Internal Report

DESY F1-90-01

January 1990

How to Get Started on a VAX
(Another Primer)

K. Gather

DESY behalt sich alle Rechte fur den Fall der Schutzrechtserteilung und fir die wirtschaftiiche
Verwertung der in diesem Bericht enthaltenen informationen vor,

DESY reserves all rights for commercial use of information included in this report, especially in
case of filing application for or grant of patents.

”Die Verantwortung fiir den Inhalt dieses
Internen Berichtes liegt ausschlieflich beim Verfasser”

S X 222222332222 22 2 2 2 20

How to get started on a VAX

{ another Primer)

- DESY - Fl

version 3.0

* *
L *
* *
* -
L *
* by Karl Gather *
> *
* -
- *
L *
AR AR RRRARA A RS TR R AR Ak AR AN N E

Abstract:

This document introduces the reader to some features of the VAX/VMS
system. The intent is to limit the items to the extent needed to have a
comfortable environment for the following users:

- the casual user using command procedures and mail

- the high level language programmer (FORTRAN, C,...) who is
usually not interested in system details or internals

We do assume that some sort of computer has already been used by the
reader,so questions of memory, disk, terminal etc. are not addressed.
Whenever the reader finds a disagreement between this document and the
reality, please give your comments to the author,

How to use this document:

It is recommended to reserve one or two hours of time Jjust to read the
document (depending on experience with interactive systems three hours
may be needed). After this initial reading it is recommended to really
try the commands mentioned while scanning through the document a second
time.

Introduction:

The following topics are addressed (reason included):

1)

2)

3)

4)

S)

6)

n

The File-System (directory structure)

reason: Since all information on the computer is stored in or retrie-
ved from files, the major features of files { names, direc-
tory-structure) have to be known to the user to efficlently
structure their work.

The Command Language {DCL) and HELP

reason: Mandatory for the use of a computer is the way commands can
be given to 1it, it is not just a list of commands, it is a
concept (hopefully). The HELP structure and the availability
of HELP within the commands is essential for the casval pro-
grammer.

Command Procedures
reason: The first thing the user wants to accomplish is how to get
rid of the ever repeating work (commands).

Definition of Symbols

reason: The second thing the users want is to set up special symbols
meaning more to them than the standard commands or to have
their special short-cuts for the commands that would become
ever longer with increasing skill,

Logical Names

reason: To become more and more independant from the actual hardware,
the users want to set up a logical "world" for their develop-
ment, so having adopted the logical world to a new machine,
everything should run again.

Utilities
reason: Some things are essential prerequisits for the use of a com-
puter system (e.g. Editor, Mail,...}. Here we discuss EDT and

LSE to some extent, MAIL is discussed to help the user set it
up in the most appropriate way.

The Programming Cycle

reason: A brief outline on how to make programs and how to maintain
them on a VAX/VMS system 1s given as a help in getting star-
ted. The example will be in FORTRAN, so I apologize to all
Cf's (meaning C-language fans). The hints given apply however
to all languages.

levels available. If you ommit tree_name, the current directory is assumed.
There is one directory, which is different, it 1is the Root-directory of a
1) The File System (directory structure) disk, which contains a lot of system and storage medium related flles and
its own directory-file. This does not apply to virtual disks, so if youw do not
£ind index-files etc. on your root-directory, you may be on a logically defined
1.1 File naming convention disk. So don't be dissapointed if you do not find the special files mentioned.

The naming convention for files under VAX/VMS consists of three items:
- the file_name (up to 39 characters)
- the file_extension (up to 39 characters)}

- the file_version_number (1 - 99999) 1.3 Protectlion of Files

the name is seperated by a fullstop or period from the extension, a semi-

colon seperates the version number from the rest, so in general a file is Depending on definitions you may have seen already strange letters filling

referred to with : up your screen, e.g.:
tilewname.file_extension;file_version_number LOGIN.COM 3/4 (S:RWED, O:RWED,G:RE,W:RE)

Examples: The information within the parentheses is showing the protection of a file,
Event Display.FOR;10 this is the most obvious and most effective way to rule access to your files
RUN_6590_Summary.Plots:1 and it is completely up to you to do what seems to be appropriate. The follo-
Standard_Definitions.com:110 wing classes for the access are distinguished by the filing system:

Some extensions are known to the system as special to allow ease in using S = System

them {(i.e. default extensions, if they are not used the the non default ex- O = Owner (e.g. you)

tension must be declared explicitely) : G = Group (depending on the local organisation you may be allocated to a

special group, e.g. [ONLINE] }

FOR normally used for FORTRAN source files W = World (anybody not in S5,0,G is in W, especlally any access made via
C normally used for C source files network !}
08J normally used for object code (output of the compiler)
EXE normally used for files containing executable code The protection shown above is the one normally recommended and set as the
LIS normally used for files containing a line printer output default one (at least on machines the author is responsible for). Here the
MAI normally used for Mail files meaning of that protection mask in ordinary language:
COM normally used for files containing command procedures
DIR normally used for directory files (folders) System may Read from, Write to , Execute or Delete this file

The Owner may Read from, Write to , Execute or Delete this file

Most services support the so called "wild-card”, e.g. the name *.FOR; * Everybody within the group may Read from or Execute this file

would address all files with FOR as extension in the current directory. anybody may Read from or Execute this file

If you want just to wildcard a character, the sign % i3 to be used. A

few legal wild cards are displayed below when used in a directory So the meaning of the letters RWED is as follows:

command (see chapter 2):

R = read access
$ DIR *.FOR;* displays file information for all W = write access
files with extension FOR E = execute access
$ DIR DESY_*.accounts;* displays file information for all D = delete access
files starting with DESY_ and having
the extension accounts The protection given to a directory rules the possibilities to work in that
$ DIR DESY_F%%_members.doc displays file information for all structure, e.g. if the directory file "task.dir" does have the protection
files matching the name when the two (S:RE,O:RWE,G:RE,R} the following rules apply:
characters at the places of the % are
arbitrary. The System may read or execute files being in that directory,
the Owner may read or execute files being in that directory or may create
new files,
the group members may read or execute files being in that directory,
1.2 Directory Structure everybody else will learn nothing at all about files in that directory.

As already mentioned im 1.1 the name LETTER.DIR indicates a folder or
directory. It is a file created and maintained by file manipulation commands
and its nature is indicated by the extension DIR. This concept of maintaining
a directory as a file easily allows for a tree structure for the directory ,
which should be familar to PC users.

