Interner Bericht DESY F11-81/01 Juni 1981

FUNKENZAHLER MIT LOKALER ENTLADUNG UND

HOHER ZEITAUFLOSUNG

von

Gerhard Dietrich

Eigentum der Property of	DESY	Bibliothek library
Zugang: Accessions:	Jan. 200	19
Keine Ausleih Not for Ioan	ne	

DESY behält sich alle Rechte für den Fall der Schutzrechtserteilung und für die wirtschaftliche Verwertung der in diesem Bericht enthaltenen Informationen vor.

DESY reserves all rights for commercial use of information included in this report, especially in case of filing application for or grant of patents.

"Die Verantwortung für den Inhalt dieses Internen Berichtes liegt ausschließlich beim Verfasser"

Funkenzähler mit lokaler Entladung und

hoher Zeitauflösung

Experimentelle Diplomarbeit von

Gerhard Dietrich

Fachbereich Physik der

Universität Hamburg

	2.1	Die Pestovkammer ein weiterentwickelter
	2.2	Plattenfunkenzähler
	23	Aufbau der Pestovkammer
	2 4	Funktionsweise der Pestovkammer
	2 5	Koordinatenbestimmung mit Hilfe der Pestovkammer
	4.5	Rootdingconsections
	3.	Theoretische Grundlagen
	3.1	Energieverlust energetischer Teilchen in Materie
	3.2	Elektronenlawine (Townsend-Theorie)
	3.3	Streamerentwicklung und Funkendurchschlag
	3.4	Ansprechwahrscheinlichkeit
	3.5	Zeitauflösung
	-	
6	4.	UV-Emission eines Funkens und die Konsequensen
	4.1	UV-Emission
	4.2	Kathodenmaterial
	4.3	UV-absorbierende Gasmischung
		Destoukammor
	5.	Konstruktion und Bau der Pestovkammer
	5.1	Druckgehäuse
	5.2	Gassystem
	5.3	Elektrostatische Anziehung der Elektroden
	5.4	Anode
	5.5	Kathode
	5.6	Abstandsstücke
	5.7	Elektrische Schaltung der Pestovkammer
	6.	Ergebnisse
	6.1	Pulsform
	6.2	Spontane Entladungen
	6.3	Zählercharakteristik
	6.4	Koordinatenauflösung
	6.5	Zeitauflösung
	6.5.1	Flugzeitmessung zur Bestimmung der Zeitauflösung
	6.5.2	Flugzeitspektren
	6.6	Lebensdauer der Pestovkammer
	7.	Zusammentassung
	A	Anhang
	Al	Laufzeitkorrektur
		Literaturverzeichniss
		Danksagung

Hamburg 1981

Seite

. . . .

-

Inhaltsverzeichnis

1.

2.

2.1

Einleitung

Die Pestovkammer

Plattenfunkenzähler

. -

1. Einleitung

Aus Elektron- Positron-Streuexperimenten konnten in den letzten Jahren viele physikalische Informationen gewonnen werden. Dazu gehören besonders die Erforschung der Charm-Teilchen, die Entdeckung des schweren Leptons und der Nachweis des Gluons.

Zur Untersuchung der e⁺e⁻-Wechselwirkung werden komplizierte Detektoren eingesetzt. Sie zeichnen sich durch eine gute Teilchenidentifikation aus und können Impulse und Energien fast aller Reaktionsprodukte bestimmen.

Zur Identifikation der Hadronen besteht die Möglichkeit, Cerenkov-, dE/dx- oder Flugzeitzähler einzusetzen, oder eine geeignete Kombination der verschiedenen Zählertypen zu verwenden.

Hier soll speziell die Flugzeitmethode dargestellt und eine Möglichkeit zur Verbesserung der heutigen Flugzeitzähler aufgeführt werden.

Durch Messung der Flugzeit ist eine Teilchenidentifikation wie folgt möglich.

Bei gleichem Impuls besitzen Teilchen unterschiedlicher Ruhemasse verschiedene Geschwindigkeiten. Eine Messung der Flugzeit gestattet so, bei bekannter Flugstrecke und bekanntem Impuls, eine Teilchenidentifizierung. Aus der relativistischen Kinematik folgt für die Flugzeit 7 :

$$\tau = \frac{l}{c} \sqrt{1 + \left(\frac{m_o c}{p}\right)^2}$$

 $l = Flugweg ; p = Impuls ; m_0 = Ruhemasse ; c = Lichtgeschwindigkeit$

Abb.1.2 Flugzeiten für \mathcal{T} , K , P als Funktion des Impulses bei 1m Flugweg .

Die Flugzeitzähler des JADE-Detektors am e⁺e⁻-Speicherring PETRA besitzen eine Zeitauflösung von G =350ps. Bei 1m Flugweg lassen sich damit, \Im - von K-Mesonen bis 600 MeV und Kaonen von Protonen bis 1100 MeV Teilchenimpuls unterscheiden. Die Teilchenunterscheidbarkeit kann durch Erhöhung der Zeitauflösung und durch einen längeren Flugweg gesteigert werden. Ein typischer Speicherringdetektor, wie der JADE-Detektor, besitzt einen Solenoidmagneten $(r_{Spule}^{} \approx 1m)$. Da die Teilchenbahn durch die Spule gestört wird, müssen die Flugzeitzähler innerhalb der Spule angebracht sein. Der Flugweg wird dadurch begrenzt, und die Teilchenidentifikation kann nur noch durch eine höhere Zeitauflösung gesteigert werden.

-1-

-2-

Seit etwa 10 Jahren werden in Novosibirsk Funkenzähler mit einer wesentlich besseren Zeitauflösung entwickelt. 1977 Pestov, Plattenfunkenzähler mit 6 = 30ps gelang es Zeitauflösung in einem Speicherringexperiment am VEPP-2M einzusetzen. Flugzeitzähler des JADE-Detektors, bestehend aus solchen Funkenzählern, würden die Teilchenidentifizierung wesentlich verbessern. Nimmt man für die Flugzeitauflösung G = 50 ps und einen Flugweg von 1m an, so würde sich die \mathcal{T} - K - Unterscheidbarkeit von 600 MeV auf 1900 MeV und von 1100 MeV 3200 MeV auf K - P - Trennung die verbessern (verg. Abb. 1.2).

Die vorliegende Arbeit beschäftigt sich damit zwei Testkammern herzustellen und ihre Bigenschaften im Hinblick auf eine spätere Anwendung in Hochenergieexpermenten näher zu untersuchen.

-3-

2. Die Pestovkammer

2.1 Plattenfunkenzähler

 $S=1/2 \epsilon$, A d E^2

Plattenfunkenzähler, auch PSC (Planar-Spark-Counter) genannt, bestehen aus einem Plattenkondensator mit einer Gasfällung zwischen den Platten. Durchquert ein ionisierendes Teilchen das empfindliche Volumen, so bilden die dabei freigesetzten Elektronen im elektrichen Feld eine Elektronenlawine, die in einen Streamer übergeht und zum Funkendurchschlag fährt. Über den Funkenkanal wird der gesamte Kondensator entladen. Die Zähler werden elektrisch ausgelesen und können für Zeitmessungen verwendet werden.

Die Zeitauflösung von Plattenfunkenzählern hängt von der elektrischen Feldstärke ab und kann bessere Werte erreichen (30ps,[5]), als zB. mit Szintillatoren möglich sind. Dabei muss beräksichtigt werden, dass die Funkenenergie S proportional mit dem Quadrat der Feldstärke wächst und zur Beschädigung der Elektroden führen kann.

 \mathcal{E}_{a} = Dielektrizitätskonstante

A = Plattenfläche d = Plattenabstand

E = el. Feldstärke

Nur durch Reduzieren der Plattenfläche kann bei hohen Feldstärken eine Beschädigung der Elektroden durch den Funken verhindert werden.

Die im Funkenkanal gebildeten Ionen benötigen nach dem Durchschlag ca. 1 ms [2] zur Deionisation. Während dieser Zeit muss der Zähler feldfrei bleiben, da sonst die

-4-

verbliebenen Ionen erneute Durchschläge verursachen. Erst nach der Deionisation kann der Zähler wieder empfindlich werden. Die maximale Zählrate beträgt demnach ca. 1KHz und macht Funkenzähler för Experimente mit hohen Zählraten unbrauchbar.

Eine durch die Funkenenergie beschränkte Grösse und eine durch die Deionisationszeit begrenzte Zählrate sind für Plattenfunkenzähler entscheidende Nachteile. Eine Verbesserung kann durch Segmentieren der Zähler erreicht werden (17). Diese Methode wurde wegen der aufwendigen Elektronik nicht weiter verfolgt. Erst mit der Entwicklung der Pestovkammer konnten diese Nachteile ausgeräumt werden.

2.2 Die Pestovkammer, ein weiterentwickelter

Plattenfunkenzähler

Mit der Entwicklung der Pestovkammer [1] wurden die Vorteile herkömmlicher Plattenfunkenkammern (gute Zeitauflösung) ausgenutzt und deren Nachteile (begrenzte Grösse, geringe Zählrate) ausgeschaltet.

Eine Pestovkammer besteht ebenfalls aus einem Plattenkondensator, jedoch besteht die Anode nicht aus Metall, sondern aus einem Material mit geringer elektrischer Leitfähigkeit($\beta \approx 10^{10} \, \text{cm}$). (Abb. 2.2.1). Beim Funkendurchschlag verhindert der hohe spezifische Widerstand der Anode das Entladen des gesamten Kondensators und lässt eine lakale Entladung zu. Es wird nur eine Zone nur $A \approx 0,1 \text{ cm}^2$ entladen, und dadurch die Funkenenergie begrenzt. Das elektrische Feld bricht am Durchschlagsort zusammen, der Funke reisst ab, und die Entladungszone wird

durch das Anodenmaterial, das wie ein Vorwiderstand wirkt, wieder aufgeladen. Der Rest der Kammer bleibt während des ganzen Vorgangs unverändert und für weitere Teilchen empfindlich.

A=Entladungszone

herkömmlicher PSC

C.)

Pestovkammer

- Abb. 2.2.1 Pestovkammer im Vergleich zu herkömmlichen Funkenzählern
- a) , b) : Teilchendurchgang
 - c) : herkömmlicher Plattenfunkenzähler wird beim Funkendurchschlag vollständig entladen und überall unempfindlich .
 - d) : Pestovkammer wird nur lokal entladen und bleibt mit Aussnahme der Entladungszone empfindlich.

-5-

-6-

Folgendes wurde erreicht :

Die Pestovkammer kann wegen der begrenzten Funkenenergie im Prinzip beliebig gross gebaut werden.

Die Zählrate wird nicht mehr durch die Deionisationszeit bestimmt, da nur ein kleiner Bereich um den Durchschlagsort herum feldfrei wird, die restliche Kammer aber empfindlich bleibt.

Die Zeitauflösung hängt von der elektrischen Feldstärke ab und kann wie bei herkömmlichen Funkenzählern gesteigert werden.

2.3 Aufbau der Pestovkammer

Die in dieser Arbeit untersuchte Pestovkammer besitzt eine empfindliche Fläche von 8cm x 8cm. Die Anode besteht aus ionenleitenden Glasplatte, 10cm x 10cm x 0,5cm einer $(\beta \approx 10^{10} \text{ ncm}, \xi \approx 10)$ auf deren Rückseite sich neun lcm breite, ca. 1#m dicke Kupferstreifen befinden. An beiden Enden der Streifen werden über einen Widerstand von 50 A Signale von ausgelesen. Als Kathode wurde eine massive 1V ca. 10cm x 10cm x 0,5cm polierte Kupferplatte, sowie in einigen Versuchen eine durch Sputtern mit Kupfer (1,4) beschichtete Glasplatte mit Chrom + Kupfer bedampfte eine und 10cm x 10cm x 2cm verwendet. Der Abstand zwischen beiden Elektroden beträgt 0,2 mm und wird durch Metallabstandsstücke definiert. Die Kammer wird mit einer Gasmischung (3 % Butadien ; 2, 5 % Athylen ; 3 % Isobutan ; 8 % Wasserstoff ; Rest Argon) unter einem Druck von 6 Bar bei ständigem Gasdurchfluss mit einer Hochspannung bis zu 7KV betrieben.

