
Internal Report
DESY-F14-86-0^
July 1986

THE BÖS SYSTEM

DYNAMIC MEMORY MANAGEMENT

FORTRAN77 VERSION

by

Volker Blobel

Eigentum der
Property of

Leihfrist: -
Loon pen'od: /

Bibllo«,̂
,ibraiy

.1986

doys

DESY behält sich alle Rechte für den Fall der Schutzrechtserteilung und für die wirtschaftliche
Verwertung der in diesem Bericht enthaltenen Informationen vor.

DESY reserves all rights for commercial use of information included in this report, especially in

case of filing application for or grant of patents.

"Die Verantwortung für den Inhalt dieses
Internen Berichtes liegt ausschließlich beim Verfasser"

Contents

The BÖS System

Dynamic memory managemeut

FORTRAN77 Version

Volker B lobe l
II. Institut für Experimentalphysik

Universität Hamburg
Luruper Chaussee 149

2000 Hamburg 50

July 25. 1986

Abelrart

BÖS U a program ayatem foi the dynainic manageiuent of data areaa and for the input/output of seta
of data areas. The ayetem aupportf a modular atructure of the application program and portability for
both the Software and ihe data seta. The main application is in the data analysie of high-energy-physics
experimenta. Thif manual describes the use of the FORTRAN77 veraion.

1 Dynamic memory management

2 Initialiiation and Utility Programs

2.1 Initialisation
2.2 General rule?
2.3 Conversion functions

4
4
4
5

"2 4 Ut i l i ty subprogramr for printing 5

Natted banks
3 l Operation» with f ing le named banks
3.2 Indicef ior named bank;
3.3 Bank formal E
3 4 Sets of banks
3.5 Changing the names of banks
3.6 Garbage collection

4 Work banke
4.1 Operation? with work banks
4.2 Bank copy lo or froni work banks .

5 Input/Output (sequential)
5.1 Inpu t /ou tpu t subprograms
5.2 General input/output subprogram

6 Card Image iuput
6.1 Data banks
6.2 Format and text bank?

7 Direct acceas I/O of aingle banks
7 l Introduttion to direct-accef? operations
7.2 Initialisation
7.3 Open direct acces?
7.4 Direct af.cess Operation?
7.5 Search Operation^
7.6 Pequenliül read

6
6
T
9

10
H
12

12
13
13

14
15
16

18
18
19

20
20
21
2l
2l
22
22

8 Changing thp length of a bank
8.1 Work banks
8.2 Named bank*

9 Tables
9.1 Prinlout
9.2 Error conditions wild program stop

1(1 Program Organisation using BÖS
10.1 Modular program s l rur ture

10.2 Module steering . -

A BÖS recorde

B Histograms

C Summary of BÖS

23
24
24

24
27
27

28
28
3l

33

33

S4

L13T OF TABL&

List of Tables

1 Struclure of named bank?
2 Content of work bank created by BWIND
3 Structure of a work bank
4 Structure of ati BÖS array
5 Systems data
6 Arguments of BÖS pubprograms
"I Extended arguments in JVV(l)
8 Return codes in JW(2)

6
9

12
24
r-,
26
26
2<

l Dynamic memory management

In the worid of scientific Computing the mosl populär programming language is PORTRAN. 1t is easy to learn,
produces efficieni code for numerical computations and, las! but nor leafit, il is the traditional programming
language in science. h has however, like other programming languages, cerlain limitations for the analysis of
large and complicated dala sample?, tliat are generated in big scientific experiments. The bask limitations in
this respect are:

• fixed dimensions of data arrays, and

• fixed list (of arrays) in input/oulpul

The fixed dimensions of array are not well suited for the many different variable-length data areas in certain
applications. The fixed list of arrays in i n p u t / o u t p u t requires in principle, that the program in advance has
Information aboul the content of the next record to be read arid processed.

These l imitaiion? are even more severe, when the whole analysis Software, perhaps consisting of äs many äs
100000 lines of code. is in a continuuus development. Another problem, beyond the programming language, IB
the porlahility of data sets, which is complicated by the variability of the machine represeiHation of data on
different types of Computers.

An obvious way to improve the Situation is the Organisation of the different data areas dynamically by a
system, wlnch can be realized äs a set of FORTRAN subprograms. In these dynamic mernory management
syatems the dala areas are usually called banks; each bank contains data. which belong cloee together. All
banks are stored in one large COMMON area. The bask operations, provided by the System, are:

• create a bank,

• find a bank,

• delete (clrop) a bank, and

• garbage collection.

In the garbage co)|ection the exisCing data banks are compressed allowing neu- data banks lo be created. The
main advantagc af dynamic memory management Systems is the fact, thal they allow a certain Structure for all
data. which is an esential condition for a modular Structure of analysis programs.

