Interner Bericht DESY F1-84/02 Dezember 1984

MESSUNGEN MIT DER HOCHAUFLUSENDEN TASSO-VERTEXKAMMER

٠

von

Michael Hildebrandt

Eigentum d Proparty of	er DECA	o pecan sk Laro ry
Zugenau Accession	1 8. JAN 19	385
Leihinsti Loan pe i	<u>ر الأرام</u>	

DESY behält sich alle Rechte für den Fall der Schutzrechtserteilung und für die wirtschaftliche Verwertung der in diesem Bericht enthaltenen Informationen vor.

.

DESY reserves all rights for commercial use of information included in this report, especially in case of filing application for or grant of patents.

"Die Verantwortung für den Inhalt dieses Internen Berichtes liegt ausschließlich beim Verfasser "

.

Abstract

HILDEBRANDT, MICHAEL

MEASUREMENTS WITH THE HIGH RESOLUTION TASSO VERTEX DETECTOR

MESSUNGEN MIT DER HOCHAUFLÖSENDEN TASSO-VERTEXKAMMER

Hamburg, Oktober 1984

Michael Hildebrandt

II. Institut für Experimentalphysik der Universität Hamburg

Use of the vertex detector in the experiment allows the tracking and background conditions to be improved. Multiple scattering and gamma conversions are also reduced by a large amount. The tracking error at the interaction point was reduced from 790 μ m to 165 μ m for Bhabhas. Using all tracks in hadronic events, the tracking error decreased from 1400 μ m to 400 μ m.

The detecting efficiency for long living particles increased using the vertex detector information. For K^0 reconstruction it increased by a factor of 1.7

The cross section for inclusive K^0 production was determined for hadronic events with a mean center of mass energy of 42.4 GeV. The K^0 production rate per hadronic event was determined to be 1.39 \pm 0.17 (stat.) \pm 0.21 (syst.).

Bibliothek liniory

.

 2 DAS TASSO EXPERIMENT 2.1 Der Speicherring PETRA 2.2 Der TASSO Detektor 2.2.1 Der Innendetektor 2.2.2 Flüssig-Argon-Schauerzähler, Hadronarme und Müonkammern 2.2.3 Vorwärtsspektrometer und Luminositätsmonitor 2.3 Die Vertexkammer 2.3.1 Motivation für den Bau der Vertexkammer 2.3.2 Aufbau der Kammer 	3 3 4 6 7 8 9 9 9 4 5
 2.1 Der Speicherring PETRA 2.2 Der TASSO Detektor 2.2.1 Der Innendetektor 2.2.2 Flüssig-Argon-Schauerzähler, Hadronarme und Müonkammern 2.2.3 Vorwärtsspektrometer und Luminositätsmonitor 2.3 Die Vertexkammer 2.3.1 Motivation für den Bau der Vertexkammer 2.3.2 Aufbau der Kammer 	3467899945
 2.1 Der Speicherring FEIRA 2.2 Der TASSO Detektor 2.2.1 Der Innendetektor 2.2.2 Flüssig-Argon-Schauerzähler, Hadronarme und Müonkammern 2.3 Vorwärtsspektrometer und Luminositätsmonitor 2.3 Die Vertexkammer 2.3.1 Motivation für den Bau der Vertexkammer 2.3.2 Aufbau der Kammer 	4 6 7 8 9 9 9 4 5
 2.2 Der TASSO Detektor 2.2.1 Der Innendetektor 2.2.2 Flüssig-Argon-Schauerzähler, Hadronarme und Müonkammern 2.3 Vorwärtsspektrometer und Luminositätsmonitor 2.3 Die Vertexkammer 2.3.1 Motivation für den Bau der Vertexkammer 2.3.2 Aufbau der Kammer 	6 7 8 9 9 9 9
 2.2.1 Der Innendetektor 2.2.2 Flüssig-Argon-Schauerzähler, Hadronarme und Müonkammern 2.3.2 Vorwärtsspektrometer und Luminositätsmonitor 2.3 Die Vertexkammer 2.3.1 Motivation für den Bau der Vertexkammer 2.3.2 Aufbau der Kammer 	7 8 9 9 9 9
 2.2.2 Flussig-Argon-Schauerzähler, hadronarme und Muchkammer in 2.2.3 Vorwärtsspektrometer und Luminositätsmonitor 2.3 Die Vertexkammer 2.3.1 Motivation für den Bau der Vertexkammer 2.3.2 Aufbau der Kammer 	8 9 9 9 4
2.2.3 Vorwartsspektrometer und Luminositatsmonton 2.3 Die Vertexkammer 2.3.1 Motivation für den Bau der Vertexkammer 2.3.2 Aufbau der Kammer	9 9 9 4
2.3 Die Vertexkammer 2.3.1 Motivation für den Bau der Vertexkammer 2.3.2 Aufbau der Kammer	9 9 4
2.3.1 Motivation für den Bau der Vertexkämmer 2.3.2 Aufbau der Kammer	9.4
2.3.2 Aufbau der Kammer	.4
	.т Е
2.3.3 Elektronik	`
2.4 Spurfindungsprogramme	15
2.4.1 MILL	
2.4.2 PASS5	.0 IE
2.4.3 FELIX	.0
2.5 Datenreduktion	10
2.5.1 Trigger	10
2.5.2 Dateniluß	9
3. BESTIMMUNG DER EICHKONSTANTEN DER VERTEXKAMMER	21
3.1 Orts-Driftzeitbeziehung	21
3.2 t _o -Bestimmung and an an an and a second s	34
3.3 Parametrisierung der Orts Driftzeitbeziehung	27
3.4 Verfahren zur Bestimmung der Orts-Driftzeitbeziehung	30
3.5 Benutzte Daten and a second s	34
3.5.1 Zweispurereignisse	34
3.5.2 Höhenstrahlereignisse	35
3.6 Diskussion der Ergebnisse	37
3.6.1 α-Abhängigkeit	38
3.6.2 Abhängigkeit von der Rechts-Links Asymmetrie	42
3.6.3 Bestimmung der Orts-Driftzeitbeziehung in drei getrennten	
Bereichen	43
3.6.4 Auflösung	44
3.6.5 Verlauf der Orts-Driftzeitbeziehung	48
366 Asymmetrische Verteilung der Residuen	50
3.7 Zusammenfassung der Betriebseigenschaften der Vertexkammer	51
4. VERBESSERUNG VON SPURFINDUNG UND UNTERGRUND DURCH DIE	50
VERTEXKAMMER	53
4.1 Impulsauflösung	ට ර
4.2 Gammakonversion	55
4.3 d ₀ -Verteilung	60

4.3.1 Fehler der Spurrekonstruktion	. 60
4.3.2 Strahlausdehnung	. 63
4.3.3 Breite der do-Verteilungen	. 64
4.4 Spurfindungswahrscheinlichkeit in der Vertexkammer	. 67
4.4.1 PASS5	. 67
4.4.2 FELIX	. 69
5. INKLUSIVE K ⁰ -PRODUKTION IN HADRONISCHEN EREIGNISSEN	71
5.1 Benutzte Daten	. 71
5.2 Beobachtung des K ⁰ -Signals	. 73
5.3 Massenauflösung	. 79
5.4 Vergleich der K ⁰ -Nachweiswahrscheinlichkeiten	. 82
5.4.1 Verfahren zur Bestimmung der	
K ⁰ -Nachweiswahrscheinlichkeit	. 83
5.4.2 K ⁰ -Nachweiswahrscheinlichkeit für DC und CPC	. 87
5.4.3 K ⁰ -Nachweiswahrscheinlichkeit für die Vertexkammer	. 89
5.4.4 K ⁰ -Nachweiswahrscheinlichkeit für den gesamten	
Innendetektor	. 90
5.5 Bestimmung des Wirkungsquerschnitts	. 96
6. ZUSAMMENFASSUNG	105
A. ANHANG	107
A.1 Die TASSO Kollaboration	107
A.2 Das TASSO-Koordinatensystem	108
A.3 Material der Vertexkammer	110
A.4 Stückweise Bestimmung der Orts-Driftzeitbeziehung	111
A.5 Anpassungsrechnung	112
A.6 Berechnung des erwarteten d ₀	112
LITERATURVERZEICHNIS	113
DANKSAGUNG	115

VERZEICHNIS DER ABBILDUNGEN

42.6	1	Des Speicherning DETRA hei DESV	3
ADD.		Overschnitt durch den TASSO Detektor	. 0
ADD.	~ ?	Der TASSO Detektor von oben	5
Abb.	4	Querschnitt und Seitenansicht der Vertexkammer	10
455. 455	5	Darstellung einiger Driftzellen	12
Abb	6	Verlauf des elektrischen Feldes	23
Abb	7	Zeitabfolge der verschiedenen Signale	24
Abb.	Å	TDC-Werte Verteilung für Lage 5	25
Abb.	a	Erwartete Verteilung der TDC-Werte	27
Abb	10	Skizze zur Demonstration der α-Abhängigkeit	28
Abb	11	Vergleich des v^2/NDF	31
Abb	12	Mittlere Residuen vor Bestimmung der Konstanten	32
Abb	13	Mittlere Residuen nach Bestimmung der Konstanten	32
Abb.	14	Vergleich der Auflösung	33
Abb.	15	Fin tynisches Zweisnurereignis	37
Abb.	16	Verteilung der g-Winkel für Zweispurereignisse	38
Abb	17	Verteilung der a-Winkel für hadronische Ereignisse	39
Abb.	18	Residuen für die a-abhängig bestimmte Beziehung	39
Abb	19	Residuen für die a-abhängig bestimmte Beziehung	40
Abb	20	Residuenverteilung von Zweispurereignissen für Lage 1	46
Abb	21	Residuenverteilung von hadronischen Ereignissen für Lage 1	46
Abb	22	Auflösung gegen Zellposition	47
Abb	23	Orts-Driftzeitbeziehung für Lage 5	48
Abb.	24	Nichtlineare Korrekturen für die 8 Lagen der Vertexkammer	49
Abb.	25	Driftgeschwindigkeit gegen Zellposition	49
Abb.	26	Verteilung der Residuen für kleine Driftzeiten	50
Abb.	27	Impulsauflösung für Spuren aus der Müonpaarerzeugung	54
Abb.	28	Ein typisches Ereignis mit konvertiertem Photon	55
Abb.	29	Massenverteilung des invarianten e ⁺ e ⁻ -Systems	57
Abb.	30	Rekonstruierte Konversionsabstände	58
Abb.	31	de-Verteilung der Spuren für hadronische Ereignisse	65
АЪЪ.	32	Spurfindungswahrscheinlichkeit für PASS5	68
Abb.	33	Spurfindungswahrscheinlichkeit für FELIX	70
Abb.	34	Verteilung der Strahlenergien der benutzten Daten	72
Abb.	35	Beispiel für ein Ereignis mit einem K ⁰ -Kandidaten	75
Abb.	36	Verteilung der invarianten $\pi^+\pi^-$ -Masse	76
Abb.	37	Impulsverteilung der K ⁰ -Kandidaten	76
Abb.	38	Zerfallslängenverteilung für K ⁰ -Kandidaten	77
Abb.	39	idel-Verteilung für K ⁰ -Kandidaten	77
Abb.	40	Verteilung der invarianten $\pi^+\pi^-$ -Massen	80
Abb.	41	Anzahl der Untergrundtreffer in CPC und DC pro Ereignis	82
Abb.	42	Vergleich der Impulsverteilungen der K ⁰	86
Abb.	43	Vergleich der Zerfallslängenverteilungen der K ⁰	86

Verzeichnis der Abbildungen 🔹 🔻

Abb.	44	Vergleich der Idol-Verteilungen der Pionspuren	87
Abb.	45	K ⁰ -Nachweiswahrscheinlichkeit für DC + CPC	88
Abb.	46	K ⁰ -Nachweiswahrscheinlichkeit für die Vertexkammer	89
Abb.	47	Zerfallslängenverteilung für Spurkombinationen	91
Abb.	48	dol-Verteilung für Spurkombinstionen mit Schnittpunkt	92
Abb.	49	Nachweiswahrscheinlichkeit für den ganzen Innendetektor	94
Abb.	50	Verteilung der invarianten $\pi^+\pi^-$ Masse.	95
Abb.	51	Differentieller Wirkungsquerschnitt für $e^+e^- \rightarrow K^0(\overline{K}^0) + X$	98
Abb.	52	Skalierter Wirkungsquerschnitt für $e^+e^- \rightarrow K^0(\overline{K}^0) + X$ 1	100
Abb.	53	Skalierter Wirkungsquerschnitt für $e^+e^- \rightarrow K^0(\overline{K}^0) + X$	101
Abb.	54	Mittlere Teilchenmultiplizität pro hadronischem Ereignis	103
Abb.	55	Das TASSO-Koordinatensystem in der r- φ Ebene 1	108

VERZEICHNIS DER TABELLEN

Tab.	1	Angaben über die Vertexkammerlagen	11
Tab.	2	Angaben über Ionisationseigenschaften der benutzten Gase	21
Tab.	3	to-Werte der acht Vertexkammerlagen	26
Tab.	4	a-Abhängigkeit der Residuenverteilung (für Lage 5)	41
Tab.	5	Abhängigkeit der Residuenverteilung	42
Tab.	6	Abhängigkeit der Residuenverteilung	43
Tab.	7	Auflösung der Vertexkammer	45
Tab.	8	Reduktion der Gammakonversion	59
Tab.	9	Erwartete Verbesserungen nach dem Einbau von	
St	га	hlrohr und VXD	61
Tab. 1	0	Fehler der Spurrekonstruktion	63
Tab. 1	1	Strahlbreite	64
Tab. 1	2	Spurfindungswahrscheinlichkeit für FELIX	69
Tab. 1	3	Invariante $\pi^{+}\pi^{-}$ -Masse und K ⁰ -Massenauflösung	81
Tab. 1	4	Anzahl der Untergrundtreffer pro Ereignis und Draht	83
Tab. 1	5	Nachweiswahrscheinlichkeit und Anzahl der gefundenen K ⁰	95
Tab. 1	6	K ⁰ -Raten und inklusiver Wirkungsquerschnitt für e ⁺ e ⁻ ->	
Ko	(^b)+X	97
Tab. 1	7	Skalierter Wirkungsquerschnitt für e*e* -> K ⁰ (K ⁰)+X	99
Tab. 1	8	Material der Vertexkammer	110

1. EINLEITUNG

Die Information aus Experimenten der e⁺e⁻-Vernichtung bildet eine der Grundlagen unseres Wissens über die Wechselwirkung von Quarks und Leptonen. Ein Grund dafür ist die klare Definition der Quantenzahlen des Anfangszustandes bei e⁺e⁻-Stößen. Bei der Ein-Photon-Vernichtung haben die leptonischen und hadronischen Endzustände die Quantenzahlen des virtuellen zeitartigen Photons:

 $J^{PC} = 1^{--}$

Der elektromagnetische Strom und der neutrale schwache Strom koppeln direkt an die fundamentalen Fermionen (Leptonen oder Quarks). Da die fundamentalen Leptonen und Quarks punktförmig sind, sind die Wirkungsquerschnitte verhältnismäßig groß. Das gibt die Möglichkeit, schwere Leptonen wie das τ -Lepton und Hadronen, die schwere Quarks enthalten wie Charm-Mesonen (D) und Beauty-Mesonen (B), direkt zu beobachten. Diese schweren Teilchen (τ , B, D) sind alle instabil. Sie zerfallen über die schwache Wechselwirkung mit einer erwarteten mittleren Lebensdauer von 10^{-13} bis 10^{-12} Sekunden. Die Mesonen mit schweren Quarks und die schweren Leptonen, die mit den am Speicherring PETRA zur Verfügung stehenden Schwerpunktsenergien erzeugt werden, legen eine mittlere Flugstrecke von einigen 100 μ m zurück, bevor sie zerfallen. Um solche Zerfälle beobachten zu können, wurde der TASSO Detektor 1982 mit einer hochauflösenden Vertexkammer ausgerüstet.

Außer der Beobachtung der Zerfälle von schweren Quarks und Leptonen bietet die Vertexkammer folgende weiteren Möglichkeiten:

- Erhöhung der Nachweiswahrscheinlichkeit für Mesonen mit Seltsamkeit (K⁰)
- Messung bzw. Verbesserung der Nachweiswahrscheinlichkeit für Baryonen mit Seltsamkeit (Σ^- , Λ)
- Verbesserung der Massenauflösung der Zerfallsteilchen
- Reduzierung des Untergrundes bei der Messung von hadronischen Resonanzen

In dieser Arbeit wird die Arbeitsweise der TASSO-Vertexkammer vorgestellt und die Ortsauflösung der Kammer untersucht. Es wird gezeigt, wie die Vertexkammer die Spurrekonstruktion und die Untergrundbedingungen verbessert. Es wird die Steigerung der Nachweiswahrscheinlichkeit durch Ausnutzen der Vertexkammerinformation für Teilchen mit relativ langer Lebensdauer an Hand von K⁰ gezeigt sowie der Wirkungsquerschnitt für inklusive K⁰-Produktion in hadronischen Ereignissen bei einer mittleren Schwerpunktsenergie von 42.4 GeV bestimmt.

2. DAS TASSO EXPERIMENT

2.1 DER SPEICHERRING PETRA

Der Speicherring PETRA (Positron Elektron Tandem Ring Anlage) auf dem Gelände des Deutschen Elektronen Synchrotrons (DESY) ist seit Herbst 1978 in Betrieb. In ihm werden Elektronen- und Positronenpakete gegenläufig beschleunigt und in vier Wechselwirkungszonen zur Kollision gebracht. Die maximale Schwerpunktsenergie betrug im Winter 1983/84 46.8 GeV. Der TASSO Detektor ist eines der Experimente an diesem Speicherring.

Abb. 1 Der Speicherring PETRA bei DESY

2.2 DER TASSO DETEKTOR

Der TASSO¹ Detektor wurde von einer Kollaboration (siehe Anhang A.1) inund ausländischer Universitäten und Institute geplant und gebaut.

Der Detektor besteht aus folgenden Komponenten:

- Innendetektor
- Flüssig-Argon-Schauerzähler, Hadronarme und Müonkammern
- Vorwärtsdetektor und Luminositätsmonitor

Abb. 2 Querschnitt durch den TASSO Detektor senkrecht zur Strahlachse

4 Messungen mit der hochauflösenden Tasso-Vertexkammer

Abb. 3 Der TASSO Detektor von oben

221 Der Innendetektor

Die Komponenten des Innendetektors werden umgeben von der Solenoidspule des Magneten. Er erzeugt ein Magnetfeld von 4.937 kG parallel zur Strahlachse.

Von innen nach außen folgen aufeinander:

- Strahlrohr
- Vertexkammer (VXD)
- Proportionalkammer (CPC)
- Driftkammer (DC)
- Flugzeitzähler (ITOF)

Im Sommer 1982 wurde das Aluminiun Strahlrohr durch ein <u>Beryllium-Strahlrohr</u> ersetzt. Es hat einen Rasser von 6.5 cm und eine Wandstärke von 1.8 mm. Es dient gleichzeitig als Innenwand der Vertexkammer. Eine ausführliche Beschreibung erfolgt in Kapitel 2.3.