Abb. 2.3.1 Die Pestovkammer (schematisch)

2.4 Funktionsweise der Pestovkammer

Bei normalen Betriebsbedingungen (HV=5KV, p=6Bar) wollen wir jetzt die Vorgänge beim Durchschlag genauer betrachten. Nimmt man an, dass sich die begrenzte Entladungszone vollständig entläd, und der Rest der Kammer unverändert bleibt, so kann man für die Durchschlagsstelle folgende Ersatzschaltung verwenden (Abb. 2.4.1).

-7-

Das Anodenmaterial besitzt einen spezifischen Widerstand von $f \approx 10^{10} \, \Omega$ cm und eine Dielektrizitätskonstante von $\mathcal{E} \approx 10$. Får die Entladungszone A (Abb.2.4.1) kann die Anode als Parallelschaltung eines Kondensators $C_2 = \mathcal{E} \mathcal{E}_a A/a$ und eines Widerstands R= § a/A dargestellt werden. $C_1 = \mathcal{E}_a A/d$ ist die Kapazität des Plattenkondensators, der von Kathoden- und Anodenoberfläche im Entladungsbereich gebildet wird.

Der Funkendurchschlag bedeutet für C₁ einen Kurzschluss. Da die Hochspannung (HV = U + V = const.) konstant bleibt, muss sich C_2 bis auf die volle Hochspannung aufladen. Der Ladestrom von C₂ fliesst über beide Enden des Kupferstreifens zur Masse und erzeugt an beiden Seiten über 50 a eine Signalspannung von je ca. lV. (Die Ladung , die über $R = 10^{10} \mu$ fliesst kann vernachlässigt werden) Ist C_l entladen, ist am Durchschlagsort dh. das Feld zusammengebrochen, reisst der Funke ab und es beginnt der Wiederaufladevorgang über R. An Hand des Ersatzschaltbildes lässt sich die Aufladezeitau für die Durchschlagsstelle berechnen.

 $\tau = R (C_1 + C_2)$ $\tau = \rho \varepsilon_0 (\varepsilon + \frac{a}{d})$ $\tau \approx 25 \text{ ms}$

Die Aufladezeit ist unabhängig von der Grösse der Entladungszone und wesentlich grösser als die Deionisationszeit (lms). Während der Deionisationsphase (lms), kann der Durchschlagsort als feldfrei angesehen werden, dass Nachentladungen so durch Restionen ausgeschlossen bleiben, (verg. 2.1).

Ersatzschaltbild für die Durchschlagstelle

Abb.2.4.1 Funktionsweise der Pestovkammer

- a.) Teilchendurchgang
- b.) Funkendurchschlag
- c.) Aufladevorgang

-10-

Signalstrom :

Benutzt man für den Funkendurchschlag, das in Abb.2.4.1 dargestellte Ersatzschaltbild, so kann man auf einfache Weise einen Zusammenhang zwischen Funkenstrom und Signalstrom herstellen.

 Q_1 , Q_2 seien die Ladungen von C_1 und C_2 .

Signalstrom :
$$I_s = \frac{dQ_2}{dt}$$
 (1)

Funkenstrom : $I_F = \frac{dQ_2}{dt} - \frac{dQ_1}{dt}$

Die Hochspannung bleibt beim Funkendurchschlag konstant, und die Signalspannung kann dagegen vernachlässigt werden.

also:

$$dU = -dV$$

aus (1) :

$$\frac{\mathrm{d}Q_1}{\mathrm{d}t} = -\frac{C_1}{C_2} \cdot \mathbf{I}_s \tag{3}$$

 $\frac{dQ_1}{dt} = -\frac{C_1}{C_2} \cdot \frac{dQ_2}{dt}$

 $\frac{dQ_1}{C_1} = -\frac{dQ_2}{C_2} \cdot \frac{1}{dt} \cdot C_1$

(2)

(3) in (2):
$$I_F = (1 + \frac{C_1}{C_2}) \cdot I_s$$
 (4)
 $I_F = \frac{a + dc}{dc}$
 $I_F = 3,5 I_s$

Also ist der Funkenstrom dem Signalstrom direkt proportional. Die Signalspannung ergibt sich dann durch Multiplikation mit dem Arbeitswiderstand, der in unserem Falle 50/2 Ωbeträgt.

 $U_{sig} = 50/2 \text{ A I}_{sig}$

2.5 Koordinatenbestimmung mit Hilfe der Pestovkammer

Die Koordinaten des Durchschlagsorts können auf der Elektrodenebene in zwei zueinander senkrechten Richtungen festgelegt werden :

durch Messung der Laufzeitdifferenz der Signale, auf beiden Seiten der Durchschlagstelle, längs der Streifen.

senktecht zur Streifenrichtung, durch den Schwerpunkt der Pulshöhen auf den Kupferstreifen.

In dieser Arbeit wurde die zweite Methode untersucht.

-12-

-11-

3. Theoretische Grundlagen

Im vorigen Kapitel wurde die Pestovkammer vorgestellt und die Funktionsweise erläutert. Hier sollen nun einige theoretische Grundlagen dargestellt werden, mit denen auch quantitative Aussagen über die Kammereigenschaften gemacht werden können. Im ersten Abschnitt wird der Energieverlust energetischer Teilchen in Materie behandelt, im zweiten und dritten die Townsendlawine und der Funkendurchschlag durch den Streamermechanismus erklärt. In den letzten beiden Teilen werden Ansprechwahrscheinlichkeit und Zeitauflösung abgeleitet und berechnet.

3.1 Energieverlust energetischer Teilchen in Materie

Beim Durchgang durch Materie erleiden geladene Teilchen einen Energieverlust durch inelastische Stösse mit Elektronen aus der Elektronenhälle von Atomen und Molekälen. Die Atome bzw. Molekäle werden hierdurch angeregt, oder ionisiert. Der Energieverlust geladener Teilchen pro cm Wegstrecke ist durch die BETHE-BLOCH-FORMEL gegeben.

$$\frac{dE}{dx} = -\frac{2C m_e c^2 Z_1^2}{\beta^2} \left\{ \ln \frac{4m_e^2 c^4 \beta^4}{(1-\beta^2)^2 I^2(Z)} - 2\beta^2 \right\}$$

21= Ladung des ion. Teilchens

 $\beta = v/c =$ Geschwindigkeit des ion. Teilchens

$$C = N Z/A r_e^2 = 0,15 Z/A (g^{-1} cm^2)$$

 $I(2) = 9,1(1+1,9z^{-2/3}) 2 (eV)$ Materialkonstante, die vomIonisierungspotential abhängt N = Avogadro 2ahl

Abb.3.1.1 Energieverlust verschiedener Teilchen in Argon (bei Normaldruck) , aus [8] .

Primäre und sekundäre Ionisation.

Unter primärer Ionisation versteht man die Zahl der ionisierender Stösse des ankommenden, energetischen Teilchens mit Gasatomen. Unter den primär freigesetzten Elektronen sind auch solche, die durch den Stoss soviel Energie aufgenommen haben, dass sie ihrerseits wieder Atome ionisieren können. Diesen Effekt nennt man sekundäre Ionisation. In Argon werden zB. bei Normaldruck durch minimal ionisierende Teilchen pro cm 29, 4 Ionenpaare primär und 94 Paare insgesamt produziert [10].

Gas	\mathbf{z}	A	dE/dX[KeV/cm]	n _p [#/cm]	n _T [#/cm]
п2	2	2	0,34	5,2	9,2
He	2	4	0,32	5,9	7,8
N2	14	28	1,96	(10)	56
Ne	10	20,2	1,41	12	39
Ar	18	39,9	2,44	29,4	94
Kr	36	83,8	4,6	(22)	192
Xe	54	131,3	6,76	44	307
	A				

Tabelle 3.1.2 primäre (n_p) und totale (n_t) Ionisation für minimalionisierende Teilchen (bei Normaldruck) aus [10] .

3.2 Elektronenlawine (Townsend-Theorie)

Befinden sich freie Elektronen (zB. durch ein ionisierendes Teilchen erzeugte) in einem Gasvolumen und einem elektrischen Feld, so werden sie durch das Feld beschleunigt, nehmen Energie auf, und können ionisierende Stösse mit Gasatomen ausföhren.

Die dabei produzierten Elektronen ionisieren ihrerseits Gasatome usf. Dieser Prozess führt zu einem lawinenartigen Wachstum der Elektrohnenzahl. Die Elektronen driften (ca. 10⁷cm/s,[8]) rund 100 mal schneller, als die wesentlich schwereren Ionen, so dass sich am Lawinenkopf Elektronen ansammeln, und die Ionen fast bewegungslos zurückbleiben.

Abb. 3.2.1 Elektronenlawine

Das Lawinenwachstum kann folgendermassen beschrieben werden.

Befinden sich am Ort x n Elektronen, so vermehrt sich die Zahl durch ionisierende Stösse nach der Driftstrecke dx um dn,

$$dn = n \alpha dx$$

wobei Ø erster Townsendkoeffizient genannt wird. Nach der Driftstrecke x wächst die Zahl der Elektronen von n_O auf

 $n = n_0 e^{\alpha X}$ (Townsendlawine)

an.

Eine Lawine kann nur entstehen, wenn die Elektronen zwischen zwei Stössen mehr Energie aufnehmen können, als zum Ionisieren eines Gasatoms nötig ist.

also: $e E 1 = e E/p 1_0 \stackrel{2}{\leftarrow} V_{ion}$

p = Gasdruck -16-

Aus dieser Bedingung folgt, dass & von E/p abhängen muss. Die Abhängigkeit ist wie folgt gegeben :

3.2.1
$$d/p = A \exp(-B p/E)$$

Wobei A und B gasspezifische Konstanten sind, die auch jeweils nur für bestimmte E/p-Bereiche gelten.

Gas	A [l/cmTorr]	B [V/cmTorr]	E/P-Bereich[V/c	mTorr]
Ar	12	180	100-600	
He	3	34	20-150	[9]
Aceton	14	360	74-110	
1,7% C ₄ H ₆ 4,2% C ₂ H ₄ 16,7% C ₃ H ₈ 8,4% H ₂ Rest Ar	6	110	28-66	(1),[2]

Tabelle 3.2.2 Gasparameter des Townsendkoeffizienten

3.3 Streamerentwicklung und Funkendurchschlag

Wie schon bei der Behandlung der Elektronenlawine erwähnt, bewegen sich die Elektronen wesentlich schneller, als die possitiven Ionen. Dies führt beim Lawienenwachstum dazu, dass der Lawinenkopf eine negative und die fast bewegungslosen Ionen eine possitive Raumladung bilden. Die Raumladungen erzeugen ein Raumladungsfeld, das sich dem äuseren homogenen Feld überlagert. Dadurch wird das Feld

-17-

zwischen den Raumladungswolken geschwächt, und das Feld vor dem Lawinenkopf, sowie hinter der possitiven Ladungswolke verstärkt, (verg. Abb. 3.3.1).

Abb. 3.3.1 Raumladungseffekt beim Wachstum einer Elektronenlawine .

