
(2 = F T O I F O O ;)

) SfCONP PARACCTTP

,»!•=--'360.

= 10 =
20 =
30 = irv
40 = StT

4 i = |-rri

4 3 = '

+ 4 = '
14) = X ' *0 • THYS IC.'L

X '02 ' PART IT;^^E;D
(5+t) = SPACE =-1 .Ct'.'NTlTV ,

PRIHAPY ALLCrAT IO"
SECUMrARY A L L G C A T T C N
DIRECTCRY
0 OR l (RLSE I
VOLUfT
UNIT = ' F A S T ' rr- • '
DSNAh-F
DCB Ftrs izr
DOC LFECL
RECFM = 8 (r.'AI.DArr HH SP AliNFD)+16 (H)

+ t « f V) + 120 (F) + 192 (U)
r. ir rce r r"i- DA T A SCT

(9 4 1 0)
(1 1 + 1 2)
(1 3 + 1 4)
(1 5 - 2 0)
(21 -20)
(29-72)
(7 3 - 7 *)
(7 5 - 7 C)

(7 7)

(78)
IUNIT = PSINT 1NG UM1 ir rcno NO PKINT OUT

VI. 3. CKJOB Wait for a Job and Check

CKJOB is called from the NORD. It checks the Job queue if there is a Job waiting

for processing. The disc for the Job queue is allocated and searched for a Job.

The Job control information is then read and files wil l be allocated. Then the

load module is read. The control Information of the load module is used to

compute the size of the program and to get the addresses where the segments of

the program should be loaded into the 370/E. According to the allocated fi les

the unit table is updated to inform the 370/E about the available f i les.

INTEGER*4 IPARTO(6), IPARFR(IO),IBUFFR{5000)

CALL CKJOB(IPARTO,IPARFR,IBUFFR)

INPUT: I P A « T D « 1) = i LOOK FOk JOBS AND A L L O C A T E FILES
I P A R T O f Z) = 0* MA1T FOfc A JOB

t. LOAD SVSTEM LOAO NUDULf TD Tut 37O/E
i* ALLOCATE FILES AND SEND RESULT TO 370/t

IPARTOI3) = NO. OF FILE 10 BE ALLOCATED
= o FOR PRESENT JOB» i FOR PREVIOUS jua

OUTPUT: IPARFRI l) = Z
IPARFRI2) = 0

= I
= 2
= 3
= 4

IPAHFR(3) = 0

ANSUER OF CKJOB
THERE IS NO JOB. THV LATER
THERE IS A JOB VA1T1NG
SYSTEM LOAD MODULE IS SENT
END OF S VST EH LOAO MODULE
FILE ALLOCATED

_. NO ERROR OF ALLOCATIMG FILES
= lEHALC(l) DF ALLOCAT1NG ROUTINE

!PAkFR(4> s- 1ERALC12) OF ALLOCAT1NG ROUTINE
1PARFR(5> = LENGTH OF TEXT FILE (IN 12 falT NORDS)

s JOB NUMBEl*
= FILE NUHBER FOR ALLQCAT10N

1PAHFR(6I = ADUHESS IN 370/E FOR TEXT FILE
£ JOB TIMC
= FILE ALLOCATION OK.IO). END OF ALLOCAllÜhl U)

IPAMFRI7) s LENGTH OF TEXT FILE

IBUFFR = TEXT FILt FOR LOAD MÜDLE.
= NAME OF JOB
= NAME OF FILE

CALLlHG SbUUENCE: HA1T fÜH JOB
ALLOCATE FILES
READ LOAD MODULC

1BJFFRC500J»

VI. 4. CLJOB Close job_and deallocate files

At the end of a user's program all files are closed and deallocated. Than the

online program will be unloaded to release all buffers (STOP4)

- 36 -

VI. 5. CONDYN Connect f i les

If one wants to read two files l ike a single f i le one can connect these

files like:

//GO.FT01F001 DO DSN =
// DD DSN =

CONDYN can concatenate up to 20 f i les.

CALL CALL CONDYN(NDDN,DDNS,IPERM,ERRORS)

NDDN - half word -

number of files to be concatenated (2 < NDDN < 20)

DDNS - character string of fixed length 8*NDDN -

array of ddnarnes of f i les to be concatenated; each ddname is to

be 8 bytes long (eventually padded right with b lanks) .

IPERM - half word -

requested type of concatenation:

= 0
= l

non-permanent
permanent

NOTE: Permanently concatenated files cannot be de-concatenated

dynamically; only dynamic un-allocation will be possible.