The BÖS System for thf dynamic memorj minagement was originally written in 1975 for the use by the
PLUTO collaboration at DESY, but has been used afterwards by several high-energy-physics experiments in
various countries. It includes in its design the inpu t /ou tpu l of data banks for sequential and direct-access data
set.o. This article describes the FORTRAN77 version. which is based on the same principies äs the first version,
but has been compktely reorganised and improved with respect lo portability of both program code and data
sfts. It is compatiblf in the respect, that sequential data sets written with the old version of the BÖS System
cati be read. The main new feature? are the following:

1. More than one array can be used.

2. An additional type of banks, the work bank, is inlroduced, especially for cases, where the number of data
words in a bank i? frequeinly changed.

3. The System is wollen in Standard FORTRAN77 (ANS FORTRAN 1978 Standard), a few machine de-
pendenl l ibrar> funct ions are used.

4. A formal can be specited for banks (necessary for machine independent I /O).

5. Machine independent I/O is introducefi

In the FORTRAN77 Version of the BÖS system up to 10 arrays. cailed BÖS arrays JW, can be used to störe
banks, one of which has to be the basic array IW in the COMMON BCS:

COMS!D:,7BCS/IV,:Cndim) ndim = conetant

In most applications it will be sufficient to use only this basic array, which is used by the System for all
mput /output buffers. There are banks of two types. named bankt and work banks, slored in each array in the
low index pirt and the high index part. respectively. The struclure of the arrays is shown below.

UY'.VAMK- MEMORY

index coment
. 50 Systems data (50 words)

indires for named banks
JW(14) named bank

named bank

J\V(15) . . .
JW(16) . . .

. . . JW(12)

named
free space

work b
work b

work b

bank

(gap)
an k
ank

ank

Named banks

Named banks are stored in the low index part of an array. They liave assigned a name. which is a tharacter
string of four characters. and a number, which is an arbitrary inleger (positive or negative or 0). A bank with
a name NAME, a number NR and ND data words is crealtd in the basic array by the slatement:

IND - N B A N K (t ; A M E . N R , ! l D)

The index IND points to the bank, mors precisely: llie value of IND i? the index with in the array, which contains
the number of data words. The structure of a named bank is shown below.

index content
IND -
IND-
IND -

3
2
1

IND
I N D -
I N D -

1
2

name NAME
number N R
index of next bank
number of data words
data word]
data word 2

IND - ND data word ND

According to the definition of the index IND, words of the data area are referenced by statementf of the
form

VALUE = I W (I K D + l) + I W (I H D + 2)

and data are stored in banks by Statements of the form

miND+3) = IVALUE

The name and the number of a named bank can be used lo find the index of the bank in any program part: for
the basic array the Statement

IIID - H L I H K U I A M E . Ü R)

can be used to determine the index IND A single bank can he dropped by

I11D = H D R D P (N A M E , ! I R)

Larger data structures

By lisl of nanies larger data structures can he defined. Thif concept allows lo perform operations on sets of
bank?, which consist of all bank? with names, whicli are in the lisl. Lifts may be specified by a single character.
for example 'E', and ihere i? a subprögram BLIST to edit a given list (add , delete]. An imporlant Operation
for sets of banks is Output and inpul (I /O) . A larger data structurc can be wntten to an Ou tpu t medium by
one call, in which the list is specified. Input subprögram? allow to read and Store the data slructure. I/O
i? possiUe in a fast, machine dependent way, aud in a machine independent was. which allows the exdiange
of data between different types of Computer willi automalif conversion of data words (integer, floating point.
text). Thi? concept is based on ihe formal of banks, which can be specified in a way similar to the FORTRAN
FORMAT Statement. There is no automatic garbage r.ulleclioti in the area of named banks.

Work banks

Work bank; are flored in the high nid ex pari df t l ie arr,i\n cont rasl i o named bau k s no larger da ta s t ruclurep
tan be dtnlied. no slandard l 'O exisl? and Rarliage collec.lionf are done automatical l j , if necessary. Each work
bank wiili ND d a t a words is created wi th an m d i v i d u a l idenlifier, w i l l i a Statement

DATA ID/0/
CALL K B A : : K (H i ' . I D , l I Ö , t)

The structure of a work bank is given below.

index
ID -
ID -
ID -

3
2

1
ID
ID -
ID -r

ID ->

contenl
name (default is 'WORK')

total nr of words in the bank NT
poinier to index ID

number of dala words ND
1 • data word 1
2

ND

data word 2

data word ND

Work banks are useful and effkienl for certain applications like shortliving data banks inside a program
module Their use for the trän Emission of data between different program modules however tends to decrease
thc degree of modularily. Tlie System provides no subprograms for the input/output of work banks.