Die <u>Vertexkammer</u> /CAM83/ wurde zusammen mit dem neuen Strahlrohr eingebaut. Sie ist eine achtlagige Hochpräzisionsdriftkammer mit einer aktiven Länge von 57.2 cm. Sie reicht in radialer Richtung von 6.5 cm bis 16.1 cm. Eine ausführliche Beschreibung erfolgt ebenfalls in Kapitel 2.3.

Die <u>Proportionalkammer</u> /Y0U80/ reicht in radialer Richtung von 16.5 cm bis 30 cm. Sie besteht aus vier zylindrischen Lagen mit je 480 Anodendrähten parallel zur Strahlachse. Der Abstand der Anodendrähte beträgt im Mittel 3.1 mm. Zwischen den Lagen sind auf beiden Seiten der Anodendrähte 120 helixförmige Kathodenstreifen angebracht, die von Lage zu Lage ihren Drehsinn ändern. Die CPC liefert eine schnelle Triggerinformation über geladene Spuren und dient zusammen mit der Driftkammer zur Rekonstruktion der geladenen Spuren im Detektor. Die Länge der Kammer beträgt 150 cm.

Die zylindrische <u>Driftkammer</u> /BOE81/ besteht aus 15 konzentrischen Lagen mit 2340 Driftzellen bei einer aktiven Länge von 323 cm. Die erste Lage befindet sich bei 36.7 cm. die letzte bei 122.2 cm. Neun der 15 Lagen haben Drähte, die parallel zur Strahlachse gespannt sind (0⁰-Lagen). Diese Lagen werden zur Rekonstruktion der Spur senkrecht zum Strahl (r- φ Ebene) benutzt. Die Drähte in den übrigen sechs Lagen bilden einen kleinen Winkel α von $\pm 4^{\circ}$ zur Strahlachse (α -Lagen). Sie werden zur dreidimensionalen Spurrekonstruktion benutzt. Die Ortsauflösung, gemittelt über die Driftzelle, beträgt 200 μ m. Mit der großen Driftkammer kann der Impuls geladener Teilchen über einen Raumwinkel von 87% von 4π mit einer Genauigkeit von

$$dp/p = 0.016 + \sqrt{1 + p^2}$$

(p in GeV/c)

gemessen werden.

Als letzte Komponente des Innendetektors folgen die 48 <u>Flugzeitzähler</u> bei einem Radius von 132 cm. Sie überdecken einen Raumwinkel von 82% von 4π und bestehen aus Plastikszintillatoren, die mit Fotovervielfachern ausgelesen werden. Sie ermöglichen eine Trennung von geladenen Pionen, Kaonen und Protonen mit einem Impuls bis etwa 1 GeV/c.

2.2.2 Flüssig-Argon-Schauerzähler, Hadronarme und Müonkammern

Die folgenden Komponenten des TASSO Experiments liegen außerhalb der Magnetspule.

Die <u>Flüssig-Argon-Schauerzähler</u> /PYR83/ sind elektromagnetische Kalorimeter, mit denen Elektronen und Photonen nachgewiesen und deren Energien bestimmt werden können. Die Tanks der Schauerzähler überdecken die Stirnflächen der Kammer und zwei Drittel des Spulenumfanges. Insgesamt beträgt der überdeckte Raumwinkel 51% von 4π .

In der Horizontalen schließen sich an die Spule die beiden <u>Hadronarme</u> /HADRO/ an (siehe Abb. 2 (S. 4)). Sie bestehen jeder aus einer planaren Driftkammer, Čerenkovzählern, Flugzeitzählern und Bleiszintillatorschauerzählern. Die Hadronarme ermöglichen die Erkennung von geladenen Pionen, Kaonen und Protonen praktisch über den ganzen Impulsbereich.

Die <u>Müonkammern</u> sind vierlagige Proportionalrohrkammern, die sich hinter dem Eisenjoch der Spule, bzw. hinter 87 cm dicken Eisenplatten hinter den Hadronarmen, befinden.

2.2.3 Vorwärtsspektrometer und Luminositätsmonitor

In 340 m Abstand vom Wechselwirkungspunkt entlang der Strahlachse befinden sich auf beiden Seiten die Vorwärtsdetektoren mit den Luminositätsmonitoren /HIL81/. Sie bestehen aus Proportionalkammern, Szintillationszählern und Bleiszintillatorschauerzählern zum Nachweis von Teilchen, die unter kleinem Winkel gestreut werden. Die Luminositätsmonitore bestimmen die Luminosität durch Messung der Bhabhastreuung.

2.3 DIE VERTEXKAMMER

2.3.1 Motivation für den Bau der Vertexkammer

1981 wurde vorgeschlagen, das Aluminium-Strahlrohr durch ein dünnwandiges Beryllium-Strahlrohr zu ersetzen und das Strahlrohr direkt mit einer Hochpräzisionsdriftkammer zu umgeben. Eine solche Anordnung sollte folgende Vorteile bieten:

- Die Genauigkeit der Spurrekonstruktion wird erhöht, da nahe am Wechselwirkungspunkt acht weitere Punkte mit hoher Präzision zur Verfügung stehen.
- Durch den Einbau des Beryllium-Strahlrohres wird die Dicke des Detektormaterials vor der ersten Kammerlage, gemessen in Srahlungslängen, auf etwa ein Zehntel reduziert. Daraus ergibt sich eine
 - Reduzierung der Vielfachstreuung,
 - Reduzierung der Strahlrohrwechselwirkung,
 - Reduzierung der Gammakonversion.

Durch die Reduzierung der Vielfachstreuung und die Verbesserung der räumlichen Auflösung der Kammer können der Wechselwirkungspunkt und die Zerfallspunkte instabiler Teilchen wesentlich genauer bestimmt werden.

2.3.2 Aufbau der Kammer

Die Vertexkammer ist eine zylindrische Driftkammer, die radialsymmetrisch zur Strahlachse aufgebaut ist. Als Innenwand dient das neue Beryllium-Strahlrohr. Es bietet neben den schon erwähnten Vorteilen, nämlich die Vielfachstreuung, die Gammakonversion und die Strahlrohrwechselwirkung zu reduzieren, auch genügend mechanische Stabilität, um das Hochvakuum (10^{-9} torr) im Speicherring zu halten und um einem Kammerdruck der Vertexkammer von maximal 4 atm standzuhalten.

Der Radius des Strahlrohres und damit auch der innere Radius der Kammer wurde auf 6.5 cm festgelegt. Die Wahl des inneren Kammerradius war ein Kompromiß zwischen dem Wunsch mit der Kammer so dicht wie

Abb. 4 Querschnitt und Seitenansicht der Vertexkamm er

möglich an den Wechselwirkungspunkt heran zu kommen und der Notwendigkeit die Anzahl der Synchrotronstrahlungsphotonen, die das Strahlrohr treffen, zu begrenzen.

Auf der Innenseite des Strahlrohres befindet sich eine 15 μ m dicke Kupferschicht, um Synchrotronstrahlung abzuschirmen. Die niederenergetischen Photonen werden von der K-Schale des Kupfers absorbiert und als Fluoreszenzlicht mit 8.4 keV reemittiert. Diese Photonen können in einem separaten Teil der Kammer, der mit Xenon gefüllt werden kann, absorbiert werden. Diese Xenonkammer ist im Moment mit normalem Kammergas gefüllt.

Auf der Außenseite der Xenonkammer wurde eine Äquipotentialfläche aus 50 μ m starkem Aluminium angebracht.

Es folgen die acht Lagen Driftzellen der Vertexkammer. Die inneren vier Lagen haben jeweils 72 Driftzellen, die äußeren vier jeweils 108. Insgesamt gibt es 720 Driftzellen. Die genauen Daten für die Driftzellen der einzelnen Lagen zeigt nachfolgende Tabelle.

Lage	Radius der Signaldraht ebenen (cm)	Anzahl der Drähte	Naximale Driftstrecke (cm)
1	81	72	0.3534
2	8.8	72	0.3840
3	9.5	72	0.4145
4	10 2	72	/ 0.4451
5	12.8	108	0.3723
6	13.5	108	0.3927
7	14 2	108	0.4131
8	14.9	108	0.4334

Tab. 1 Angaben über die Vertexkammerlagen

Jede Driftzelle besteht aus einem Signaldraht und zwei Potentialdrähten, die parallel zur Strahlachse gespannt sind. Die Signaldrähte bestehen aus 20 μ m starkem Wolfram-Rhenium Draht, die Potentialdrähte aus 100 μ m starkem Beryllium-Kupfer Draht. Bei einem Radius von 11.5 cm ist eine zusätzliche Lage mit 72 Drähte eingebaut, um die Driftelektronen einzusammeln, die im Zwischenraum zwischen den zwei Gruppen von Kammerlagen erzeugt werden. Die Potentialdrähte einer Zelle liegen 1.2 mm auseinander. Der Abstand vom Signaldraht zur Ebene der Potentialdrähte schwankt je nach Lage zwischen 0.3534 cm und 0.4451 cm (siehe Tab. 1 (S. 11)). Der Abstand zwischen den einzelnen Lagen beträgt 0.7 cm. Folgende Zeichnung zeigt einige Driftzellen der ersten vier Lagen:

× Signaldraht • Potentiald

Abb. 5 Darstellung einiger Driftzellen

Die Zellen in benachbarten Lagen sind jeweils um eine halbe Zellbreite versetzt. Dadurch

- wird die Granularität der Kammer erhöht;
- können Ungenauigkeiten in der Orts-Driftzeitbeziehung nicht zu einer systematischen Verschiebung der Spuren für bestimmte Driftzeiten führen;
- 12 Messungen mit der hochauflösenden Tasso-Vertexkammer

• kann die Auflösung der Rechts-Links Zweideutigkeit^z nicht über alle Lagen falsch bestimmt werden und somit nicht zu falschen Spuren führen.

Die Form der Driftzelle mit zwei Potentialdrähten führt zu einem elektrischen Feld, das die driftenden Elektronen zum Signaldraht hin fokussiert. Die Präzision der Driftzeitmessung wird somi(von den Elektronen bestimmt, die am dichtesten am Signaldraht in dem fokussierenden Bereich des Feldes erzeugt werden. Dadurch wird die Abhängigkeit der Orts-Driftzeitbeziehung vom Durchtrittswinkel der Spur in der Zelle und von der Seite des Durchtritts reduziert (siehe Kap. 3.3).

Wegen des begrenzten Platzes an den Endflanchen wurden die Potentialdrähte geerdet und die Signaldrähte auf Hochspannung gelegt. Bei einem Radius von 15.4 cm wurde eine Äquipotentialfläche aus 30 μ m starkem Kupfer verbunden mit einer 125 μ m starken Kaptonschicht angebracht. Die Außenwand, die zusammen mit dem Strahlrohr gleichzeitg auch das Druckgefäß bildet, besteht aus Aluminium. Ihr Radius von 16.1 cm wurde durch den schon vorher vorhandenen TASSO Innendetektor festgelegt. Die aktive Länge der Kammer beträgt 57.2 cm und ist mit der räumlichen Akzeptanz der DC und CPC abgestimmt. Das gesamte Material der Vertexkammer hat eine Dicke von 2.71% einer Strahlungslänge (siehe Anhang A.3). Die Kammer wird mit einer Mischung aus 95% Argon und 5% CO₂ bei 3 atm Druck betrieben.

Durch den hohen Kammerdruck wird der mittlere Abstand der Primärionisationen (siehe Tab. 2 (S. 21)) verringert. Das führt zu einer Verbesserung der Auflösung in der Nähe des Signaldrahtes. Der Einfluß der Diffusion wird durch den hohen Kammerdruck ebenfalls reduziert.

² Aus der Information einer Driftzelle kann nicht entschieden werden, ob das durchgegangene Teilchen rechts oder links vom Draht vorbeigeflogen ist. Diese Zweideutigkeit der Kammerinformation wird als Rechts-Links Zweideutigkeit bezeichnet.

2.3.3 Elektronik

Von dem auf dem Signaldraht ausgelösten Puls kann die Ankunftszeit und die Pulshöhe gemessen werden. Die Zeit wird von TDC's (Time to Digital Converter) mit einer Auflösung von 0.5 ns gemessen. Sie arbeiten mit einer Selbstkalibration durch ein externes Pulssystem. Dazu wird durch das Hochspannungssystem auf alle 720 Signaldrähte zur gleichen Zeit ein Puls gegeben. Dieser Puls läuft über den Draht und durch den Vorverstärker zu dem jeweiligen TDC, wo er mit einem unabhängigen vom TDC Controller kommenden Signal verglichen wird. Durch diese Selbstkalibration wird für jeden TDC die Steigung und der Nullpunkt der Konversionsgeraden relativ zueinander bestimmt.

Es wird in einer Driftzelle jeweils nur die Ankunftszeit der ersten ankommenden Driftelektronen gemessen. Alle weiteren Pulse auf dem Signaldraht können nicht mehr verarbeitet werden, bevor der TDC nicht zurückgesetzt worden ist (single hit electronic). Gehen nicht me geladene Teilchen durch eine Zelle, geht die Information der später al. mmenden Driftelektronen verloren.

Die Pulshöhen der Signale werden für die Lagen 3.4.7 und 8 auf beiden Seiten der Signaldrähte mit ADC's (Analog to Digital Converter) gemessen. Über Ladungsteilung kann dann die z-Position des Treffers in diesen Lagen bestimmt werden.

Die Hochspannungsversorgung der Signaldrähte erfolgt in vier getrennten radialen und 12 getrennten azimuthalen Gruppen, so daß in den inneren vier Lagen jeweils 12 und in den äußeren vier Lagen jeweils 18 Drähte zusammen versorgt werden. Diese Sektoren können bei Bedarf einzeln abgeschaltet werden.

2.4 SPURFINDUNGSPROGRAMME

Aus der Trefferinformation der Spurkammern müssen mit Spurfindungsprogrammen die Spuren der geladenen Teilchen rekonstruiert werden. Die durch diese Programme gefundenen Spuren werden durch fünf Parameter charakterisiert (siehe Anhang A.2).

- Ro = Radius der Spur
- d₀ = kleinster Abstand der Spur vom Ursprung
- φ_0 = Azimuthwinkel der Spur im Punkt des kleinsten Abstandes vom Ursprung
- v = Neigungswinkel der Spur zur z-Achse
- $z_0 = z$ -Koordinate im Punkt des kleinsten Abstandes der Spur vom Ursprung

In der großen Driftkammer und in der Proportionalkammer werden die Spuren mit dem Spurfindungsprogramm MILL /KOW80//CAS80/ rekonstruiert. Nach Einbau der Vertexkammer wurde es notwendig, die Treffer in den Vertexkammerlagen mit zu berücksichtigen. Dabei wurde nach zwei unterschiedlichen Methoden vorgegangen:

- Das Spurfindungsprogramm PASS5 /SCH84/ benutzt die MILL-Spuren, um eine Straße in die Vertexkammer zu projezieren, und bestimmt die Spurparameter d₀ und φ_0 aus den Vertexkammertreffern innerhalb dieser Straße neu.
- Das Spurfindungsprogramm FELIX /CAM83/ rekonstruiert die Spuren durch alle 21 Lagen des Innendetektors.

2.4.1 MILL

Das Spurfindungsprogramm MILL sucht die Spuren in der großen Driftkammer und der CPC. Es benutzt dabei als Algorithmus die link-and-tree Methode, bei der zwischen Treffern benachbarter Lagen Verbindungslinien gezogen werden, die nach bestimmten Kriterien zu einer Kette von Linien zusammengesetzt werden. Dazu werden nur die neun 0° -Lagen der DC benutzt. Die Zuordnung der Treffer der α -Lagen zur z-Rekonstruktion der Spuren wird in einem neuen Durchgang ebenfalls mit dieser Methode bestimmt. Nachdem mit der link-and-tree Methode die Spurkandidaten gefunden worden sind, wird versucht durch alle möglichen Permutationen von Treffern in einer Straße definierter Breite um die gefundenen Spuren herum eine Spur anzupassen. Die Spur mit dem kleinsten χ^2 wird dann als beste Spur akzeptiert. Dabei werden auch die Treffer in der CPC mit einbezogen.

2.4.2 PASS5

Das Spurfindungsprogramm PASS5 benutzt die schon von MILL gefundenen Spuren und projeziert sie in die Vertexkammer. Um die Spurprojektion herum wird in einer Straße definierter Breite nach Treffern in den Vertexkammerlagen gesucht. Diese Suche verläuft in mehreren Durchgängen, wobei zuerst nach Spuren mit großem Impuls gesucht wird. Bei diesen Spuren kann die Breite der Straße reduziert werden, da sie eine geringere Vielfachstreuung haben. Um eine Spur zu akzeptieren, verlangt PASS5 mindestens fünf Treffer.

Für die Bestimmung der Parameter d_0 und φ_0 werden nur die Treffer der acht Vertexkammerlagen benutzt. Der Radius der Spur und das Vorzeichen der Spurkrümmung werden von der MILL-Spur übernommen, da eine Bestimmung dieser Parameter bei der wesentlich größeren Spurlänge in der DC genauer möglich ist. In der festgelegten Straße werden alle möglichen Permutationen von Treffern ausprobiert und die Spur mit dem kleinsten χ^2 ausgewählt.

2.4.3 FELIX

Das Spurfindungsprogramm FELIX benutzt alle drei Kammern des Innendetektors um die Spuren zu rekonstruieren. Das führt zu einer etwas höheren räumlichen Akzeptanz gegenüber MILL, da von FELIX keine Mindestanzahl von Treffern in der großen Driftkammer verlangt werden muß.

Der grundlegende Suchalgorithmus ist die Backtrack Methode. Bei dieser Methode wird eine teilweise rekonstruierte Spur durch einen Vektor (a_1,\ldots,a_N) beschrieben, wobei a_i den i-ten benutzten Treffer beschreibt. N ist die Anzahl der schon der Spur zugeordneten Treffer. Dieser Vektor muß bestimmte Bedingungen C erfüllen, damit die Teilspur als Spurkandidat anerkannt wird. Es wird nun versucht diesen Vektor auf N+1 Komponenten zu erweitern, indem alle in Frage kommenden Treffer der Reihe nach hinzugefügt werden und geprüft wird, ob die Bedingungen C erfüllt werden. Ist dies der Fall, fährt man genauso mit dem N+2-ten Treffer fort. Findet man keinen N+1-ten Treffer, der die Bedingungen C erfüllt, geht man auf den N-ten Treffer zurück (Backtrack) und verwirft ihn. Die Suche geht dann auf der N-ten Position weiter.

Mit dieser Methode wird zuerst eine Kreisanpassung in der $r-\varphi$ Ebene gemacht. Dann wird mit der gleichen Methode eine Geradenanpassung in der s-z Ebene gemacht, bei der die DC α -Lagen benutzt werden und wahlweise die CPC Kathodenstreifen und die Information aus den Vertexkammerlagen mit Ladungsteilung.

Um der Vielfachstreuung im Detektor Rechnung zu tragen, wird versucht durch die einmal der Spur zugeordneten Treffer eine Spur anzupassen, die bei einem Radius von 25 cm einen Knick haben kann. Die Größe des Knickwinkels wird durch die Spuranpassung bestimmt. Voraussetzung ist, daß mindestens vier Treffer in der Vertexkammer der Spur zugeordnet worden sind.