VI. 6. DALDYN Deallocate files

Unallocation of data sets by ddnane at execution time. Dataset disposition at

allocation time is executed at unallocation time and may be altered using

subroutine DALDYN:

CALL CALL DALDYN(DDN,OVDiSP,ERRORS)

1. DDN - character string of fixed length 8 -

ddname of file to be unallocated.

OVDISP - character string of fixed length 8 -

overriding disposition for data set to be unallocated:

OVDISP = KEEP DELETE CATLG ! UNCATLG

- 37 -

VI. ?. FPRINT Write Records at the IBM

FPRINT gets a complete block frort the 370/E, searches for logical records and
Outputs them.

FPRINT(IUNIT,LBUF,IFORM)

UNIT = unit number

LBUF = Buffer from 370/E

IFORM = 0, write without format control

= l, write with format control.

Stand alone records are written directly, spanned records are copied to a local

array. A write is then giver after the record is complete. Therefore spanned

records must be sent to the IBM without interference of other units.
Example 7:

B"

5 °
1.
Record 1

2. Rec.
1. Seg.

2. Record
2. Segment

370/E

Rec.
2 |3 . Seg.

L O C A L

WRITE 1. Record

WRITE 2. Record

- 38 -

V I . IBCREQ Handle IBCOMg Requests

IBCREQ(IPARTO,IBUFTO,IPARFR,IBUFFR)

All IBCOM= requests INPUT,OUTPUT,BACKSPACE,REWIND,ENDFILE are handled by this

routine. The routine is cal led by the IBM online program E3700NL1.

IPARTO contains the parameters sent to the IBM,

IBUFTO is the buffer to the IBM for Output

IPARFR contains the answer from the IBM and control Information

IBUFFR is the buffer from the IBM to the 370/E for input.

IPARTO(l) = l IBCOMtt request

READ
WRITE
CONTROL

(3) = unit number

(4) = ABYTE or

(5) = B L K S I Z E

(6) = LRECL

IPARFR(4) = 0, no error
= l, end-of- f i le .

BACKSPACE
REWIND
ENDFILL

VI. 9. IfJCBUF Fill Input Buffer

In order to avoid high dead time the IBM fills input buffers already before the

user at the 370/E gives an actual READ command. For the very first READ

Statement the user program has to wai t until the IBM has filled a buffer. But

while execution continues at the 370/E the IBM fills the next buffer. There-

fore the IBM program does not know, how many words the user at the 370/E would

like to read and whether the format is f ixed for cards or variable for events.

The usual FORTRAN input techniques do not help us in this case. We therefore

- 39 - - 40 -

wrote extra input routines using FlOCSt* at the IBM.

INCBUF(IUNIT,IFORM,IPARFR.LBUFFR)

is called by IBCREQ and fills a complete input buffer for UNIT.

IUNIT = Unit number

IFQRM = 0 for unformatted input
= l for formatted input fixed records

IFORM is taken from ABYTE which is sent in IPARTO
IPARFR = Parameters from IBM
IPARFR(4) = l for end-of-file

LBUFFR = Buffer which is sent to the 370/E
The first word in the buffer contains the block descriptor
word and is used to determine the block s ize. This word is
modified for end-of-file conditions in the last record.

The block which is transferred to the 370/E is organized äs a variable record

for all data set formats: Information l ike record length or format is taken

from the unit assignment table for input datasets. If the input device has a

fixed record format complete records are placed into a block.

Example 8:

IBM blocks (f ixed):

\UNRD(3, IUNIT) = 80

370/E block; \V

WaiK fo r next transfer

B
4

a B
4

B
4 X

Variable records are copied to the 370/E buffer. Care must be taker for spanned

records and the segment descriptors for the 370/E must be marked correctly.

IBM blocks (variable):

1.Record

first segment middle segment)ast segment

2.Rec. B
n
v

3
2. Record B

n
W

;
2.Rec

0
3.Rec

370/E block

VI. lü. RDFIOC READ by FIQCSfr

For input datasets we cannot use FORTRAN READs because the IBM does not know

in advance how many words should be read. Read is therefore performed by

RDFIOC(IUNIT.IFORM,flATE) requests the address and the length for the next

segment of IUNIT. FIOCS* returns in registers 2 and 3 the address and the length,

This Information is stored into array NANS:

INTEGER«? NANS

NANS(l) = L Address of next segment
NANS(2) =J

NANS(3) = length of segment

NANS(4) = 0. No error. Used for segment offset.
= -1. End-of-f i le

NANS(5) = Code from segment descriptor word = 0, l, 2 or 3 for complete,
f i rst, last or middle segment

NANS(6) = Record format. Taken from the data control block of the unit block .