INITIALIZATION A.VD I'TILITY FfiOGfiAAO

2 Initialization and Utility Programs

2.1 Initialization

A l l BOS-arrays have lo be inilialized. Thi? is usually done in the M A I N program and precedcd by (he declaration
of 'he ar ra) f . The basic arraj]\ in COMMON BCS ' has lo bc declared with at least 1000 words. and it
has to be in i t ia l ized äs the first array, even if it is not used directly afierwards. Up to 10 arrays may be used.
however [t l? recommended to prefer the basic array. since the usc of many arrays may contradict tlie concept
of modularily. For histograni l ikc data banks it if recommended lo u?e the array KW in COMMON/HCS/.

Arguments

IV," = baeic BÖS array

JV.' - any BGS array

I J D I M - dimension parameter of array

Declaration and subprogram calls

COHKDH/BCS/IWCNDIM) baaic array (necessary)
CONHON/any/JV(HDIMJ) further array (optional)
CDMMO:;/HCS/KT* :(r. 'DIMK) further array (optional)

CALL BDSdV'.NDIM) initialize basic array (necessaryj
CALL B O S (J V , N D I M J) initialize array X'.' (optional)
CALL BOS(KVr ' , . ' :DIMK) . initialize array KV. (opt ional)

By a call of BÖS an BOS-array i? initialiied. Further call? of BÖS wi th the sann» array a? ar-gument are ipnored
for the basic array; olhcr ROS-arrays are reset to the initial staie. us ing t l i t- g ive» dimension parameler or the
value at the previous call, if the dimension parameter in the cail is zero.

Example: The code below show? the Ini t ia l isat ion of the basic array w i th 50000 words and of t l ie array in
commtin /HOS with 10000 words.

CDHKDü/BCS/IV(50000)
REAL R'*1 (50000)
EQUIVALEtiCE (IV. ' (l) .R i 'CD)
CDMMD1I/HCS/K\(C10000)
REAL X U (l 0000)

EQUIVALEliCE (K K Ü) .XV. (1))

CALL BOS(I*.50000)
CALL BOS(KV;. 10000)

2.2 General rulcs
Argiiments
Most of the subprograms act on a specific array, which may be e i l l i e r the basic array 1VV in i.ommon /BCS/
or any BOS-array JW. If the array has to be specified in the cal), i t is the first argumeüt Furt l ier argumentf
are either of type integer or of type chararter string. These argumentf are tiever modified by a call, wi th one
exception: ihe index 1D of a wurk bank. If a subprogram has to return some value. it is defined äs a fvnction

subprogram, and the returned value is zero, if the required Operation could not be pcrformed. A test on the
function value should follo« a funct ion call, when indicated in the description of the funct iou call. The meaninp
of the arguments is explained in each section together w i th the calls. In addilion table 6 gives a compleie
oven-iew over all possible arguments

Extended argnmeritH

Some subprograms in t l ie BÖS pystem have rarely used addit ional Option?, which are not selected by an argu-
ment; instead the user has to select suth an Option by setting the first word of the array, JW(1), to a certain
value. This word is reäel to lero by a call to a BÖS System subprogram (J W (1) - 0 mrans default optioii).

Error rottinis and rfturn codcs

Errtir condi t ions, nieaning (h a t the subprogram could not execuic the required Operation, are indicaled either

by

• l ak ing tlie a l t e rna te rp lurn in cases of subroutines, or by

a returned value of zerc case of funclions.

In both cases the reason is indicated by the value of the seconci word of the BOS-array. JW(2] , if necessarj.

This return fude is explained in each section together with the call (see also table 8). One design criiena of BÖS
was to minimize the number of cases, where an error return is posssible. For some errors, where a continuation

is impossible (for example, if the bank structure is destroyed), thf program will stop after printing the reason.

2.3 Convcrsion function s

Since in FORTRAN77 characler strings cannot be stored together with numerical data in the same cornmon, the
BÖS syslerns inc ludes two funclions for the conversion between the represenlatjon äs a character*'! string and
ihe repre^entation a? packed integer. In the lauer representatioti the four characters are stored in their internal
characler codef from tlie left to the right in one machine word. The two functions are machine independent;
they use functions from the CERN program library. which exist for almost all types of Computers. On 3ome
rnachines the two represenlatioüf are idenlical and the funct ions t r iv ia l

Arguments

CHST = chsracter-4 string
II1ST = icteaer

Subprogram ealls

CHARACTER*4 CHST.CHAIM
It iST = i : :TCHA(CHST) . . convert froir. charaeter to integer

CHST = CHAIllT(INST) convert irom integer to charaeter

When a named bank is created. the name N A M E of the bank is stored in the integer represenlalion within the
bank at index IND-3. For ihe conversion back to a charaeter string, the function CHA1NT should be used. The
func t ions should also be used. if text (charaeter strings) is stored in the data pari of a bank.