2.5 DATENREDUKTION

2.5.1 Trigger

Die umlaufenden Teilchenpakete von Elektronen und Positronen treffen mit einer Frequenz von 260 kHz in der Wechselwirkungszone des Experiments zusammen. Um nur die interessanten Ereignisse auszulesen und die Totzeit des Experiments von 30 ms je ausgelesenem Ereignis gering zu halten, gibt es ein Triggersystem, das eine Vorauswahl trifft.

Die für diese Arbeit interessanten Trigger sind diejenigen, die Informationen des Innendetektors verarbeiten. Dazu werden folgende Prozessoren benutzt:

Proportionalkammer Prozessor

Er sucht in den vier CPC-Lagen in 48 radialen Segmenten nach mindestens drei Treffern, die einer Spur zugeordnet werden können und deren Lage in bestimmte Spurmasken paßt. Die verschiedenen Spurmasken entsprechen verschiedenem Transversalimpuls der Teilchen. Hat zusätzlich noch der zugehörige Flugzeitzähler angesprochen, liefert der Prozessor nach 0.5 μ s ein Startsignal (Pretrigger). das die anderen Prozessoren des Innendetektors startet.

Driftkammer Prozessor

Durch den Pretrigger ausgelöst sucht der Prozessor in sechs von neun 0°-Lagen der DC mit Hilfe verschiedener Spurmasken für verschiedene Transversalimpulse nach Spurkandidaten. Es müssen für einen Kandidaten mindestens fünf Lagen angesprochen haben.

Kathoden Prozessor

Ebenfalls durch den Pretrigger ausgelöst bestimmt der Prozessor die z-Position der CPC-Spurkandidaten am Wechselwirkungspunkt.

Aus der Information dieser Prozessoren kann folgende Triggerlogik gebildet werden:

Zweispur Topologie Trigger

Dieser Trigger verlangt zwei gegenüberliegende Spuren mit mehr als 320 MeV/c Transversalimpuls, die von den Driftkammer- und Proportionalkammer-Prozessoren gefunden wurden. Außerdem müssen die zugehörigen Flugzeitzähler angesprochen haben.

Multihadron Trigger

Er verlangt fünf Spuren mit einem Transversalimpuls größer als 320 MeV/c.

Kathoden Trigger

Er verlangt zwei Proportionalkammerspuren mit mehr als 250 MeV/c Transversalimpuls, die in der z-Koordinate einen Abstand vom Wechselwirkungspunkt von weniger als 30 cm haben.

2.5.2 Datenfluß

Die von den Triggern akzeptierten Ereignisse werden auf ein Magnetband geschrieben, von dem die weitere Datenreduktion ausgeht. Die für diese Arbeit verwendeten Ereignisse durchliefen die Datenreduktion mit folgenden Auswahlbedingungen:

- Alle Ereignisse durchlaufen das schnelle Spurfindungsprogramm FOREST und werden auf einen PASS1-Datensatz geschrieben. Bei allen Ereignissen, die den PASS2-Kriterien genügen, werden die Spuren mit dem Spurfindungsprogramm MILL erzeugt.
- 2. Die PASS2-Bedingungen lauten:
 - mindestens eine dreidimensional rekonstruierte Spur

 - z₀! < 15 cm

Außerdem werden alle Ereignisse, die bestimmte Kriterien in den Hadronarmen, den Flüssig-Argon-Schauerzählern oder den Luminositätsmonitoren erfüllen, auf den PASS2-Datensatz geschrieben.

- 3. Bei hadronische Ereignissen müssen die Spuren folgende Bedingungen erfüllen:
 - Sie müssen dreidimensional rekonstruiert sein.
 - Id₀i < 5 cm
 - Transversalimpuls $p_t > 100 \text{ MeV/c}$
 - Für den Winkel ຢ der Spur zur Strahlachse muß Icosປi < 0.87 gelten.

• Der Abstand der Spur vom mittleren Vertex des Ereignisses darf in z nicht mehr als 20 cm betragen.

Die Bedingungen an die hadronischen Ereignisse selbst sind:

- Sie müssen mindestens 5 geladene Spuren haben.
- Sie müssen einen Topologieschnitt gegen τ-Paare überleben.
- Für die z-Koordinate \overline{z}_0 des aus allen Spuren gemittelten Vertex muß $|\overline{z}_0| < 6$ cm gelten.
- Für die Impulssumme $\sum p_i$ der Teilchen muß $\sum p_i > 0.53 + E_{Strahl}/c$ gelten.

Die so ausgewählten hadronischen Ereignisse wurden für die in Kapitel 4 und 5 beschriebene Analyse benutzt, während die Orts-Driftzeitbeziehung mit Zweispurereignissen bestimmt wurde, die von den PASS2-Datensätzen ausgewählt wurden.

3. BESTIMMUNG DER EICHKONSTANTEN DER VERTEXKAMMER

Um die Spuren der geladenen Teilchen zu rekonstruieren, werden von einem Spurfindungsprogramm die Positionen der Treffer in den einzelnen Kammerlagen benötigt. Die genaue Position jedes Treffers wird durch den angesprochenen Draht und die dazugehörige Driftstrecke festgelegt. Die Größe der Driftstrecke wird mit der Orts-Driftzeitbeziehung aus der gemessenen Driftzeit bestimmt.

In diesem Kapitel werden die Bestimmung der Orts-Driftzeitbeziehung und der dazu notwendigen Konstanten für die Vertexkammer beschrieben. Außerdem wird die Abhängigkeit der Orts-Driftzeitbeziehung von Spur- und Kammerparametern angegeben.

3.1 ORTS-DRIFTZEITBEZIEHUNG

Eine Driftzelle besteht aus einem Anodendraht und mehreren Kathodendrähten. Ein durch die Kammer fliegendes geladenes Teilchen ruft durch inelastische Stöße Ionisationen und Anregungen des Kammergases hervor.

Cas	Anzahl der primären Ionenpaare bei 1 atm (1/cm)	Anzahl der primären Ionenpaare bei 3 atm (1/cm)	Mittlerer Ab- stand der Primärioni- sationen bei 3 atm (µm)	
Ar	29.4	88.2	113	
COg	34	102	98	
95%Ar + 5%CO ₂	29 .6	88.9	112	

Tab. 2 Angaben über Ionisationseigenschaften der benutzten Gase

Dabei entstehen primäre Elektron/Ion Paare längs der Spur. Tab. 2 zeigt die Anzahl der primären Ionenpaare und die mittleren Abstände der Primärionisationen für Argon und CO_2 /SAU77/. Bei einem Kammerdruck

von 3 atm und einer Gasmischung von 95% Argon und 5% CO₂ erwartet man einen mittleren Abstand zwischen den Primärionisationen von 112 μ m.

Die durch die inelastischen Stöße erzeugten Elektronen werden im elektrischen Feld zwischen Signal- und Potentialdrähten abwechselnd beschleunigt und durch Stöße mit den Gasmolekülen wieder abgebremst. Es stellt sich dadurch im Mittel eine gleichmäßige Driftgeschwindigkeit der Elektronen ein, die außer vom Gas und dem Kammerdruck nur von der Stärke des Feldes abhängt.

Durch das im Detektor senkrecht zum elektrischen Feld anliegende Magnetfeld werden die Driftelektronen von ihrer durch das elektrische Feld bestimmten Richtung um einen Winkel Θ abgelenkt. Dieser Winkel Θ (Lorentzwinkel) hängt von der magnetischen Feldstärke B. der elektrischen Feldstärke E und der Driftgeschwindigkeit w ab:

$$\Theta = \arctan (B + w_/ E)$$

Zwischen den einzelnen Stößen kann die Energie der primär erzeugten Elektronen so groß werden, daß Sekundärionisation möglich wird. Die angeregten oder ionisierten Atome senden durch Abstrahl- oder Einfangreaktionen Photonen aus. Diese Photonen können wiederum Gasmoleküle ionisieren oder durch Photoemission Elektronen aus den Kathodenoberflächen herauslösen. Das führt zu Elektronenlawinen längs des Anodendrahtes oder zu ständigen Entladungen durch Elektronen aus den Kathodenoberflächen. Um diese Photonen zu absorbieren, wird ein Quenchgas aus mehratomigen Molekülen zum Kammergas hinzugefügt. Diese Moleküle haben Vibrations- und Rotationsniveaus, mit denen sie Energie aufnehmen können ohne wieder abzustrahlen. In der Vertexkammer erfüllt das CO₂ diesen Zweck

In der Nähe des Signaldrahtes steigt das elektrische Feld proportional zu 1/r an. Die Elektronen werden in diesem Bereich so stark beschleunigt, daß Sekundärionisation sich lawinenartig ausbreitet und Gasverstärkung auftritt. Diese Elektronenlawinen lösen dann auf dem Signaldraht einen elektrischen Puls aus, der über den Draht den Verstärker und dann den TDC erreicht.

Der Zusammenhang zwischen der gemessenen Zeit und der Driftstrecke wird durch die Orts-Driftzeitbeziehung hergestellt.

 $\mathbf{x} = \mathbf{F}(\mathbf{t})$

Die Orts-Driftzeitbeziehung wird durch die Driftgeschwindigkeit der Elektronen bestimmt. Die Driftgeschwindigkeit hängt von der elektrischen und magnetischen Feldstärke ab und ist somit eine Funktion des Ortes. Die Orts-Driftzeitbeziehung kann außerdem von dem Winkel des durchgehenden Teilchens zur Zellnormalen und der Rechts-Links Asymmetrie der Driftbahnen der Elektronen in den Driftzellen bei angelegtem Magnetfeld abhängen (siehe Kap.3.3).

3.2 To BESTIMMUNG

Als erster Schritt zur Bestimmung der Orts-Driftzeitbeziehung müssen die TDC-Werte in reale Driftzeiten umgerechnet werden. Dazu muß der Zeitnullpunkt to bestimmt werden. Diese Konstante beschreibt den Zusammenhang zwischen den gemessenen TDC-Werten und den Driftzeiten der Elektronen in der Driftzelle.

Die TDC-Werte werden folgenderweise bestimmt (siehe Abb. 7):

- Das Experiment liefert ein BPU-Signal (beam pick up), das durch den Strahl induziert wird und das vor dem Zeitpunkt der Wechselwirkung liegt.
- Die Pulse auf den angesprochenen Drähten starten, wenn sie eine gesetzte Schwelle überschreiten, die zugehörigen TDC's.
- Zu dem BPU-Signal wird nach einem festen Zeitintervall ein COMMON STOP-Signal geliefert, das alle TDC's anhält (common stop mode).
- Wird das Ereignis getriggert, werden die TDC's ausgelesen und zurück gesetzt.

Abb. 7 Zeitabfolge der verschiedenen Signale

Für die Bestimmung der Driftzeit (t_D) muß die Zeitdifferenz zwischen dem Zeitpunkt der Wechselwirkung und dem COMMON STOP-Signal ermittelt werden. Diese Zeitdifferenz wird t_0 genannt. Die Differenz zwischen dem t_0 und den gemessenen TDC-Werten (t_{TDC}) ergibt die Driftzeit in TDC-Werten. Multipliziert mit einem Faktor γ mit $\gamma=0.5$, der die Zeitauflösung der TDC's in ns angibt, ergibt das die Driftzeit in ns.

$$t_{D} = (t_{0} - t_{TDC}) \cdot \gamma$$

Die so erhaltene Driftzeit muß noch auf die Flugzeit der Teilchen vom Wechselwirkungspunkt zur Driftzelle und auf die Laufzeit des Signals längs dem Kammerdraht korrigiert werden.

Das t_0 ist identisch mit dem größten vorkommenden TDC-Wert, was der kleinsten vorkommenden Driftzeit entspricht. Es kann also direkt aus der TDC-Werte Verteilung der Daten bestimmt werden (siehe Abb. 8). Um nur diejenigen TDC-Werte zu erhalten, die auch zu einer Spur gehören, wurden die MILL-Spuren in die Vertexkammer projeziert und entlang dieser Projektion nach Treffern gesucht.

Abb. 8 TDC-Werte Verteilung für Lage 5

Es wurden dazu Zweispurereignisse verwendet, die nach den in Kapitel 3.5.1 beschriebenen Bedingungen ausgewählt wurden. Die t_0 -Werte wurden mit einer Anpassungsrechnung an die TDC-Werte Verteilung bestimmt. Als t_0 wurde der TDC-Wert angegeben, für den die Anzahl der Einträge auf die Hälfte der durchschnittlichen mittleren Anzahl abgefallen ist. Der Fehler ergibt sich aus der Anpassungsrechnung (siehe Anhang A.5). Die einzelnen t_0 -Werte zeigt folgende Tabelle:

Lage	to
1	335 ± 1
2	334 ± 1
3	342 ± 1
4	337 ± 1
5	330 ± 1
6	330 ± 1
7	339 ± 1
8	333 ± 1
L	L

Die Unterschiede in den t_0 -Werten für verschiedene Lagen wird durch das Selbstkalibrationssystem verursacht. Dieses System gibt jeweils auf die Lagen 1+2, 3+4, 5+6 und 7+8 getrennt einen Kalibrationspuls.

3.3 PARAMETRISIERUNG DER ORTS-DRIFTZEITBEZIEHUNG

Eine grobe Bestimmung der Orts-Driftzeitbeziehung liefert bereits die Verteilung der TDC-Werte. Da die Driftstrecken gleichverteilt sind, müssen bei einer linearen Orts-Driftzeitbeziehung die TDC-Werte ebenfalls gleichverteilt sein.

Abb 9 Erwartete Verteilung der TDC-Werte für eine lineare Orts Driftzeitbeziehung

 T_1 entspricht der längsten. T_2 der kürzesten Driftzeit Somit ist T_2 identisch mit t_0 . Eine nicht konstante Verteilung der TDC-Werte deutet auf eine nichtlineare Orts-Driftzeitbeziehung, oder auf eine ortsabhängige Nachweiswahrscheinlichkeit der Kammer hin.

Aus der beobachteten Verteilung der TDC-Werte für Zweispurereignisse wird eine Orts-Driftzeitbeziehung mit geringen nichtlinearen Korrekturen erwartet (siehe Abb. 8 (S 25)). Sie wird als Polynom dritten Grades parametrisiert:

$$x = a_0 + a_1 + t + a_2 + t^2 + a_3 + t^3$$

Die Zeit t enthält schon alle in Kapitel 3.2 erwähnten Korrekturen.

Nahe am Signal- und Potentialdraht ändert sich das elektrische Feld stark. Da die Änderung der Driftgeschwindigkeit bei konstantem Magnetfeld und Gasdruck sowie gleichbleibender Gasmischung nur vom elektrischen Feld abhängt, erwartet man in diesen beiden Bereichen auch eine Änderung der Driftgeschwindigkeit. Um dies zu berücksichtigen, kann die Orts-Driftzeitbeziehung in diesen Bereichen getrennt bestimmt werden mit der Forderung, daß sie an den Übergangsstellen stetig differentierbar ist (spline fit)(siehe Anhang A.4).

Eine weitere Abhängigkeit kann von dem Winkel α der Spur zur Zellnormalen bestehen. Gemessen wird die Ankunftszeit der ersten Elektronen, die den Signaldraht erreichen. Bestimmt werden soll der Abstand der Spur senkrecht zur Zellnormalen, da dieser Abstand bei der Rekonstruktion der Spur von den Spurfindungsprogrammen benutzt wird. Bei verschiedenen Durchtrittswinkeln α der Spur zur Zellnormalen können aber gleichgroße Driftzeiten verschiedenen Abständen entsprechen (siehe Abb. 10). Diese α -Abhängigkeit sollte bei der Vertexkammer nur eine geringe Rolle spielen:

- Auf Grund der Lage der Vertexkammer gehen die meisten Spuren senkrecht durch die Kammer
- Die Breite des Bereichs, in dem die driftenden Elektronen gesammelt werden, ist klein gegenüber der Driftstrecke.

Abb. 10 Skizze zur Demonstration der a-Abhängigkeit

Um diese α -Abhängigkeit zu bestimmen, wird die Orts-Driftzeitbeziehung in α -Intervallen von 5° ermittelt. Innerhalb der einzelnen Intervalle werden die Driftstrecken folgendermaßen bestimmt: $\alpha_i < \alpha < \alpha_{i+1}$

$$\mathbf{x} = \mathbf{F}_{\text{ODB}}(t,\alpha_{1}) + \frac{\alpha - \alpha_{1}}{\alpha_{1+1} - \alpha_{1}} \cdot \left[\mathbf{F}_{\text{ODB}}(t,\alpha_{1+1}) - \mathbf{F}_{\text{ODB}}(t,\alpha_{1}) \right]$$

 $F_{ODB} = \alpha$ -abhängige Orts-Driftzeitbeziehung

- = Driftstrecke
- t = Driftzeit
- α = Winkel der Spur zur Zellnormalen
- α_1 = Winkel der Intervallgrenzen

Folgende Eigenschaften einer zylindrischen Driftkammer können zu einer Abhängigkeit der Orts-Driftzeitbeziehung von der Seite des Durchtritts des Teilchens in der Driftzelle relativ zum Signaldraht führen /BOE81/.

- Das im Innendetektor anliegende Magnetfeld verursacht eine Drift der Elektronen senkrecht zu den elektrischen Feldlinien.
- Die Driftzellen sind auf Grund der zylindrischen Struktur der Driftkammer keilförmig aufgebaut. Die Ebenen der Potentialdrähte sind in der Vertexkammer um 5°, bzw. um 3.33° gegeneinander gekippt.
- Es gibt Außenwände und Zwischenwände, die das Feld der Driftzellen beeinflussen.

Dadurch wird eine Asymmetrie der Bahnen der driftenden Elektronen relativ zur Zellnormalen erzeugt. Diese Rechts-Links Asymmetrie sollte bei der gewählten Zellgeometrie der Vertexkammer allerdings keine große Rolle spielen.

Die Orts-Driftzeitbeziehung muß für jede Lage getrennt bestimmt werden, da sich die Zellgröße von Lage zu Lage ändert (siehe Tab. 1 (S. 11)). Um die Unterschiede in den t_0 -Werten der einzelnen Lagen zu berücksichtigen, wird ein gemeinsamer Zeitnullpunkt VCTO für alle Lagen eingeführt. Er muß größer sein als der größte sinnvoll vorkommende TDC-Wert, um keine Treffer mit einer negativen Driftzeit zu versehen. In der Orts-Driftzeitbeziehung gibt es einen konstanten Term a_0 , der die Driftstrecken für jede Lage auf den richtige t_0 -Wert korrigiert.

3.4 VERFAHREN ZUR BESTIMMUNG DER ORTS-DRIFTZEITBEZIEHUNG

Die Orts-Driftzeitbeziehung wird durch ein Iterationsverfahren aus den Daten bestimmt. Der Ablauf sieht folgendermaßen aus:

- 1. Erzeugung von Spuren in der Vertexkammer mit dem Spurfindungsprogramm PASS5 und einer linearen Orts-Driftzeitbeziehung
- 2. Bestimmung der Spurparameter mit dem zuletzt erzeugten Satz von Konstanten
- 3. Berechnung der Residuen ³ für alle benutzten Treffer
- 4. Minimierung der Residuen mit der Methode der kleinsten Quadrate
- 5. Ausgabe eines neuen Konstantensatzes

Mit diesem neuen Konstantensatz wird der Iteration sprozeß dann bei Punkt 2 fortgesetzt. Diese Iteration wird solange weichnolt, bis das Näherungsverfahren konvergiert. Als Qualitätskriterien gesten dabei:

- Verteilung des χ^2 der Spuren
- Verteilung der Residuen
- Auflösung der Kammer

Im Mittel sind 6 bis 8 Iterationsschritte nötig. Im folgenden werden die Qualitätskriterien beschrieben und typische Verteilungen zu Beginn und am Ende des Iterationsprozesses gezeigt.