RDFIDC also modifies the ENDFILE and ERROR words and register sive area in

IBCOMr* for proper return in case of end-of-file conditions. IHOuATBL contains

the IBM unit assignnent table and is needed to compute the address of the

unit block in order to get the dataset format.

First segment äst segment

- 41 -

dfile concHtion

INCBUF RDFIOC

Modifi-
cation

FlOCSt»
Return
EOF

-;
-5

IBCOMfc

Save area
ENDFILE
ERROR

h
FIOCSü

Return
EOF

If the 370/E is connected to a non IBM Computer RDFIOC must be modified.

this case RDFIOC must know the format of data for several units:

Example:

SUBROUTINE RDFIOC(IUNIT,IFORM,NANS)

INTEGER*? NANS(6),NZ(2)

COMHON/CRC/LENG,EVENT(1000)
DIMENSION CARD(20)
EQUIVALENCE (CARD(1),LENG)
EQUIVALENCE (NZ(l) . IZ)

C Address of "buffer"
IZ = lADDR(CARD)
NANS{1) = NZ(1)
NANS(2) = HZ(2)

C No error
NANS(4) = 0

C Complete record
NANS(5) = 0

IF(IUNIT.NE.5) GOTO l
C CARDS.

80 bytes per card
NANS{3) = 80

C RECFM
NANS{6) = 144

READ(5,4,END = 8JCARD
FORMAT(20A4)
GOTO 99
NANS(A) = -l
GOTO 99

In

CONTINUE
Next unit

Vl_I. B_u_ffer_ organization and Tables

UI. I. Unit assignment table CQHMON/IHOUAC/

The unit assignment table is organized like IHOUATBL. It has entries for

100 units. Of these only 99 units are allowed «hile unit number 100 is used

to point to the area of the IBM answer.

The unit assignment table looks äs follows:

COMMON/IHOUAC/NUPRES.MUMHUN,ISTDUN,1UNAS(4,100)

INTEGER*2 NUPRES,NUMHUN

NUPRES = Present unit number

NUMHUN = Maximum number of units * 16

ISTDUN = Standard units for ERROR,READ.PRINT.PUNCH

, 706050607

IUNAS{1, . .) = Address of unit block in COMMON/IHCBF2/.

The address i s the FORTRAN array address in IARBUF.

IUHAS(1 , , . .) = 2 if the unit block Starts at IARBUF(2).

IUNAS(1,...) = l if no unit hlock was created.

IUNAS(2,

IUNAS(3, . . .

llHOASYNC
not used

1
BLKSIZE

IRECFM]Buf no
= 2

1
LRECLI

The blocksize may be chosen independently of the blocksize of the data

definition card (// DD). It depends on the memory space, the characteristics

of the IBM link and the IBM online program. If it is too small one has many

transfers between the 370/E and the IBM. For a 370/E with dual port memory

for input/output the blocksize should not exceed the size of that memory ninus 30.

IRECFM defines the record format

IRECFM = Z04 = 4 = AUS printer control
= Z08 = B = spanned
= Z10 = 16 - blocked
= Z40 = 64 = variable
= 280 = 128 = fixed
= ZCO = 192 = undefined

Typical formats are 88 for VBS, 128 for F, 196 for UA or 84 for VBA. The
buffers between 370/E and IBM are all organized äs VB. For fixed, unknown or

ANS records only complete records are placed into a block while spanned

records may be used for variable records.

LRECLI is the record length. For fixed records i t should have the size äs speci-

fied on the IBM data definition card +4 (i.e. LRECLI * 84 = Z54 for cards).

LRECL should have the length of the longest record {i .e. LRECL = 137 for line

Printer) but should be less or equal to BLOCKSIZE-4. During execution LRECL

is updated to the longest record.

Data control block definitions can be changed by a

CALL DCBSET(IUNIT,IBLK,LRECL,IBUFNO.IRECFM)

For fixed records LRECLI = LRECL t 4.

VII.2. The buffer pool area for unit blocks and buffers

All buffers and unit blocks are stored in

COMMON/IHCBUF/LGBYTE,LBUSED(3) /IHC&F2/IARBUF(10000)

Common for unit blocks and buffer space

LGBYTE = length of IARBUF in bytes = 40000

LBUSED(l) - No. of words used

IARBUF = unit blocks, buffer space.