Examplp. The name of a bink. stored in the integer representation within a named bank at the index IND-3,

is converted lo the character representation.

CHARACTER-4 CHAr.T. ' IAME

NAHE = CHAii:T£ri '(i:;o-3)) converaion to cnaracter'4

Example. Text from a character string TEXT is stored in the data pari of a bank wi th an index IND. The
funct ion 1NTCHA l? used to convert at each call four characlers from the string into the integer representation.

The FORTRAN77 function LEN and the substriiig feature is used.

CHARACTER-5S TEXT

LA=1

DD 10 1 = 1, (LE:;(TEXT)-t-3)/4

10 LA=LB*1

deterwine nr of words from length

2.4 Utility subprograms for printing

The System conlains soine subprograms to print rertain data of the arrays. The call of BO?TA is recommended
after initialization of all arrays and at the enrl of the program.

JV,4.«£/"'

Subprogram calls

CALL BGETA print current Status oi all BÖS
arraya ineluding batik formale
and I/O etatus

CALL BQSFM print b&nk formal B

CALL BOEI C print current atatua oi I/O

CALL BDSBL(JW)

CALL BDSBK(JV. r)

CALL BDEDPU'*1)

print I/D statistic on banks in

array JV.'

.print liat of current banks in
array JV;

.print dump of array JW

3 Named banks

Named banks are the basic elemenls of the BÖS System and should be used for long-living data Their properties
allow a modular structure of big and complex programs. The structure of named banks is shown m table 1.
The System includes subprograms for various Operation? wilh single banks and sets of named bank? including

inpul ,'output.

indes

I N D -
IND -
INI) -
IND
IND +
IND +

IND +

3
2
1

content

name NAME
number N R
index of next. bank

number of data wo

1

ND

data word 1
data word 2

data word ND

nl-

Table li Structure of named banks.

3.1 Operations with single named banks

Operation^ with single named banks require äs arguments the name and the number of the named bank. They
are perforrned by functions, wliich start with the character 'N' for banks in the basic array, and wi th the
character 'M' for an arbitrary BOS-array. Immediately after t h e function call a lest on 1ND-0 should follow

in order to check the success of tlie Operation

Argumente

liAME = name of bank (character*4)
11R = number of bank
ND = Eumber of date worde of a bank (not negative)

I'!D = index of a named bank

Any character*4 string may be used äs a name. except a string wil h first character - . As number of a bank

am integer is allowed. The number of data wurds may not be negat ive

.1-2 indice? (or

Subprogram calk

I::D = NLi:JK(:, rAKE.:;n)
IND - MLI:JK(JV,'.I;A;-!E,:;R) determine index of named bank

IF(IlJD.Eq.O) THEN .

Functions N L I N K and MLINK determine the index IN'D of a named bank. The returned value is iero, if the
bank does not exist; therefore a lest on IND=0 should follow. Other melhods for the determination of the index
of a bank are discussed in chapter 3.2.

, ,
lüD = HBAHKCJK'.tlAME.NR.lID)

IFÜÜD.EQ.O) THE:.'

create ramed bank witb 1,'D data worde

or change length to ND data words

returned index however is zer
discussed in chapter 7.
Options: For special requiremenls ihe following options can be selecled:

JV ' (l) = l additional bank words l e f t
unchanged

move bank t o gap oi free space

all other banks of the Barne name

are deleted

If 1W(l)-l is set before the call, the additional data words are left unchanged. If JW(l) -2 is set before NBANK

or UBANK is called, the bank is moved to the gap, thus the moved bank will be immediately before the gap
The option JW(1) = 3 ailow? to create a new bank, deleting all existing banks of the same name before. Since

use is made of the space of existing banks, this Option will be efficient for very large banks, occupying a large
fraction of the lolal array.

IND - N D R O P (N A M E , N R)
IND = MDROP (JV.', KÄME, N R) drop named bank

The named bank is dropped. Although it may still bc m the BÖS array, its index cannot be obtained by
NL1NK/MLINK and ihe bauk wil! valiish al ihe nexl garbage collection

I N D = !:PR:;T(NAI-!E,NR)
IND - MPR:]T(J'«;,[;AME,:JR) - - .print named bank

Th» named bank is printed. If s formal is defined for the bank name. i t is used.