Each tree starts with a top directory, normally this will be the directory
you find yourself when you login to the VAX. However it should be noted, that
a subdirectory is the top-directory of all lower levels, so the concept does
not change. A tree is referred to by

{tree_name,..]

where the three dots are significant. All lower levels existing are affected
by a command using the syntax (name...]. Note that there is a maximum of eight

y . —Y-

2) The Command Language (DCL) and HELP

The Digital Command Language (DCL) is used to direct the VAX/VMS system to
do the service requested. DCL commands can be issued, whenever the prompt

of the process is there (if you do not modify it yourself, your prompt will
be a dollar (§), telling you VMS is ready to accept your directives. DCL
commands are structured in the following way:

§ command/qualifier operand/qualifier <Return>

There may be many qualifiers separated by slashes and one or two operands,
put only one command. The VAX HELP will tell you what qualifiers are valid
for a certain command and what the default values are, i.e. what will be
assumed by the system if you do not mention the qualifier at all. The
command can be 1ssued whenever the § is displayed, just by typing it and
finishing by hitting the <Return>-key. The <Return>-key always finishes a
command input. As long as you have not pressed it you may correct your
command, 1.e. Line-Editing 1s possible. A few hints that may ease you in
getting familar with the Line-Editing:

<CTRL>H brings you to the beginning of the current line
<CTRL>E brings you to the end of the line
<CTRL>A switches between insert and overstrike mode

<CTRL>B means that you have to press the <CTRL>-key and the "H"-key at the
same time. We should briefly mention two more such couples you will use
quite a bit:

<CTRL>Z normally finishes the current running mode, e.g. finishes the
mail, returns to command mode in editor, ends a utility,..

<CTRL>Y normally finishes the current running image in a "brutal”®™ way,
and returns to the command mode (it basically interrupts like
an error condition). For those coming from a POP system, it
corresponds to the former <CTRL> C which also works on VAX the
way it worked on PDP's,

We have assumed here that you already did login. Just in case you
didn’'t, hit the Return key on your xeyboard, the VAX will make some
announcement and ask for name and password.

There is normally no restriction on how often you may login at the
same time on the same machine, which may be a bit confusing the first
time, but will be so extensively used as soon as you know it, that you
never will want to miss it. Up to twenty commands can be recalled to the
screen by hitting the up-arrow-key, with the down-arrow-key you can go
back into the direction of the current command (e.g. if you go to far to
the past). This will be very helpful if you have to type several commands
changing only slightly 1ike in the following example taken from the
section 2.1:

$ DIR diskSonline: [CDAQ.DOCS]*.DOC
$ DIR disk$online: [CDAQ.RC.DOCS]}*.DOC

To learn what commands still are in the command buffer of your session
issue the command

$ RECAll/ALL

and the 20 commands issued most recently are displayed on your screen with
a number in front of each command. If you want to use the 10th command to
1ssue it again (may be slightly modified) you get 1t with:

$ RECAll 10

In order to recall the most recent command with say "run” in it you may
say

$ RECAll RUN

and your current command line will contain the last command starting with
"RUN* (e.g. § RUN Event_Display). This saves you recalling all commands and
then recalling according to the number.

Here we discuss a few of the many commands, those you need to get started
on the VAX, l.e.:

$§ HELP

$ DIRect

$ LOgout

$ CoPy $ REName

$ DELete $§ PUrge

$§ CREATE $ REName
$ SET $ SHow

$ DEFine § DEASsign
$ SPAwn

$ EDIT § FORT $ LINK $ RUN $ SUBmit S MAIL $ LIBRary
§ PRInt

$ MONitor

The VAX is NOT case SeNsSItIvE, as UNIX machines, so you may type as you
1ike, Whenever a command is no longer ambiguous because of the characters
typed, you may stop. The VAX will take it as such. This 1is shown in the
above notation by switching from capital to small letter whenever the
command is already unique. The flrst thing you will recognize is that
whenever you forget something, but it is already clear what you want, the
VAX DCL interpreter will ask for the rest. The second thing is that you will
find "online” HELP in almost all places, so you finally will forget about
manuals. Here a very brief intro is presented, it should allow you to get
started, and then try on your own with the HELP etc. to find the rest of the
goodies. SO just type the command

$ HELP

to see what we will not discuss here. Having typed HELP you will see kind
of a menue of all commands and the VAX-HELP will ask for further input to
give more advice, so select one of the options that you think you might know
something of and play a bit with the VAX-HELP.

2.1 DIR
$ DIR

without operands and qualifiers displayes the files in the current or
default directory. If you want to see another directory, type the fol-
lowing (for example):

$ DIR 2EUS02::diskSonline:[USER.subject.whatever]|*.*;*

This displays all files on node ZEUS02 resident on the disk called
disk$online, found in the third level of a directory tree starting with
[USER] at the top. The " ;* " demands that all versions are displayed.
You can remove wildcards as you please to shorten the output onto your
screen, e.g.

$ DIR *.for

would display the latest version of all Fortran source files in the current
directory. On ZEUS02 we have defined the command DIR to be actually the
following:

$ DIR is $§ DIR/Size/Date=mod/prot

this displays next to the filename the size in blocks, the date of last
modifcation and the protection mask { see 1.3). If it 1s not defined this

way on your system you may want to do so in you Login procedure, see 3). Any
definition of symbols can be done the following way:

- L

$ DIR :w= * DIR/SIZE/DATE=MOD/PROT "

If you want to save the output of the command, in most cases there is a
qualifier to ask the system to do so, for the directory command this is done
with

$ DIR/out=TEMP.1l1s * . doc

this will put the output normally going to the screen onto the file TEMP.LIS.

2,2 Logout

closes the session you currently are in. If you went to a subprocess by saying
SPAWN (see 2.8), the LOgout command will return to the main process. Whenever
you finish work, do not forget to logout, so nobody can continue your session
and do something undesirable with your flles etc.

2.3 COPy and REName
The command
$ COPy namel.ext name2,ext

will make a copy of file namel.ext to a file name2.ext within the current direc
tory; without having specified the version it will only affect the highest or
last version. Normally (when getting started) you may want to copy something
from a different directory or even device into your current directory to play
with it, for example:

$ COPy SYS$SYSDEVICE: [partner.commands) joke.com *

will make a copy of the file joke.com which resides in the specified directory
into the directory you currently are in, and the copy will be your own file you
can modify with EDIT.... Because of the wildcard the copy will have the same
name *joke.com”,

In order to give a new name to your file you do not have to copy it, a simple
REName command will do it:

$ REName hunde.txt junk.waste

will change the name of the file "hunde.txt” into the name "junk.waste”.
Because of the file system structure discussed in chapter 1 it is easy to
“move™ one file from a specific place into another one, provided protection
mask and access rights allow for it:

$ REN Water.Bottle diskSonline:[CDAQ.Goodies)Whiskey.Bottle

will put the file "Water.Bottle” from the current directory into the directory
[CDAQ.Goodies] as Whiskey.Bottle without actually performing a copy but just
changing the directory files accordingly. This is a very effective way of
“moving around” files without duplicating them and/or doing a lot of I/O. Note
that this will only work if the source directory and the destination are on the
same physical disk and 1f the access to the directories is allowed in the way
necessary for the operation, l.e. the process has to have (RWD} access to those
Note, that it is up to the user to make sure that the content of a file has some
connection to the name.

2.4 DELete and PUrge

Having told you how to duplicate information by doing a COPY it is fair to the
SYSTEM-manager to tell you how to delete files from the directory and how to
clean your area,

$ DELete *.*;*

1s obviously a very dangerous command, it will erase all files and all versions
in the current directory unless you have protected the files against deletion
{ see 1.3).