Space is allocated in IARBUF by a

CALL GETHAI(LBYTE.IADDR.IERR.IHIER)

IHIER defines whether the buffers should reside in the dual port roemory or in

the normal memory. At present all buffers are located in one contiguous array

and only LBUSED(l) is used.

VII.2.l The control block of the IBM answer

The control block of the IBM is 10 words long and contains:

IPARFR(l) = l
IPARFR{2) = l, 2, 3 for READ, WRITE, CONTROL
IPARFR(3} = IUNIT which was processed at the IBM
IPARFR{4) = 0 no error

1 end-of-file
2 I/O error
3 FIOCStt(IBM) error.

Unit no. 100 of the unit assignment table points to this area.

VII. 2.2 The unit block (ÜB)

The unit block describes the position and Status of the input/output buffers.

The address in the unit assignment table points to the unit block. If the

address is l the unit was not opened before and a unit block must be created,

- 44 -

A unit block has the following form

IADDU = IUNAS(1,IUNIT)
IARBUF(IADDU + 0) = ABYTE + BBYTE + CBYTE t DBYTE

IADDU + 0

+ l

+ 2

+ 3

+ 4

+ 5

+ 6

+ 7

1 BBYTE | CBYTE

Address of buffer l

HYTT

Address 6T buffer 2

Address of current buffer

"Record offset withTn buffer

IDECB = 0, l, Z

No. of current buffer '=~T,~~2

0 Address of 1. Buffer to IBM

0 Address of 2. Buffer to IBM

ABYTE = Parameter 2 of FI0370
= ' F O 1 , ' F F ' , ' 0 0 ' , ' O F ' for formatted/imformatted input/output

BBYTE - l for end-of-file

CBYTE = l for opened data set

DBYTE = 0

For a given unit two buffers for data are created. Within a buffer the offset

pointer points to the last byte which is used. It is set to 4 for an empty

buffer because 4 bytes are needed for the blockdescriptor.

IDECB = 0, no buffer sent to IBM
1, buffer l sent to IBM
2, buffer 2 sent to IBM

A unit block is created by

CALL CRUNBL(ABYTE.IERROR)

VII. 2.3 The unit buffers

For each unit two buffers are reserved in the buffer pool. Each buffer is

organized äs variable blocked records with block and Segment descriptor

words (BDW,SDW)

Block length in bytes < BLKSIZE
Unit assinnment table

Segment length in bytes
j\W

SDW 1. Record SDW 2. Record

4 bytes

B DM

»ach

^ilock [length ITEDI^

4 bytes

IEOF = l if this is the last block before
an end-of-file occurred
(Non IBM Standard)

SDW 1
Segment
length

1
KODE 0

ICODE = 0, stand alone record
= l, first of a multisegment record
= 2, last of a multisegment record
= 3, neither first nor last segment.

The layout of buffers and pointers is shown in Fig. 12.

Address
to unit
block

Unit 100

BLKSIZE LRECL

Buffer pool area

IBM
answer

Unit block
ABYTE
Buffer l
Buffer 2
current buffer
Offset = 100
IDEB = 2
current buffer
0
Address of IBM buffer

BLOCKS
WiT
5DH

SÜW

next Unit BLOCK

Fig. 12 Buffers and Pointers

VII.3. Uni t Assignment Table for Input at the IBM

For input units a special table at the IBM is needed because input is not

done via IBCOMfc but via FlOCStt.

COMMON/ IHCUNR/NltNRD(6,99)

INTEGER*2 NUNRD

NUNRD(l+2 ,IUNIT) = Address of current segment

= Register 2 from FlOCStt

HUNRD(3,IUNIT) = length of current segment or record

NUNRD(4,IUNIT) = 0. A read was successfull

= -l, end-of-file

< -l, FIOCS4 error

> 0. Segment offset pointer. The following words are not
yet copied to the 370/E buffer

NUNRD{5,IUNIT) = Segment descriptor word

= 0, complete segment
= l, first segment
= 2, last segment
= 3, middle segment

MJNRD(6,IUNIT) = Record formal. Taken from IBM DCB in jnit block.