3.2 Indices for named banks

Tlie Standard melhod to determine the index of a given bank is to use the functions NLINK and MLINK.
Al though these functions are fast (one tall is. equivalent to about two calls of a dummy funct ion) . there are
certain applications with loops etc, where the total time spent in the funct ians may become large. The algorilhm
for indices of named banks is explained below and it will be shown, how func t ion calls can be avoided.

Name-indices

Tu each name appearing m a call of BÖS System programs a name-indcx w i t h value.* 51, 52 .. is assigned.
This assignment is made al the first appearaiire of a name. The name-indcx for a given name N A M E can be
obtained by the Statement

J ÜAMED

HAMI = HAHIND(NAHE) return name-index for narce 1JAHE

If bank? are existing for a given namt-, the index of the hrst bank (first mean? lowesl nuinber))? stored .
word J W J N A M I] . Thu? liaving delermmed the name-mdex NAMI for a piven name by the above Sta tement ,

the Sta tement

IND = J W (N A M I) Index of firet baut;

directly yields without. a function call the index of the first. bank, or zero, if no bank of the given name exists.
During the execution of a program ihe name-index will never (.hange. Therefore within a subprogram the

Statements

DATA NAMI/0/ initialize with zero
IF(HAHI.Eq.O)NAMI-HAMIND{NAHE) define I IAMI at first call

can be used to determine the name-index a(the firsl call of the EU bprograni, in order to save time.
The word J W (I N D - l) in «ach bank contains the index of the next bank (i . i increasing order of bank number;)

of the same natne, or rero, if no fur iher bank exisls. Tbus by the statemen

IKD = J W (I H D - l)
IFd l tD .EQ.O) . .

next index
test I:;D - o

the next index can be determined wi thout a function r.ill.

Loopa

If a loop has to be execuled over all banks of a given n.ime (in order of increasing numberj one ha.- to imtializt
the index f N D before the loop to N A M I N D (N A M E) + 1 or SAMI-i-1; the fdlowing statemenis can then be usecl
for the loop:

IND = HAMI+1
10 IND = JV(IKD-l)

I F (I N D . i l E . O) THEII

G07D 10

END IF

initialize index IND

next index

test termination of th? loop

IND ia index for the bank with

number J'*(l:lD-2)

Note that a loop can be executed without any funct ion cail for the de lerminat ioii of indices.

Access to banke in random order

In some applicalions banks of certain names are required in some (random) order, determined by data and
program flow A function call (N L I N K , MLINK) would be possible, but requires of course some time. A faster
method in this tase is to use subroutine BWIND, which creates a work bank containing all indices of named
banks for a given name with numbers between l and an upper l imit (argument N R M A X of BWIND). This
subroutine is applicable in cases, where the bank numbers are (not too large] positive numbers

CALL B W I N D (J « , N A H E , K R H A X . I D) . create/modif y worh bank '/:ith indieea of
named banks

After the call the content of the work bank ai index ID will be ND will be the largest bank immber of an
existing bank < N R M A X . In practice N'RMAX should be sei to soire larpe number. For exampk if bank
numbers are expected in the ränge l . . . 50, one can use NR.MAX = 10DO. The actual length of the work bank
will be ihe largest number of an existing bank. The work bank contains ihe actual values of the indices at the
time BWIND was called. If new banks are created or exisling banks <ire dropped, the content is not changed
The use of BWIND is recommended m cases, wherc correlations between banks with a differem name are used.

Exaraple: Assume bankf with the names N A M I and NAM2; a bank *ith the name N A M I can be correlated
to a bank with the name NAM2 and vice versa. The corresponding number of the correlated bank may be
stored by the user for example in both cases in the first data word. The code allows ihe fast acces.^ to banks of
two names in a random order, only two calls of BWIND are necessary.

HanJt

index content
ID

ID !

I L > NTJ

I D - r l ! index of bank (N A M E . l) (or zero)
ID-2 ! index of bank (N A M E , 2) (or zero)

index of bank (N A M E , I) (or zero}

index of bank (N A M E . N D)

Table 2: Content of work bank created by BWIND

DATA ID1/0/.ID2/0/
CALL BV'i : :D(J '* ' .NAMl,1000,IDl}
CALL B V I ! J D (J W . N A M 2 , 1000,102)

II = . . .