 $y = |\mathbf{d}_{PIT}| - |\mathbf{d}_{ODB}|$

- y = Residuum
- d_{FIT} = Abstand der rekonstruierten Spur zum Signaldraht
- dobe = Abstand aus der Orts-Driftzeitbeziehung

Die Qualität der Spuren wird durch deren χ^2 -Verteilung beschrieben. Sie verbessert sich im Laufe des Iterationsverfahrens deutlich gegenüber dem Anfangszustand.

Abb 11 Vergleich des χ^2/NDF vor (Histogramm) und nach (schraffiertes Histogramm) Bestimmung der Konstanten

Die Verteilung der Residuen darf keine systematische Abhängigkeit von der Zeit aufweisen und muß gleichverteilt um Null sein. Sind die Residuen für bestimmte Zeiten nicht um Null verteilt, so bedeutet das, daß in diesen Zeitbereichen die Driftstrecken aus der Orts-Driftzeitbeziehung systematisch falsch bestimmt werden. Es wird die Verteilung der mittleren Residuen gegen die Zeit gezeigt. Das Vorzeichen der Zeit gibt an, ob die Spur rechts oder links vom Signaldraht liegt. Die Orts-Driftzeitbeziehung wurde für kurze und lange Driftzeiten nicht getrennt bestimmt, dementsprechend sind dort noch kleine Abweichungen von der Idealverteilung zu erkennen.

 $^{^3}$ Das Residuum ist definiert als Differenz des Abstandes d_{FIT} der gefundenen Spur vom Draht und dem Abstand d_{ODB} , den man aus der Orts-Driftzeitbeziehung erhält.

Abb. 12 Mittlere Residuen vor Bestimmung der Konstanten

Abb. 13 Mittlere Residuen nach Bestimmung der Konstanten

Die Auflösung der Kammer erhält man aus der Abweichung der Spurpunkte, die durch die Orts-Driftzeitbeziehung bestimmt worden sind, von der wahren Spur. Die wahre Spur wird mit der rekonstrujerten Spur angenähert. D.h. die Auflösung wird aus der Verteilung der Residuen bestimmt. Die Breite dieser Verteilung wird als Auflösung der Kammer bezeichnet. In Abb. 14 wird die Verteilung der Residuen vor und nach Bestimmung der Orts-Driftzeitbeziehung gezeigt. Die Residuenverteilung ist vor Bestimmung der Orts-Driftzeitbeziehung deutlich breiter und nicht gleichverteilt um Null.

Abb. 14 Vergleich der Auflösung vor (kariertes Histogramm) und nach (schräffiertes Histogramm) Bestimmung der Konstanten

3.5 BENUTZTE DATEN

Für die Bestimmung der Orts-Driftzeitbeziehung müssen Spuren genommen werden, bei denen die Zuordnung der Treffer zu den Spuren eindeutig ist. Die Forderungen an die Daten sind :

- isolierte Spuren
- saubere Ereignisse
- hohe Statistik

Die Trefferzuordnung wird erschwert bei Ereignissen mit hoher Spurdichte und durch Untergrundtreffer, die z.B. durch Synchrotronstrahlung ausgelöst werden. Spuren aus hadronischen Ereignissen sind darum für die Bestimmung der Orts-Driftzeitbeziehung weniger geeignet. Die oben genannten Forderungen werden von zwei Ereignisarten gut erfüllt:

- Zweispurereignisse
- Höhenstrahlereignisse

3.5.1 Zweispurereignisse

Die für die Bestimmung der Orts-Driftzeitbeziehung benutzten Zweispurereignisse wurden nach folgenden Kriterien von den PASS2-Datensätzen ausgewählt. Es wurden nur Ereignisse mit genau zwei Spuren akzeptiert, um eine eindeutige Zuordnung der Treffer zu den Spuren zu erlangen. Alle anderen Kriterien dienen der Unterdrückung von Spuren aus Höhenstrahlereignissen (siehe folgendes Kapitel):

- genau zwei dreidimensional rekonstruierte Spuren
- Impuls p > 0.3 GeV/c
- für beide Spuren $|d_0| < 5 \text{ cm}$
- Differenz der beiden d_0 -Werte $|\Delta d_0| < 2 \text{ cm}$
- für beide Spuren $|z_0| < 5 \text{ cm}$
- Differenz der beiden z_0 -Werte $|\Delta z_0| < 5 \text{ cm}$
- positive Flugzeiten

Differenz der Flugzeiten der beiden Teilchen < 4 ns

Diese Bedingungen werden von den folgende Ereignistypen erfüllt:

- Zwei Photon-Wechselwirkungen
- Bhabhastreuung
- Müonpaarerzeugung

3.5.2 Hohenstrahlereignisse

Die im Innendetektor nachweisbare Höhenstrahlung besteht fast ausschließlich aus Müonen Für diese Arbeit wurden solche Höhenstrahlereignisse verwendet die während des Strahlbetriebes nachgewiesen worden sind.

Bei der Spurrekonstruktion mit dem Spurfindungsprogramm MILL muß das spezifische Verhalten der Hohenstrahlereignisse berücksichtigt werden:

- Die beiden Spurhalften eines Müons aus der Höhenstrahlung durchlaufen den Detektor in eine Richtung im Gegensatz zu den Spuren aus normalen Ereignissen, die vom Wechselwirkungspunkt aus nach außen laufen. Für den einlaufenden Teil der Spur wird daher die Korrektur der Driftzeit auf die Flugdauer vom Wechselwirkungspunkt zur Driftzelle falsch vorgenommen
- Der Zeitnullpunkt der Höhenstrahlereignisse ist gegenüber dem Zeitnullpunkt, der sich aus dem BPU-Signal ergibt, zufällig verteilt und niuß mit Hilfe der ITOF Zöhler ermittelt werden.

Die Höhenstrahlereignisse wurden von den PASS1-Datensätzen ausgewählt und die Spuren wurden mit einem für sie angepaßten MILL-Programm rekonstruiert. Die Kriterien für Höhenstrahlereignisse waren folgende:

- zwei Spuren in drei Diniensionen
- Impuls p > 0.3 GeV c
- Ladungungssumme der Spuren muß null sein
- 'zo' < 30 cm
- $|\Delta z_0| \leq 4 \text{ cm}$

34 Messungen mit der hochauflösenden Tasso-Vertexkammer

- |d₀| < 5 cm
- $\Delta d_0^{\dagger} < 2 \text{ cm}$
- $|\Delta \varphi_0| < 0.04 \text{ rad}$
- $|\Delta \vartheta| < 0.04 \text{ rad}$
- Abweichung der gemessenen Flugzeit von der berechneten < 3 ns

Die Höhenstrahlereignisse bieten eine höhere Statistik gegenüber den Zweispurereignissen, was besonders bei nicht stabilen Arbeitsbedingungen der Vertexkammer und einer Bestimmung der Orts-Driftzeitbeziehung mit allen Optionen wichtig ist. Die Nachteile der Höhenstrahlereignisse liegen in der größeren Ungenauigkeit der Driftzeitbestimmung durch die vorzunehmenden Korrekturen und in einem höheren Rechenzeitbedarf bei der Auswahl der Ereignisse

3.6 DISKUSSION DER ERGEBNISSE

Zur Bestimmung der Orts-Driftzeitbeziehung sowie zur Untersuchung ihrer Abhängigkeit vom Durchtrittswinkel α der Spur zur Zellnormalen und von der Rechts-Links Asymmetrie der Driftzelle wurden 8312 ausgewählte Zweispurereignisse verwendet, die bei 42 GeV Schwerpunktsenergie und 3 atm Kammerdruck nachgewiesen wurden. Ein typisches Zweispurereignis sieht folgendermaßen aus:

Abb. 15 Ein typisches Zweispurereignis mit MILL-Spuren für DC + CPC und mit PASS5-Spuren für die Vertexkammer

<u>3.6.1 a-Abhängigkeit</u>

Auf Grund der Zellgeometrie (siehe Kap. 2.3.2) wird für die Vertexkammer nur eine geringe Abhängigkeit vom Einfallswinkel α der Spur zur Zellnormalen erwartet. Zur Untersuchung dieser Abhängigkeit wurde die Orts-Driftzeitbeziehung in sieben α -Bereichen getrennt bestimmt und mit der von α unabhängigen Orts-Driftzeitbeziehung verglichen. Als Kriterium für die Qualität der so bestimmten Orts-Driftzeitbeziehung wurde die Verteilung der Residuen, also die Auflösung, betrachtet.

Die Ergebnisse, die für die Zweispurereignisse erzielt wurden, gelten auch für die hadronischen Daten, wie aus Abb. 16 und Abb. 17 (S. 39) ersichtlich ist. Sie zeigen, daß in der Verteilung der α -Winkel zwischen hadronischen und Zweispurereignissen kein systematischer Unterschied besteht. Es wurden die α -Winkel für alle Spuren und alle Kammerlagen abgebildet. Der steile Abfall der Flanken erklärt sich aus der Geometrie der Kammer und den Impulsschnitten bei der Auswahl der Ereignisse.

Abb. 16 Verteilung der α -Winkel für Zweispurereignisse

Abb. 17 Verteilung der a Winkel für hadronische Ereignisse

Abb. 18 Residuen für die α-abhängig bestimmte Beziehung in den einzelnen α-Intervallen

Abb. 19 Residuen für die α-abhängig bestimmte Beziehung in den einzelnen α-Intervallen

Aus der Verteilung der Residuen für die sieben α -Bereiche und aus Abb. 17 (S. 39) ist ersichtlich, daß eine getrennte Bestimmung der Orts-Driftzeitbeziehung für α -Winkel größer als $\pm 7.5^{\circ}$ nicht sinnvoll ist, da in diesem Bereich die Statistik zu gering ist. Die Auflösung für die α -Bereiche von -7.5° bis $\pm 7.5^{\circ}$ wird nicht verbessert gegenüber der α -unabhängig bestimmten Orts-Driftzeitbeziehung (siehe Tab. 4). Zur Bestimmung der Breite der Verteilungen wurden sie mit einer Gaußkurve mit linearem Untergrund angenähert. Der angegebene Fehler ergibt sich aus dem Näherungsverfahren (siehe Anhang A.5).

benutzte Spuren	Breite der Residuenver- teilung (µm)
mit Berücksichtigung der a-Abhängigkeit	
-7.5° < a < -2.5° -2.5° × a < 2.5° 2.5° < a < 7.5° alle a Bereiche	107 ± 3 103 ± 3 108 ± 3 106 ± 2
ohne Berücksichtigung der a-Abhängigkeit	
alle a Bereiche	105 ± 2

Tab. 4 a-Abhängigkeit der Residuenverteilung (für Lage 5)

Eine Verbesserung der Ortsauflösung der Kammer durch die Berücksichtigung der α -Abhängigkeit konnte nicht erreicht werden. Die Orts-Driftzeitbeziehung wird deswegen als von α -unabhängig angesehen.

3.6.2 Abhängigkeit von der Rechts-Links Asymmetrie

Auch für die Rechts-Links Asymmetrie wird kein großer Einfluß auf die Orts-Driftzeitbeziehung erwartet. Zur Untersuchung dieser Abhängigkeit wurde die Orts-Driftzeitbeziehung für Treffer rechts und links vom Signaldraht getrennt bestimmt und mit der davon unabhängig bestimmten verglichen. Folgende Tabelle zeigt die Werte für eine Lage der Vertexkammer:

Berücksichtigte Spuren	Breite σ (μm)
mit Berücksichtigung der Rechts-Links Asymmetrie	
rechs vom Signaldraht	106 ± 2
links vom Signaldraht	102 ± 2
alle Spuren	104 ± 2
ohne Berücksichtigung der Rechts-Links Asymmetrie	
alle Spuren	105 ± 2

 Tab. 5
 Abhängigkeit der Residuenverteilung von der Rechts-Links Asymmetrie (für Lage 5)

Eine Verbesserung der Auflösung durch Berücksichtigung der Asymmetrie konnte nicht erreicht werden. Die Orts-Driftzeitbeziehung wird deshalb als unabhängig von der Rechts-Links Asymmetrie betrachtet.

<u>3.6.3 Bestimmung der Orts-Driftzeitbeziehung in drei getrennten Be-</u> reichen

Um die Änderung der Driftgeschwindigkeit nahe am Signaldraht und nahe am Potentialdraht zu berücksichtigen, wurde untersucht, ob eine Bestimmung der Orts-Driftzeitbeziehung mit einem Spline Fit in drei getrennten Bereichen (siehe Anhang A.4) zu einem besseren Ergebnis als die Anpassung eines Polynoms dritten Grades über den gesamten Bereich führt. Die Grenzen für die drei Bereiche wurden aus der Verteilung der mittleren Residuen gegen die Zeit bestimmt. Die in den drei Bereichen bestimmte Orts-Driftzeitbeziehung wurde dann verglichen mit der unabhängig davon bestimmten Orts-Driftzeitbeziehung, indem die Residuenverteilungen in den gleichen Zeitntervallen verglichen wurden. Folgende Tabelle zeigt die Werte für eine Lage.

Zeitbereich [ns]	Breite der Residuen- verteilung mit einem Näherungsintervall [µm]	Breite der Residuen- verteilung mit drei Näherungsintervallen [µm]
0 < t · 20	122 ± 4	121 ± 4
20 × t × 80	102 ± 2	101 ± 2
80 % t	120 ± 11	1.20 ± 14
alle drei Bereiche zusammen)05 ± 2	105 ± 2

Tab. 6 Abhängigkeit der Residuenverteilung von den Näherungsintervallen (für Lage 5)

Wie aus Tab 6 ersichtlich ist, konnte durch Verwendung eines Spline Fits keine Verbesserung der Orts-Driftzeitbeziehung erreicht werden.

3.6.4 Auflösung

Die Auflösung einer Driftkanimer hängt prinzipiell von folgenden Kammereigenschaften ab:

- Geometrie der Kammer und der Driftzellen
- Wahl des Kammergases
- Gasdruck in der Kammer

Begrenzt wird die Auflösung durch Diffusion. Primärionenstatistik und Schwankungen der Elektronik. Der Einfluß der Diffusion auf die Auflösung nimmt zu langen Driftzeiten hin zu und sinkt mit steigendem Druck. Als Primärionenstatistik wird die statistische Verteilung der Primärionisationen bezeichnet. Dieser Prozeß begrenzt besonders bei kurzen Driftstrecken die Auflösung. Der mittlere Abstand der Primärionisationen ist umgekehrt proportional zum Kammerdruck (siehe Tab. 2 (S. 21)). Der Einfluß der Elektronik ist unabhängig von der Driftzeit.

Man erwartet also, daß die Auflösung für mittlere Zellpositionen ein Minimum hat und zu großen Abständen hin wegen der Diffusion und zu kleinen Abständen hin wegen der Primärionenstatistik ansteigt. Durch eine Erhöhung des Drucks wird die Zahl der Primärionisationen erhöht und damit die Auflösung insbesondere nahe am Signaldraht verbessert.

Zur Bestimmung der Kammerauflösung wurde eine Periode stabiler Betriebsbedingungen ausgewählt. Die folgenden Ergebnisse wurden mit 1438 Zweispurereignissen bei einer Schwerpunktsenergie von 41 GeV, einem Kammerdruck von 3 atm und einer Gasinischung von 95% Argon und 5% CO_2 erzielt.

Die Auflösung wurde aus den Verteilungen der Residuen durch Anpassen einer Gaußkurve mit linearem Untergrund bestimmt. Ein Problem ergab sich aus der leicht asymmetrische Verteilung der Residuen (siehe Abb. 26 (S. 50)). Diese Asymmetrie kann damit erklärt werden, daß die gewählte Zellgeometrie und das Gas dazu führen, relativ zur erwarteten Zeit eher zu lange Driftzeiten zu messen als zu kurze (siehe Kap. 3.6.6). Um die Asymmetrie der Verteilungen zu berücksichtigen, wurden sie mit folgender Funktion angenähert.

Als Auflösung wurde $\sigma = b_3/2 + b_4/2$ angegeben. War die Differenz $\Delta \sigma = (b_3-b_4)/2$ kleiner als der Fehler in diesen Parametern, wurde eine normale Gaußkurve angepaßt. Der angegebene Fehler ergibt sich aus dem Näherungsverfahren (siehe Anhang A.5).

Tab. 7 zeigt die Werte für die Auflösung der einzelnen Lagen für Zweispurereignisse und hadronische Ereignisse.

Lage	Auflösung für Zweispurereignisse (µm)	Auflösung für hadronische Ereig- nisse (µm)	
1	81.3 ± 2.0	89.6 ± 5.2	
2	84 6 ± 2 1	87.8 ± 4.4	
3	93.6 ± 4.1	95.2 ± 4.6	
4	101.1 ± 3.6	114.4 ± 5.7	
5	94.8 ± 3.3	114.7 ± 5.0	
6	85.0 ± 1.9	95.3 ± 4.0	
7	92.9 ± 3.3	110.6 ± 4 8	
8	89.4 ± 1.9	99.6 ± 4.4	
im Mittel	90.3 ± 2.8	100.9 ± 4.8	

Tab. 7 Auflösung der Vertexkammer

Die folgenden Abbildungen zeigen die Residuenverteilungen für Zweispurereignisse und hadronische Ereignisse für eine Lage.

Abb. 20 Residuenverteilung von Zweispurereignissen für Lage 1

Abb. 21 Residuenverteilung von hadronischen Ereignissen für Lage 1

Die etwas schlechtere Auflösung für Spuren aus hadronischen Ereignissen erklärt sich aus der höheren Spurdichte als in Zweispurereignissen. Dadurch steigt die Wahrscheinlichkeit, daß

- mehr als eine Spur durch dieselbe Zelle geht.
- die Treffer falsch zugeordnet werden,
- die Rechts-Links Entscheidung falsch getroffen wird und
- Untergrundtreffer der Spur zugeordnet werden.

Die aus der Verteilung der Residuen bestimmte Auflösung gegen die Zellposition sieht folgenderweise aus:

Abb. 22 Auflösung gegen Zellposition

Der Verlauf der Kurve entspricht den Erwartungen. Die Werte liegen über den in Tab. 7 (S. 45) angegebenen, da bei der Berechnung der einzelnen Punkte das RMS genommen wurde und somit kein Untergrund berücksichtigt worden ist. Die nichtgaußschen Schwänze der Verteilung aus dem Untergrund führen so zu einer Erhöhung der Werte.

36.5 Verlauf der Orts-Driftzeitbeziehung

Die aus der Verleilung der TDC-Werte gewonnene Erwartung, daß die Orts-Driftzeitbeziehung nahezu linear ist, wird durch Abb. 23 bestätigt.