Bei einer Elektronenzahl von ca. 10⁸ (Raether-Relation) bewirkt der Raumladungseffekt einen Übergang von der Elektronenlawine zum Streamer. Der Streamer wächst ca. zehn mal so schnell als eine Elektronenlawine und entwickelt sich wie folgt.

Eine gasionisierende UV-Strahlung, deren Entstehung bis heute noch nicht vollständig geklärt ist, ioisiert in der Umgebung der primären Elektronenlawine Gasatome. Elektronen, welche seitlich der Lawine entstehen, befinden sich in einem geschwächten Feld und sind daher nicht weiter von Bedeutung. Nur die Elektronen, die vor dem Lawinenkopf und hinter dem

-18-

Lawinenrumpf entstehen, befinden sich in einem verstärkten Feld und erzeugen dort weitere Eektronenlawinen, die sich, wegen des stärkeren Feldes, wesentlich schneller entwickeln, als die ursprüngliche. Es entsteht erneut gasionisierende Strahlung, neue Lawinen bilden sich usf.

Abb. 3.3.2 Streamerentwicklung und Funkendurchschlag l: Teilchendurchgang ; 2: Bildung der Elektronenlawine ; 3: Øbergang zum Streamer , UV-Emission ; 4: Entstehung von Sekunärlawinen ; 5: Bildung des Funkenkanals .

Der Streamer wächst sowohl in Richtung Kathode, als auch in Richtung Anode und geht, wenn er die Elektroden erreicht, in einen leitenden Funkenkanal (Plasmaschlauch) über.

3.4 Ansprechwahrscheinlichkeit

Die Berechnung der Ansprechwahrscheinlichkeit beruht darauf, die Wahrscheinlichkeit zu berechnen, mit der nach dem Durchgang eines ionisierenden Teilchens ein Streamer entsteht, der zum Funkendurchschlag führt. Bei jedem Funkendurchschlag liefert die Pestovkammer ein elektrisches Signal, das von der Zählerapparatur registriert wird.

Abb. 3.4.1 primåre Ioisation im Abstand x von der Kathode .

Das ionisierende Teilchen produziert s Elektronen pro cm durch primäre Ionisation. Nach der Strecke x sind sx Elektronen erzeugt worden. Nimmt man für die primäre Ionisation eine Poissonverteilung an, so ist die Wahrscheinlichkeit dafür, dass nach der Strecke x kein Elektron erzeugt wurde exp (-sx) bzw, dass mindestens ein Elektron erzeugt wurde $1 - \exp(-sx)$. Ein Streamer entsteht, wenn sich auf dem Weg d - x eine kritische Lawine mit N_k = 10⁸ Elektronen bilden kann.

Daraus ergibt sich der Abstand x_k von der Kathode, bei dem ein Elektron noch eine kritische Lawine erzeugen kann:

$$x_{K} = d - \frac{\ln N_{K}}{\alpha}$$

-20-

daraus berechnet sich die Ansprechwahrscheinlichkeit A zu :

$$A = 1 - e^{-sX}K$$
$$A = 1 - e^{-sd} + s \frac{\ln N_K}{\alpha}$$

wobei gegeben ist.

durch 3.2.1 $\alpha = p A e^{-Bp/E}$ $E = \frac{U}{d}$; U = Hochspannungs = S · p ; p = Gasdruck S = spezifische Ionisation

Die Ansprechwahrscheinlichkeit A als Funktion der angelegten Hochspannung U ergibt sich zu :

$$A = 1 - e^{-Spd} \cdot e^{\frac{S \ln N_K}{A}} \exp (Bpd/U)$$

Zur numerischen Berechnung müssen noch die Parameter S , A , B , p , d eingesetzt werden. In [1], [2] wurden die experimentell bestimmten Gasparameter får eine, der hier verwendeten Gasmischung sehr ähnlichen, angegeben.

Gasparameter aus [1], [2] : $A = 6 \text{ cm}^{-1} \text{ Torr}^{-1}$ $B = 110 \text{ v cm}^{-1} \text{ Torr}^{-1}$ S = 0,0423 cm⁻¹ Torr⁻¹

Zur numerischen Berechnung wurde der Unterschied der beiden Gasmischungen vernachlässigt und die Parameter aus [1], [2] verwendet.

-21-

3.5 Zeitauflösung

Abb. 3.5.1 typisches PSC-Signal; Fluktuationen im Anstieg bestimmen die Zeitauflösung .

Nach dem Durchgang eines ionisierenden Teilchens liefert die Pestovkammer ein elektrisches Signal wie in Abb. 3.5.1 dargestellt. Das Signal wird auf den Eingang eines Diskriminators gegeben. Wenn die Signalspannung eine vorgegebene Schwelle von zB. 30 mV erreicht, wird vom

E.

Diskriminator ein Logiksignal erzeugt, das får Zeitmessungen als Start- bzw Stopsignal dient. Die Zeit t vom Durchgang des ionisierenden Teilchens, bis zur Erzeugung des Logiksignals, ist den Schwankungen des Signalanstiegs unterworfen. At (verg. Abb.3.5.1) gibt die Zeitauflösung an. Der unterschiedliche Signalanstieg beruht auf statistischen Schankungen der primären Ionisation.

Zur Berechnung der Zeitauflösung können folgende vereinfachte Annahmen gemacht werden.

Bis zum Erreichen der Diskriminatorschwelle, (Abb. 3.5.1), (Abb. 3.5.2) ist der Entladungsvorgang eine Elektronenlawine. Feldstärke und Gasdruck sind am Ort der Lawine konstant.

- I = Elektronenstrom
 E = el. Feld
 p = Gasdruck
 v⁻ = v_o E/p Driftgeschwindigkeit
 der Elektronen [11]
 n_o = primäre Ionisation
 a = Townsendkoeffizient
 x = Driftstrecke der e⁻
 t = Driftzeit
- e = Elementarladung

Abb. 3.5.2 Elektronenlawine bestimmt

die Zeitauflösung .

Die Entwicklung der Elektronenlawine ist gegeben durch :

$$n = n_0 \exp(\alpha x)$$
; $x = v t$

$$n(t) = n_0 \exp(uv t)$$

Der Elektronenstrom I(t) ergibt sich zu :

$$1(t) = n(t) = \frac{v}{d}$$

$$I(t) = n_0 e \frac{v}{d} exp(\alpha v t)$$

Da sich die Ionen ca. 100 mal langsamer als die Elektronen bewegen, kann der Ionenanteil vernachlässigt werden. Die Signalspannung wird nur durch den Elektronenstrom bestimmt und ist diesem proportional (verg. 2.4).

Wenn I₀ der Diskriminatorschwelle entspricht, ergibt sich die Zeit t bis zum Erreichen der Schwelle zu :

$$I(t) = \frac{1}{\sigma}; \text{ nach t auflösen}$$
$$t = \frac{1}{\sigma v} \ln \frac{I_o}{n_o e v}$$

 n_0 schwankt statistisch um an $_0$ = $k\sqrt{n_p}$, wobei k \approx 3,5 . Daraus ergibt sich die Zeitauflösung G :

$$\sigma = \frac{\partial t}{\partial n_0} \cdot \Delta n_0$$

$$\sigma = \frac{1}{\alpha \sqrt{n_p}}$$
; $\alpha = pAe^{-Bp/E}$

$$\sigma = \frac{1}{v_0 A/n_p} \cdot \frac{1}{E} e^{-Bp/E} 3.5.1$$

Führt man die Parameter jund κ ein, (3.5.2),

$$\sigma_{K} = \frac{K}{\sqrt{n_{p}}} \cdot \frac{1}{E^{\gamma}} \cdot \frac{Bp/E}{2}$$
 3.5.2

so ergibt eine Anpassung [11] an die Daten aus
[1],[2],[3],[4] folgende Werte:
(wobei B = 110 V/cmTorr , [4])

 $K = 8,5142 + 10^6$ [E] = V/cm [p] = Torr $\gamma = 1.03$ [o_K] = ps

Es ist bemerkenswert, dass $y = 4,03 \approx 4$, also gut mit der theoretisch abgeleiteten Form übereinstimmt. Die mit 3.5.2 gegebene Zeitauflösung beschreibt die experimentellen Daten auch für verschiedene Betriebsbedingungen und Gasmischungen sehr gut [11], so dass diese Formel auch für die hier verwendete Kammer angewendet werden kann.

Abb.3.5.3 zeigt, dass eine gute Zeitauflösung erreicht werden kann, wenn die Feldstärke möglichst gross gewählt wird. Bei einer Feldstärke von zB. 250 000V/cm ergibt sich eine Zeitauflösung von 83ps. Um eine solche Feldstärke zu erreichen, benötigt man, bei einem Plattenabstand von 0,2mm, eine Hochspannung von HV=5KV. Diese Spannung liegt ca. 70% dber der statischen Durschlagsspannung. Geringste Defekte in der Kathodenoberfläche können zur Feldemmissiom von Elektronen führen, die bei dieser Spannung sofort Durchschläge verursachen und den Betrieb stören. Die damit verbundene Problematik wird in den anschliessenden Kapiteln, besonders Kap. 6, verdeutlicht werden.

-26-

UV - Emission eines Funkens und die Kosequensen

Die UV-Emission des Funkens spielt für den Betrieb einer Pestovkammer eine entscheidende Rolle. Die UV-Strahlung, die mit ihr verbundenen Probleme und deren Lösung werden in diesem Kapitel behandelt.

4.1 UV - Emission

Beim Funkendurchschlag wird ein leitender Plasmaschlauch erzeugt, über den sich die Elektroden entladen. Während der Funken brennt, wird Licht emittiert. Im Plasma werden die Elektronen in elektrischen Feldern der Ionen verzögert oder beschleunigt, dabei wird kontinuierliche Bremsstrahlung abgestrahlt (Übergang im kontinuierlichen Energiebereich).

Abb. 4.1.1 Termschema der UV-Emission

Ausserdem rekombinieren die freien Elektronen mit den Ionen, und es wird kontinuierliche Rekombinationsstrahlung erzeugt. Im Termschema (Abb. 4.1.1) wird die Rekombination als Obergang vom kontinuierlichen zum diskreten Energiebereich dargestellt. Der anschliessende Obergang zum Grundzustand ist ein weiterer Prozess bei dem UV-Licht emittiert wird.

-27-

Får Argon (Ionisationspotential 15,7eV, erstes Anregungsniveau 11,56eV) bedeutet dies eine Emission von UV-Licht, das in der Lage ist, aus jeder Metalloberfläche (zB. Cu-Austrittsarbeit=4,5eV) Elektronen durch Photoeffekt auszulösen.

Bei Pestovkammern bleibt im Gegensatz zu herkömmlichen Funkenzählern beim Durchschlag das elektrische Feld, mit Ausnahme der Entladungszone, überall konstant. Ausserhalb der Entladungszone kann daher jedes, durch Photoeffekt ausgelöste. Elektron eine Sekundärlawine mit anschliessenden Funkendurchschlag starten. Jeder primäre Funke zieht deshalb eine Serie von Sekundärfunken nach sich, bis die Kammer vollständig entladen ist. Ein Betrieb ist so unmöglich. Dieser Effekt kann durch Zumischen einer UV-absorbierenden Gaskomponente, sowie durch Verwenden eines Kathodenmaterials mit einer hohen Austrittsarbeit und einer geringen Quantenausbeute verhindert werden.