IF (I I JDI .EQ.O)
I2=J¥(IND1+1)
I!]D2=JV{ID2 + I
I F C I N D 2 . E Q 0)

bank number of bank f.'AHl
index of bank d 'AUl.Il)
test index
baak number of bank MAM2
index oi bank (: . 'AM2,I2)
test index

3.3 Bank formats

The formal of a bank describes the type of data stored in the bank. All banks of ihe same name have to
be described by the same formal. This requirement of course h äs tonsequences for the design of banks. The
deünition of a formal is essential for machine-independent in put/Output, it is useful for the pnnting of banks and
if a bank is copied to a work bank. In machine-independeni outpul , the data words are converted accorduig to
the formal 10 a Standard 32-bit representation. and in machine-independent input the data words are converted
to the interna! machine representation It is recommended, not to use complieated formats (although it is
possible). and lo prefer the floatmg-point formal.

The formal of a bank can be either mutd or bit-jiackfd. The type of the data words is described by a
character string FMT

M ix cd for in a t

The formal desription FMT follows the same ru le? a? FORTRAN-format Statements, except lhal no length
Information is specified:

I integer
F floating-point
A text (4 characters per word}

The character stnng defining the format is of tlie type

where the /, are formal code? nl, nF. nA or n(. . .} for a group formal specification (n — constant). for example:

'I,5F.2(I,3F]'

Outer paretitheses of the formal can be omitted. Note that, acrording to the FORTRAN rules, when formal
control reaches the last (outer) righi parenthesi? and there are data words left, the formal Starts again by the
lasl preceding right parenthesis. including its group repeat count, if any, or, if no group specification exisis,
then at the first left parenthesis of the formal specification.
If a bank coniains only lext, the use of the formal ' ISA' is recommended, because in this case the pnnting
routines use a formal wjthout gaps.

B.4.VKS

Bit-packed formal

The 32 rightmost b i t s of each mächine word are used. t.hey comain either 32-bit word s or two 16-bit words or
four 8-bil words The formal description is:

'B32' for :j2-bit words
'B16' for Iwo]G-bil words
'BOB1 for four 8-bit words

In machine-independenl Output the content (32 rightmost bits] of the machine words are transmitted withoul
conversion. In machine-independent input, the data are transmitted lo the 3J rightmost bits of each inachine

word. If ihe named bank is copied to a work bank (BKTOW), the data are unpacked according to the formal
(expansion]. If a work bank is copied to a named bank (BKFKVV) and the format for the name i? bil-packed,
the data are packed (c-jmpresjioii). In printing named banks with a bit-packed format the conient of the bank?
are printed u n packed.

ArguinpntK

11AME = narae of bank
FMT = character etring for mixed format

= 'B32' or 'B16' or 'B08' for bit-packed formst

Subroutme cal l

CALL BKFMT(: ;AME.F]JT) . formst F!-!T IE aseigned to all banks itith

the name NAME

Tlie bank format for the given name is defined. The cal) is ignored. if the formal ha? already been defined
by a call. On Output the format descriplions are added automatically to the recordf, in a subsequent input
Ihe formal description are read. Thus format s are also dehned by input of rccords. However. ih« firsl cal] of
BKFMT overwrites a format defined from a record. If the format description in a call has a syntas error, the
program will stop at the firsl usage of the erroneou? format description.

Examples: The interprelaiion of several format strings is given.

format of data words:

CALL BKFMTCHEAD', '2I ,3F')

CALL B K F M T C ' D A T A ' . ' F ')

CALL B K F M T C ' D A T A 1 , ' (F J -)

IIFFFIIFFFIIFFF. . . (IIFFF repeated)

F F F F F . . . (all floating-point)

FFFFF. . (all floating-point)

CALL B K F M T (' T R A G ' , ' 2 1 , A , 2 (2 I , F) , (F) ') I IAIIFIIFFFFFF..

CALL B K F M T (' R A W D ' . 'B16') 16-bit packed

3.4 Sets of banks

For various operalions (inpu t /Outpu t , printing f t c .) ii is necessary to define a. set of banks, which belong
logeiher. In BÖS a set of banks is defined by ihe list of all names of bankf , which belong to the set. Thi? is
simple, bul not complelely general ihe case where some bank? of a given name are included in the sei of banks
and others of ihe same name are not included in the set, cannol be described, If, in any operalion, llie list
conlains names of banks. which are not exisüng these names are ignored.
A list of nanies may be au internal list or an expiidt slriiig o[name?, for example 'HEADTRACLIST' for the
names HEAD, TRAO and LIST. Internal lists are specified by a single character L; the chai-acter can have one
of the valucp

C E R S T and 0 (empty l i s t)

The names of internal lists are stored in the BÖS array. The suhroulme BLIST can be used to edit an internal
it-i |add names. delete names). The function NLIST can be used to obtain liie r.-lh name of a list.