Abb. 23 Orts-Driftzeitbeziehung für Lage 5

Zieht man von der Orts-Driftzeitbeziehung den linearen Anteil ab. so erhält man die nichtlinearen Korrekturen. Sie werden für die acht verschiedenen Lagen des Vertexdetektors in Abb. 24 (S. 49) dargestellt. Die nichtlinearen Korrekturen hängen unter anderem von der Größe der Driftzellen und der paarweisen Versorgung der Kammerlagen mit Hochspannung ab.

Die Driftgeschwindigkeit der Elektronen hängt vom elektrischen Feld ab. Sie steigt mit steigenden Feldstärken bis zu einem Maximum an, um dann wieder leicht abzufallen und in einen Sättigungsbereich überzugehen. Die genaue Form der Kurve hängt von der Gasart und dem Kammerdruck ab /PAL75/. Man erwartet also ein Maximum der Driftgeschwindigkeit für mittlere Zellpositionen und ein Absinken der Driftgeschwindigkeit zu

Abb. 24 Nichtlineare Korrekturen für die 8 Lagen der Vertexkammer

Abb. 25 Driftgeschwindigkeit gegen Zellposition

48 Messungen mit der hochauflösenden Tasso-Vertexkammer

kleinen und großen Abständen hin. Die aus der Orts-Driftzeitbeziehung ermittelte Geschwindigkeit stimmt mit diesem erwarteten Verhalten überein (siche Abb. 25 (S. 49)).

3.6.6 Asymmetrische Verteilung der Residuen

Aus Monte Carlo Studien /Bin84/ konnte gezeigt werden, daß die Ankunftszeit der driftenden Elektronen für feste Abstände der Spur vom Signaldraht nicht gaußverteilt um den Erwartungswert ist, sondern zu langen Zeiten hin verschoben ist. Besonders bei kurzen Abständen, also im Bereich in dem die Verteilung der Primärionisationen einen dominierenden Einfluß auf die gemessenen Driftzeiten hat, erhält man eine hohe Verzögerung der eintreffenden Elektronen. Bei der gewählten Definition der Residuen führt das zu einer asymmetrischen Verteilung der Residuen. Dieser Effekt ist in den Daten deutlich sichtbar. Abb. 26 zeigt die Verteilung von Residuen für kurze Driftzeiten: Eine Verbreiterung der Verteilung zu negativen Residuen hin ist deulich zu erkennen. Das Maximum der Verteilung liegt nicht bei Null, da bei der Bestimmung der Orts-Driftzeitbeziehung die mittleren quadratischen Abstände minimalisiert werden.

37 ZUSAMMENFASSUNG DER BETRIEBSEIGENSCHAFTEN DER VERTEXKAMMER

Die Orts-Driftzeitbeziehung der Vertexkammer ist nahezu linear. Das beste Ergebnis bei der Bestimmung der Orts-Driftzeitbeziehung wurde mit einem Polynom dritten Grades für die gesamte Breite der Driftzelle erhalten. Die Abhängigkeit von der Rechts-Links Asymmetrie und vom Durchtrittswinkel der Spur in der Driftzelle ist bei der Bestimmung der Orts-Driftzeitbeziehung vernachlässigbar. Die typische Auflösung für Zweispurereignisse beträgt im Mittel 90 μ m und für hadronische Ereignisse 100 μ m. Die typische Driftgeschwindigkeit ist 43 μ m/ns.

Abb. 26 Verteilung der Residuen für kleine Driftzeiten (Lage 5 mit Driftzeiten t < 20 ns)

4. VERBESSERUNG VON SPURFINDUNG UND UNTERGRUND DURCH DIE VERTEXKAMMER

Zur Untersuchung der Eigenschaften des TASSO-Innendetektors mit Vertexkammer und Beryllium-Strahlrohr wurden Daten, die mit Aluminium-Strahlrohr bei einer Schwerpunktsenergie von 34 GeV aufgenommen worden sind, mit Daten bei 42 GeV nach Einbau der Vertexkammer verglichen.

Untersucht wurden folgende Eigenschaften des veränderten Innendetektors:

- Impulsauflösung
- Anteil der Gammakonversion
- Genauigkeit der Bestimmung des Wechselwirkungspunktes
- Einbeziehung der Vertexkammerinformation bei der Spurfindung

4.1 IMPULSAUFLÖSUNG

Durch den Einbau der Vertexkammer wurde die Impulsauflösung des TASSO-Detektors verbessert. Die radiale Ausdehnung des Detektors, die zur Impulsmessung beiträgt, wurde von 85.5 cm auf 114.1 cm vergrößert. Die größere Länge und die hohe Auflösung der acht zusätzlichen Lagen führen zu einer stark verbesserten Impulsauflösung der Spuren von Teilchen mit hohem Impuls.

Die Impulsauflösung wurde für Spuren aus Ereignissen der Müonpaarerzeugung

bestimmt. Die Spuren wurden mit dem Spurfindungsprogramm FELIX rekonstruiert.

Abb. 27 Impulsauflösung für Spuren aus der Müonpaares pugung

Abb. 27 zeigt die Verteilung der Differenzen der reziproken fransversalimpulse $(1/p^* - 1/p^*)$. Sie wird durch eine Gaußverteilung mit der Breite $\sigma = (0.013 \pm 0.001)(\text{GeV}, c)^{-1}$ beschrieben. Daraus folgt für den Fehler der Impulsbestimmung der Einzelspur.

$$\sigma_{\rm pT}/{\rm p_T}$$
 = (0.0093 ± 0.0010) · p_T
(p in GeV/c)

Durch eine dreidimensionale Spurrekonstruktion unter Verwendung des Wechselwirkungspunktes kann die Genauigkeit der Impulsmessung für FELIX-Spuren auf $\sigma_{pT}/p_T \approx 0.0074 + p_T$ verbessert werden /SAX84/.

4.2 GAMMAKONVERSION

In hadronischen Ereignissen bilden die Spuren aus der Konversion von Photonen im Detektormaterial einen merklichen Untergrund.

TASSO

Abb. 28 Ein typisches Ereignis mit konvertiertem Photon

Burch den Einbau des Beryllium-Strahlrohres mit nur 0.61% einer Etrahlungslänge wird eine erhebliche Verringerung der Gammakonversion erwartet (siche Tab. 9 (S. 61)):

- Reduzierung der Gammakonversion vor der ersten Kammerlage gegenüber dem altem Zustand um einen Faktor 9.6.
- Reduzierung der Gammakonversion vor der ersten Lage der CPC um einen Faktor 2.5

Diese Vorhersagen wurden mit hadronischen Ereignissen überprüft. Dazu wurden alle Spuren entgegengesetzter Ladung miteinander kombiniert und die invariante Masse unter der Annahme berechnet, daß es sich dabei um Elektronen bzw. Positronen handelt. Die benutzten Spuren mußten folgenden Kriterien genügen:

- dreidimensionale Spurrekonstruktion
- Transversalimpuls größer als 100 MeV/c
- Spur innerhalb der Detektorakzeptanz (lcostl < 0.87)

Bei Spuren aus der Gammakonversion ist der Öffnungswinkel der Spuren sehr klein (siehe Abb. 28 (S. 55)). Bei der Spurrekonstruktion hat dies oft zur Folge, daß die beiden Spuren entweder ohne Schnittpunkt dicht anemander vorbeigehen, oder daß zwei Schnittpunkte dicht beieinander liegen. Die Spurkandidaten wurden deswegen nach folgenden Kriterien ausgewählt:

- Für Spurpaare ohne Schnittpunkt muß der kleinste Abstand der beiden Spuren kleiner als 0.3 cm sein.
- Für Spurpaare mit Schnittpunkt werden zwei Schnittpunkte verlangt, die beide vom Wechselwirkungspunkt aus gesehen in Richtung der Impulssumme der Spuren zeigen müssen. Sie dürfen außerdem nicht weiter als 15 cm auseinander liegen.
- Der Winkel zwischen dem rekonstruierten Photonimpuls und der Verbindungslinie zwischen Wechselwirkungspunkt und rekonstruiertem Konversionspunkt muß kleiner als 1° sein.

Die mit diesen Bedingungen ausgewählten Kandidaten zeigen die erwartete Massenverteilung mit starker Bevorzugung kleiner Massen (siehe Abb. 29 (S. 57)).

Abb. 29 Massenverteilung des invarianten e⁺e⁻-Systems bei 34 GeV

Die Verteilung der rekonstruierten Schnittpunkte für die Kandidaten mit einer Masse kleiner als 50 MeV bei den 34 GeV Daten mit Aluminium-Strahlrohr und bei den 42 GeV Daten mit Beryllium-Strahlrohr ist in Abb. 30 (S. 58) abgebildet. Wie erwartet häufen sich die rekonstruierten Konversionsradien an den Stellen größerer Materialkonzentration. Deutlich sichtbar ist ein starker Rückgang der Konversionsrate vor der CPC

Die Radien der Matemallagen und deren Stärke in Strahlungslängen sindfolgende:

- 13.4 cm Strahlrohr (5.8%)
- 15.4 cm Strahlrohrzähler (1.2%)
- 16.5-30.0 cm CPC
- 30.0 cm CPC Außenwand (3.2% mit CPC)
- 32.0 cm DC-Innenwand (2.4%)
- 45.0 cm Trounzyhnder in der DC

Um die Verminderung der Gammakonversion quantitativ zu bestimmen, wurden die Verteilungen im Bereich von 25 - 35 cm, in dem keine Veränderungen vorgenommen wurden, aufeinander normiert. Das Ergebnis zeigt Tab. 8 (S. 59). Der angegebene Fehler ist der statistische Fehler.

Reduktionsrate der Gammakonversion nach Einbau der Vertexkammer in hadronischen Ereignissen				
Reduktion vor der ersten Kammerlage	12.7 ± 4.5			
Reduktion vor der CPC	1.8 ± 0.3			

Tab 8 Reduktion der Gammakonversion

Die Ergebnisse stimmen gut mit den aus den Materialstarken berechneten Werten überein. Die absolute Rate der konvertierten Photonen sinkt um 22%. Bei gleichbleibender Nachweiswahrscheinlichkeit wurden mit dem Beryllium-Strahlrohr 0.10 konvertierte Photonen pro hadronisches Ereignis nachgewiesen gegenüber 0.13 beim alten Zustand

4.3 Do-VERTEILUNG

Der Parameter d₀ gibt den kleinsten Abstand der Spur vom Wechselwirkungspunkt an (siehe Anhang A.2). Die d₀-Verteilung hängt sowohl von der Genauigkeit der Spurrekonstruktion am Ursprung als auch von der Genauigkeit der Bestimmung des Wechselwirkungspunktes ab. In den experimentellen Daten setzt sich die Fehler σ_{d0} der d₀-Messung aus folgenden Einzelbeiträgen zusammen:

Fehler der Spurrekonstruktion am Ursprung

Als Fehler der Spurrekonstruktion σ_{spur} wird der kleinste Abstand der rekonstruierten Spur von dem Erzeugungspunkt des Teilchens bezeichnet.

• Fehler der Bestimmung der mittleren Strahllage

Solange der Wechselwirkungspunkt nicht für jedes Ereignis getrennt bestimmt wird, ist die mittlere Strahllage die beste Näherung für den Wechselwirkungspunkt. Sie wird für jede Füllung des Speicherringes neu aus Spuren von Bhabhaereignissen mit einer Genauigkeit von $\sigma_{\text{Since}} = 70-80 \ \mu\text{m}$ in der x- und y-Koordinate bestimmt /TAU84/.

Breite des Strahls

Der Strahl hat durch die Abstrahlung von Synchrotronstrahlung der im Kreis beschleunigten Elektronen und Positronen eine natürliche Ausdehnung. Die aus den Parametern des Speicherringes errechnete Breite der Dichtefunktion des Strahls beträgt in der Waagerechten $\sigma_{Sx} = 500 \ \mu m$ und in der Senkrechten $\sigma_{Sy} = 10 \ \mu m$.

4.3.1 Fehler der Spurrekonstruktion

Von der Genauigkeit der Spurrekonstruktion hängt es ab, wie gut der Wechselwirkungspunkt und die Zerfallspunkte von instabilen Teilchen mit kleiner Lebensdauer (10⁻¹³ bis 10⁻¹² s) bestimmt werden können.

Für geladene Teilchen mit kleinem Impuls (p < 1 GeV/c) ist die Genauigkeit der Spurrekonstruktion im Ursprung durch die Vielfachstreuung zwischen dem Wechselwirkungspunkt und der ersten Kammerlage bestimmt. Für kleine Streuwinkel gilt /RPP82/:

- = Impuls des Teilchens
- E = Energie des Teilchens
 - = Materialdicke in Strahlungslängen
 - Radius des streuenden Materials

Durch den Einbau des Beryllium-Strahlrohres wird der Beitrag der Vielfachstreuung zum Fehler der Spurrekonstruktion σ_{spur} um einen Faktor ~ 7 kleiner (siehe Tab 9).

Р

а

R

Funktion	Materialstärke in Strahlungs- längen	Anteil der Gammakonversion relativ zum alten Zustand	Fehler des d _o relativ zum alten Zustand (nur Vielfach- streuung berücksichtigt)
Aluminium Strahlrohr + Strahlrohr- zähler	0 07	1.0	1.0
Beryllium Strahlrohr + Kupferschicht + Xenonkammer	0 0071	0.1	0.14
Vertexkammer und Strahlrohr	0.0271	0.4	0.60

Tab. 9 Erwartete Verbesserungen nach dem Einbau von Strahlrohr und VXD

Für große Impulse hängt die Genauigkeit der Spurrekonstruktion am Ursprung von der Auflösung der Kammer, von deren Abstand zum Wechselwirkungspunkt und von der radialen Spurlänge in der Kammer ab /GLU63//CAM83/:

$$\sigma_{\rm Spur}^2 = \sigma_{\rm Ablage}^2 + R_2^2 \cdot \sigma_{\rm Gradient}^2$$

mit .

$$\sigma_{\text{Gradient}} = \sigma_{\text{Punkt}} / (R_2 - R_1) + \sqrt{12(N-1)/N(N+1)}$$

$$\sigma_{\text{Ablage}} = \sigma_{\text{Punkt}} + \sqrt{2(2N+1)/N(N+1)}$$

$$\sigma_{Punkt}$$
 = Ortsauflösung der Kammer
 σ_{Abiage} = Ortsfehler der Spurmer Kammer
 $\sigma_{Gradient}$ = Fehler des Winkels der Smur
 R_1 = Radius der ersten Kammerlage
 R_2 = Radius der letzten Kammerlage
N = Anzahl der Lagen

Durch die Verlängerung des Hebelarmes R_2 - R_1 und die Verbesserung der Ortsauflösung nahe am Ursprung durch den Einbau der Vertexkammer wird auch für große Impulse eine Verbesserung der Spurrekonstruktion am Ursprung erwartet.

Nachgewiesen wurde diese Verbesserung mit Spuren aus Bhabhaereignissen und hadronischen Ereignissen mit zwei verschiedenen Verfahren:

- Für Bhabhaereignisse wurde die Differenz der d_0 -Werte der beiden Spuren gemessen.
- Für hadronische Ereignisse wurde der senkrechte Abstand von waagerecht verlaufenden Spuren zur mittleren Strahlposition gemessen. Das ergibt direkt den Fehler der Spurrekonstruktion am Ursprung, wenn man die vertikale Strahlausbreitung $\sigma_{3y}=10 \ \mu m$ und den Fehler der mittleren Strahllage $\sigma_{3iage}=80 \ \mu m$ vernachlässigt. Es wurde eine Abweichung der Spuren von der Waagerechten von bis zu $\pm 1.7^{\circ}$ zugelassen, was zu zu einem systematischen Fehler von 10% führt.

Tab. 10 zeigt die gemessenen Werte für den Fehler der Spurrekonstruktion σ_{Spur} am Ursprung. Die Benutzung der Vertexkammer führt wie erwartet zu einer starken Verbesserung der Spurrekonstruktion. Die angegebenen Fehler sind die Gesamtfehler aus statistischen und systematischen Fehlern.

Benutzte Kammern	Fehler der Spurrekonstruktion für Spuren aus Bhabhaereignisse (µm)	Fehler der Spur- rekonstruktion für Spuren aus hadronischen Ereignisse (µm)
DC (MILL)	792 ± 16	1364 ±159
VXD (PASS5)	286 ± 5	409 ± 60
DC+VXD (FELIX)	164 ± 5	395 ± 58

Tab. 10 Fehler der Spurrekonstruktion

Die Impulsabhängigkeit der Vielfachstreuung führt zu einer Impulsabhängigkeit des Fehlers der Spurrekonstruktion. Für Spuren mit vernachlässigbarer Vielfachstreuung, wie bei Bhabhaereignissen, wird durch Benutzung von Vertex- und großer Driftkammer eine weitere Verbesserung der Ortsgenauigkeit erreicht. Bei hadronischen Ereignissen sind die Teilchenimpulse im Mittel wesentlich kleiner. Dementsprechend ist der Gewinn bei zusätzlicher Benutzung der großen Driftkammer vernachlässigbar.

4.3.2 Strahlausdehnung

Neben dem Fehler der Spur geht die natürliche Breite des Strahls in die Breite der do-Verteilung ein In der Senkrechten ist der Strahl so schmal, daß die Breite für uns nicht meßbar ist. Die waagerechte Strahlbreite σ_{8x} wurde mit zwei verschiedenen Verfahren und Ereignistypen bestimmt. Es wurde der waagerechte Abstand senkrechter Spuren bestimmt und so, nach Abzug des Fehlers der Spurrekonstruktion, die Breite der Dichteverteilung des Strahls in der x-Koordinate bestimmt. Es wurde da-

bei eine Abweichung der Spuren von der Waagerechten von ± 20° zugelassen, was zu einem systematischen Fehler von 5% führt.

Ereignisart und benutzte Kammern	Breite der Verteilung der waagerechten Abstände der Spuren (µm)	Fehler der Spurrekon- struktion (µm)	Errechnete waagerechte Strahlbreite (µm)
DC+VXD mit Bhabhaereig- nissen (FELIX)	414 ± 21	164 ± 5	380 ± 22
VXD mit hadronischen Ereignissen (PASS5)	559 ± 31	409 ± 60	381 ± 68

Tab. 11 Strahlbreite

Wie Tab. 11 zeigt, liefern beide Verfahren in Übereinstimmung eine waage rechte Strahlbreite von $\sigma_{3x} \approx 380 \ \mu\text{m}$. Der angegebene Fehler ist jeweils der Gesamtfehler aus statistischem und systematischem Fehler.

4.3.3 Breite der do-Verteilungen

Die erwartete Breite σ_{d0} der d₀-Verteilung ergibt sich folgendermaßen aus den einzelnen Fehlern (siehe Anhang A.6), wobei die senkrechte Strahlausdehnung vernachlässigt worden ist:

$$\sigma_{\rm d0} = \sqrt{(\sigma_{\rm Sx} \ 2/\pi)^2 + \sigma_{\rm Spur}^2 + \sigma_{\rm Siage}^2}$$

Abb. 31 do-Verteilung der Spuren für hadronische Ereignisse

64 Messungen mit der hochauflösenden Tasso-Vertexkammer

Abb. 31 (S. 65) zeigt die d₀-Verteilungen für hadronische Ereignisse vor Einbau der Vertexkammer bei 34 GeV Schwerpunktsenergie und danach bei W=42 GeV. Die Breite der einzelnen Verteilungen stimmen gut mit den Erwartungen aus der oben gezeigten Formel überein.