$ DELete name.ext;3
will delete exactly the version 3 of the file "name.ext”,
$ DELete name,ext:

will just delete the last version of the file "name.ext"™. I have made a
redefinition of the delete command to protect myself against erraneous deletion
in the following (see also 4):

5 DEL*ete :== " Delete/confirm "
$ KILL :== " Delete/log "

/confirm demands confirmation for each file to be deleted, /log displays

at least what is going down the drain. The use of the "*" in the definition
shown above specifies the characters mandatory for the command to become
unique, 80 this allows to type DEL, DELE, DELET or DELETE and always doing the
same.

More frequently used is the PURGE command, which is essential to get rid of the
many versions of a file you may accumulate in the course of your development
work., With for example,

$ PURge *,FOR/KEEP=2

you delete all but the last two versions of all Fortran source programs in the
current directory. The protection of the files and the ownershlp may however
not allow that, depending on where you are. If you omit the /KEEP qualifier,
all but the last version are deleted.

2.5 CREate and REName

The Create command is only discussed in terms of creating directories, for
all other flavours just do "$ HELP CREATE” and educate yourself. The command

$ CREATE/dir [.sources]

will create a subdirectory to the directory you are currently in. You have to
be allowed by the protection mask of the higher directory with write access,
otherwise you will not be able to create a subdirectory. Having created a
directory, you are by no means bound to keep that name, whenever you want you
may rename it, e.g. the command

$ Rename sources.dir code.dir

will change the directory name from SOURCES to CODE. This rename will work on
any file to which you have write access. So you will not rename my file if I
have protected my file appropriately. Try as a starter just the followling
commands:

$ create/dir [.test]

$ create/dir [.log_files]

$ dir

and you will find the directory files in your current directory. It 1s of great
advantage to structure your area in a reasonable directory tree structure

(see 6.2 and 7.1).

2.6 SET and SHOW

2.6.0 The many SET commands

From the title of this section you may already have guessed, that we
will not be able to discuss all “SET" commands in this primer. You can
~SET® almost everything on the VAX, please use the VAX-HELP to learn the
rest.

2.6.1 SET DEFault

This command allows you to select which directory is to be the current/default
directory. You typically will "go® in this way to the directory most of the
files you want to work on are located. For example

§ SET DEF [.MAIL)

will put you in your mail directory, assuming that you have it and that you
were in your top-directory when issuing the command. This tells you two things:

- whenever the directory expression is not complete, the command refers
to the current directory for making the command complete,

- whenever something is not mentioned {e.g. the disk} it is assumed to
atay the same.

In case you want to go to a directory on a different device, you type for
example

$ SET DEF dual:[x.y]
If you now say
$ SET DEF dual:

VMS will put you to the same directory {X.Y] on dual. If that doesn't exist
you will see the appropriate error message. You now cannot see any file because
you are in a not existing directory, so you have to set yourself to a legal and
existing one first (e.g. your top-directory,..). If you want to go up one
level of directory, you may say

$§ SET DEF [-)

which 1s very nice since it is short. Another nice use of the "-" {s for the
case, you want to go from one subdirectory to another one on the same level in
the same tree { natural if the work is grouped reasonably):

$ SET DEF [-.another_subdirectory]

2.6.2 SET PROTection

As we have discussed already in section 1.3, protection is the easy way to
rule access to your files and directories. Obviously you want to have a default
protection for the standard files and a “high® protection for *special® files
{e.g. mail).

§ SET PROT= (S:RNWED, O:RWED, G:RE, W:RE) /default

will be the protection of all files you generate after having issued this
command. If you now say

$ SET PROT file-name

the file "file-name” will get the default protection. Just create a file to
see your current default protection and decide whether you like it, Note
however, that protection masks are inherited, i.e. if you edit a file, the new
generation will have the same mask for the protection as the previous gene-
ration. If you want to protect a file from being purged or deleted (even by
yourself), you may want to say

$ SET PROT=(S:RWE,O:RWE) flle-name

assuming that the protection was as the above mentioned default one. If you
don't mention G or W, this part of the protection mask is not affected. In
order to completely remove access for a specles, you can issue

$ SET PROT=(W) file-name

which will not allow any access for users being not in the system or group
category. So the command

$ SET PROT=(S,0:RWE,G,W) mail.mai

is appropriate for the personal mail. A system manager still would be able to
look into that file, however he has to obey the laws about keeping the data
confidential and not doing it just to satisfy his curlosity.

2.6.3 SET TERMinal

Standard terminals (VT320, VT340,..) and Emulators on PC's have a lot
of parameters that can be set according to the need of the user. A few
commands of that sort are discussed here.

$§ SET TERM/echo
$ SET TERM/noecho

switches the terminal display mode to the different values, SO you either see
what you type (echo)} or you don't. When you type your password, obviously your
terminal is set to noecho. If you detect that you cannot do line editing of
commands, try the following command:

$ SET/TERM/line_edit
To change the display width and length, two comands are useful:

$ SET TERM/WID=132
$ SET TERM/PAGE=40

will tell the VAX it should display 40 lines and 132 collumns on your display.
This doesn't make sense if your terminal is not capable of doing so, but can
be very nice for line printer output viewing or editing large documents. Again
feel free to find more information by typing

$ HELP SET TERM

and looking up all the other possibilities.

2.6.4 SET PROC/NAME

Whenever you are starting to work under different assumptions, and eventually
at the same time, you might want to give the two sessions different names.
Since the username is the same for the session, there is a way to modify your
processname the way you like it. The command doing this is e.qg.

$ SET PROC/NAME="IDEFIX"

In the above displayed example the process name is changed to IDEFIX and hence
the user could call another session OBELIX and by that distinguish between the
two processes. VMS will give the first session of user GATHER the process name
GATHER, the second one will get the name of the terminal port used (e.g. TXA3
So it 18 useful to decide oneself on the process name,

2.6.5 SET PROMPT

You may want to change the $ sign, also called the prompt. This can be rather
helpful, if you want to remind yourself about your current situation, e.g. yo
may want to remind yourself which directory you are in. Below, in chapter 3 o
command procedures, you will learn an example how to deo that in an automatic

way if you wish. Here we just show the command modifying the "$" prompt to tr

- -

prompt "xyz>" and the resulting display:

$ SET PROMPT="xy2>"
xyz>

This 1s extremely useful, if you have different accounts for different purposes

2,.6.6 SET HOST

Since you find normally lots of VAXes in one place or the one VAX is connected
to the Wide Area Network with the DECNET protocol, you should know how to login
from one VAX to another without leaving you session:

$ SET HOST name::

will bring you right to that VAX called name and you can login there if you havs
an account as well. This command has a very strong application even if you are
not on DECNET with other nodes. The way you will want to use it immediately is

$ SET HOST 0::

" Which command will login you onto the same node again. There are two major
reasons why you may want to do so:

- You want to login onto the same VAX another time as a different user without
leaving the previous session and without using a second terminal.