3.'' ('Jiaiiging l i ie usnie.- öl bani.-

DPT = P L = ' ae t internal liet L to L I S T ; L = C E R E o r T
= 'L* ' add list LIST to internal list L
= ' L - ' delete list LIST f r o m jnternal list L

LIST = explicit string of names
= ' L ' cbaracter . specifying t h e internal list; L = C E R S T O

l< = index mithin a list

Subprogram calls

CALL B L I S 7 C J V , O F T , L I S T) change internal list according to Option
OFT using liat LIST

The iniernal lisi specified wi lh in OFT is either set equal to ihe lisi LIST ('! = '), or the names from lisi LiST
are added to or deleted from tlie internal list ('L — ' or 'L-']

CHARACTER-4 I.LIST
>;AME - : ILIST(JV; . I ; .L IST) .return !i-th name Jrorr. list LIST or blank

The name of the N-th entry in the list LIST is returned. The value blank (NAME = ' ') is returned. if N < l
or N > the number of names in the lisl

CALL BDROP(JV,r.LIST) drop uet of banka defined by list LIST

All bankf w j t h names in the lisl LIST are dropped.

CALL BPR!,'T(JV!,LIST) print set of banks defined by lißt LIST

All banks wi th namef in the lisl LIST are prinled.

Examples: A few calls of BLIST are shown, logether with the content of Ihe internal list E after each call.

content of list E af ter call

CALL BLIST(JT. 'E=' , 'HEADRAWD') HEAD RAV.'D

CALL BLISTtJV.1 , • « = • , ' S H O V i ')

CALL BLIST(JV, . ' £+ ' , ' R ')

CALL BLIST(JV,1 , ' £+ ' , ' T R A G ')

CALL B L I S T C J V , ' E - ' , ' S H O * ')

CALL BLIST(JV.1, • £ + ' , ' T R A G ')

I:AME = ::LiST(j-.'.',2, ' E ')

CALL BLIST (J1: , '£= ' , ' 0 ')

HEAD RAV.D SHQ'.',1

HEAD RAV:D SHOV; TRAC

HEAD RAK'D TRAC

HEAD RA'A'D TRAC

returned function value is KAME== ' RAV.'D '

empty

3.5 Changing thp names of banks

The name and number of a named bank can be changed by subpro^rams NSWAP/MSWAP and BSWAP.

KAMI, IJAM2 = narr.es of banks
li 'Rl , IJR2 = nuwbers of banks

4 WOHh BANK*

Subprogram falle

IüD - HS¥AP(HAM1,1]R1,NAM2.NR2)
IIJD - MSVAP(JV,I1AM1.IIR1 IHA142.11R2} change name and number

If both banks are existing, the bank (N A M l . N R l) will gel narne N A M 2 and number NR2, and the bank
(N A M 2 . N R 2) will get the name NAM1 and ihe number N R l ; the index of thf (new) bank (NAMl,NRl) is
returned. If only one of the banks exists, its name and number i= chariged to the other name and number. and
its index is returned.

CALL BSi*AP(JlOAMl,NAM2) exchange nameu t,1 AMI and 11AM2

All banks names NAM1 are changed to N A M 2 and all bank names NAM2 are changed to N A M l . If banks of
one of the names do not exist, the banks of the other name are renamed. The order of the two names in the

argument is irrelevant.

Example: The names 'TRAG' atld 'SPUR' are exchanged two tinies. After the two calls the banks have the

old names again.

CALL BS'XAP(JW, 'TRAC' . 'SPUR'}
CALL BS'l AP (JU , ' TRAC ' , ' SPUR')

e/change namea
change namee back

3.6 Garbage coJlection

Garbage collecljon in the irea of named banks refcains the space occupied by dropped banks. The position of
rerflaining banks may change by this Operation. Garbage collection for the area of named banks is not done
in any System subprogram (wi th the exceplions of BDASQ and BDALD and also the general input-output
program BSQER) and has to be caüed explicitly by the user. In typical applications this is done by the user in
regulär intervalf. for example before a new record is read in.

CALL BGARB(JW) .garbage collection for named üank area

4 Work banks

Work banks are created with an individual index ID. They should be used preferentially inEide a program module
and not for ihe tratlEmission of data between modales, sinee their properties may contradict the requirements
of modularity and no inpu t /ou tpu t is foreseen. They are however useful and efficient inside a module; they
do not disturb the area of named banks and allow a garbage collection with automatic Update of all indices of
work banks. The structure of a work bank is given below. Garbage collection in the region of ihe work banks
is done automatically, if neccessary, with Update of all individual indices of exisl ing works banks

index
ID-
ID -

ID -

3
2
1

ID

ID -
ID -

ID +

1
2

content
name (default is 'WORK')

total number of words in the bank NT
poinler to index ID

number of data words ND
data word 1
data word 1

M) data word ND

Tabie 3: Structure of a work bank

When a work bank is created, the index of the work bank is stored in ID, and the address of the word ID is
stored in the work bank at JW(ID-l). This allows the System to updale the content of indices ID automatically
during a garbage collection. This method requires, that the content of the. work bank is referenced directly with
the index ID, which was used during the creation of the bank. K the argument ID is nonzero at entry to a work
bank subroutme, it is checked: it should point to a work bank, and word JW(ID-l) should contain the address