Die Abbildungen zeigen, daß für die alte Anordnung bei Benutzung der Driftkammer die Breite der d_0 -Verteilung durch den Fehler der Spurrekonstruktion bestimmt wird. Durch die neue Anordnung und bei Benutzung der Vertexkammerinformation wird der Fehler der Spurrekonstruktion und der d_0 -Verteilung um einen Faktor ~ 3 verringert. Die Fehlerbeiträge aus der Spurrekonstruktion und der Strahlbreite sind jetzt von gleicher Größenordnung. Um die d_0 -Auflösung weiter zu verbessern. müßte der Wechselwirkungspunkt genauer bestimmt werden, z.B. als Schnittpunkt der zu einem hadronischen Ereignis gehörenden Spuren.

4.4 SPURFINDUNGSWAHRSCHEINLICHKEIT IN DER VERTEXKAMMER

Die Spurfindungswahrscheinlichkeit in der Vertexkammer hängt stark von der Spurdichte der Ereignisse ab. In diesem Kapitel wird die Wahrscheinlichkeit für die Spurfindungsprogramme PASS5 und FELIX untersucht, in hadronischen Ereignissen Spuren in der Vertexkammer zu finden. Dazu wurden 1509 hadronische Ereignisse mit 21860 akzeptierten MILL-Spuren. bzw. 22295 akzeptierten FELIX-Spuren verwendet.

4.4.1 PASS5

PASS5 kann nur Spuren finden, die MILL schon gefunden hat. Darum wird hier als Spurfindungswahrscheinlichkeit ε das Verhältnis zwischen gefundenen MILL-Spuren und PASS5-Spuren bezeichnet.

Anzahl der PASS5 Spuren EPASS5 = ________ Anzahl der MILL Spuren

Die MILL Spurfindungswahrscheinlichkeit beträgt 97% für Spuren die vom Wechselwirkungspunkt kommen und in der Detektorakzeptanz liegen

PASS5 verlangt mindestens fünf Treffer in der Vertexkammer, um eine Spur zu akzeptieren. Es wurden MILL-Spuren betrachtet, die die üblichen Qualitätsschnitte erfüllen:

- dreidimensionale Spurrekonstruktion
- Transversalimpuls größer als 100 MeV/c
- Spur innerhalb der Detektorakzeptanz ($\cos \theta + 0.87$)

Für diese Spuren beträgt die Wahrscheinlichkeit eine zugehörige PASS5-Spur zu finden

$\epsilon_{\rm PASS5} = (70.7 \pm 0.3)$ 3

Der angegebene Fehler ist der statistische Fehler

Die Qualität der MILL-Spuren spielt eine Rolle, de von ihr die Lage der projezierten Straße in der Vertexkammer abhängt. Besonders die Abfrage auf Treffer in der CPC hat einen großen Einfluß Wenn die Spur schlecht in der DC rekonstruiert ist oder das Teilchen in oder hinter der CPC gestreut wird, werden teilweise keine zugehörigen CPC Treffer gefunden. Dann stimmt auch die Extrapolation der Spur in die Vertexkammer nicht und die Wahrscheinlichkeit eine Spur in der Vertexkammer zu finden sinkt.

Es wurde deshalb auch die Spurfindungswahrscheinlichkeit für ausgewählte MILL-Spuren bestimmt. Die zusätzlichen Kriterien waren

- mindestens 2 Treffer in der CPC und
- mindestens 10 Treffer in der CPC und DC.

Für diese Spuren ist die Spurfindungswahrscheinlichkeit

$$\varepsilon_{\text{PASS5}} = (83.4 \pm 0.3) \%$$

Die Impulsabhängigkeit der Spurfindungswahrscheinlichkeit für beide Fälle zeigt Abb. 32.

Abb. 32 Spurfindungswahrscheinlichkeit für PASS5

4.4.2 FELIX

Das Spurfindungsprogramm FELIX hat eine größere räumliche Akzeptanz als MILL, da durch die Einbeziehung der Vertexkammer und der CPC schon im Suchstadium keine Mindestanzahl von Treffern in der DC verlangt werden muß. Die Wahrscheinlichkeit, daß FELIX im Innendetektor eine Spur findet, beträgt mit den gleichen Kriterien wie für MILL 95% /CAM83/.

Die Wahrscheinlichkeit, daß FELIX die Information der Vertexkammer für die Spurfindung benutzt, zeigt Tab. 12. Es wurden mindestens vier der Spur zugeordnete Treffer in der Vertexkammer verlangt und zum Vergleich mit PASS5 mindestens fünf Treffer.

benutzte Spuren	mindestens 4 Tref- fer in der VXD (%)	mindestens 5 Tref- fer in der VXD (ご)
alle Spuren	69.5 ± 0.3	61.5 ± 0.3
ausgewählte Spuren	83.6 ± 0.3	76 3 ± 0.4

Tab. 12 Spurfindungswahrscheinlichkeit für FELIX in der Vertexkammer

Abb. 33 zeigt die Impulsabhängigkeit der Spurfindungswahrscheinlichkeit für FELIX in der Vertexkammer.

Die Wahrscheinlichkeit, die Vertexkammerinformation zu nutzen, ist also für FELIX und PASS5 vergleichbar und hängt stark von der Qualität der Spuren in der DC und CPC ab

5. INKLUSIVE K⁰-PRODUKTION IN HADRONISCHEN EREIGNISSEN

Die K⁰-Mesonen sind nach dem Quarkmodell gebundene sid bzw. sid Zustände. Ihre Messung hefert daher Information über die s-Quark Produktion. Für sie gibt es in der e*e⁻ Vernichtung drei Quellen:

- primär erzeugte s-Quarks
- Zerfälle von schweren Quarks wie c -> s und b -> c -> s

Die inklusive K⁰-Produktion in hadronischen Ereignissen wurde am TASSO-Experiment schon bei 14, 22 und 34 GeV Schwerpunktsenergie gemessen /TASO1//TASO2/. In diesem Kapitel soll an Hand der Messung der K⁰-Produktion mit der Vertexkammer gezeigt werden, welche veränderten Bedingungen die Vertexkammer für die Messung von Zerfallsteilchen bringt. Es wird die Verbesserung der Massenauflösung des K⁰-Signals sowie die Steigerung der K⁰-Nachweiswahrscheinlichkeit gezeigt. Außerdem wurde der Wirkungsquerschnitt für die inklusive K⁰-Produktion bei einer Schwerpunktsenergie von 42.4 GeV bestimmt.

5.1 BENUTZTE DATEN

Die benutzten Daten wurden im Rahmen der Suche nach dem t-Quark aufgenommen. Dazu wurde die Schwerpunktsenergie schrittweise von 39.8 GeV an um 0.03 GeV erhöht. Bei jedem Schritt wurde eine integrierte Luminosität von ~ 60 nb⁻¹ gesammelt, was ungefähr 10 akzeptierten hadronischen Ereignissen entspricht. Abb. 34 (S. 72) zeigt die Verteilung der Strahlenergien der in der folgenden Analyse benutzten Daten.

Abb. 34 Verteilung der Strahlenergien der benutzten Daten

Der Mittelwert der Strählenergien beträgt 21.2 GeV. Der für diesen Energiebereich gültige totale hadronische Wirkungsquerschnitt σ_{tot} , gemessen in Einheiten des Wirkungsquerschnitts für Müonpaarerzeugung

$$\frac{4\pi}{\sigma_{\mu\mu}} \sim \frac{4\pi}{3} = \frac{\alpha^2}{s}$$

wurde am TASSO Experiment bestimmt /TAS03/:

$$R = \frac{\sigma_{tot}}{\sigma_{\mu\mu}} = 4.08 \pm 0.12 \text{ (stat.)} \pm 0.20 \text{ (syst.)}$$

Als Spurfindungsprogramm für die Vertexkammer wurde PASS5 benutzt. Außer den üblichen Kriterien für hadronische Ereignisse (siehe Kap. 2.5.2) wurde verlangt, daß mindestens drei Spuren in der Vertexkammer gefunden worden sind. Durch diese Forderung wurde sichergestellt, daß für die analysierten Ereignisse die Vertexkammer auch betriebsbereit gewesen ist. Diese Bedingungen wurden von 1509 hadronische Ereignisse bei einer mittleren Schwerpunktsenergie von 42.4 GeV erfüllt.

über den Zerfall des K⁰s in zwei geladene Pionen

5.2 BEOBACHTUNG DES K[®] SIGNALS

Beobachtet wurde der Prozeß

 $K_{S}^{0} \longrightarrow \pi^{*} \pi^{-}$

Das Verzweigungsverhältnis für den Zerfall $K^0 \rightarrow K^0_s \rightarrow \pi^+\pi^-$ beträgt 34.3%.Die K^0_L zerfallen auf Grund ihrer langen Lebensdauer ($c\tau \approx 1554$ cm) außerhalb des TASSO-Detektors. Im folgenden steht K⁰ für K⁰ und \overline{K}^0 .

Zum Nachweis der K⁰ wurden sämtliche Spurkombinationen mit entgegengesetzter Ladung gebildet und deren invariante Masse unter der Annahme berechnet, daß es Pionen sind. Auf Grund der hohen Multiplizität der hadronischen Ereignisse (<n_{CH}> = 144) ist der kombinatorische Untergrund sehr groß Die relativ große Lebensdauer der K⁰s von cr=2.675 cm wurde deshalb ausgenutzt, um den Untergrund zu verringern.

Die Spurpaare mußten folgende Bedingungen erfüllen:

- Die r-φ Projektionen der Spuren müssen sich schneiden. Der Schnittpunkt muß vom Wechselwirkungspunkt aus gesehen in Richtung der Impulssumme der Spuren liegen. Gibt es zwei Schnittpunkte, wird der nächstliegende genommen.
- 2. Paare von Spuren, die vom Wechselwirkungspunkt kommen, schneiden sich in der Nähe des Wechselwirkungspunkts. Um diese Spurkombinationen zu unterdrücken, wurde verlangt, daß der Schnittpunkt mindestens 0.6 cm vom Wechselwirkungspunkt entfernt ist. Er soll außerdem nicht weiter als 10.2 cm von ihm entfernt sein, weil sonst in der Vertexkammer weniger als fünf Kammerlagen zur Verfügung stehen und PASS5 dann keine Spuren mehr rekonstruieren kann.
- 3. Um konvertierte Photonen zu unterdrücken, wurde verlangt, daß die invariante Masse der beiden Teilchen, berechnet unter der Annahme daß es Elektronen bzw. Positronen sind, größer als 100 MeV ist.

- Die aus dem Zerfall kommenden Pionen zeigen nicht auf den Wechselwirkungspunkt. Deshalb wurde für beide Spuren ein Id₀I größer als 0.2 cm verlangt.
- Der Winkel zwischen der Flugrichtung der K⁰, bestimmt durch die Verbindungslinie zwischen Wechselwirkungspunkt und Zerfallspunkt, und dem K⁰-Impuls, der aus der Impulssumme der Pionimpulse rekonstruiert wird, darf nicht größer als 5 ° sein.

Zur Verbesserung der K⁰-Massenauflösung wurden aus dem Schnittpunkt der Spuren in der r- φ Ebene und der Flugrichtung des K⁰ in der sz-Ebene die z-Koordinate des Zerfallspunktes bestimmt. Es wurde dann eine Geradenanpassung durch diesen Punkt und die von der Spur benutzten Stereolagen der DC durchgeführt.

Insgesamt erfüllen in den 1509 hadronischen Ereignissen 205 Spurpaare die angegebenen Schnitte. Ihre Massenverteilung ist in Abb. 36 (S. 76) dargestellt. Es wird ein klares K⁰-Signal über einem Untergrund von ~ 183 beobachtet. Die Anzahl der K⁰ wurde aus dem Massenbereich von 450-550 MeV bestimmt. Der Untergrund wurde aus den Seitenbändern von 400-450 MeV und von 550-600 MeV bestimmt. Man findel mit diesen Schnitten 84 K⁰ über 19 Untergrundkombinationen.

Die Impulsverteilung der K^0 -Kandidaten ist in Able \Re (S. 76) dargestellt. Die Impulsverteilung des Untergrundes wurde aus den Seitenbändern bestimmt

Die Verteilung der Parameter, die für die Isolierung des Signals benutztwurden, zeigen Abb. 38 (S. 77) und Abb. 39 (S. 77). Es wurden dazu jeweits die Verteilungen aus dem K⁰-Massenbereich mit denen aus den Seitenbändern verglichen. Die einzige Bedingung an die benutzten Spurpaare war die Forderung nach einem Schnittpunkt auf der richtigen Seite des Wechselwirkungspunktes (siehe oben).

Abb. 36 Verteilung der invarianten $\pi^+\pi^-$ -Masse für PASS5-Spuren

Abb. 37 Impulsverteilung der K^o-Kandidaten (Histogramm) und der Untergrundkombinationen (schraffiertes Histogramm)

Abb. 38 Zerfallslängenverteilung für K⁰-Kandidaten (Histogramm) und Untergrundkombinationen (schraffiertes Histogramm) für PASS5

Abb. 38 zeigt für Zerfallslängen größer als 1 cm deutlich eine Anreicherung von K⁰-Kandidaten gegenüber dem Untergrund. Außerdem gibt es nur sehr wenige K⁰-Kandidaten mit einer falsch rekonstruierten Zerfallslänge größer als 10.2 cm.

Abb. 39 Id₀-Verteilung für K⁰-Kandidaten (Histogramm) und Untergrundkombinationen (schraffiertes Histogramm) für PASS5

Abb. 39 (S. 77) zeigt ebenfalls eine deutliche Anreicherung von K⁰-Kandidaten gegenüber dem Untergrund für Spurpaare mit einem d_0 größer als 0.2 cm.

5.3 MASSENAUFLÖSUNG

Die Massenauflösung des K⁰-Signals wird durch die Detektorauflösung bestimmt. Sie hängt von der Impuls- und Winkelauflösung der Kammer ab. Da PASS5 die von Mill bestimmten Impulswerte übernimmt, verbessert die Vertexkammer nur die Winkelauflösung. Durch Verminderung der Vielfachstreuung und durch die acht zusätzlichen Lagen mit hoher Ortsauflösung werden die Spurparameter d₀ und φ_0 und damit der Zerfallspunkt genauer bestimmt.

Als Fehler der Zerfallspunktbestimmung wird die Differenz zwischen dem rekonstruierten Zerfallsabstand und dem Abstand des wahren Zerfallspunktes bezeichnet. Aus Monte Carlo Daten für den Detektor mit Beryllium-Strahlrohr bei 42 GeV Schwerpunktsenergie wurde als mittlerer Fehler der Zerfallspunktbestimmung für K⁰ folgende Werte ermittelt:

> Für Spuren aus der DC (MILL) $\sigma = (3671 \pm 108) \ \mu m$ Für Spuren aus der VXD (PASS5), $\sigma = (585 \pm 24) \ \mu m$

Die Verteilung der invarianten Masse der beiden Pionen Kandidaten wurde für drei Impulsbereiche getrennt bestimmt und durch eine Gaußkurve mit linearem Untergrund angenähert (siehe Abb. 40 (S. 80)). Tab. 13 (S. 81) zeigt die aus der Näherung gewonnenen Werte für die invariante Masse und die Massenauflösung. Der angegebene Fehler (ergibt sich aus dem Näherungsverfahren. Die mit der Vertexkammer erhaltene K⁰-Massenauflösung ist innerhalb des Fehlers impulsunabhängig und von der Größe $\sigma_{K0} \sim 8$ MeV. Für die alte Anordnung wächst σ_{K0} mit dem K⁰-Impuls und erreicht Werte von ~ 19 MeV bei K⁰-Impulsen zwischen 2 und 5 GeV/ ϕ

Abb. 40 Verteilung der invarianten $\pi^+\pi^-$ -Massen für PASS5-Spuren

Kº-Impuls (GeV/c)	Vertexkammer (PASS5) mit Beryllium-Strahlrohr bei 42 GeV		Grosse Driftkammer (N1LL) mit Aluminium-Strahlrohr bei 34 GeV	
	Masse (MeV)	σ (MeV)	Nasse (MeV)	σ(MeV)
05-10	1	72±2.4	494.8 ± 1 0	8.6 ± 0.9
1.0 - 2.0	199.0 ± 1.9	84±1.7	497.3 ± 0.7	11.2 ± 0.7
2.0 - 5.0	497 6 ± 3.6	8 1 = 3.5	503 6 ± 1 0	18 7 ± 1.0
Mitte]wert	497 8 ± 2.6	8 0 ± 2.5	499 () ± 0.9	13.3 ± 0.9

Tab. 13 Invariante $\pi^+\pi^-$ -Masse und K⁰-Massenauflösung

1

5.4 VERGLEICH DER KO-NACHWEISWAHRSCHEINLICHKEITEN

Um die Verbesserung der K⁰-Nachweiswahrscheinhehkeit zu ermitteln, wurde sie für die Vertexkammer mit PASS5-Spuren. für DC und CPC mit MILL-Spuren und für den gesamten Innendetektor mit einer Kombination von MILL und PASS5 bestimmt. Da auf Grund der Synchrotronstrahlung der Anteil von Untergrundtreffern in der DC und CPC bei 42 GeV wesentlich höher als bei 34 GeV ist (siehe Abb. 41), wurden zum Vergleich der Nachweiswahrscheinlichkeit nur die 42 GeV Daten verwendet. Die Reduktionsschnitte mußten gegenüber der Analyse bei 34 GeV leicht verändert werden, da die Abfrage auf Treffer vor dem rekonstruierten Zerfallspunkt der beiden Spuren auf Grund der wesentlich schlechteren Untergrundbedingungen fallengelassen werden mußte. Dieser Schnitt hatte bei den 34 GeV Daten zu einer wesentlichen Verminderung des Untergrundes geführt.

Die Anzahl der Untergrundtreffer wurde aus Ereignissen ohne geladene Spuren vom Typ et $e^- \Rightarrow \gamma \gamma$ bestimmt (siehe Tab. 14 (S. 83)).

Abb. 41 Anzahl der Untergrundtreffer in CPC und DC pro Ereignis

Kammer (Anzahl der Drähte)	Anzahl der Treffer (pro Draht) bei 34 GeV	Anzahl der Treffer (pro Draht) bei 42 GeV
DC (2340)	21 (0 01)	89 (0.04)
CPC (1920)	17 (0.01)	44 (0.02)
VXD (720)	· · · · · · · · · · · · · · · · · · ·	69 (0.10)

Tab. 14 Anzahl der Untergrundtreffer pro Ereignis und Draht

Um die Nachweiswahrscheinlichkeiten für die verschiedenen Spurfindungsprogramme und Kammern vergleichen zu können, wurden die Schnitte so gewählt, daß ein vergleichbares Verhaltnis zwischen Signal und Untergrund entsteht.

Die K⁰ Nachweiswahrscheinhehkeit für die Vertexkammer mit PASS5 wurde außerdem in Kapitel 5.5 zur Berechnung des Wirkungsquerschmitts benutzt.