VII. 4. The COHHON/CIBUF/ of the Online Program

COMMON/CIBUF/IBMBUF{5000)

IBMBUF(l) = Number of 32 bit words including this word

(2) = 821 = code

(3) = NUMTO = No. of different blocks sent to IBM

(4) = NUHFR = " " " sent from IBM to 370/E

(5) = Address of PARTO (Address in 370/E memory)

(6) => length of PARTO

(7) = Address of BUFTO (Address in 370/E memory)

(8) = length of BUFTO

(9) = Address of PARFR (Address in 370/E where data are «ritten)

(10) = length of PARFR

" (11) = PARTO(l) ~\ l length of PARTO = IBMBUF(6)

(iö) = PARTO(6) J

(17) = BUFTO(l) 1

: L length of BUFTO = IBMBUF(8)

(116) * BUFTO(100)J

(117) = PARFR(l) '

! \h of PARFR = IBHBUF(IO)

(126) = PARFR(IO)

- 49 - - 50 -

VII.5. Job Control Information

The Job control Information i.e.

//F1BNOTOO JOB TIME=1
//STEPOO EXEC PGM=F1BNOT.TSOLIBL(J370)
//LISTFILE DD DSN=F1BNOT.LIST3
//FT03F001 DD DSN^FIBNOT.INP

is stored into

INTEGER*4 HJOB(4)
LOGICAL*! LBUFFR(78,11)

NJOB(l) - (3) =

NJQß(4)

'F1BNOT' = Job name

Time in minutes

LBUFFR(l.l) = File Information for load module

LBUFFR{1,Z) =

LBUFFR(1,3) =

LBUFFR(1,4) =

For each fi le:

LOGINI t)
(2)
(3) a Ct T

IN1T NLMPtR
SEQUENCC
D ISP = 10

30 = NTV
40 = SMP

•* i = rrrr

" List file

" file l

" file 2

(2 = FTOIT002J

M) =

(5+6) =
(T*e) =

(9 + 10 } =

+ 3 = C*TLG
* 4

X » * 0 ' PHYSIC5L
X '02» PARTITTTKCD
SPACt a-

>FIRST
)

)
l
l SFCOND PARAMETTP

< 13+14)
(15-ZO)
(21-26)
(29-72)
(73-74)
(75-76)

(7 7)

(7 B) = --

,• T'=-73tC . 'C1 =-

SECUNrARV «LtOCATION
OIPECTCRV
0 OR KRLSf)
VOLUME
UKIT =*FAST« HP. • •
DSNAIT
DCB etrsizr
OBC LFECL
RECFH = 8 (S 'AWOAro OR SPANNFD)+ 16 (n)

» 64TV) + 126 (F) * 192 (U)
0. IF PCB rFf»' DA T A SET

VI 1.6. _ Fi lejfor Job Queue

The file for the Job queue is a direct organized data set (Fig. 13).

The first record contains a counter indicating how many Jobs are processed.

This record is only modified by the online routine CKJOB. The second record

indicates how many Jobs are requested. All remaining records contain the Job

control information for each Job. If the end of the disc is reached the first

Job f i les wil l be overwritten if they are already processed. Otherwise the

queue is füll.

NDONE
5

1

NREQ
8

JOB? JOBS

1 *

JOB3 JOB4 JOBS

.
free free

JOB6

Fig. 13 Organization of Job queue

- 51 -

Appendix

A _ K A Program to Jest the 370/E

In order to lest the processor a test program was written which generates per

transfer 500 random numbers, ALOG, SQRT, ARS1N, SIN, COS, TAN, EXP and fills

an array A(10,500). 20 000 bytes are then transferred from the IBM to the

TMS 9900, the control processor of the online net (15 psec/16 bit word). At

the end of this transfer data are sent to the NORD (10 usec/16 bit word). When

data are transferred in the opposite direction from the NORD via the THS9900 to

the IBM the two transfers overlap for higher speed.

The NORD transfers data to the 370/E and Starts it. In order to minimize time

the 370/E requests from the IBM the next block with results by transferring

10 control words to the IBM (Fig. AI).

The 370/E is then started, the ten words are sent to the IBM and the IBM is

activated. The NORD then waits for the end of the IBM transfer and the end

of the 370/E computation.

A 2. A Program toJTestError Handling

In order to test the error handling of the 370/E we wrote a small program which

does FORTRAN I/O and contains some errors. The program source code is shown in

Fig. A2. It is compiled and linked at the IBM. The listing of the linkage editor

is given in Fig. A3. All buffer handling routines and the System of the 370/E

is loaded at the beginning. The Job is then submitted and executed at the 370/E.

Output is transferred to the IBM and printed on a LISTFILE (Fig. A 4) . Software

errors like negative square roots are handled by the FORTRAN library and hardware

Interrupts like divide checks are controlled by an Interrupt Serv ice routine.

Execution might terminate for address errors or continue for divide checks.

A__3A Some Remarks

1) The 370/E can be connected to each Computer. Input/output to tapes and line

Printers can be controlled by this Computer äs long äs the buffer formats

are treated correctly. Error messages are printed in the known IBM format.