4.2 Kathodenmaterial

Abb. 4.2.1 zeigt die photoelektrische Quantenausbeute verschiedener Metalle in Abhängigkeit von der Wellenlänge. Das Kathodenmaterial muss ausser einer möglichst geringen Quantenausbeute auch leicht zu verarbeiten sein. Kupfer lässt sich problemlos verarbeiten und besitzt im Vergleich zu Eisen oder Nickel eine wesentlich kleinere Quantenausbeute. Aus diesen Gründen wurde Kupfer als Kathodenmaterial ausgewählt.

Abb. 4.2.1 Spektrale photoelektrische Quantenausbeute reiner Metalle , [14] .

4.3 UV - absorbierende Gasmischung

Die Gasmischung für eine Pestovkammer muss ausser einer guten UV-Absorbtion zur Unterdrückung von Sekundärentladungen noch folgenden Anforderungen genügen :

eine gute Gasverstärkung besitzen .

sie soll beim Funkendurchschlag chemisch stabil bleiben.

eine grosse primäre Ionisation für minimalionisierende Teilchen aufweisen, um eine hohe Ansprechwahrscheinlichkeit zu erhalten.

sie muss kostengünstig und technisch realisierbar sein.

Edelgase besitzen im Gegensatz zu mehratomigen Molekälen keine Vibrations- und Rotationsniveaus. Das Wachstum einer Elektronenlawine wird in Edelgasen nicht durch Anregung solcher Niveaus gehemmt. Sie weisen deshalb eine gute Gasverstärkung auf. Weiterhin sind Edelgase chemisch stabil und sind so als Hauptbestandteil einer Gasmischung gut geeignet. Eine hohe Ansprechwahrscheinlichkeit verlangt eine grosse Primärionisation, dies bestimmt die Wahl unter den Edelgasen (Tabelle 3.1.2). Da Xe und Kr aus Kostengränden ausscheiden bildet Ar die beste Möglichkeit.

Kohlenwasserstoffe, mit Einfach-, Doppel- und Dreifachbindungen, besitzen die Eigenschaft in verschiedenen Wellenlängenbereichen UV-Licht zu absorbieren.

-29-

Die UV-Absorbtion verschiedener Kohlenwasserstoffe wird in Abb.4.3.1 dargestellt. Die Grenzwellenlänge für Kupfer, gegeben durch die Austrittsarbeit (4,5eV = 256nm) ist ebenfalls eingezeichnet. Alles UV-Licht dessen Wellenlänge kleiner als 265nm ist, kann durch Photoeffekt, aus der Kupferkathode Elektronen auslösen. Die Gasmischung muss deshalb so zusammengestellt werden, dass sie von der kurzwelligen Seite her, bis zur Grenzwellenlänge alles UV-Licht absorbiert. Leider findet sich für den langwelligen Bereich keine geeignete Komponente, so dass dieser nicht abgedeckt werden kann.

Ein entscheidender Nachteil der Kohlenwasserstoffe ist, dass sie im Funkenkanal auseinanderbrechen und chemisch aktive Radikale bilden. Diese polymerisieren zu langen Ketten und lagern sich auf den Elektroden ab. Die Ablagerungen können so dick werden, dass die Kammer unbrauchbar wird (durch Säubern der Elektroden kann der ursprängliche Zustand wiederhergestellt werden).

Zumischen von Wasserstoff bietet eine Möglichkeit die Ablagerungen zu reduzieren. Der Wasserstoff sättigt die reaktionsfähigen Radikale ab und wirkt so der Polymerisation entgegen. Weiter kann das Gas durch den Spalt zwischen den Elektroden hindurchgeblasen werden, so dass die Polymerisate, sie sich ablagern können, entfernt werden. Die bevor Durchflussgeschwindigkeit soll lm/s [3] betragen. Dieser hohe Durchfluss bedeutet einen grossen Gasverbrauch und ist wirtschaftlich, wenn eine Gasrückgewinnungsanlage zur nur Verfägung steht. Eine solche Anlage war fär den Testbetrieb Durchfluss-Stattdessen wurde die aufwendig. zu geschwindigkeit auf 5cm/s reduziert und vorgemischtes Gas in 40 1 Druckgasflaschen verwendet, das, nach dem Durchströmen der Kammer, ins Freie abgeblasen wurde.

Bei der Zusammenstellung der Gasmischung ist noch folgendes zu berücksichtigen :

-31-

-32-

Der Partialdruck der Kohlenwasserstoffe in der Mischgasflasche muss kleiner als der Dampfdruck sein, da die Kohlenwasserstoffe sonst flüssig werden. $(zB. C_4H_6; p_D=2,4Bar bei 20^{O}C)$

Der Flaschendruck muss wesentlich höher als der Betriebsdruck (6Bar) sein, damit ein Durchflussbetrieb Øberhaupt möglich ist.

Der Anteil der Kohlenwasserstoffe muss möglichst klein gehalten werden, um die Verschmutzung der Elektroden gering zu halten.

Diese Anforderungen und das UV-Absorbtionsvermögen der Gasmischung beeinflussen sich gegenseitig. Zum Beispiel bringt eine prozentuale Erhöhung der Kohlenwasserstoffe eine bessere UV-Absorbtion, aber auch eine schnellere Verschmutzung der Elektroden. Ausserdem muss der Flaschendruck, wegen des begrenzten Partialdrucks der Kohlenwasserstoffe, gesenkt werden.

Eine optimale Zusammensetzung kann nur experimentell bestimmt werden. Von einer Grundzusammensetzung ausgehend, muss die Mischung so lange verändert werden, bis eine brauchbare Zusammensetzung gefunden ist. Dieser Weg war jedoch wegen des damit verbundenen apparativen Aufwands nicht möglich. Stattdessen wurde eine grobere Methode angewendet. Ein erster Versuch wurde mit (8,5% Propan , 6% Athylen , 85,5% Argon) unternommen. Die Kammer rauschte stark und war nach 1/2 Stunde so stark verschmutzt, dass die schon anfänglich geringe Ansprechwahrscheinlichkeit von 10% auf Null zurückging. Zumischen von 10% Wasserstoff reduzierte

die Verschmutzung um ca. 50%, aber die Ansprechwahrscheinlichkeit sank ebenfalls nach kurzer Zeit Null ab. Bei fast auf jeder Entladung wurden Nachfolgeentladungen beobachtet, offensichtlich als Folge einer schlechten UV-Absorbtion. Erst folgende Mischung, (3% Isobutan, 2,5% Athylen, 3% Butadien, 8% Wasserstoff, 83,5% Argon) bei der Propan durch Isobutan ersetzt wurde, und zur besseren UV-Absorbtion im langwelligen Bereich Butadien zugemischt wurde, ermöglichte einen zufriedenstellenden Betrieb. Mit dieser Mischung wurde eine Ansprechwahrscheinlichkeit von ca. 95% erreicht, die mehrere hundert Stunden aufrecht erhalten wurde.

Bei einem Betriebsdruck von 6Bar, einer Durchflussgeschwindigkeit von 5cm/s kann mit einer 40 1-Mischgasflasche bei einem maximalen Flaschendruck von 48 Bar eine Kammer 4 Tage mit dieser Mischung betrieben werden.

Diese Gasmischung stellt für den Betrieb einer Pestovkammer eine gute Grundlage dar.

-33-

-34-

Konstruktion und Bau der Pestovkammer 5.

Nachdem in den vorangegangenen Kapiteln die physikalischen Eigenschaften und Probleme der Pestovkammer behandelt wurden, wird in diesem Kapitel die technische Realisierung der Kammer beschrieben.

5.1 Druckgehäuse

Das Druckgehäuse wurde für einen maximalen Betriebsdruck von 10 Bar ausgelegt. Es besteht im wesentlichen aus 3 Teilen. Einer Grund- und einer Deckplatte 30cm x 30cm x 1,5cm aus Aluminium und eines 6cm tiefen Rahmens 28cm x 28cm aus 2cm dickem Plexiglas. Der Rahmen und die beiden Aluminiumplatten werden durch 40, durchgehende M5-Schrauben zusammengehalten. Die durchsichtigen Plexiglaswände gestatten es, die Vorgänge innerhalb der Kammer, auch während des Betriebs zu beobachten. So war es zB. möglich den Plattenabstand zu überprüfen und Funkendurchschläge zu beobachten. Abb. 5.1.1 zeigt zwei senkrechte Schnitte durch das Gehäuse, mit den Plattenelektroden, Signalanschlüssen, dem Gaszuund Gasabfluss.

Um die Verschmutzung der Elektroden durch Polymerisate zu reduzieren (verg. 4.3) wurde das Gas durch den Spalt zwischen wurden Hierfür hindurchgeblasen. Elektroden den gleichmässig dem vor 5 Kapillarröhrchen (0,2mm ø) Kapillarröhrchen angeordnet. Die Eintrittsspalt gewährleisten einen, über die ganze Fläche, gleichmässigen Gasfluss.

Plexiglasblock

mit eingeklebten

Œ

G

Kapillaren

Abb.5.1.1 Druckgehäuse der Pestovkammer, dargestellt in zwei senkrechten Schnitten.

5.2 Gassystem

Die Kammer wird mit einem Mischgas bei ständigem Gasdurchfluss betrieben. Das verwendete Gassystem gewährleistet ein unabhängiges Regeln von Gasdurchfluss und Kammerdruck.

45 Bar 10 Bar 6,1 Bar 6 Bar 1 Bar Abb. 5.2.1 Gassystem

> Mit dem Überstromventil lässt sich der Kammerdruck einstellen, mit dem Nadelventil kann der Strömungswiderstand des Systems, bzw. der damit verbundene Durchfluss verändert werden. Får einen Durchfluss von 5cm/s Strömungsgeschwindigkeit zwischen den Platten, ist in obiger Abbildung ein typisches Druckgefälle angegeben. Die Durchflussmenge wird mit den Durchflussmessern 1 oder 2 bestimmt. Der Durchflussmesser am Ende des Systems ist aus Sicherheitsgründen angebracht und ermöglicht eine Vergleichsmessung zwischen zu und abgeströmter Gasmenge. Ein Leck in der Druckkammer lässt sich so schnell erkennen.

5.3 Elektrostatische Anziehung der Elektroden

Bei einem Plattenabstand von d=0,2mm und einer angelegten Hochspannung U=10KV beträgt die elektrostatische Anziehungskraft F, der Platten mit der effektiven Fläche A=8x8cm²:

$$F = \frac{1}{2} \epsilon_0 \frac{U^2}{d^2} A$$

Die mechaniche Beschaffenheit der Elektroden darf keine nennenswerte Durchbiegung haben, damit keine Feldverzerrung auftritt. Als obere Grenze wurde eine Feldverzerrung von 0,5% angenommen, dies bedeutet eine maximale Durchbiegung von 0,5 μ . Die Abstandsstücke wurden wie in Abb.5.3.1 und Abb.5.1.1 dargestellt, angeordnet. Parallel zum Gasstrom behindern sie nicht den Gasfluss und bieten eine genügend grosse Auflagefläche. Für diese Anordnung berechnet sich die Durchbiegung f einer Platte [19] zu :

$f = \psi(a/b) b^2 F E h^3$

а	=	4	Cm	E	=	Elastizitätsmodul
b	=	5	Cm	F	=	homogene Belastung
h	=	2	Cm	Ƴ (a/b)	=	0.71

-37-

-38-

Material	Elastizitaets aus (11)	smodul E	Durchbiegung f nach Abb.5.3.1	[19] L
Kupfer	8-10000	kp/mm ² kp/mm ²	0,088-0,0	71 м м
Glas	4,8-8,3*1000	kp/mm ₂	0,148-0,0	855 µ

Tabelle 5.3.2 Durchbiegung einer Platte (Abb.5.3.1) bei einer Belastung von 10KV.