5.4.1 Verfahren zur Bestimmung der K⁰ Nachweiswahrscheinlichkeit

Die K⁰-Nachweiswahrscheinlichkeit wurde mit Hilfe von Monte Carlo Ereignissen bestimmt. Es wurden dazu Ereignisse für die Prozesse

bei einer Schwerpunktsenergie von 420 GeV nach dem Lund Fragmentationsmodell /LUND1/ erzeugt. Die Strahlungskorrekturen wurden nach Berends-Kleiss /BEKLE/ berücksichtigt. Für die so erzeugten Ereignisse wurde das Verhalten des Detektors und der Trigger mit dem Programm SIMPLE /SIMPL/ simuliert und die Spurrekonstruktion vorgenommen.

- Es wurden Treffer in den Spurkammern unter Berücksichtigung der Kammerauflösung erzeugt.
- Es wurden sekundäre Wechselwirkungen, Gammakonversion, Vielfachstreuung, Bremsstrahlung und Energieverlust der Teilchen im Detektor simuliert.

Die Monte Carlo Ereignisse wurden dann denselben Auswahlbedingungen wie die richtigen Daten unterworfen und zur Bestimmung der Nachweiswahrscheinlichkeit der gleichen Analyse unterzogen.

Als Nachweiswahrscheinlichkeit ε_{KO} wird das Verhältnis zwischen den nach den Schnitten nachgewiesenen K⁰ und den erzeugten K⁰ definiert.

$$\varepsilon_{K0} = \frac{n_{deter}}{n_{gen}}$$

Dabei ist n_{gen} die Anzahl der erzeugten K⁰, die in $\pi^+ \pi^-$ zerfallen. Betrachtet wurden dabei nur die Ereignisse, die die hadronischen Auswahlbedingungen erfüllt haben. Die Anzahl der in diesen Ereignissen im Massenbereich von 450 MeV bis 550 MeV nachgewiesenen K⁰ wird mit n_{detec} bezeichnet.

An die so definierte Nachweiswahrscheinlichkeit müssen noch folgende Korrekturen angebracht werden:

- Es muß auf die Ereignisse korrigiert werden, bei denen vor der Wechselwirkung Energie abgestrahlt worden ist (Strahlungseffekte).
- Es muß auf einen eventuell vorhandenen Unterschied in der Triggerwahrscheinlichkeit für Ereignisse mit und ohne K⁰ korrigiert werden.

Das führt zu einem Korrekturfaktor ε' :

$$\varepsilon' = \frac{n_1/N_1}{n_0/N_0}$$

Dabei ist n_1 die Anzahl der erzeugten K⁰ in N_1 akzeptierten Ereignissen und n_0 die Anzahl der erzeugten K⁰ in N_0 Ereignissen ohne Abstrahlung und ohne Detektorsimulation. Als Ereignis ohne Abstrahlung werden alle Ereignisse akzeptiert, die weniger als 5% der nominellen Schwerpunktsenergie abgestrahlt haben

Das ergibt eine Nachweiswahrscheinlichkeit ε von

 $\varepsilon = \varepsilon_{\mathbf{K}\mathbf{0}} \cdot \varepsilon'.$

Für die folgende Bestimmung der K⁰-Nachweiswahrscheinlichkeit wurden 13539 Monte Carlo Ereignisse benutzt, von denen 10322 die hadronischen Auswahlbedingungen erfüllt haben und für die Bestimmung benutzt wurden.

Der Korrekturfaktor ε' wurde bestimmt zu:

1

$$\epsilon' = 0.98 \pm 0.02$$

Der systematische Fehler in der Bestimmung der Nachweiswahrscheinlichkeit hängt davon ab, wie gut die Monte Carlo Ereignisse mit den Daten übereinstimmen. Um das zu überprüfen, wurden die wichtigsten Verteilungen wie Impuls und rekonstruierter Zerfallsabstand der K⁰ und das d⁰ der Pion-Spuren für Monte Carlo Ereignisse und Daten aufeinander normiert und verglichen. Dazu wurden in den Daten die entsprechenden Verteilungen aus dem K⁰-Massenbereich um die Verteilungen aus den Seitenbändern bereinigt.

Abb. 42 Vergleich der Impulsverteilungen der K⁰ für Monte Carlo Ereignisse (Histogramm) und Daten (Punkte) - h allen Schnitten.

Abb. 43 Vergleich der Zerfallslängenverteilungen der K⁰ für Monte Carlo Ereignisse (Histogramm) und Daten (Punkte) nach allen Schnitten außer dem Schnitt auf die Zerfallslängen.

Abb. 44 – Vergleich der (d₀:-Verteilungen der Pionspucen für Monte Carlo Ereignisse (Histogramin) und Daten (Punkte) nach allen Schnitten außer dem d₀ Schnitt.

Die Verteilungen aus den Monte Carlo Ereignissen stimmen innerhalb der Fehler mit den Daten gut überein. Der systematische Fehler bei der Bestimmung der Nachweiswahrscheinlichkeit wurde zu 15% abgeschätzt. Er setzt sich zusammen aus Unsicherheiten in der

- Bestimmung der Spurfindungswahrscheinlichkeit
- Beschreibung des Untergrundes.
- Beschreibung der Absorption im Detektor.
- Wirkung der Schnitte.

5.4.2 Kº-Nachweiswahrscheinlichkeit für DC und CPC

Für die Bestimmung der K^a-Nachweiswahrscheinlichkeit für DC und CPC wurden MILL-Spuren verwendet. Es wurden die in Kap. 5.2 beschriebenen Schnitte mit folgenden Änderungen benutzt:

• Der Abstand des Schnittpunktes der beiden Spuren vom Wechselwirkungspunkt muß größer als 2 cm und kleiner als 45 cm sein.

- Das idel der Spuren muß größer als 0.6 cm sein.
- Der Winkel zwischen der K⁰-Flugrichtung und der Impulssumme der Piorien muß kleiner als 2^a sein.
- Es wird ein Schnitt auf das χ^2 der Geradenanpassung in der sz-Ebene vorgenommen (siehe Kap. 5.2).

Mit diesen Schnitten erhält man ein deutliches Signal von 93 K⁰ über 21 Untergrundkombinationen (siehe Abb. 50 (S. 95)). Die für diese Schnitte mit Monte Carlo Ereignissen ermittelte K⁰-Nachweiswahrscheinlichkeit ε_{K0} beträgt über den gesamten Impulsbereich

$$\varepsilon_{K0} = 13.5 \pm 0.5 \text{ (stat.)} \pm 2.0 \text{ (syst.)} \%$$

Sie hat die in Abb. 45 dargestellte Impulsabhängigkeit. Zum Vergleich wurde die K^o-Nachweiswahrscheinlichkeit für die Vertexkammer (siehe Kap. 5.4.3) mit eingezeichnet.

Abb. 45 K^o-Nachweiswahrscheinlichkeit für DC + CPC mit MILL-Spuren und für VXD mit PASS5-Spuren

5.4.3 Ko-Nachweiswahrscheinlichkeit für die Vertexkammer

Die aus Monte Carlo Ereignissen bestimmte K⁰-Nachweiswahrscheinlichkeit für die Vertexkammer mit PASS5-Spuren mußte auf einen Unterschied in der Spurfindungswahrscheinlichkeit zwischen den benutzten Monte Carlo Ereignissen und den Daten korrigiert werden. Der Unterschied wird durch eine zu geringe Rate von Untergrundtreffern in den Monte Carlo Ereignissen verursacht. Die Korrektur wurde impulsabhängig vorgenommen. Der impulsabhängige Verlauf der K⁰-Nachweiswahrscheinlichkeit ε_{KO} für die in Kap. 5.2 beschriebenen Schnitte ist in Abb. 46 dargestellt. Die Gesamtnachweiswahrscheinlichkeit über den ganzen Impulsbereich beträgt:

$$\epsilon_{K0} = -12.1 \pm 0.4 \text{ (stat.)} \pm 1.8 \text{ (syst.)} \%$$

Für eine 100%-ige Spurfindungswahrscheinlichkeit von PASS5 beträgt die Nachweiswahrscheinlichkeit für die Vertexkammer über den gesamten Impulsbereich

Abb. 46 K⁰-Nachweiswahrscheinlichkeit für die Vertexkammer mit PASS5-Spuren. Die durchgezogene Kurve gilt für die reale Spurfindungswahrscheinlichkeit, die gestrichelte für eine 100%-ige.

Die Abnahme der Nachweiswahrscheinlichkeit für große K^0 -Impulse folgt aus der relativ großen Lebensdauer der K^0 . Die mittlere zurückgelegte Flugstrecke der K^0 im Laborsystem ist impulsabhängig. Die Wahrscheinlichkeit P(x) für ein K^0 weiter als x cm zu fliegen ist:

$$P(\mathbf{x}, \gamma \beta c \tau) = c$$

$$P(\mathbf{x}) = c$$

$$P(\mathbf{x}) = c$$

$$T = c$$

$$T$$

Daraus ergibt sich eine Impulsabhängigkeit der Nachweiswahrscheinlichkeit, da alle K⁰, die weiter als 10.2 cm fliegen, außerhalb der Akzeptanz der Vertexkammer zerfallen. So zerfallen z.B. 50% aller K⁰ mit einem Impuls von 3 GeV/c hinter der vierten Lage der Vertexkammer.

Zu kleinen Impulsen hin sinkt die Nachweiswahrscheinlichkeit durch die sinkende Spurfindungswahrscheinlichkeit von MILL und PASS5 für Spuren mit kleinen Impulsen Außerdem ist die Topologie der Spurpaare für kurze Zerfallslängen nicht mehr vom Untergrund unterscheidbar.

5.4.4 Kº-Nachweiswahrscheinlichkeit für den gesamten Innendetektor

Der um die Vertexkammer erweiterte Innendetektor hefert für Teilchen mit einer relativ langen Lebensdauer (~ 10^{-10} sec) wie K⁰ und A eine höhere Nachweiswahrscheinlichkeit als der alte Innendetektor:

- Durch die genauere Bestimmung der Spurparameter in der Vertexkammer können die Schnitte gelockert werden
- Die zusätzlichen Lagen der Vertexkammer können für eine Abfrage von Treffern vor dem Zerfallspunkt benutzt werden.

Die folgenden Abbildungen zeigen die Verteilungen der Schnittparameter für den kombinatorischen Untergrund. Es wurden alle Spurpaare mit entgegengesetzter Ladung gebildet, die einen Schnittpunkt auf der Seite vom Wechselwirkungspunkt haben, auf die die Impulssumme der beiden Spuren zeigt. Die Verteilungen wurden auf gleiche Anzahl von Einträgen normiert. Eine Verbesserung in der Bestimmung dieser Parameter nach Einbau der Vertexkammer ist deutlich sichtbar. Das ermöglicht eine Lockerung der entsprechenden Schnitte.

Abb. 47 Zerfallslängenverteilung für Spurkombinationen mit Schnittpunkt für MILL (Histogramm) und PASS5 (schraffiertes Histogramm)

Abb. 48 idol-Verteilung für Spurkombinationen nut Schnittpunkt für MILL (Histogramm) und PASS5 (schraffiertes Histogramm)

Die maximal mögliche K⁰-Nachweiswahrscheinlichkeit ϵ_{KR} für den gesamten Innendetektor mit einer perfekten Spurrekonstruktion für die Vertexkammer beträgt für die gewählten Schnitte:

$$\epsilon_{K0} = 33.6 \pm 0.6 \text{ (stat) } \pm 5.0 \text{ (syst.)}^{\circ}$$

Der impulsabhängige Verlauf der Nachweiswahrscheinlichkeit ist in Abb. 49 (S. 94) als gestrichelte Kurve gezeigt. Die Kriterien für eine perfekte Spurrekonstruktion sind:

- 100% Spurfindungswahrscheinlichkeit
- keine falsche Trefferzuordnung

Die Auswahlbedingungen sind eine Kombination der schon beschriebenen Bedingungen:

- Für alle Spurkombinationen mit zwei PASS5-Spuren gelten die in Kap. 5.2 genannten Schnitte für PASS5.
- Spurkombinationen mit einer PASS5-Spur werden nicht akzeptiert.

- Für alle Spurkombinationen ohne PASS5-Spur gelten die in Kap. 5.4.2 genannten Schnitte für MILL mit folgenden Änderungen:
 - kein d⁰ Schnitt
 - Die rekonstruierte Zerfallslänge muß größer als 10.2 cm und kleiner als 45.0 cm sein.

Eine perfekte Spurrekonstruktion läßt sich in den Daten im allgemeinen nicht erreichen. Die Spurfindung wird zu kleinen Radien hin zunehmend schwieriger, da die Spurdichte zunimmt. Das führt zu falschen Trefferzuordnungen. Außerdem steigt die Wahrscheinlichkeit, daß mehrere Teilchen durch dieselbe Driftzelle fliegen und so Information verloren geht. Die hohe Rate von Untergrundtreffern durch die Synchrotronstrahlung bei Schwerpunktsenergien von ~ 42 GeV (siehe Tab. 14 (S. 83)) erschwert die Spurfindung zusätzlich Beide Effekte zusammen ergeben eine Spurfindungswahrscheinlichkeit für PASS5 von 70.7% (siehe Kap. 4.4.1).

Die Wahrscheinlichkeit, den Pionspuren aus einem K⁰-Zerfall außerhalb der Detektorakzeptanz der Vertexkammer eine falsche PASS5 Spur zuzuordnen, wurde aus Monte Carlo Ereignissen und Daten ermittelt:

- In den Daten wurde überprüft, wieviele der MILL-Spuren von Pionen aus dem Zerfall von K⁰ um K⁰ Massenbereich von 450 bis 550 MeV mit einem rekonstruierten Zerfallspunkt größer als 10.2 cm eine falsche PASS5-Spur zugeordnet bekommen haben. Die Anzohl wurde mit Hilfe der Seitenbänder korngiert. Dies Verfahren ergab eine Wahrscheinlichkeit von 19 ± 5 %.
- Aus Monte Carlo Ereignissen erhält man eine Wahrscheinlichkeit von 17 ± 1 % einer Pionspuren aus einem K⁰-Zerfall außerhalb der Akzeptanz der Vertexkammer eine falsche PASS5-Spur zuzuordnen.

Das Analyseprogramm wurde den realen Bedingungen durch folgende Änderungen angepaßt:

- Für einen rekonstruierten Zerfallspunkt kleiner als 10.2 cm, bei dem eine oder zwei PASS5-Spuren nicht rekonstruiert wurden, gelten die Auswahlbedingungen für MILL-Spuren.
- Für einen rekonstruierten Zerfallspunkt größer als 10.2 cm, bei dem eine oder Zwei PASS5-Spuren vorhanden sind, gelten die Kriterien für MILL-Spuren mit d₀-Schnitt.

Mit diesen Änderungen wird die Vertexkammerinformation bestmöglich ausgenutzt. Falls keine eindeutige Vertexkammerinformation vorhanden ist, wird die Information der DC und CPC verwendet. Die mit diesem Verfahren erhaltene K⁰-Nachweiswährscheinlichkeit beträgt:

$$\varepsilon_{\rm KO} = 22.7 \pm 0.6 \, ({\rm stat.}) \pm 4.5 \, ({\rm syst.}) \%$$

Der systematische Fehler für die Bestimmung dieser Nachweiswahrscheinlichkeit wurde zu 20% abgeschätzt, da die ungenügende Beschreibung der Untergrundtreffer im Monte Carlo für die 42 GeV Daten zur Einführung von Korrekturfaktoren zwingt. Die Impulsabhängigkeit von ε_{K0} zeigt Abb. 49.

Abb. 49 Nachweiswahrscheinlichkeit für den ganzen Innendetektor Realer Verlauf (durchgezogene Kurve) und idealer Verlauf (gestrichelte Kurve)

Abb. 50 (S. 95) zeigt die mit diesen Schnitten erhaltene $\pi^+\pi^-$ Massenverteilung. Man erhält mit dem gesamten Innendetektor ein K⁰-Signal von 152 K⁰ über 43 Untergrundkombinationen. Durch Einbau der Vertexkammer konnte somit eine deutliche Steigerung der K⁰-Nachweiswahrscheinlichkeit erreicht werden (siehe Tab. 15 (S. 95)).

Benutzte Kammern	Anzahl der nach- gewiesenen K ⁰ ohne Untergrund	Nachweiswahr- scheinlichkeit (%)
VXD (PASS5)	84 ± 10	12.1 ± 0.4 ± 1.8
DC + CPC (MILL)	93 ± 11	13.5 ± 0.5 ± 2.0
VXD · (PC · DC (M1LL · PASS5)	152 ± 14	22.7 ± 0.6 ± 4.5

Abb. 50 Verteilung der invarianten $\pi^+\pi^-$ Masse. Für CPC und DC mit MILL (schraffiertes Histogramm) und für den gesamten Innendetektor mit MILL und PASS5 (Histogramm)

5.5 BESTIMMUNG DES WIRKUNGSQUERSCHNITTS

Mit den in Kapitel 5.2 beschriebenen Auswahlkriterien wurde das in Abb. 36 (S. 76) gezeigte K⁰-Signal isoliert. Aus diesen nachgewiesenen K⁰ wurde der inklusive Wirkungsquerschnitt für K⁰-Erzeugung

$$e^+e^- \longrightarrow K^0, \overline{K}^0 + X$$

bei einer mittleren Schwerpunktsenergie von 42.4 GeV bestimmt

Die Wirkungsquerschnitte sind folgendermaßen definiert:

-- differentieller Wirkungsquerschnitt --

$$\frac{\mathrm{d}\sigma}{\mathrm{d}p} = \frac{\sigma_{\mathrm{TOT}}}{\varepsilon \cdot \mathrm{N}} \frac{\Delta \mathrm{n}(\mathrm{p})}{\Delta \mathrm{p}}$$

-- skalierter Wirkungsquerschnitt --

$$\frac{s \, d\sigma}{\beta \, dx} = \frac{s \, \sigma_{\text{TOT}}}{\beta \, N \, \varepsilon} \frac{\Delta n(x)}{\Delta x}$$

dabei ist: $\sigma_{TOT} = totale hadronische Wirkungsquerschnitt$ $= R <math>\cdot 86.8/W^2$ [µb] ε = Nachweiswahrscheinlichkeit N = Anzahl der beobachteten Ereignisse $\Delta n(p), \Delta n(x)$ = Anzahl der nachgewiesenen Teilchen pro Intervall p.E = Impuls und Energie des Teilchens Δp = Impulsintervall W = Schwerpunktsenergie s = W²

$$\beta = p/E$$

$$x = 2 E/W$$

Um aus der in Kapitel 5.4.3 bestimmten Nachweiswahrscheinlichkeit ε_{E0} die hier benutzte Gesamtnachweiswahrscheinlichkeit ε zu bekommen, muß noch auf die nicht beobachteten Zerfallskanäle des K⁰ korrigiert werden.

$\varepsilon = \varepsilon_{KO} \cdot \varepsilon' \cdot B \cdot 1/2$

B ist das Verzweigungsverhältnis für den Zerfall $K^0_s \rightarrow \pi^+\pi^-$ (B = 0.6861).

Um aus der Impulsverteilung des K⁰-Signals (Abb. 37 (S. 76)) die Anzahl der K⁰ in den einzelnen Impulsbereichen angeben zu können, muß eine Annahme über die Form des Untergrundes gemacht werden. Wegen der geringen Statistik in den Seitenbändern wurde die Form der Impulsverteilung des Untergrundes aus Monte Carlo Ereignissen bestimmt und auf die Anzahl der beobachteten Einträge in den Seitenbändern normiert.