- You have done a lot of work and you do not know whether you current problem
1s caused by all the previous commands you do no longer remember. So it is
very helpful just to login as yourself and try the "new" sesgion which will
not be burdened with history.

If your VAX 1s connected in some way to the public network {in Germany DATEXP),
the following command allows you to connect directly to any service conforming
to the X.25 standard:

$ SET HOST/X29 Number
Where Number 13 a long serles of digits (e.g. 45400053029).
2.6.7 SET PASSword

Finally you should know that you may change your password at any time it seems
convenient for you, i.e. noone else needs to know your password and noone else
should know the password. A few exceptions could occur for special users, but
these will not be discussed here. The sequence

$ SET PASSword

0ld password: NONTRIVIAL

New password; Reallynontrivial
verification: Reallynontrivial
$

will set your Password from the value NONTRIVIAL to the value REALLYNONTRIVIAL,
Your System Manager may have defined constraints on the minimum length and on
the words allowed. I advise you to use a strange easy to remember nonsense com-
bination, e.g. "blueisyellow” or "beatoftels"....

2.6.8 The many SHOW commands
Almost everything you can SET you also can show, e.qg.
$ SHOW DEFault
$ SHOW PROCess
§ SHOW TERM
In addition you can inform yourself about a lot of things you cannot SET,
because it 18 either the System-Managers task to set it for everybody or it is
the result of other operations, Here are a few examples you may want to know as

- ,4,[_.

a starter, again feel free to look up the possibilities in the VAX-HELP as soor
as you please.

defined and if has been defined, what it is
displays the value of the symbol xyz, if it has
been defined

$§ SHOW TIme shows the system clocks time and date

$ SHOW USers displays the users currently logged in

$ SHOW SYS displays information about all processes on the
system you are logged in to

$ SHOW QUOTA tells you, how many blocks of disk space you have
used and how much is still available

$ SHOW NET will tell you the network available to the node
you currently are on

$ SHOW Queue/all will display all gqueues defined on your VMS-system

$ SHOW Queue/all/full will display further detailes (e.g. protection) of
queues

$ SHOW Queue x displays your Jjobs in the gueue x

$ SHOW DEVice displays all devices avallable to the system

$ SHOW DEV DUA displays all disks of the type DUA

$ SHOW LOG xyz displays whether a logical name for xyz has been

$

SHOW SYMBol xyz

In "SHOW LOG” and “SHOW SYMBol*" commands wildcards are allowed, e.g.

$ SHOW LOG DISK* displays all logical names {(see chapter 5) starting

with "DISK"

$ SHOW SYMB * displays all symbols defined for that session

Please type “"HELP SHOW" to get an idea of the other things you can show on a
VAX,
2.7. DEFine and DEASSign
The DEFINE-command sets up logical names. The standard user may want to use it
in order to make their programs more flexible/portable. Here we 3just give the
syntax:
$ DEFine/process TAPE $1SMTAOQ:
will define for the process issueing this command a logical name TAPE. Whenever
TAPE 18 used, the more messy string will be taken for it. The application for
this will become obvious in chapter 5. If you want to get rid of the above
issued definition, you may type

$ DEASsign/proc TAPE

The normal user will not be allowed to issue definitions for the overall
system, hence only the qualifier /process is mentioned here.

2.8 SPAwn
The command

$ SPAWN

will create a subprocess with the identical setup of your current process.
One of the most obvious applications is the following:

You are in LSE and suddenly recognize that certain commands are required in
order to reasonably continue your edit session. You hit the DO-key ({or <CTRL>Z)
and issue the command SPAWN. Now you find yourself in DCL with an ordinary $
prompt. You issue the commands you want and then you logout of the subprocess
by issuing an ordinary $§ LO and back you are in the command line of LSE.

2.9 Some more useful commands

$ EDIT $ FORT $ LINK $ LIBRary $ SUBmit $ MAIL

e

2.9.1 EDIT
$ EDIT filename

envokes the standard editor on that system (e.g. EDT) to edit a file with the
name "filename®. If the file i1s already existing, the editor will read the last
version { you may specify an older version) and create a new one, For a few
more details see chapter 6.1. By typing

$ EDIT/RBAD filename

you specify that you cannot write a new version of that file just by finishing
with "EXIT* rather that "QUIT®. You may want to do that in case you read some-
one's file and you want to be sure that you don't modify it by accident.
Another essential qualifier when envoking the editor is

$ EDIT/RECOVer filename

which tells the editor it should take the journal file and redo the editing
journaled there. This is a feature that stems from the time VAXes used to crash
somewhat more often than nowadays. The journal file is kept automatically when
you edit, so if you or the machine just interrupt the session, you can go back
to the situation you left by the above command. In case you wonder, just do a
lot of fancy editing for curiosity and cancel it by <CTRL>Y, Now do type the
appropriate "edit/recover*® command and watch the VAX doing the editing once
more. Normally you come within a few commands right to the place you left.
Please feel free to fool around with the editor before continuing, i.e work
through chapter 6.1 if you like and come back.

2.9.2 FORTran
$ FORT filename

filename envokes the fortran compiler for the source file "filename”. The
standard way of envoking is (e.q.)

$ FORT/LIST TEST
This will envoke the standard Fortran compiler, assuming a source file TEST.FOR
and it will generate file TEST.OBJ and a l1isting TEST.LIS. This glves a feeling

how the "standard extensions” mentioned in chapter 1 become useful. You also
could have done the following:

$ FORT/LIS=DOGS.CATS Prime_Numbers.Privat

which is very unusual but possible; this will create a listing DOCS.CATS and an
object file Prime_Numbers.OBJ.

2.9.3 LINKage editor

$ LINK TEST

will generate an executable file TEST.EXE provided there is a file TEST.OBJ on
the current directory, that does not refer to any other service than the ones
provided by VAX/VMS. If you want to link several modules and also a library the
following command ts a good example:

$ LINK/EXE=TESTER Testet_main,module_l,..,module_n,Library_l/lib

This command generates an executable file TESTER.EXE by binding the follwoing
files to one module:

Tester_main.ob)
module_1.0b}

module n.obj and the library Library_l.olb. The /LIB qualifier tells the
linkage editor that a library is to be expected.

2.9.4 The Librarian

The VAX supports the following types of libraries:

- OBJ code libraries extension .OLB
- text libraries extension .TLB
~ HELP libraries extensionn .HLB

Libraries are very helpful in making program development easy. It allows the
user to keep the source modules in different files for the ease of editing and
to put the object code into a library for the ease of linking. To create a
library, just type

$ LIBR/create
and answer the questions appropriately.

The following commands will cover 30% of your needs if not more (see also
chapter 3 example 3.3).
$ LIBR/I xyz library insert the new member xyz into the library, the
assumption is that xyz.OBJ is in the current
directory and you are dealing with a OLB-library.