In order to develop and load programs a link to an IBM is needed.

2) There are some restrictions for programmers using assembler language. Due to

pipelinlng it is not allowed to modify the following instruction and to

execute i t afterwards.

3) It might be possible to support also direct access I/O.

4) There is no access to system control blocks. It is complicated to transfer

them from the IBM äs the addresses of a Job in the IBM and in the 370/E are

different.

5) To connect the 370/E to IBM we use at DESY a 2701 unit with parallel data

adapter. One might think of avai lable interfaces l ike MODCOM, S/l or NOVA

to connect the 370/E to the IBM channel.

6) When one compares results of the 370/E and the IBM one must use the same

COMPILERS. The same FORTRAN library but a different Compiler can give

different results:

K = Z40170E9A

COS(P>2«3.141592) = Z40D81733 für IEKAAO
^ v ' = Z40D81731 for FORTRANQ

This code i s different
in both Compilers

7) The processor was tested with the program described in AI, With the bit

slice 2901A we found two wrongly calculated exponent functions per 4 Mill.

numbers, with the 2901B no error was found for 40 Mill. numbers.

8) The new interface has the following features: If a SVC, a program Interrupt

or an external Interrupt occurs the old program Status word PSW is saved on

locations 32, 40 or 24. The program branches to the address given by the

new PSW defined in locations 96 , 104 or 88.

Input/output is performed in the following way: Like LISTTO and LISTFR a set

of channel command words CCW describe the I/O commands, the addresses and

lengths of buffers. The channel address word for channel zero in permanent

storage location 72 points to the first CCW. The processor gives a Start I/O

Operation and stops. The control processor has to read the channel device

address (in ARH + ARL) , sets the sinole cycle bit and clocks for CAW (in

ARH + ARL), 1. CCW and 2. CCW (in DBH + DBL). If the channel is not available

the control Computer returns the channel Status word CSW (in DBH and DBL)

and sets the condition code. The processor is started again. The end of data

transfer is signaled by an interrupt or tested by the test I/O command TIO.

- 53 - - 54 -

1&N 000*

1&I4 ÜOOJ

OOC4
OOL'b
ÜOOfc
OOC7
OOCb
DOW
0010
0011

OOli
U013
0014
OOlb
Oölt»

0017

001V

l&N
ISN
l&N
l&N
ISN
I&M
ISN
ISN

i S. M
ISN
I&N
1SN
I&N

I&N
l&N
l&N
ISN

ISN

ISN Ü0t4
ISN QOZL

ISN 0026
ISN 0017

l&N 00£b
l&N 00 IV

ISN 0030
i&N 00 3 l

l&N 0033

I&N
ISN
l&N
I&h
l&N
l&N
1SH
ISN

003Ü
0036
0037

003V
U04Q
0041

C 02/07/02 £070ZObJt> MtMfiER NAHE STA3T1 MSLILIbl
iUBkOUTlNE &1A3T1

FU«

DIHLN&lÜh AORt 1)

Pl =J
DU c

PR1N1 SIN AND COS

1=1.180.10

• tU1L(6.4)I .SN.C&
4 (ORHAT(IX, U. 4F 10.
i LÜN11NUE

FLUA1 01V IDE

t -A/b
"Hllt t&.OA.b.C
F Ü (4 M A T (1 X * * A F 1 L R DlV lOL CHECK **3F10 *5 l

F1XEÜ Dl V IDE

t>)l . J.K.
F Ü R M A T (l X * * A F l t R F UiED OIVIDE*.316I

ÜVtBFLO«
LUV-l.t.ö(J
LÜVL=EUV+EÜV

FühMAT (IX. 'OVfcHFL'
UNDtRFLO«

»ROH t UN11

FURHA1 t lX i * AF ItR HkONCi
NEGATIVE SORT

AA=SuRTt- l . l
&U=bUftTC-2.1
•R lTb(0 .14) AA.SQ

14 FüRMATl lX.» AFIER NtbAl l VL SO« T« .2F t 5.5)
C ADDRE&S EXIEPIION

\'£.