Bei einer Plattendicke von 2cm ergibt sich, für die in obiger Tabelle in Erwägung gezogenen Materialien, eine berechnete Durchbiegung von weniger als $0, 2\mu$ je Platte und erfällt damit die Anforderungen. Die Wahl der Materialien wurde die Festigkeit durch mechanischen der neben Oberflächenbearbeitbarkeit bestimmt. Glasoberflächen können einfach mit einer Planheit einiger μ hergestellt werden, dagegen lassen sich ebene Metalloberflächen durch mechaniche Bearbeitung schwieriger herstellen. Als Kathoden wurden Glasplatten beschichtete Kupfer mit sowohl Kupferkathoden massive als auch (10cm x 10cm x 2cm), (10cm x 10cm x 0,5cm Kupfer verklebt mit 10cm x 10cm x 1,5cm geringer Anodenglas mit verwendet. Das Aluminium) Leitfähigkeit wurde zur Erhöhung der Stabilität auf eine Glasplatte (10cm x 10cm x 2cm) geklebt.

Beim Betrieb der Kammer, konnte bei maximaler Betriebsspannung (10KV) keine Durchbiegung festgestellt werden.

5.4 Anode

Das Anodenmaterial muss zur Begrenzung der Entladung, einen spezifischen Widerstand von ca. 10^{10} cm [2] besitzen. Hierfür bieten sich ionenleitende Gläser an, welche in diesen für Gläser recht niedrigen Widerstandsbereich fallen. Als Anode wurde eine Glasplatte (10cm x 10cm x 0,5cm) des Typs 8540 (Werksbezeichnung der Firma Schott) verwendet. In Tabelle 5.4.1 und Abb.5.4.2 sind einige Eigenschaften dieses Glases im Vergleich zu einem Normalglas dargestellt. Die Glasplatte war auf der Vorderseite poliert und besass dort keine messbaren (<2 μ) Unebenheiten. Auf der Rückseite wurde eine ca. 1 μ dicke Kupferschicht durch Sputtern aufgebracht.

-40 -

Anschliessend wurde ein Muster von neun 1cm breiten, parallelen Kupferstreifen, mit jeweils 1mm Abstand voneinander, durch photochemisches Atzen hergestellt. Die Signalkabel wurden wie in Abb.5.1.1 dargestellt, über ein Kupferplättchen auf die Streifen gelötet.

Kennzeichnende Eigenschaften

	Normal- glas 16	ionen- leitendes Glas 8540
Spez. Widerstand bei 20 ⁰ C (û·cm)	3 . 1013	8 · 10 ⁹
ε bei 50 Hz und 25°C ε bei 10 ⁶ Hz und 25°C	8,25 7,34	28,58 10,11
tan $\delta \cdot 10^4$ bei 50 Hz und 25°C tan $\delta \cdot 10^4$ bei 10 ⁶ Hz und 25°C	470 85	6840 220
Transformationstemperatur (⁰ C)	543	480
Erweichungstemperatur (⁰ C) (10 ⁷⁺⁶ Poise)	712	651
Verarbeitungstemperatur (⁰ C) (10 ⁴ Poise)	989	856
Dichte (g/cm ³)	2,58	3,17

Tabelle 5.4.1 Eigenschaften des Anodenmaterials, [18]

-41-

-42-

5.5 Kathode

Defekte in der Kathodenoberfläche verursachen spontane Entladungen, welche die Eigenschaften der Pestovkammer verschlechtern. Die Beschaffenheit der Kathodenoberfläche ist deshalb für den Betrieb der Kammer entscheidend. Im folgenden werden mehrere Möglichkeiten zur Herstellung von Oberflächen beschrieben.

a.) Auftragen einer 1µ dicken Kupferschicht auf eine 10cm x 10cm x 2cm Glasplatte durch Sputtern.

Unter Sputtern versteht man das Auftragen dünner Metallschichten durch eine Kathodenzerstäubung. Dabei findet bei ca. 10⁻²mBar Ar eine Glimmentladung statt. Durch das Bombardement von Edelgasionen werden aus der festen Kupferkathode Kupferatome herausgeschlagen, die sich anschliesend auf dem Substrat ablagern.

Vor dem Sputtern wurde die Glasplatte 1/2 Stunde in Frigen ultraschallgereinigt, mit Methanol, Azeton und schliesslich Athanol (reinst) behandelt. Die Kupferschicht war nicht vollkommen homogen, sondern wies pro cm 2 5-10 unregelmässig geformte Löcher mit 10-50 / Durchmesser auf. Weiterhin waren ebensoviele runde Blasen von der gleichen Grösse zu sehen. Die Blasen rissen beim Polieren auf und erhöhten so die Zahl der Löcher. Das Entstehen der Löcher werden. kann folgendermassen erklärt Blasen und Schmutzpartikel, die in winzigen Vertiefungen der Glasoberfläche sitzen, gasen während des Sputterns im Vakuum und bilden so Blasen und Löcher.

Auch durch mehrmaliges Wiederholen der Reinigungsprozedur und mehrstündiges Ausheizen der Glasplatte (ca. 100⁰C), vor dem Sputtern, konnte keine merkliche Verbesserung erreicht werden.

b.) Bedampfen mit Chrom und Kupfer :

Während durch Sputtern Kupfer auf Glas sehr gut haftet, kann beim Dampfen nur eine Haftung erreicht werden, wenn der Kupferschicht eine ca. 100nm dicke Chromschicht vorgedampft wird.

Beim Bedampfen traten ebenso wie beim Sputtern Blasen und Löcher auf. Die Probleme waren die gleichen, und es konnte auch hier durch zusätzliches Reinigen und Ausheizen keine Verbesserung erzielt werden.

Die Folge der schlechten Oberflächengäte war eine grosse Rate spontaner Entladungen (verg. Kap.6). Bessere Ergebnisse wurden deshalb von massiven Kupferkathoden erwartet.

c.) Massive Kupferkathoden

Die Oberfläche wurde zuerst durch einen mechanischen Arbeitsgang (Schlagen) auf etwa $10\,\mu$ Genauigkeit bearbeitet und anschliessend poliert (ca. $5\,\mu$ Restwelligkeit). Die Oberfläche wies keine, wie unter a.) und b.) beschriebenen Defekte auf und beim Betrieb wurden auch bessere Ergebnisse erreicht (verg. Kap.6).

Vor dem Zusammenbau der Kammer wurden alle noch vorhandenen Ecken und Kanten an Anode und Kathode abgerundet, und die Elektrodenoberflächen mit Poliermittel und Polierwatte

-43-

-44-

behandelt. Zuletzt wurden die Oberflächen mit Athanol (reinst) gereinigt. Die Kammer wurde in einem staubarmen Raum zusammengesetzt, und um noch verbliebene Staubkörner auf den Platten zu entfernen, wurde der Spalt zwischen Anode und Kathode kräftig mit Argon gespält. Erst nach dieser Prozedur wurde die Kammer in Betrieb gesetzt.

5.6 Abstandsstücke

Es gibt mehrere Möglichkeiten Abstandsstücke zwischen Anode Kathode anzubringen. Sie können ausserhalb und des empfindlichen Volumens angebracht sein und stören so die Funktion der Kammer nicht. Diese Methode ist technisch nicht einfach und bringt fertigungstechnische Probleme mit sich [2]. Bine andere Methode ist technisch unproblematisch und besteht darin, Abstandsstücke zwischen Anode und Kathode, innerhalb des empfindlichen Volumens, zu legen. Bei den verwendeten Kammern wurden zwei Streifen entlang der Plattenkanten und parallel zum Gasstrom gelegt. (Abb.5.1.1 und Abb5.3.1) Zuerst wurde eine hochspannungsfeste Folie (Kapton-Polyamidfolie) benutzt. Entlang des Übergangs Folie-empfindliches Volumen traten pro cm ca. 5 gleichmässig verteilte Dauerentladungsstellen auf. Diese Entladungsstellen sind auf Feldverzerrungen an der Öbergangsstelle, sowie durch Gleitfunken entlang der Folie zu erklären. Um diese Entladungen zu unterbinden wurde die Folie durch gleichgrosse Stahlplättchen ersetzt. Die leitenden Stahlplättchen sorgen daför, dass das elektrische Feld direkt am Plättchen Null ist und mit grösser werdender Entfernung auf seinen vollen Wert ansteigt. Entladungsstellen, wie bei

der nichtleitenden Folie traten keine mehr auf. Am Rand der Metallplättchen entsteht aber zusätzlich ein unempfindlicher Bereich, dessen Breite abgeschätzt werden kann. Nach einigen hundert Betriebsstunden sind die Elektrodenoberflächen von einem Film aus Polymerisaten überzogen. Am Übergang zum Metallplättchen lagern sich keine Polymerisate ab, weil dort das elektrische Feld auf Null absinkt. Die Obergangszone hatte eine Breite von ca. 3mm. (bei HV=5KV) Dieser Bereich ist eine tote Zone, in dem das Feld so schwach ist, dass dort Funkendurchschlag möglich ist. Im Vergleich zur kein gesamten empfindlichen Fläche beträgt der tote Bereich nur einige Prozent und kann vernachlässigt werden. Der Querstrom, der durch das Metallplättchen und die Anode mit geringer Leitfähigkeit fliesst, beträgt bei einer Hochspannung von 5KV weniger als 3 µ A und kann ebenfalls vernachlässigt werden.

Alles in allem erwiesen sich Metallabstandsstücke im empfindlichen Volumen der Pestovkammer als eine einfache Methode, um die Plattenelektroden zu trennen.

-46-

5.7 Elektrische Schaltung der Pestovkammer

Abb.5.7.1 zeigt das elektrische Schaltbild der Pestovkammer. Der durch den Funken hervorgrufene Signalstrom fliesst äber beide Enden eines Kupferstreifens und liefert an den $R_A = 50 \text{ Abs}$ Abschlusswiderständen ein negatives Signal von ca. 1V(bei HV=5KV und p=6Bar). Von der Masse zur Kathode wird der Stromkreis durch den Koppelkondensator C=1,5nF geschlossen.

Die Widerstände R=1K verhindern eine elektrostatische Aufladung der Kupferstreifen, wenn ein Signalkabel einmal nicht abgeschlossen sein sollte.

R_s=10M A dient als Schutzwiderstand und unterdrückt Reflektionen im Hochspannungskabel

Beim Betrieb der Kammer mit der beschriebenen Schaltung war dem Signal eine 60MHz-Schwingung überlagert (Abb.5.7.2). Das Entstehen dieser Schwingung kann wie folgt verstanden werden.

Abb.5.7.2 Signal mit Øerlagerter 60MHz-Schwingung.

Die Hochspannungsverbindung zwischen den Punkten A und B (Abb.5.7.1) wirkt induktiv und stellt zusammen mit dem Kondensator C einen Schwingkreis dar. Jeder Funkendurchschlag ruft Schwingungen hervor, die sich dem Signal überlagern. Durch Hinzufügen des Widerstandes $R_x=75.\Omega$ (Abb5.7.3;5.7.4) konnte die Schwingung gedämpft und somit eliminiert werden.

Abb.5.7.3 Durch Einschalten von R_x=75 ß wird die überlagerte Schwingung eliminiert und zusätzlich ein Signalanschluss für die gesammte

Kammer geschaffen.

Gleich welcher Streifen beim Funkendurchschlag anspricht, der gesammte Signalstrom I fliesst über den Widerstand R_{χ} und den Kondensator C zur Kathode zurück. Es ergab sich so die Möglichkeit ein kathodenseitiges Signal mit umgekehrter Polarität zu schaffen. Dieser Signalanschluss liefert bei jedem Funkendurchschlag ein Signal, das als Gesamtsignal G verwendet werden kann. Die Widerstände R_1 , R_2 und R_b wurden so gewählt, dass die Signalspannung die gleiche ist, wie die des angesprochenen Streifens.