$ LIBR/R xyz library replace the existing member xyz by the new xyz
$ LIBR/D xyz library delete member xyz from the library

$ LIBR/E xyz library extract the member xyz out of the the library
$ LIBR/List library 1list all members of the library

$

LIBR/List/Full 1library list all members of the library with date

2.9.5 Run or Submit a job
®ith the command
$ RUN program

you will execute a file program.exe from your current directory. Obviously
you also can say

$ RUN [colleague.utils]HP

to call a program from somewhere else for execution (provided your colleague
allowes the execution by the protection mask). Instead of running a program
from a terminal you may want to put it into a BATCH queue, especlally if you
expect the program to run a while.

The command

$ SUBmit RUNFILE

will execute a command file RUNFILE.COM, that could just contain one line,
namely * $ RUN [colleague.utils]HP " (see also chapter 3) into the default
queue of the system., For some further details check the VAX HELP for SUBMIT.
It should be noted here that the output of the program (if the program doesn'
explicitely redirect) will be put into a file
[your_login_directory)RUNFILE.log

if you don't specify differently (see example 3.4) in chapter 3.
The following switches are recommended to be used in the submit command:

$ SUBmit/noprint/keep Runfile.com
which obviously can be made rather userfriendly by the symbol assignment

as follows:

— ay-

$ SUB*mit :=="submit/noprint/keep”
2.9.6 How to envoke mail on a VAX
$ MAIL

1s the command do mail (sending and receiving). The author recommends to say
instead

$ MAIL/EDIT

which connects you to the editor of your choice (see 6.2) which makes life
more comfortable. If you have created the file you want to send already, you
may type

$ MAIL filename,ext

and then just answer the questions of the mail utility. If you want to learn
more about mail right now, please read chapter 6.2 and then continue.

2,10 How to print

Usually the user will just say

$ PRInt file name.ext

and the file file name.ext will be printed on the standard printer queue. On
most installations several gqueues are offered (e.g. Laser-printer, Line-Prin-
ter,...) and special commands will be defined for those. Here we Jjust want to
mention a useful qualifier to the print command which might be good to know
depending on the installation:

8 PRInt/NOHEADer name.ext

will make sure, that no file information 18 printed on each page. This is

the default, however it might have been changed on your installation. In case
you want this line on each page, you can ensure that by

$ PRINt/HKEADer name.ext

2.11 How to Monitor

The VAX offers a lot of monitoring tools to see the performance of the system
and most of them are available to the average user as well and might help to
understand certain performance problems without nerving the system manager in
all cases:

$ MONitor PROCess

will display the processes currently known to the system and some of there
current characteristics (page faults, cpu_time, priority,..).

$ MONitor MODes

will show you how the current system modes are occupied, e.g. heavy IO will
load the interrupt stack and the Kernel Mode and slow down the overall per-
formance.

$ MONitor CLUSter

will show you the overall occupancy of the cluster devices (CPU's, Memory,
Disks, ..).

$ MONitor PROC/TOPCpu
will continuously display the fraction of CPU-time used by a particular

process being one of the predominant users (only the eight largest users
are shown}.

-
A
)

3) Command procedures

DCL procedures are a way to first edit a sequence of commands you want to
execute and then execute them as if issuing them directly. The way VAX/VMS
supports this feature is described shortly and by no means to the greatest
detail.

A command procedure usually is a file filename.COM containing a DCL-command
in each line. The commands are written as if one would have to type them in,
obviously the system response has to be anticipated.

The most famous command procedure is the one always executed when you login
to the VAX, i.e. the LOGIN.COM in your top level directory. Example 3.1 shows
a LOGIN.COM file I usually have. The comments inline ($! lines) explain
briefly what i3 done and I hope that the reader finds it self explanatory. To
fully understand the following examples you need however to know about logical
names and symbols, so please read chapter 4 and 5 before going into details of
the following examples. There are two ways to execute a command procedure:

a) interactively with the command
$ @procedure,com

b) in batch mode with the command
$ submit procedure.com

This example has *procedure.com” as filename for e change. When you login to
the VAX, case a) is automatically done for you with your LOGIN.CCM file.
Normally a system wide login-procedure is executed before your login.com has a
chance to do anything. This is a service and makes life easy for everybody,
however it may cause a problem in the rare case that a definition made by the
System login fools your LOGIN.COM. The easiest way to settle those questions
is to have an empty LOGIN.COM and check the symbols and logical names existing
then.

winthormlnurM(nOim«nobm<nalm<n«)m(n«»mcnavm(noym(n«7m(»o!0<~ubm

@sysSmanager:advanced _definitions.com
mail :=="mail/edit/self”

Inquire yesno ™ Do you want system stuff?”
IF yesnoc.eqgs."Y” then goto details

GOTO FINIS

Iandb Ak

details:
!ti’.ﬁ't.
show err
show sYs
!ttiiﬁt"

FINIS:
!ﬁ'.tiltt
show time
users

H

write sysSoutput ™ Do special definitions”
@ [GATHER.UTI1S]KEY_definitions.com
@(gather.utils]specials.com

1

!i.ﬂ"'ﬁﬁ

31000:

!Q.‘itt't

I=0

IR LA A0 0

$1100:

!QQ..""

I =1+1

ISYMB :='I’

ON ERROR THEN GOTO S1100

PROCNAM :="KaGa''ISYMB'"®

SET PROCESS/NAME='PROCNAM'

set prompt=" [7:1m'‘'procnam'> {Om™
write sysSoutput " Do MODEL setup
@MHI_Directory:mhi_login

write sysSoutput " Do ADRMO setup "
ADAMODEF

exit

Example 3.1: LOGIN.COM

execute another procedure
redefine mail command
ask for a decision

act depending on input
unconditional jump
comment line

label

Show errors recorded by system
Show active processes

show date and time of system
show interactive sessions

write a message to terminal
execute another procedure
execute another procedure

another label
initialize a counter
another label

increment a counter

make a string of that value
consider errors

compose a string from string
give yourself a name

set a nice prompt as reminderx
write a message to terminal
execute another procedure
write a message to terminal
use a special command

finish the procedure

IF the command procedure is supposed to write something to the terminal, this
can be done by a line such as:

$ write sysSoutput " Hello, here I am "

Just type the line above and see the result on your terminal or write a short
procedure like in example 3.1. Note another fact you may have detected by your-
self, whenever an exclamation mark is on the command line, the rest is interpre
ted as comment. Hence the possiblity to comment INLINE.

Some nice features provided by the fact that parameters can be given to the
command procedure become obvious in the following example, which moves to the
higher level directory which is the parent directory of the one you currently
are in and it executes a LOGIN.COM file eventually found there. A similar a bit
more complicated command procedure exist to go down a level. Just try to think
why it has to be more complicated.