Tab. 16 zeigt die beobachtete Anzahl von K^o-Kandidaten und den differentiellen Wirkungsquerschnitt. Der Verlauf von $d\sigma/dp$ ist in Abb. 51 (S. 98) dargestellt.

Impulsbereich (GeV/c)	Anzahl der K ⁰ ohne Untergrund	Anzahl der Untergrund- kombina- tionen	dø/dp (nb/CeV/c)	
0.2 - 0.5	8.4	0.6	0.093 ± 0.036 ± 0.014	
0.5 - 1.0	20.6	2.4	0.096 ± 0.024 ± 0 014	
1.0 - 1.5	20.1	39	0 079 ± 0.020 ± 0.012	
1.5 - 2.0	20.6	3.4	0.091 ± 0.023 ± 0.014	
2.0 - 2.5	7.8	2.2	$0.042 \pm 0.018 \pm 0.006$	
2.5 - 4.0	6.5	3.5	$0.018 \pm 0.009 \pm 0.003$	

In Anlehnung an das in tief-inelastischer Lepton-Nukleon Streuung gefundene Skalenverhalten wurde auch für die Fragmentation der Quarks in Hadronen eine Energieunabhängigkeit der inklusiven Teilchenproduktion bezüglich des skalierten Wirkungsquerschnitts vermutet. Durch die Messung des skalierten Wirkungsquerschnitts bei verschiedenen Schwerpunktsenergien kann eine Aussage über das Skalenverhalten in der K^o-Produktion gemacht werden. Die bisherigen Messungen bei 14. 22 und 34 GeV Schwerpunktsenergie ergaben eine Verletzung des Skalenverhaltens für x > 0.2 /TAS02. Den hier bei W=42.4 GeV gemessenen Wirkungsquerschnitt zeigt die nachfolgende Tabelie:

x = 2 E/W	Skalierter Wirkungsquerschnitt s/β - dσ/dx (μb - GeV ²)
0.025 - 0.033	10.36 ± 4.03 (stat.) ± 1.55 (syst.)
0.033 ~ 0.053	5.44 = 1.33 (stat.) ± 0.82 (syst.)
0.053 - 0.075	3.47 ± 0.88 (stat.) ± 0.52 (syst.)
0.075 - 0.097	3.69 ± 0.93 (stat) ± 0.55 (syst.)
0.097 - 0.120	1.67 - 0.71 (stat.) = 0.25 (syst.)
0.120 - 0.190	0.70 ± 0.34 (stat) ± 0.10 (syst.)
	· ·

Tab. 17 Skalierter Wirkungsquerschnitt für e*e* -> K°(K°)+X

Der Verlauf des skalierten Wirkungsquerschnitts für diese Messung ist in Abb. 52 (S. 100) dargestellt. Abb. 53 (S. 101) zeigt zusätzlich die bei 14, 22 und 34 GeV Schwerpunktsenergie am TASSO-Detektor vorgenommenen Messungen des inklusiven Wirkungsquerschnitts für K⁰-Produktion /TASO2/. Eine Aussage über Verletzung des Skalenverhaltens ist bei dieser Messung im Rahmen der Fehler nicht möglich.

Abb. 52 Skalierter Wirkungsquerschnitt für $e^+e^- \rightarrow K^0(\overline{K}^0)+X$

Abb. 53 Skalierter Wirkungsquerschnitt für $e^+e^- \rightarrow K^0(\overline{K}^0)+X$ für alle Schwerpunktsenergien

Der totale inklusive K⁰-Wirkungsquerschnitt R_{K0} wurde durch Integration des differentiellen Wirkungsquerschnitts über den gesamten Impulsbereich erhalten. Der Verlauf des Wirkungsquerschnitts für Impulse p < 0.2 GeV/c und p > 4.0 GeV/c wurde durch Extrapolation mit Hilfe des vom Monte Carlo vorhergesagten Impulsspektrums abgeschätzt. Der Anteil der K⁰-Produktion außerhalb des beobachteten Impulsbereichs ergab sich zu 23%. Der totale inklusive K⁰-Wirkungsquerschnitt, gemessen in Einheiten des Wirkungsquerschnitts für Müonpaarerzeugung, beträgt:

$$R_{K0} = 5.69 \pm 0.71 \text{ (stat.)} \pm 0.85 \text{ (syst.)}$$

Die mittlere Anzahl der K 0 pro hadronischem Ereignis beträgt bei 42.4 GeV Schwerpunktsenergie

Abb. 54 (S. 103) zeigt zum Vergleich die am TASSO Experiment bestimmten mittleren Teilchenmultiplizitäten für π^{\pm} . K[±], K⁰, p, \vec{p} , Λ . $\bar{\Lambda}$ und Ξ , $\bar{\Xi}$ als Funktion der Schwerpunktsenergie.

Der systematische Fehler setzt sich aus dem Fehler der Extrapolation, der Bestimmung der Nachweiswahrschemlichkeit und dem der Spurfindungswahrscheinlichkeit zusammen

Abb. 54 Mittlere Teilchenmultiplizität pro hadronischem Ereignis bestimmt am TASSO-Experiment

6. ZUSAMMENFASSUNG

Die vorliegende Arbeit beschreibt den Aufbau der Vertexkammer, die Bestimmung der Orts-Driftzeitbeziehung und die Verbesserung der Meßbedingungen nach Einbau der Kommer. Außerdem wurde der Wirkungsquerschnitt für die inklusive K⁰-Produktion bei einer Schwerpunktsenergie von 42.4 GeV bestimmt.

Die Vertexkammer hat bei einem Kammerdruck von 3 atm und einer Gasmischung von 96% Argon und 5% CO₂ eine typische Auflösung von 90 μ m für Zweispurereignisse und 100 μ m für hadronische Ereignisse. Die Orts-Driftzeitbeziehung ist fast linear und auf Grune der Zell- und Kammergeometrie nahezu unabhängig von den Spurparametern der durchgehenden Teilchen.

Auf Grund der geringen Materialstärke des neuen Beryllium-Strahlrohres von nur 0.61% einer Strahlungslänge konnte die Vielfachstreuung und die Gammakonversion im Strahlrohr stark reduziert werden. Zusammen mit der Information aus den acht zusätzlichen hochauflösenden Vertexkammerlagen führt das zu einer Verbesserung des Fehlers der Spurrekonstruktion am Ursprung von 790 μ m auf 165 μ m für Bhabhaereignisse und von 1400 μ m auf 400 μ m für hadronische Ereignisse.

Die Wahrscheinlichkeit, eine in der großen Driftkammer gefundene Spur auch in der Vertexkammer zu rekonstruieren, liegt zwischen 70% und 85% je nach Qualität der Spuren in der großen Driftkammer und in der Proportionalkammer und nach benutztem Spurfindungsprogramm.

Die Steigerung der Nachweiswahrscheinlichkeit für Teilchen mit relativ großer Lebensdauer (~ 10^{-10} sec) konnte mit K⁰ gezeigt werden. Die K⁰-Nachweiswahrscheinlichkeit über den gesamten Impulsbereich konnte für die gewählten Schnitte von 13.5% auf 22.7% gesteigert werden. Für K⁰ mit kleinen Impulsen ist die Steigerung noch größer. Im Impulsbereich von 0.5 bis 1.5 GeV/c steigt die Nachweiswahrscheinlichkeit durch Hinzunahme der Vertexkammerinformation von 11.0% auf 24.3%.

Die Massenauflösung des K⁰-Signals für K⁰-Impulse von 0.5 bis 5.0 GeV/c konnte von 13.3 MeV auf 8.0 MeV verbessert werden.

Der inklusive Wirkungsquerschnitt für die K⁰-Produktion wurde bei einer mittleren Schwerpunktsenergie von 42.4 GeV in einem Impulsbereich von 0.2 bis 4.0 GeV/c gemessen. Das Ergebnis steht in guter Übereinstimmung mit dem bei 34 GeV gemessenen Wirkungsquerschnitt. Die mittlere Anzahl der erzeugten K⁰(\vec{K}^0) pro hadronischem Ereignis wurde zu 1.39 ± 0.17 ± 0.21 bestimmt.

A ANHANG

A.1 DIE TASSO KOLLABORATION

M.Althoff, W.Braunschweig, F.J.Kirschfink, K.Lübelsmeyer, H.-U.Martyn, R.Rosskamp, H.G.Sander, D.Schmitz, H.Siebke, W.Wallraff I. Physikalisches Institut der RWTH Aachen, Bundesrepublik Deutschland

J.Eisenmann, H.M.Fischer, H.Hartmann, A.Jocksch, G.Knop, L.Köpke, H.Kolanoski, H.Kück, V.Mertens, R.Wedemeyer Physikalisches Institut der Universität Bonn, Bundesrepublik Deutschland

A.Eskreys, K.Gather, H.Hultschig, P.Joos, U.Kötz, H.Kowalski, A.Ladage, B.Löhr, D.Lüke, P.Mättig, D.Notz, R.J.Nowak, J.Pyrlik, M.Rushton, W.Schütte, D.Trines, T.Tymieniecka, G.Wolf, G.Yekutieli, Ch.Xiso Deutsches Elektronen Synchrotron, Hamburg, Bundesrepublik Deutschland

R.Fohrmann, E.Hilger, T.Kracht, H.L.Krasemann, P.Leu, E.Lohrmann, D.Pandoulas, G.Poelz, K.U.Pösnecker, B.H.Wiik II.Institut für Experimentalphysik der Universität Hamburg, Bundesrepublik Deutschland

R.Beuselinck, D.M.Biame, P.J.Dornan, B.Foster, D.A.Garbutt, C.Jenkins, T.D.Jones, W.G.Jones, J.McCardle, J.K.Sedgbeer, J.Thomas, W.A.T.Wan Abdullah Departement of Physics, Imperial College London, England

K.W.Bell, M.G.Bowler P.Bull, R.J.Cashmore, P.E.L.Clarke, P.Dauncey, R.Devenish, P.Grossmann, C.M.Hawkes, S.L.Lloyd, D.J.Mellor, C.Youngman Departement of Nuclear Physics, Oxford University, England

G.E.Forden, J.C.Hart, J.Harvey, D.K.Hasell, D.H.Saxon Rutherford Appleton Laboratory, Chilton, England

F.Barreiro, S.Brandt, M.Dittmar, M.Holder, G.Kreutz, B.Neumann Fachbereich Physik der Universität-Gesamthochschule Siegen, Bundesrepublik Deutschland

E.Duchovni, Y.Eisenberg, U.Karshon, G.Mikenberg, R.Mir, D.Revel, E.Ronat, A.Shapira, M.Winik Weizmann Institute, Rehovot, Israel

G.Baranko, A.Caldwell, M.Cherney, J.M.Izen, M.Mermikides, S.Ritz, G.Rudolph, D.Strom, M.Takashima, H.Venkataramania, E.Wicklund, Sau Lan Wu, G.Zobernig

Departement of Physics, University of Wisconsin, Madison, Wisconsin, USA

A.2 DAS TASSO-KOORDINATENSYSTEM

Das TASSO-Koordinatensystem ist rechtshändig und orthogonal. Der Ursprung liegt in der Mitte des Strahlrohres. Die x-Achse zeigt zum Zentrum des Speicherringes, die y-Achse nach oben und die z-Achse in Strahlrichtung.

- x₀,y₀,z₀ = Koordinaten im Punkt des kleinsten Abstandes vom Ursprung
- α = Winkel der Spur zur Zellnormalen
- $\vartheta =$ Neigungswinkel der Spur gegen die z-Achse

Der Parameter d_0 besitzt ein positives Vorzeichen, wenn der Ursprung des Koordinatensystems im Kreis der Spur liegt, sonst ein negatives. Bei der Analyse wird immer ein auf die Strahlposition korrigiertes d_0 benutzt, da der Strahl i.a. nicht durch den Koordinatenursprung geht.

Abb. 55 Das TASSO-Koordinatensystem in der r- φ Ebene

Die Parameter haben folgende Bedeutung:

- R₀ = Radius der Spur
- d₀ = kleinster Abstand der Spur vom Ursprung
- φ_0 = Azimuthwinkel der Spur im Punkt des kleinsten Abstandes vom Ursprung
- x_e,y_e= Mittelpunktskoordinaten der Kreisanpassung
- 108 Messungen mit der hochauflösenden Tasso-Vertexkammer

A.3 MATERIAL DER VERTEXKAMMER

Folgende Tabelle zeigt die verschiedenen Materialien der Vertexkammer.

Innen- radius (cm)	Material	Dicke (cm)	Strah- lungs- länge (%)	Funktion
6.5	Cu	0 0015	0.10	Kupfer- schicht
6.5	 Ве	0 17	0.51	Strahlrohr
6.8	95% Ar 5% CO ₂	0 644	0.0006	Xenon Kammer
7.5	Kapton	0 0125	0.04	Aquijo Pu- tialfic he
7.5	Al	0 005	0.06	' Aquipoten- ' tialfläche
~11.5	95" Ar 5% CO ₂ 3 atm	7 89	0.07	Gas
15.4	Cu	0 0030	0.2 	Aquipoten-
15.4	Kapton	0 0125	0.04	Äquipoten- tialfläche
16.0	A1 .	0.15	1 69	Aussen- zylinder

Tab. 18 Naterial der Vertexkammer

A.4 STÜCKWEISE BESTIMMUNG DER ORTS-DRIFTZEITBEZIEHUNG

Um der starken Anderung der Dinftgeschwindigkeit nahe am Signaldraht und an den Potentialdrähten Rechnung zu tragen, kann die Orts-Driftzeitbeziehung in drei verschiedenen Bereichen getrennt bestimmt werden mit der Bedingung, daß die Übergangsstellen stetig differenzierbar sind (Spline Fit) Die drei Bereiche sind

- nahe am Signaldraht
- mittlerer Bereich zwischen Signal- und Potentialdraht
- nahe am Potentialdraht

Die Grenzen werden aus den baten bestimmt. Die Orts-Driftzeitbeziehung sieht dann folgenderweise aus:

nahe am Signaldraht $t < t_1$ $x_1 = x_{12} + c_{12} = (t - t_1)^2 + c_{11} - (t - t_1)^3$ mittlerer Bereich $t_1 = t_1 + c_{22} + t_2 + t_2$ $x_{11} = c_{20} + c_{21} - t_1 + c_{22} + t_2 + c_{23} + t_3^3$ nahe an den Potentialdrähten $t_1 = t_2$ $x_{11} = x_{11} + c_{32} + (t - t_2)^2 + c_{33} + (t - t_2)^3$

> t_i = untere Grenze für mittleren Bereich t_2 = obere Grenze für mittleren Bereich

- = Obere Grenze fur informeren f
- t = Driftzeit x = Driftstrecke

A.5 ANPASSUNGSRECHNUNG

Alle in dieser Arbeit gemachten Anpassungsrechnungen von Funktionen an gemessene Verteilungen erfolgten mit der Methode der kleinsten Quadrate Zur Bestimmung der Fehler der einzelnen Parameter wird der entspre chende Parameter solange variiert, bis das χ^2 der Anpassungsrechnung um eins gestiegen ist. Die anderen Parameter werden dabei festgehalten.

A.6 BERECHNUNG DES ERWARTETEN Do

Die Breite des Strahls in der Senkrechten σ_{sy} ist vernachlassigbar (~ 10 μ m) gegenüber der Breite in der Waagerechten von $\sigma_{sx} = 380 \ \mu$ m. Eine Spur mit dem Winkel a zur x-Achse 'sieht' davon die Projektion senkrecht zur Spur.

 $f(\alpha)$ sei die Verteilungsfunktion vom Winkel o und α sei gleichverteilt.

$$f(\alpha) = 1$$

Dann betragt die im Mittel gesehene Strahlbreite σ_{strahl}

 $= \sigma_{\mathbf{S}\mathbf{x}} + 2/\pi$

LITERATURVERZEICHNIS

/BEKLE/	F.A.Berends und R.Kleiss, Nucl.Phys. B178 S.141 (1981) und Nucl.Phys. B177 S.237 (1981)
/BIN84/	D.M.Binnie, Imperial College, private Mitteilung
/BOE81/	H.Boerner, Dissertation, Bonn IR-81-27 (1981)
/CAM83/	A Campel. Dissertation, Imperial College HEP/T/117 (1983)
/CAS80/	D.G.Cassel und H.Kowalski, Nulc.Instr.Meth. 185, 235 (1981) und Desy 80-107 (1980)
/GLU63/	R.L.Gluckstern, Nucl. Instr. Meth. 24, 381 (1963)
/HADRO/	H.Burkhardt et al., NuclInstr.Méth. 184, 318 (1981) und K.W.Bell et al., NuclInstr.Meth 179, 27 (1981)
/HIL81/	W Hillen, Dissertation, Bonn, IR-81-7 (1981)
∕KOW80∕	H.Kowalski Desy 80-72 (July 1980)
/LUND1/	B.Andersson, G.Gustafson, T Sjöstrand, Phys.Lett. 94b (1980) 211: Z Phys. C6 (1980) 235; Nucl.Phys. B197 (1982) 45 T.Sjöstrand, Computer Physics Comm. 27 (1982) 243 und 28 (1982) 239
/PAL75/	V.Palladino und B.Sadoulet, Nucl.Inst.Meth. 128, 323(1975)
/PYR83/	J.Pyrlik, Dissertation, Hamburg 1982, Desy F1-82-02
/RPP82/	Review of Particle Properties, April 82, s.35
/SAU77/	F.Sauli, CERN 77-09
/SAX84/	D.H.Saxon, TASSO Note 319 und Nucl.Instr.Meth., in Vorbe- reitung
/SCH84/	TASSO Note 243 und Dissertation in Vorbereitung

1

- /SIMPL/ B.Foster und S.L.Lloyd, Simple-Beschreibung, unveröffentlicht
- /TAS01/ TASSO Collaboration, R.Brandelik et al., Phys.Lett. 94b (1980) 91 und M Dittmar, DESY F1-82-03 (1982)
- /TAS02/ TASSO Collaboration, M Althoff et al. a detailed study of strange particle production in e*e⁻ annihilation at high energy, in Vorbereitung
- /TAS03/ TASSO Collaboration. M.Althoff et al. Phys Lett. 138b (1984) 441
- /TAU84/ TASSO Collaboration, M.Althoff et al., Phys.Lett. 141b (1984) 264 und DESY 84-017 (Feb. 84)
- /YOU80/ C.Youngman. Dissertation, Imperial College HEP/T/820 (1980)

Für die Förderung und Betreuung der Arbeit sowie für die kritische Durchsicht des Manuskriptes danke ich Dr G.Wolf.

Den Mitgliedern der TASSO-Kollaboration danke ich für ihre Hilfe und für die Möglichkeit an diesem Experiment mitzuarbeiten

Besonders bedanke ich mich bei Dr.B.Foster, J.McCardle, Dr.A.Campel, Dr.B.Löhr, M.Dittmar und W.Schütte für die Anregungen und die Unterstützung, die ich erhalten habe.

Frau Siegner danke ich für die Anfertigung der Zeichnungen.

•

DANKSAGUNG