Gesamtsignal:

$$U_{G} = \frac{2 R}{R_{2} + R_{A}} \cdot U_{G} = 25\Omega \cdot I$$

R. R.

Streifensignalspannung:

 $U_{c} = -50\Omega \cdot 1/2$

also:

= - U_G

U

6. Ergebnisse

Es wurden zwei identisch hergestellte Pestovkammern auf ihre Eigenschaften hin untersucht. Dabei wurde bei einem Gesamtdruck von 6 Bar bei verschiedenen Hochspannungen Ansprechwahrscheinlichkeit, Pulshöhen und Zeitauflösung mit Hilfe der kosmischen Strahlung gemessen. Das anschliessende Kapitel beschäftigt sich damit, Messungen und Messergebnisse zu beschreiben und zu diskutieren.

6.1 Pulsform

Bei normalen Betriebsbedingungen (HV=6KV,p=6Bar) besitzen die, beim Durchgang kosmischer Teilchen, erzeugten Pulse eine Amplitude von ca. 1V und eine Abklingkonstante von ca. 10ns (Abb.6.1.1). Die Anstiegsflanke ist sehr steil und konnte mit dem zur Verfügung stehenden Oszillographen nur ungenau bestimmt werden. Es kann daher für die Anstiegszeit nur eine obere Grenze von Ins angegeben werden.

Mit zunehmender Hochspannung (HV>5,5KV) ist dem Primärpuls in einigen Fällen ein Sekundärpuls überlagert (Abb.6.1.2 und 6.2.3).

-49-

Abb.6.1.2 Signal, dem ein später Sekundärpuls mit kleiner Amplitude überlagert ist.

Abb.6.l.3 Signal, dem ein früher Sekundärpuls mit fast gleichgrosser Amplitude überlagert ist.

Sekundärpuls kann man durch Photoeffekt erklären. Und Den nimmt die Funkenenergie und die damit verbundene zwar UV-Emission mit der Hochspannung zu. Die Absorbtionskraft der Gasmischung ist für die vermehrte UV-Lichtmenge zu schwach, so dass in der Umgebung des Primärfunkens verstärkt UV-Licht zur Kathode gelangt und dort durch Photoeffekt auslösen kann. Die Elektronen führen zum Elektronen Funkendurchschlag und liefern einen Nachpuls. Eine spät gestartete Sekundärentladung kann sich in einem durch die Primärentladung geschwächten Feld nur schwach ausbilden und einen kleinen Nachpuls (Abb.6.1.2). Eine fräh liefert gestartete Sekundärentladung (Abb.6.1.3) liefert, in einem durch den Primärfunken erst wenig geschwächten Feld, einen grossen Nachpuls.

6.2 Spontane Entladungen

Neben der durch kosmische Teilchen erzeugten Pulse, zeigen die verwendeten Kammern eine hohe Rate spontaner Entladungen. Pulse solcher Art besitzen dieselbe Form, nehmen aber in ihrer Häufigkeit zu kleineren Amplituden hin zu (Abb.6.2.1). Diese Entladungen sind auf Defekte in der Kathodenoberfläche zurückzuführen.

-51-

-52-

Nach einer Betriebsdauer von ca. 200 Stunden waren die Elektrodenoberflächen von mehreren hundert, kreisförmigen Dauerentladungsstellen (Abb.6.2.2) bedeckt. Im Mittelpunkt der ca. 0,5 bis 2mm Durchmesser grossen Stellen befand sich eine schwarze Erhebung mit ca. 1/10mmø, umgeben von einem etwa 1mmø und 0,2mm breiten, braunen Schmutzring. Zwischen diesen kraterähnlichen Stellen war die Oberfläche von einem bräunlichen Schmierfilm überzogen. (Durch Reinigen mit Alkohol konnte der Film und die Schmutzstellen wieder entfernt werden.)

Abb.6.2.2 Schmutzstelle hervorgerufen durch Dauerentladungen.

Das Entstehen dieser Dauerentladungen kann man sich folgendermassen vorstellen. Ein Defekt in der Kathodenoberfläche wirkt wie eine Spitze, führt dort zu einer lokalen Feldverzerrung und bewirkt, bei einer für jede Spitze charakteristischen Einsatzspannung, Feldemission von Elektronen. Diese führen zum Durchschlag, an den sich der Aufladeprozess anschliesst. Wird die charakteristische Einsatzspannung wieder erreicht, so wiederholt sich der Vorgang von neuem. Eine Spitze mit niedriger Einsatzspannung liefert demnach kleine Pulse mit grosser Häufigkeit, eine mit hoher Einsatzspannung grosse Pulse mit kleiner Häufigkeit. Dies erklärt, dass die Rate spontaner Entladungen zu kleinen Amplituden hin (veg.Abb.6.2.1) zunimmt.

Kosmische Teilchen, welche durch solch einen Dauerentladungsbereich gehen, können wegen der dort geschwächten Hochspannung nur kleine oder gar keine Funkendurchschläge bewirken. Ansprechwahrscheinlichkeit und Zeitauflösung werden hierdurch verschlechtert.

Eine hohe Durchschlagsrate bringt ausserdem eine Verschmutzung, durch die beim Funkendurchschlag gebildeten Polymerisate, mit sich. Die Polymerisate sind meist geladen lagern sich deshalb bevorzugt dort ab, wo und ein elektrisches Feld herrscht. Dies ist einmal die Randzone um das Entladungsgebiet herum (brauner Schmutzring), zum andern, der Spitze (schwarze Erhebung), wo sich mit an dem Aufladevorgang ein besonders starkes Feld ausbildet. Die Verschmutzung kann so weit gehen, dass die schwarze Erhebung im Zentrum der Schmutzstelle weiter anwächst und eine leitende Verbindung zur Anode schafft. Ist dieses Stadium erreicht, fällt die Feldstärke an dieser Verbindungsstelle auf Null ab und wird in der Umgebung geschwächt. Mit

-54-

zunehmender Betriebsdauer nimmt die Zahl solcher Verbindungen zu. Dies hat eine Abnahme der empfindlichen Fläche und der mittleren Feldstärke zur Folge, und macht die Kammer schliesslich unbrauchbar.

Die durch die Dauerentladungen gegebenen Probleme lassen sich in zwei Gruppen zusammenfassen.

schon beim ersten Anschalten der Kammer bewirken die spontanen Entladungen eine Abnahme der Feldstärke, was sich hauptsächlich auf die, von der Feldstärke abhängigen Zeitauflösung auswirkt.

die mit den Dauerentladungen verbundene Verschmutzung begrenzt, in der aufgeführten Weise, die Lebensdauer (200-600 Stunden) der Kammer, bzw. bewirkt eine stetige Verschlechterung von Ansprechwahrscheinlichkeit und Zeitauflösung.

Die Eigenschaften der Kammer werden entscheidend durch die Oberflächengäte bestimmt. Die in (5.5) beschriebenen Oberflächen verursachen hohe Durchschlagsraten und ermöglichen nur Lebenszeiten von ca. 10h. Eine wesentliche Verbesserung erreicht man durch Formieren. Die Pestovkammer wird dabei bei niedriger Hochspannung (1000 bis 3000V) betrieben. Ober einen längeren Zeitraum (mehrere Wochen) wird die Hochspannung in kleinen Schritten (20 bis 100V) soweit erhöht, bis spontane Entladungen einsetzen und erst dann weiter erhöht, wenn die Entladungen von selbst aufhören. Der Vorgang wiederholt sich mehrmals täglich. Formieren Wegbrennen Spitzen bzw. der von bewirkt ein

Oberflächendefekte. Die Rate spontaner Entladungen wurde dadurch gesenkt und die Lebenszeit der Kammer bis auf 600 Stunden (nach 70 tägigem Formieren) gesteigert.

Es wurden mit Cr+Cu bedampfte und mit Kupfer besputterte Glasplatten, als auch massive, polierte Kupferkathoden verwendet. Abb.6.2.3 zeigt die Zählraten, verschieden hergestellter und formierter Kathoden, in Abhängigkeit von der Hochspannung. Massive Kupferkathoden besitzen niedrigere Durchschlagsraten als gesputterte oder bedampfte. (bedampfte und gesputterte Kathoden waren in ihren Eigenschaften gleich) Ausserdem zeigt Abb.6.2.3, dass durch längeres Formieren die Durchschlagsrate weiter gesenkt wird.

-55-

Abb.6.2.3 Zählraten verschieden hergestellter Kathoden, längeres Formieren erniedrigt die Durchschlagsrate.

Die anschliessend beschriebenen Messungen wurden mit 32 und 70 Tagen formierten massiven Kupferkathoden durchgeführt.

6.3 Zählercharakteristik

Zur Messung der Ansprechwahrscheinlichkeit wurde die in Abb.6.3.1 dargestellte Zähleranordnung verwendet. Zwei Szintillatoren mit einer empfindlichen Fläche von 5cm x 5cm sind so über und unter der Pestovkammer angebracht, dass alle kosmischen Teilchen, welche durch beide Szintillatoren gehen. ebenfalls die empfindliche Fläche der Funkenkammer durchqueren. Das Eisen im Teilchenweg besitzt ca. vier Strahlungslängen und sorgt dafür, dass nur die harte Komponente der Höhenstrahlung verwendet wird.

Die Ansprechwahrscheinlichkeit ist aus dem Verhältniss der Zahl der Teilchendurchgängen, bei denen die Kammer anspricht, zur Gesamtzahl aller Teilchendurchgänge gegeben (Abb.6.3.2). Die Gesamtzahl ist durch eine Koinzidenzschaltung zwischen den beiden Szintillationszählern gegeben. Eine zweite Koinzidenz zwischen Szintillatoren und der Pestovkammer bestimmt die Zahl der Teilchendurchgänge bei denen die Pestovkammer anspricht. Damit berechnet sich die Ansprechwahrscheinlichkeit \mathcal{E} zu:

$$\varepsilon = \frac{(Sz - Sz - PSC)}{(Sz - Sz)}$$

SZ = Szintillationszähler PSC = Plattenfunkenzähler

Die Messung der Pulshöhen wurde mit der gleichen Zähleranordnung, und mit der in Abb.6.3.3 dargestellten Ausleseelektronik durchgeführt. Die Szintillatorkoinzidenz erzeugt durch einen Gate-Generator ein 200ns langes Logiksignal. Innerhalb dieser Zeitspanne wird das PSC-Signal

-58-

-57-

on einem Vielkanalanalysator akzeptiert und die Ladung Q

$$Q = \int_{S} 1_{s} dt$$
; $1_{s} = Signalstrom$

lurch Integration bestimmt.

SZ = Szintillationszähler

PSC = Plattenfunkenzähler

Abb.6.3.1 Zähleraufbau zur Messung der Ansprechwahr-

scheinlichkeit mit Hilfe der Höhenstrahlung.

SZ = Szintillationszähler

PSC = Plattenfunkenzähler

- D = Diskriminator
- K = Koinzidenzeinheit

Abb.6.3.2 Ausleseelektronik zur Messung der Ansprech-

wahrscheinlichkeit.

Abb.6.3.3 Ausleseelektronik zur Pulshöhenmessung

1

Ansprechwahrscheinlichkeit und Pulshöhen wurden mit einer 32 Tagen formierten Kammer bei verschiedenen Hochspannungen Nach einer gemessen. Betriebsdauer 200 Stunden von (bei HV=5KV) wurden die Messungen wiederholt und die Veränderungen beobachtet.