SYMB1 = FSLOGICAL ("SYSSDISK") + FSDIRECTORY ()

SYMB2 = FSLOGICAL("SYS$LOGIN™)

IF 'FSLOCATE(".",SYMBl)' .EQ. 'FSLENGTH {(SYMB1) ' THEN GOTO TOP
SET DEFAULT (-)

SHOW DEF

SYMB1 = FS$LOGICAL ("SYSSDISK") + FSDIRECTORY {)

SYMB2 = FSLOGICAL{"SYS$LOGIN")

IF 'FSLOCATE(".",SYMBl)' .ne. SFSLENGTH (SYMB1) ' THEN GOTO doit
IF SYMB1 .EQS. SYMB2 THEN GOTO doit

EXIT

t

doit:

@login

exit

1

reset:

set def ‘symb2'

SHOW DEF

GOTO doit

exit

1

TOP:

IF SYMBl .nes. SYMB2 THEN GOTC reset

WRITE SYSSOUTPUT "You are already at your top level directory.”
EXIT

o anbonnnannannLonnennn

Example 3.2: UP.COM

if pt1 .eqs. "C* then goto compress
A more refined way to play with parameters and actually a quite useful tool goto cry2
1

is given in example 3.3, It is shown to give a hint on how to structure a

$

3
command procedure with the IF-THEN-ELSE facilities available to DCL since S tarrae
VMS 5.0. $ Liste:

s !it*!'

$ 1ibr/1list/full libScurrent

$ exit
$! help maintain Libraries § lhdxhrkne
$! current library is to be kept as logical name $ compress:
$ 1 in libScurrent S Indwkndan
$ 1 P1 = command $ libr/compress/log lib$current
$ | P2 = module $ 1ibr/list/full libScurrent
$! $ exit
$ wout :==" write sysSoutput ~ $ Ianwnaw
$ 1f £Strnlnm({*1ibScurrent”) .eqs. ** then goto cry $ 1lidbido:
3 ’ s !Qtt'i*
§ lene $ if pl .egs. "F" then goto find
$ CRY: $ if p1 .egs. "L" then goto listmem
§ r1ean $ if pl .eqgs. "I" then goto insert
$ curlidb = f£Strnlnm(*lib$current™) $ if pl .eqgs. "R" then goto replace
$ GOTO WORK $ if pl .eqgs. "D" then goto delete
§$! $ i1f pl .eqs. "E” then goto extract
§ wout " Please set first current library by the - $ goto cry2
$ wout " logical name [7,1m libScurrent ([Om ~ $!
$ exit § lwwas
$! $ find:
-] § lanan
$ 1eane s 1ibr/1ist/full/only='p2 1lib$current
$§ help: s exit
s !ﬁ'.' s !tt.iiti
$! $ listmem:
s wout * - s P hdrkhhhk
$§ wout " + - - e it hai + $ 1ibr/list/full/only='pZ 1lib$current
$ wout " | [7:1m LIB_Manipulation.com [Om (I $ exit
$ wout " + - o e e + " $ Innkaen
$ wout * * $ insert:
$ wout *= [7:1mpl (Om= command {7:1mp2 [Om= member affected/selected " § Iaxkunx
§ wout ™ without any parameter the current library is shown © 5 libr/ins/log lib$current 'p2
$ wout * The following commands are supported: " $ exit
s ! s !tt.tt't
$ wout " ~-eeocomcooo—e-o - -- -- " $ replace:
$ wost " ([7;1m F [Om find member p2 in library lib$current * § lhrkanin
$ wout " % $ libr/repl/log libScurrent 'p2
$ wout * [7:1m I (Om insert member p2 into library lib$current ™ $ exit
S wout " " § Indkhas
$ wout ™ [7:1m R (Om replace membexr p2 in library libScurrent " $ delete:
$ wout " " § Ixkudan
$ wout " [7;1m D [Om delete member p2 from library libS$current * $ libr/delete='p2/log lib$current
$§ wout * " $ exit
$ wout * [7:1m E (Om extract member p2 from library libScurrent * S Ihearans
§ wout * " $ extract:
$ wout ® [7:1m € [Om compress library libScurrent * $ leernane
$ wout " " $ libr/extract='p2/log libScurrent
$ wout * (7;1m L (Om 1list library content (p2 optional) of lib$current " $ exit
$ wout ~ * § Iahkk
$ wout ™ [7:;1m B [Om this HELP " $ cry2:
$ exit § 1aken
$! $ wout " no Name -> no action ®
§ r1enss $ wout “* see you later "
$ MORK: $ wout * Your current library is set to ™
§ lenen $ wout ™ -> " ticurlib! "f <. ®
$ If p2 .eqgs. "" then goto nolib S exit
$ goto libido
$!
§ lenses Example 3.3: LIB_MANIPULATION.COM
$ nolib:
s !ttﬁt.
§ 1if pl .eqs. "H" then goto help The following shows the way to deal with the fact, that recursive definitions
$ if pl .egs. "L" then goto liste . are not allowed and hence certaln things have to be redefined. It is a procedur

¢ 4 -2 0 -

envoked by the command SUBmit, which is itself defined as symbol,

¢ 3f pl .eqs. "* then goto complain t check on inpul
§ goto doit

$ complain:

$ write sysSoutput " I need a name for the command file to be submitted ! *

$ exit

§ doit:

$ sub*mit (== t because submit was redefine:
$ place = Fstrnlnm(*dir$logs™)+pl+”.log" ! define a log file

§ set ver ! gset verification activ

§ submit/noprint/keep/log_file='place 'pl ! do the submit

$ set nover t switch to non verification
$ sub*mit :==* @dirS$util:submitter.com " ! redefine submit again

$ exit ! done

pxample 3.4: SUBMIT.COM

4) Definition of Symbols

The normal users { after a first time of having learned the standard commands)
will find a lot of “long” commands repeated quite often, so they feel a desire
to give the computer a shortened command, even in view of the fact that they are
already allowed to stop typing as soon as it is unique. Instead of

$ @dua0: [gather.commands)Standard_definitions
you may prefer just to say
$ STA

This you achieve by having the following line in your login.com file for
instance:

$ STA*ndard :== " @dual:({gather.commands]Standard definitions *

which will allow the user to stop at any character after STA to execute the
rather long command. Below I have listed the definitions made in our group for
the ease of use just to give an impression. It may be worthwhile to look in
greater detail into the section dealing with Directory-commands and purge and
delete.

Example 4.1

$!

$ DIRF 1== *Direct/security/size=all/date=created"
$ DIRO :== "Direct/owner/size=all/date=created”
$ DIR ;== "Direct/size=all/date=created/prot"
5 DIRs 1== "pDirect/columns=4"

$ DIRDIR ;== *"Direct/columns=4 *,DIR"

§ down (== *@dirS$util:down.com"

$ up 1== "@dir$util:down.com \"

$ wd ;== "@dir$util:wd.com”

$!

§ set prot-(a:rued.o:rwed,g:re,w:re}/def

$ save :=="get prot=(s:rwe ,o:rwe ,g:re,w:rej"

$!