16 tURHATI lX**Bt .FORt AUDRLSS V10LA110N")
11=1 JOOOO
AU=ADH(11 >

10 FORHAT(lA.*Fi r< l&H* l
kETUHN

Fig. A2. FORTRAN source code

- 56 -

F64-LEVEL L1NKA6E EDITOR DPIIONS SPtCIFlCD MAP.LIST.S IZE >(43BK ,24* J
VARIABLE OPT10NS U 5. t D - &UEM448512 .2*676)

lEtfOOOO SEISS1 16216306
1E400DO INCLUDt NthLlBll&VST370EI

MODULE MAP

CONlROL itCTIOM

NAHE
4 AI MO
CPL1ST
«A1N2
iWCALL
INTSRV
«EADP
1NOUAC
F1UCS»

4HCDM
1AODR
IDSTL
1RE&IS
»FFaja
BUF&NI
CHECOM
CRUNBL
F 10370
IHMIRA
aCAADR
)ECADA
FTRACE
fPRERR
iEIMAI
»CBSET
INSSEfc
t AND

OR1G1N
00
78

120
10»
ÜB
218
220
B7B

A«B
ACO
ACB
ACO
AFO
OO*
F9B

1130
1380
1DCO
2168
2420
2700
2E70
30DO
3230
33 DO

* 3570

LtNGTH
7ö
A4
84
10
30

2
666
1FO

6t
6

14
A

£16
£6L
196
Ü4C
A3E
3AB
Z66
ÜDt
76L
240
18ü
1AÜ
IAO J

3C

fcHlBV

NAME LOCAT ION NAME LOCATION

IHJECUMH*

FlUAPf *
IHOLUMH2*

35BO

43EO
4AOO

IH3UAIBL* 53A8
S1A37D * 5VEO
IHDFCVTH* 5 A DO

1H3EFNTH*

IrtJUOPT *
CUPSU6 *

*
IH3FCOHI«

1HOFCOMO*

1H3FTEN *

1HOETRCH*

1HC8UF
IHCSFZ
I&ICOM
C1BMAI

t>700

6FOO
7508
70 EO

8006

B420

BCD6

8EF8

91AB
»IM

12OF6
12EOO

FIOCSBEP 878

Buffer routines and 370/E system

E3ü

&1L
9AL,

636
tc

LFA

bOO

53;
4D4
624

416

220

2AE

10
6 (.40

4
4

IOR 35 7E

1BCDM»
1NTSKTCH

<4:U>ASU

ADCON*
FCVLOUIP
FCV10U1P
FCVCOUTP
ADCONO»

AR1TH*

ERRMON

FQCONI*

FttCONO*

Ff EM«

1HOTRCH

3&E4
4326

40 02

5 A DO
5B64
5384
58 BC
&2E8

67DO

79 EO

BÖ 06

8420

8CD8

8EFB

FDlOCSfl

FCVAOUIP
FCVZOUTP
FCVLOUIP
ADCONli
1NT6SMCH

AOJShlCH

1HOERRE

ERRTRA

36AO

bBJC
&U&C
56ÖC
62CC
67C9

6D64

79FB

6FOO

Space for buffers and pointers

LlIRV AUORESS 00

«TAL LENGTH 12LOb
****L370TLMP NOK REPLAttÜ IN DATA SEI
AUIHOR1ZATION CüDt IS 0.

Fi9' A3. Listing of the linkage editor.

JUB i
TINE ; l HIN
SIARI TIME 102/07/82 Ob.34.21
MQ9JLE KÄME; ~
LIST FILE :F1BNOT.L1ST370E

//GO.FT09F001 DO DSN=t1BNUT.COMVBS
// D1SP=(SH4 KEEP (.EEP >.DS-ORG= J63Ö4
EHROR 0004 0410 OOOO
//&O.FT09F001 DO DiN=F1BNUT.CUNVBS

KEEP KEEP }*DS-ORG£ 16384
DO OSN=flBNOI.COMFB

K.ELP KEEP).DS-ORG= 163*14
ERROR 0004 041O OOOO
//60.FTOBFG01 DD OSM=F1BNOT.CUMFB
// 01SP=li-HH KEEP kEEP).Di>-ORG= 16364
//6D.FTBBF001 DD DSH=F1BNDT.TSOLIBL(C370TEMPI

D1SP=ISH«
//6D.FT08FC01

01SP=tSHR

// Dl
1

11
2l
3l
41
51
»1n
81
91

131
111
121
131
141
151
Abiin

I&PM&HR
. 174&E-01
.1906
.3564
.6150
.6*61
.7771
.87*6
.945 E
.9677
.9996
.9816
.«336
. B57ü
.7547
.6293
.4846
.3256
.1564

KEEP
.«998
*9B16
.9336
.607 i
.7547
• 6293
.4846
.3256
.1564

-.I745E-01
-.1908
-.3684
-.61&0
-.6661
-.7771
-.8746
-.9455
-.9677

REEP)