Die Ansprechwahrscheinlichkeit der frisch formierten Kammer zeigt eine gute Übereinstimmung mit der in 3.4 theoretisch berechneten (Abb.6.3.4). Die Messfehler sind durch die Statistik gegeben. Die Ansprechwahrscheinlichkeit setzt bei ca. 3000V ein und erreicht bei 3500V 80%. Daran schliesst sich ein Plateau von ca. 3000V Breite, mit einer mittleren Ansprechwahrscheinlichkeit von 95%, an.

Abb.6.3.5 Ansprechwahrscheinlichkeit einer nach 200

Betriebsstunden verschmutzten Kammer

(Schwelle=100mV). -62-

-61-

Abb.6.3.6 Pulshöhe Q und Entladungszone A in Abhängigkeit von der Hochspannung. Die Pulshöhenspektren besitzen im Bereich der Einsatzspannung eine Halbwertsbreite von etwa 50%, die mit zunehmender Hochspannung bis 100% bei 5000V anwächst. Abb.6.3.7 zeigt ein typisches Pulshöhenspektrum bei 4500V. Die mittlere Ladung beträgt 230pC und die Halbwertsbreite ca. 60%.

Unter der Annahme, dass beim Funkendurchschlag eine begrenzte Fläche A vollständig entladen wird und der Rest der Kammer unverändert bleibt, lässt sich die Grösse der Entladungszone A aus der Pulshöhe Q berechnen (verg. 2.4)

Die Pulshöhe und die assoziierte Entladungszone A sind in Abb.6.3.6 als Funktion der Hochspannung dargestellt. Messpunkte und Fehlerbalken sind durch Mittelwerte und Standartabweichung der Pulshöhenspektren gegeben.

Abb.6.3.7 Pulshöhenspektrum einer sauberen Kammer.

Abb.6.3.8 Pulshöhenspektrum einer nach 200 Betriebs-

stunden verschmutzten Kammer.

Bei einer Hochspannung von 5KV ergibt sich bei einer sauberen Kammer eine mittlere Entladungszone von ca. 8mm². Die tote Zone, die durch den Funkendurchschlag für ca. 25ms unempfindlich wird schliesst die berechnete Entladungszone ein und lässt sich qualitativ bestimmen. In 5.7 wurde ein durch Metallabstandsstücke hervorgerufener unempfindlicher Bereich mit einer Breite von (für HV=5KV) ca. 3mm beschrieben. Unter der Annahme, dass die beim Funkendurchschlag hervorgerufene tote Zone einen Radius besitzt, der etwa dieser Breite von 3mm gleichkommt, ergibt sich eine tote Zone von ca. 28 mm^2 (für HV=5KV).

Die bis jetzt beschriebenen Messergebnisse wurden in den ersten 24 Stunden nach dem Formieren mit einer sauberen Kammer gewonnen. Nach 200 Betriebsstunden (HV=5KV) wurden die Messungen wiederholt. Zu diesem Zeitpunkt war die Kammer so stark verschmutzt, dass zwischen den Elektroden schon fadenförmige schwarze Verbindungen zu beobachten waren.

Die Ansprechwahrscheinlichkeit ging im Plateau um ca. 20% zurück und die Einsatzspannung erhöhte sich um ca. 400V (Abb.6.3.8). Ausserdem zeigt das Pulshöhenspektrum eine Abnahme der mittleren Pulshöhe um ca. 60% (Abb.6.3.8). Die Messergebnisse bekräftigen die Vorstellung (verg.6.2), dass die verschmutzte Kammer eine Abnahme der empfindlichen Fläche und der Feldstärke aufweist.

-66-

6.4 Koordinatenauflösung

Får einzelne Teilchendurchgänge wurden gleichzeitig von allen Streifen die Pulshöhen der Signale gemessen. Eine Koordinateninformation erhält man, wenn die Pulshöhen in Abhängigkeit von der Streifennummer aufgetragen werden (Abb.6.4.1) Die Koordinatenauflössung konnte wegen eines fehlenden Spurenerkennungssystems nicht quantitativ bestimmt werden. Qualitativ ist aber festzustellen, dass sie durch die Streifenbreite gegeben ist, da nur ein Streifen ein Signal liefert.

6.5 Zeitauflösung

6.5.1 Flugzeitmessung zur Bestimmung der Zeitauflösung

Die Flugzeit 7⁻ hochenergetischer kosmischer Teilchen wird zwischen zwei identischen Pestovkammern gemessen. Die Zeitauflösung \widetilde{G}_{Pic} der Pestovkammer ist dann durch die Unschärfe \widetilde{G}_{7} der Flugzeit gegeben.

$$\tau = t_{psc1} - t_{psc2}$$

$$\sigma_{\tau}^{2} = \sigma_{psc1}^{2} + \sigma_{psc2}^{2} ; \sigma_{psc1} = \sigma_{psc2} = \sigma_{ps1}$$

$$\sigma_{psc} = \frac{\sigma_{\tau}}{\sqrt{2}}$$

Bei der gegebenen Zähleranordnung (Abb.6.5.1.1) betragen die Flugzeitunterschiede bei schrägem Teilchendurchgang ca. 5ps und sind gegen die Eigenauflösung der TDC's von 50ps zu vernachlässigen. Durch unterschiedliche Teilchenkoordinaten treten Laufzeitunterschiede der Signale von ca. 100ps auf. Der damit gegebene Einfluss auf das Flugzeitspektrum muss korrigiert werden.

Das Schaltschema der Ausleseelektronik wird in Abb.6.5.1.2 dargestellt. Die Szintillatorkoinzidenz erzeugt durch einen Gate-Generator ein 200ns langes Logiksignal, das einmal als ADC-Gate dient und zweitens dafür sorgt, dass mit Hilfe zwei weiterer Koinzidenzeinheiten PSC-Signale nur innerhalb der 200ns akzeptiert werden. Durch diese Torschaltung werden Zufallskoinzidenzen ausgeschlossen und

-67-

-68-

nur Teilchen registriert, welche durch alle vier Zähler gehen.

Die Flugzeit wurde durch zwei getrennte TDC's gemessen. Einmal wurde das Gesamtsignal G (verg. 5.8) der Kammern für und Stopsignale Start benutzt und auf einen Vielkanalanalysator zur direkten Kontrolle während der Messung gegeben. Zweitens wurde für eine präzisere Messung von jeder Kammer ein Streifen benutzt. Die Ansprechwahrscheinlichkeit der beiden Kammern konnte wahrend der Messung mit Hilfe eines weiteren TDC's bestimmt werden. Die Koinzidenz beider Szintillatoren liefert das Startsignal und jede Kammer ein Stopsignal (Gesamtsignal G). Nach der Anzahl, wie oft jede Kammer angesprochen hat, kann die Ansprechwahrscheinlichkeit berechnet werden. Weiter wurde ein Laufzeitspektrum aufgenommen. Dabei liefert ein Streifenende das Start, das andere das Stopsignal. Unterschiedliche Teilchenkoordinaten entlang des Streifens bewirken verschiedene Laufzeitdifferenzen der Signale. Mit dem daraus resultierenden Laufzeitspektrum, kann die aus dem Flugzeitspektrum gegebene Zeitauflösung korrigiert werden (verg. Anhang).

Alle ADC und TDC-Inhalte wurden für jedes Ereigniss festgehalten und zur späteren Auswertung auf Magnetband geschrieben.

Die Flugzeitmessung wurde mit zwei 70 Tagen formierten Pestovkammern bei einer Hochspannung von 4,0KV, 4,5KVund 5,0KV durchgeführt.

kosmischer Teilchen

-69-

- D = Diskriminator
- K = Koinzidenzeinheit

Abb.6.5.1.2 Ausleseelektronik zur Flugzeitmessung

6.5.2 Flugzeitspektren

Abbildungen (6.5.2.1 bis 6.5.2.3) zeigen die Die Flugzeitspektren, welche mit sauberen Kammern gemessen wurden. Der Verlauf der Histogramme ist nicht gaussförmig auch in einem eingeschränkten Bereich und kann nur unzureichend durch eine Gausskurve angepasst werden. Eine Überlagerung zweier Gaussfunktionen, einer "schlanken" und einer "breiten" kann über den gesamten Bereich sehr gut angepasst werden. Eine Erklärung dafür und eine Interpretation beider Funktionen kann wie folgt gegeben werden.

Beide Pestovkammern arbeiteten nicht einwandfrei, sondern besassen die schon erwähnten Dauerentladungen. Der homogene Feldverlauf wird an den Dauerentladungsstellen gestört. An diesen Stellen herrscht ein dauernter Auflade und Entladevorgang, der im zeitlichen Mittel das elektrische Feld lokal schwächt. Die Anstiegszeit der Signale ist ähnlich wie die Zeitauflösung von der Feldstärke abhängig (verg. 3.5). Teilchen, welche beide Kammern an Stellen mit verschiedener Feldstärke durchqueren, liefern Signale verschiedener Anstiegszeit und bewirken, dass zu lange oder zu kurze Flugzeiten gemessen werden. Dadurch kommt eine "breite" Verteilung zustande, die sich einer "schlanken" überlagert. Eine "schlanke" Verteilung ergibt sich, wenn die kosmischen Teilchen beide Kammern an Stellen durchqueren, wo der Feldverlauf nicht gestört ist und die volle Feldstärke vorliegt. Die Flugzeitspektren enthalten beide Fälle und bestehen deshalb aus einer Überlagerung der beiden Verteilungen.

-72-

4

Abb.6.5.2.2 Flugzeit zwischen zwei Pestovkammern

G_{PSC}=227ps ; G_{PSCkor}=201ps

Abb.6.5.2.3 Flugzeit zwischen zwei Pestovkammern

G_{PSC}=192ps ; G_{PSCkor}=160ps

Hochspannung [kV]	Ereigniszahl	Standardabweichung der angepaßten Gaußkurven [ps]	Prozentuales Verhältnis der Gaußkurven	PSC-Auflösung (unkorrigiert) σ _{psc} [ps]	PSC-Auflösung (korrigiert) ^d pscKor [ps]	theoretisci Auflösung d [ps]
4,0	269	452 ± 65 1150 ± 339	70,45 Z 29,55 Z	319 ± 46	301 ± 46	182
4,5	264	322 ± 49 1011 ± 204	57,08 Z 42,92 Z	227 ± 34	201 34	122
5,0	430	272 ± 35 946 ± 68	43,7 % 56,32 %	192 ± 24	160 ± 24	88
5,0 verschmutzte Kammer (800 Betriebs- stunden)	293	1124 ± 147		795 ± 104	788 ± 104	88

Tabb.6.5.2.4 Ergebnisse der Flugzeitmessung

-76-

Die Parameter der angepassten Funktionen sind in Tabelle 6.5.2.4 aufgeführt. Der prozentuale Anteil der "breiten" Gausskurve nimmt mit der Hochspannung zu und liegt bei HV=5KV um ca. 27% höher als bei HV=4KV. Sowohl die Durchschlagsrate (Abb.6.2.3), als auch die Entladungszone (Abb.6.3.6) steigt mit der Hochspannung. Beides verstärkt die Feldinhomogenitäten, was die Zunahme des "breiten" Anteils erklärt.