$ deltete :=="delete/confirm "

$ Kill i=="delete/log "

$ rew*ind :=="get magtape/rewind "

Set of Symbol Definitions found in SYLOGIN.COM

If you want to get rid of symbol definitions in order to avold unforeseen
misinterpretations, this can be done via

$ DELete/SYMBOL xyz

where the defintion of the symbol xyz is cancelled,

7l

5) Logical Names

Logical names are a very powerful way to make programs and procedures more
flexible or portable. A logical name is a convention of translation accepted
either on

- system level or

- group level or

- process level

and can be understood as a sequence of translation directives (tables) for
the system to interpret your commands and strings. The different levels are
protected by priviledges so not everybody can modify the system wide trans-
lation table. Typically devices are named system wide by logical names rather
than by their hardware name. This allowes to exchange the hardware without
the necessity of all users to change everywhere their nomenciature. Two
examples may convey the idea:

$ DEF/SYSTEM DISKSONLINE $1SDUAG:

will allow all sources and all procedures to use DISKSONLINE rather than the
real disk name. So if the whole group is eventually moved to a disk SO0SDUA4:
only programs not using the logical name have be modified. Whenever a user
wants a different translation he can do so for his process by e.g.

$ DEF/PROCess/trans=concealed DISKSONLINE S1DUA6: [MYDIR.)

The VMS system first checks the translation in the process table and then
goes to group and system table. This example shows two more things:

- it 1s possible to define a directory as virtual device, 1.e. the directory
(MYDIR] becomes the root directory for the logical disk DISK$ONLINE,

- You can tell the system to conceal the translation fo the system, such allo-
wing the software to react as if DISKSONLINE: would be a hardware device.

One nice example for using logical names to

have a more general utility is shown in the example 3.3 of chapter 3. Since
the procedure uses the logical name "LIB§CURRENT", everybody by setting this
logical name for his session appropriately can use the procedure for his spe-
cific library.

-2%-

6} Utilities

From the many utilities here only the MAIL and the EDT or LSE editor are
discussed, because these will cover 90% of your needs excluding a few special
cases (e.g. system manager, fleld service,..).

6.1 The Editor

No matter whether you want to use the EDT or the LSE editor, you will hit the
keypad syndrom, i.e. after one hour of moaning you will immediately start the
" never want to miss it * phase. We do not discuss the TPU editor, which has a
lot of power and underlies the LSE-editor, since this really is for experts.

Before going to the explanations of the editor itself it has to be made clear
that editing a file on the VAX is just dealing with a sequence of characters,
where the carriage return <CR> starts a new line; but as a character it can be
deleted or inserted or copied just as any character can. Each line is called a
record, a record can have up to 256 characters.

On the next page is displayed the "keypad” as defined for the EDT- and the
LSE-editor. You may want to recognize that each key has two functions, one if
you just press the key, one if you first press the "GOLD"key and then the key.
Normally “GOLD" "KEY" reverses what “KEY" does.

The editor has two states:

- command mode (the cursor is on the lowest line and a prompt > is dis-
played, to tell you that commands may be issued)

- fullscreen mode { this is the mode you normally are in, i.e. you type text
or manipulate pleces of text via the keypad).

The major functions used in fullscreen mode are (all keys mentioned in " "
are the keypad keys)

FORWard to change mode of operation to the forward direction hit "4
BACKWard to change mode of operation to the backward direction hit "5"
PAGE to move cursor by one page hit "8" in the direction selected
FORMFEED to move cursor to the next FormFeed in the direction selected hit "7"

Delline to delete the line you currently are in from the position of the
cursor to the end including the <CR> hit “PF4"

DelRest to delete the line you currently are in from the position of the
cursor to the end but leaving the <CR> hit "GOLD" "2"

DelwWord to delete the word next after the cursor hit "-", 1f you are in the
middle of a word, the rest until the end is removed

DelChar to delete a character to the left use the key,
to delete the character at the cursor position hit the keypad ”,*

UnDel to cancel the last deletion, hit the "GOLD" key and the key used for
the deletion you want to undo, e.g. *"GOLD"™ "PF4" will undo the last
line delete

cuT move cursor to beginning of string you want to cut, hit “.” then move
the cursor to the first position after the end of the string you want
to cut and hit "6"

PASTE move cursor to position you want to insert the string you removed by
the CUT-operation and push "GOLD" and then "6". The string will be in-
serted before the cursor position.

SEARCH to search for a string, hit "GOLD” "PF3" and the editor will prompt

—.Zq,—

you in the command line for the string. Finish the input by “ENTER",
Hitting "PF3" consecutively will do a repetative search, The search
will work in the direction chosen by the keys 4" or "5%,
Move by Beginning of Line hit "0~ and cursor positions itself at the
beginning of the line up or down depending on
current direction mode
Move by End of Line hit "2" and cursor positions itself at the end of the
line and moves up or down depending on current
direction mode

hit "1" and cursor moves word by word in the direction
of the current mode

Move by Word

other positioning can be done by using the cursors. More powerful operations
are offered by other commands possible in the command mode. Please use the
online RELP to find the commands to REPLace or SUBSTitute a string etc. Last
but not least you have to know, how to finish editing. Hit the DO-key or the
<CTRL>Z and then say "EXIT" if you want to save the work done, say QUIT if you
want to forget what you did. EXIT will generate a new version of the file you
started with and it's version number is increased by 1.

i || s—f-
upP DOWN LEFT RIGHT
PF1 PF2 PF3 PF4
FNDNXT DEL L
GOLD HELP FIND UND L
7 8 9 -
PAGE SECT APPEND DEL W
COMMAND FILL REPLACE UND W
4 5 6 ,
ADVANCE BACKUP cuT DEL C
BOTTOM TOP PASTE UND C
1 2 3 ENTER
WORD EOL CHAR
CHNGCase DEL EOL SPECins
0 SUBS
LINE SELECT
OPEN LINE RESET

6.2 MAIL

The Mail utility allows one to send or receive mall on the VAX, It 1is advised
to say MAIL/EDIT so you come to the editor of your choice rather than using the
reduced Mall editor, Mail is ready for service when you see the prompt
MAIL>
A short sketch through the commands of interest to the general user 1s given:

MAIL> SEND => inititiate a send, mail asks for dest.
dest: node_ name::User_name

MAIL> DIR => shows the current mails available to be
read, i.,e. all mails contained in the
selected folder

MAIL> DIR/FOLDER => displays all folders defined within your
mail file

MAIL> Read # => read message number # from the current
folder

MAIL> DELete # => delete message number #, omitting the #

directs mail to delete the message
currently being read

MAIL> MOVE subject => moves the maill currently selected into
folder SUBJECT

MAIL> SEL NEWMAIL => selects the messages in folder NEWMAIL

MAIL> PRINT => will print the current mail when you leav

the MAIL-utility

MAIL> EXTRACT TEMP . WORK => extracts the mail currently read into the
file TEMP.WORK in your current directory

MAIL> EXTR/Nchead TEMP . WORK => extracts the mail currently read into the
file TEMP.WORK in your current directory
and removes the mail header. This is very
convenient for extracting code etc.