From IBM

Online Job

Al locate files

FL3AT1N& POINT DIH1DL
PStf OOOD8A«0 IL*CC OOOOOOOA

HOUT1NE C ALL E L) FRüM 1SH
VPftEHR
FIRAU.
t.TA37i

.U

Hardware interrupts

MA1N2
AFTEU D iVIDE CHLCK3.0000

F1XED POINT 01 V IDE
PS* OOOOBACC IL*CC 000 00 Oü A
TafcCEdACK. RUUI1NE C ALLE U FRON 1SN

TPRbRR
FIRACE
&IA371
SIA370
MA1N2

AF1ER FIXEO Dl V IDE b 0

ÜVLHFLü«
PSH gOOOBB04 IL+CC ÜOOOOOOI
IHACEBACfc ROUTINE CALLED FRUM ISN

YPftEUH
FTRACE
STA37I
ST A3 70
NAIN2

OVERFL 0.1000000E+61 0 .74&833WC-34
AFTER URONb UNIT

REG. 14
00113P06
60000202
40O05A90
500001 B6
itOOOOOOC
3.0000

REG. 14
00113O06
60OOO202
40OO&A90
50O001&6
bOOOOOOC

REG. 14
00 113OO6
4000O202
4000&A90
500O01B6
500OOOOC

HE C. 16
00 002 £70
OO 002700
ooooeaoo
OOO059EO
00000 120

RE G. 15
00002E70
00002700
OOOOBBOO
000069EO
00000 120

REG* 15
00 002 £70
OOO02700
OOOOBBOO
000«S9EO
00000 120

REG. 0
00000000
00000 005
* OOOO IAA
400001AA
OOOOOOOO

REG. 0
OOOOOOOO
DOOOOOOO
4000O1AA
4000O1AA
OOOOOOOO

REG. 0
OOOOOOOO
OOOOOOOO
400O01AA
40000 IAA
OOOOOOOO

«EG. 1
000027UO
91119AD4
OOOOOOOO
400001AA
0000000&

REG. 1
00002790
0000000&
OOOOOOOO
400001AA
OOOOOOOb

REG. 1
00002790
»0000005
OOOOOOOO
400001AA
00000005

Fig. A4. Output of the 370/E on LISTFILE at the IBM

(i tfb)

joj

T *Q

341

• { S d 'AS3Q) SCHLIPS 'd *q ua^uw 9-ia«

3iu ' flSDOIJ pue t=W003I ±° uOLiEßiisaAui s 14 pue

i A~L6uoa:js SPM I3üed S^M1 'JOSsaDOJd 3/OiE ^Ml J-°

'b Pue L LeJ 'b 'uein^ejg 'H >|uem o; a^t pinoM \0

VVIOOOO*
oooooooo
1*000000
OftlZOOOC
t '9T(i

OOOOUOOO
vvtoooo*
vvtoooo*
9J9BOOVO
oooooooo
0 "03H

OZ100000
03650000
009*0000
001 ZOO 00
OO7OOOO
S1 '»30

70000009
99100009
OAV9000»
zoeoooo*
«ooctioo

7NIVM
0/CV1S

tmitidA

70009000
^70

01990000 »Id
NOtldT>X3 ««»OCV

OOOO'l tU03 3AT1V93N t)?JJV
9NinNIlNO? NflfinilXl • N1W1 dOKtJ QtlVONVlS

OOOOOOOO

VV10000»

onoooooo

onoooooe

1 "»3*

f; P oooo oo

VY 10000»

oooooooo

00000090

' -91«

OOOOOOOO

V V I O O O O V

VTtOOOO*

09000000

o "tia

oooooooo
VV10000*

VV10000»

09000000

o **na

02100000

03650000

00900000

• V4AOOOO

51 "<>1(1

oei ooooo
03450000

00990000

9T9 00000

51 •930

70000005

99100005

OOV90OO*

>9B90009

»I -T3M

0837

9NT flNI IN

30000009

99100005

06VQOOO»

«599000%

»l "«31)

?000

ocoo

HM NOHJ OTn»3

n »io*30ooooo?a

D7 NO im imi • N

zooo

ocon
NSI MCHJ O3in»3

?NTVH

OiCVlS

11CVIS

laos
3NT100H ü

0-=9»V 1HOS

lüTi dnxu

7NIVH

OlCVi^

i/cvi«;
iwos

3NltnOD D

3Vfl93VBl

IKZtHI

oavcnvi«

3VB33V81

OM37

- 8S -