Die Zeitauflösung G_{PSC} der Pestovkammer wurde aus der Standartabweichung G₇ der "schlanken" Gausskurve berechnet.

$$\sigma_{psc} = \frac{\sigma_{\tau}}{\sqrt{2}}$$

Dieser Wert wird anschliessend auf Laufzeitfluktuationen (verg. Anhang) korrigiert. Die korrigierten Werte Gpsckor (Die Messfehler sind durch die Anpassungsrechnung gegeben.) wurden zum Vergleich, zu den in 3.5 theoretisch berechneten, in Abb.6.5.2.5 dargestellt. Die Abbildung zeigt die Zeitauflösung in Abhängigkeit von der elektrische Peldstärke. Die Messpunkte sind um 4E von der theoretischen Kurve verschoben. Die Verschiebung nimmt mit der Hochspannung zu und beträgt bei 5KV & E/E = 17,6% gegenüber 12% bei 4KV. Die Kammer befindet sich durch die Dauerentladungen immer im Zustand des Aufladens. Man kann sich vorstellen, dass ausser an den Dauerentladungsstellen, wo das elektrische Feld lokal geschächt wird, das gesamte Feldstärkeniveau um 🛆 E gesenkt wird. Eine Erhöhung der Hochspannung bewirkt eine grössere Durchschlagsrate und verstärkt diesen Effekt. Die Zunahme von dE/E mit der Hochspannung kann so erklärt werden.

Abb.6.5.2.5 Zeitauflösung als Funktion der Feldstärke (nach 3.5 berechnet),Messpunkte (€ PSCkor) sind um ∠E verschoben.

-78-

Durch eine Verschmutzung der Kammer wird die empfindliche Fläche reduziert und das elektrische Feld zunehmend geschwächt und inhomogen. (verg.6.2) Um den Einfluss der Verschmutzung auf die Zeitauflösung sichtbar zu machen wurde die Flugzeitmessung (bei HV=5KV) nach 800 Betriebsstunden wiederholt. Zu diesem Zeitpunkt war eine Abnahme der Ansprechwahrscheinlichkeit um 25% und der Pulshöhe um ca. 80% zu verzeichnen. Das Flugzeitspektrum (Abb.6.5.2.6) zeigt eine deutliche Verbreiterung gegenäber der Messung mit sauberen Kammern. Die Zeitauflösung verschlechterte sich von 160ps auf 750ps.

6.6 Lebensdauer der Pestovkammer

Die beschränkte Lebensdauer der Pestovkammer stellt ein Hinderniss für den Einsatz in Experimenten dar. Sie kann auch durch längers Formieren nur unzureichend gesteigert werden. Mit 32 Tagen formierten Kammern konnten etwa 200 Stunden, mit 70 Tagen formierten etwa 600 Stunden gute Ergebnisse erzielt werden. Eine befriedigende Lösung kann durch bessere Kathodenoberflächen erreicht werden. Eine ideale Oberfläche würde eine wesentliche Steigerung der Lebensdauer bedeuten, da Dauerentladungen und die damit verbundene Verschmutzung wegfallen würde. Ausserdem würde die Kammer immer die volle Feldstärke besitzen, so dass die Zeitauflösung einen besseren Werte erreichen würde.

7. Zusammenfassung

Zwei Pestovkammern mit einer empfindlichen Fläche von je 8cm x 8cm wurden gebaut und mit Hilfe der kosmischen Strahlung auf ihre Eigenschaften untersucht.

Es wurde eine Zeitauflösung von で = 160 ps und eine Ansprechwahrscheinlichkeit von 95 % erreicht.

Zur Vermeidung von Photoeffekt an der Kathode war die verwendete UV-absorbierende Gasmischung $(3,0\&C_4H_6; 2,5\&C_2H_4; 3,0\&C_4H_{10}; 8,0\&H_2; 83,5\&Ar)$ gut geeignet.

Als besonderes Problem erwiesen sich spontane Entladungen, welche durch Defekte in der Kathodenoberfläche entstehen. Die spontanen Entladungen verschlechtern die Kammereigenschaften und verursachen eine Verschmutzung der Elektroden. Die Lebenszeit der Pestovkammer wurde durch diese Verschmutzung begrenzt und betrug maximal ca. 600 Stunden. Ahnliche Erfahrungen wurden auch bei SLAC und RWTH-Aachen gemacht (verg. [7], [21]).

Dem Einsatz in Hochenergieexperimenten stellt sich, die durch spontane Entladungen begrenzte Lebensdauer entgegen. Die Steigerung der Oberflächengäte ist eine technische Frage und kann Abhilfe schaffen.

A Anhang

A l Laufzeitkorrektur

Die Kupferstreifen auf der Anodenrückseite und die Kathodenoberfläche stellen mit dem dazwischenliegenden Dielektrikum einen Streifenleiter dar, in dem sich, die beim Funkendurchschlag erzeugten Signale ausbreiten. Unterschiedliche Teilchenkoordinaten bewirken unterschiedliche Laufzeiten. Das Flugzeitspektrum wurde durch diesen Effekt verbreitert und und die daraus berechnete Zeitauflösung verfälscht. Um die nach 6.5.1 berechnete Zeitauflösung der Pestovkammer zu korrigieren, wurde folgende Methode benutzt. Die Teilchenkoordinaten entlang eines Streifens sind statistisch verteilt. Daraus ergibt sich eine Laufzeitdie Unter der Annahme, dass fluktuation 6. Teilchenkoordinaten in beiden Funkenkammern bei der Flugzeitmessung als voneinander unabhängig angesehen werden können, kann die nach (6.5.1) gegebene Eigenauflösung \overline{G}_{PSC} durch Ge korrigiert werden.

$$\sigma_{pscKor} = \sqrt{\sigma_{psc}^2 - \sigma_t^2}$$

Zur Bestimmung von \mathcal{G}_{ℓ} wurde während der Flugzeitmessung ein Laufzeitspektrum aufgenommen. Dabei liefert ein Streifenende das Start-, das andere das Stopsignal. Die Laufzeitdifferenz Δt ergibt sich daraus :

 $\Delta t = t_1 - t_2$ $t_{1/2}$ = Ausbreitungszeit zu beiden Streifenenden

 $\ell = t_1 + t_2 = \text{const.}$

 $\Delta t = 2t_1 - \ell$

-82-

Die Fluktuation \mathbb{G}_ℓ ergibt sich aus der Varianz $\mathbb{G}_{a\ell}$ der Zeitdifferenz at zu :

$$\sigma_{\Delta t} = 2\sigma_t$$
Al. $\sigma_t = \frac{\sigma_{\Delta t}}{2}$

Die Laufzeitdifferenz ist in Abb.Al gegen die Zahl der Ereignisse aufgetragen. (Da ein einziger Funke an beiden Streifenenden das gleiche Signal erzeugt, ist das gemessene Spektrum unabhängig von der Eigenauflösung der Kammer.) Die Form des Laufzeitspektrums ist durch die geometrische Anordnung der Zähler bestimmt. Es besitzt in guter Näherung eine Rechteckform, wobei die Halbwertsbreite t_H durch die Szintillatorbreite b=5cm gegeben ist (verg.6.5.1)

Abb.Al Laufzeitdifferenz der Signale längs eines

Kupferstreifens

-83-

Die Standartabweichung $G_{z, \vec{r}}$ berechnet sich für eine Rechteckverteilung zu :

$$o_{\Delta L} = \frac{L_{\rm H}}{\sqrt{12}}$$

und die, durch unterschiedliche Teilchenkoordinaten gegebene, zeitliche Fluktuation \mathfrak{S}_ℓ ergibt sich nach Al.l zu :

$$\sigma_{\rm t} = \frac{r_{\rm H}}{2\sqrt{12}}$$

0, = 105 ps

Aus der Szintillatorbreite b und der Halbwertsbreite $t_{\rm H}$ des Laufzeitspektrums kann ausserdem die Signalausbreitungsgeschwindigkeit v_{sig} abgeschätzt werden.

$$v_{sig} = \frac{2b}{t_H}$$

v sig = 13,7 cm/ns

-84-

Literaturverzeichniss

- A SPARK COUNTER WITH LARGE AREA (V.V.Parkhomchuck, Yu.N.Pestov and N.V.Petrovykh) Received December 21, 1970 [Nuclear Instruments and Methods 93(1971)269-270]
- [2] PLANAR SPARK COUNTER WITH A LOCALIZED DISCHARGE V.D.Laptev, Yu.N.Pestov and N.V.Petrovykh USSR Novosibirsk; March 28, 1975 UDC 539.1.074.27
- [3] A GAS MEDIUM FOR A PLANAR SPARK COUNTER WITH A LOCALIZED DISCHARGE
 A.D.Afanas'ev, V.D.Laptev, Yu.N.Pestov and B.P.Sannikov
 USSR Novosibirsk; March 28, 1975
 UDC 539.1.074.27
- [4] CERTAIN CHARAKTERISTICS OF A PLANAR SPARK COUNTER WITH A LOKALIZED DISCHARGE V.D.Laptev and Yu.Pestov USSR Novosibirsk; April 14, 1975 UDC 539.1.074.27
- Pikosekunden Flugzeitspektrometer für VEPP-2M auf der Basis von Funkenzählern mit lokalisierter Entladung.
 Yu.N.Pestov, G.V.Fedotovich Preprint IYaF 77-78 Novosibirsk Inst. Nucl. Phys. AN, 1977
- [6] Experiment am VEPP-2M zur Messung des Pionformfaktors in Schwellennähe der Reaktion
 - $e^+e^- \rightarrow \pi^+\pi^-$

mit Hilfe eines neuen Flugzeitverfahrens. Preprint IYaF 78-52, Inst.f. Kernphysik Novosibirsk , 1978

- Progress Report on Planar Spark Counters William Atwood, October 2, 1978
 SLAC, Engeneering note
- [8] Spark, Streamer, Proportional and Drift Chambers Peter Rice Evans
- [9] Sparc Chambers Otto Claus Allkoffer Kiel, August 1969
- [10] Principles of Operation of Multiwire, Proportional and Drift Chambers, Cern 77-09 F. Sauli

- [11] Technisches Handbuch Böge 1969
- [12] Gas Encyclopaedia L^{*} Air Liquide
- [13] Parallel-Plate Counters J.Warren Keufel Review of Scientific Instruments Volume 20, Number 3, March 1949
- [14] Landolt-Börnstein Zahlenwerte und Funktionen 2.Band: Eigenschaften der Materie in ihren Aggregatzuständen 6.Teil elektrische Eigenschaften I Springer 1959

- [15] L.C.Jones, L.W.Taylor Analytical Chemistry 27,2(1955)228
- [16] R.S.Mulliken, P.G.Wilkinson Journal of Chemical Physics 23,2(1955)1895
- PLANE-PARALLEL SPARK COUNTERS FOR THE MEASURMENT OF SMALL TIMES.
 M.V.Babykin, A.G.Plakhov, Yu.F.Skachkov and V.V.Shapkin
 March 1956
- [18] JENAer Glaswerke Schott, Mainz Mitteilung Nr.40-1966
- [19] Taschenbuch får den Maschinenbau Dubbel 13.Auflage 1.Band
- [20] H. Siebke, RWTH-Aachen private Mitteilung
- [21] SPARK GAPS AND SECONDARY EMISSION COUNTERS FOR TIME OF FLIGHT MEASURMENT W.Braunschweig, RWTH-Aachen

3

Danksagung

Die vorliegende Arbeit entstand im Rahmen der JADE-Koloboration, bei der ich mich für die vielfältige Unterstützung bedanken möchte.

Herrn Prof. G. Weber danke ich för die Ermöglichung dieser Arbeit.

Får die Betreuung und die zahlreichen kritischen Diskussionen danke ich Herrn Dr. W.Bartel.

Besonders zu Dank verpflichtet bin ich den Technikern, Herrn Fregin, Seidel und Matsumura, die mich bei der Öberwindung technischer Schwierigkeiten immer hilfsbereit unterstätzten.

Ich versichere, diese Arbeit selbständig unter Verwendung der angegebenen Quellen angefertigt zu haben.

Hamburg, den

1981

-87-