MAIL> FORWard => forwards the mall currently read to an
address the user may specify interactivel:
as inquired by the mail facility

MAIL> Exit => leaves mail

All mail is maintalned within folders, without doing anything the folders

NEWMAIL for new delivered mail
MAIL for old mail
WASTEBASKET for deleted mail

are defined. It is very convenient to sort ones mall in folders related to
major mail subjects (e.g. NEWS, DESIGN, ORDERS, DOCS,...). Having selected
a folder you only see the mall in that folder. Whenever ycu remove the last

mail from a folder, the folder will vanish. Whenever you want to store the
first mail into a folder, VMS-MAIL will ask you whether you want to create
it or not. The author recommends to do the following SET commands within
mail:

creates a subdirectory that will
contain all maill files, so keeps
your top directory clean.

MAIL> SET mail_dir {.MAIL]

MAIL> SET SELF_CCPY REPLY, SEND will send you a copy of whatever you

send or reply
MAIL> SET EDITOR LSE will set your mall editor to be LSE
Some settings are possible that are strongly depending on the system used, here
we mention those more often occurring in one or the other way:
MAIL> SET FORWard node::user_id will forward all messages to the
address node_id::user_id, very helpful
if you travel a lot.
MAIL> SET QUEUE queue_name specifies the default printer queue
in case you say print inside MAIL. Thi:
1s obviously useful, if several printe:
are available, Line Printer for lots o
paper and Laserwriters for graphs and
mail.

Normally the additional features will be found with increasing skill and thus
they are not subject to this primer. On the next page is displayed how the
standard MAIL definition for the keypad is, i.e. you can do a lot just by one
keystroke.

-y~

.

uP DOWN | LEFT RIGHT
— S
PF 1 PF2 PF3 PF4
HELP X
GOLD Fxtract/Mail ERASE
DIR/Folder EXTRACT Select/Mail
7 8 9 -

SEND REPLY Forward Read/New
Send/Edit Rep/Edi/Ext Forw/Edit Show/New
4 S 6 R
CURRENT FIRST LAST DIR/NEW

Current/Edit Fiest/zEDiT | Lest/Edit DIR MAIL
3
1 2 3 ENTER

BACK PRINT DIR
BACK/EDIT [Print/PR/NOT PIR/ST=99999
0 ’ SELECT

NEXT FILE
NEXT/EDIT DELETE
S

_ 20

7) The Programming cycle

7.1 How to organize ones work without tools
Aim: Efficient Program Development

This section describes program development without referring to more
advanced tools than the standard editor, compiler, linker and filing
system.

You will definitely fined the most appropriate way to organize your
work yourself, Here only a suggestion is given to allow you to start
in a way, that is open for improvements and modifications according to
your taste, delivering however right from the beginning some of the ad-
vantages offered by VAX/VMS.

If you develop different packages, it is obviously appropriate to put
each package into its own subdirectory. Here we display a simple direc-
tory tree for a user, who receives mail and has some general documenta-
tion and who works on two subjects (Task_l and Task_2):

node: :disk: [user_name]

node::disk: [user_name.Documents]

node: :disk: [user_name.MAIL}

node: :disk: (user_name.Task_l]

node: :disk: (user_name.Task_l.Commands]
node: :disk: (user_name.Task_l.Data]

node: :disk: {user name.Task_l.Documentation]
node: :disk: [user_name.Task_l.Execs)

node: :disk: {user_name.Task_1.Includes]
node: :disk: [user_name.Task_l.Library]

node: :disk: [user_name.Task_l.Llog_files]
node: :disk: [user_name.Task_l.Save_Sets]
node: :disk: [user_name.Task_1l.Sources)

node: :disk: (user_name,Task_2]

node: :disk: (user_name.Task_2.Commands]
node: :disk: [user_name.Task_1.Data)
node::disk: [user_name.Task_2.Documentation]
node: :disk: [user_name.Task_2.Execs]

node; :disk: (user_name.Task_2.Includes]
node: :disk: [user_name,Task_2.Library]

node: :disk: (user_name.Task_2.Partition_l.Sources]
node::disk: {user_name,Task_2.Partition_2.Sources]
node: :disk: {user_name.Task_l.Save_Sets]

The advantage of sorting once work in such a way is obvious:

Whenever you are in a subdirectory, the amount of information to be
delt with is limited to the subject., This is of advantage only if you
have organized your work in a reasonable way, but that is an assump-
tion for your work which should be trivially fulfilled. This treelike
structure has been so unanimously accepted, that you find it on most
of the widespread systems (UNIX, VAX/VMS, MS-DOS, Apple, Atari,...).

The Top directory (or folder) in the example mentioned above just
contains the following files:

LOGIN.COM
Documents.dir
MAIL.dir
Task_l.dir
Task_2.dir

which allows a very easy judgement about the work and the organization
of the work. In subdirectory of Task_1 we find the following folders:

Commands.dir holding all command files for this task,

e.g, Link command files, setup files,...

- 30 -

bata.dir containing all data files used or made by the file Hunde. for

this task

Documentation.dir holding all documentation for this task should contain e.g. Subroutine Hunde{a,b,c)

Execs.dir holding all executable images related to
this task

Includes.dir holding all Include files (MACROS on IBM)
used in the sources for this task

Library.dir holding all object modules for this task
in a dedicated library

Log_files.dir containing all log_files eventually
created by this task

Save_Sets.dir holding the distribution Save_sets made
with BACKUP for this task

Sources.dir holding all sources related to this task

It is essential for larger enterprises to separate commands from code,
documentation, listings, object-code and linked programs.

Using the commands UP and DOWN mentioned earlier as command procedures
to go from one directory to another and placing the appropriate file
LOGIN.COM into each sub-directory you could set up your own logical
environment appropriate for the subject.

Finally it should be mentioned that in the above example Task_2 is
complex enough to suggest a further division of the source modules into
Partition_1 and Partition_2 respectively. Having done the appropriate
Directory structure, there are a few other rules, that might enhance
your productivity considerably, if accepted and hence regarded in time:

a} DO not hesitate to make the file names expressive enough so they tell
the reader right away what the purpose 1s, e.g.

{CDAQ.Event_Display.DBS]Detector_Geometry.dat - 7.2 How to setup ones environment using LSE,PCA,SCA,...

and not [CDAQ.EVDSP] DTCTRGEC. DAT to be completed in next to next version

b} PURge your files whenever a major step has been achieved, save pre-
vious key-versions with the command SAVE shown in example

¢) MAINtain all object modules in a dedicated library
d) Provide a command file for the linking procedure

e) Establish all regularly occurring steps as commands, SO you won't
hesitate to do proper actions just because of the typing work

f) Use Names defined in include files rather than values hardwired in
your program

e.g. having defined
PARAMETER (RUN_NOT Active = 10)
in an included file allows to check in your module as follows

STATUS = ASK_RUN()
IF (Status .eq. RUN_NOT Active) then

eléeif .

rather than
IF (Status .eq. 10) then....
obviously the first example is much easler intelligible.

g) Name the file exactly as the modul contained, whenever this is
possible, e.q.