4.1 Ojjwatjon? with work l>.iak~

of the word ID. If the value of ID is incorrect, the program will stop. Before a work bank is created, the index
ID must liave t l ie value zero. The value of an index should never be changed by the user directly.
Work bank indices or the work bank d a t a pari should not be an argument in a subprogram, if the subprogram

ilself may create or drop a work bank.

4.1 Operations with work banks

Arguments

ID = inde* of the work bank
ND = number of data words of the work bank (not negative)

Subprogram calls

DATA ID/0/
CALL W B A N K (J V . ' , I D , N D , ") create work bank

* inBufficient apace

A work bank with ND data words is created. th« index is stored in ID. If the bank already exists (ID ^ D at
entry). tlie number of data words will be changed to the value of ND given in the argument. For a successfull
Operation, the normal return is taken with index ID defined.
The alternale return is taken in case of insuff ic ienl space. if space is insufficient (even after a garbage collection
in the work bank area) to create a new bank or to increase the number of data words, the return code JW(2)
is set to l or 2 and in th is case a new bank is not created and an existing bank is left unchanged.

CALL WDRGP(JY. ' , ID) - drop »ork bank

The work bank at index ID is dropped and ID i? sei to zero. If ID = 0 at entry, immediate return is taken.

CALL W P R ! , r T (J V ' , I D) - - - .print work bank

The work bank at index ID if printed. A? an exception the index may also be an index of a named bank.

CALL •rfS'*'AP(JV,IDl , ID2) exchange andices for -//ork banks

The indices IDl and 1D2 of the banks are exchanged If one of tlie indices is zero. t l ie index is transferred.

A garbage collection in the area of work banks is done automat ical ly . when neressary. The user never has to
ral l the garbage collertioll directly, but for completeness the call is given.

CALL WGARB(J'O -garbage collection for wark

Example: A work bank with 1000 words is created and u?ed. After the use the work bank is printed and

dropped

DATA ID/0/
CALL V.rBA!lK(JW,ID.1000,*100)

CALL SCPRNTCJllMD)
CALL W D R D P (J W , I D }

4.2 Bank copy to or from work banks

A named bank in an array JW1 can be copied to a work bank in array JW2 and vice versa. If a format of ihe
type 'bit packed' is specified for the named bank and a copy is done to a work bank. the work bank will contain
the data unpacked into single words Conversely, if a work bank is copied to a named bank and the format of
the named bank is specified äs 'bit packed'. the work bank is assumed lo contain unpacked data and the named

bank will contain the data in packed form

J.VPf'3 'Ol'TPl'T

Arguments

J"'."l = BOE array of natned bank
i;AME,"R= name and number of bank

JV.'2 = BOE array of *'°ik bank
ID s Index of work bank

Subprogram calls

CALL

CALL BKFM (Jtf l. NAME, K R , JV'2. ID. *)

. copy named bank (souree) to
*ork bank {target}
* naJied bank not existing

.copy from \iork bank (source)
to named bank (target)
* *ork bank not existine

If the target bank IS existing before the call, the colltent will be replac.ed. If the sourcf bank does not <-xist , the
allern ate relurn is taken.

5 Input/Output (sequential)

This chapter explains the subprograms for the input/output of sets of named banks, which are defined by lists
of names. There are two posübilities für the i n p u t ' O u t p u t :

• a Standard mode selected by the Option 'FORT', which if fast aiid recommended, if a data set is read
several times on the same machine; it is based on Standard FORTRAN I/O; all records have the same

fixed length;

. a machine-independent mode selected by the Option 'EPIO1, based on the CERN EPIO package '; this
mode includes data conversion according toi the formal description of the banks; in writing floating point
and integer data are conve.rted to the IBM representalion, character data are converted to ASCII code;
in reading, the worcls are converted back to internal machine representation; if the formal is bit packed,
the nghtmosl 32 bits are wr i t t en and read without conversion.

In both niodes a buffer if used and existing formal df-smption of banks are automatically wntien and therefore
available in subsequelit programs reading the data set.
For each unit LUN the mode is selected by a call of subprograrn Bl'NIT.

Argumeots

LU'." = unit number
IDMODE - mode of I/O, either 'FORT' or 'EPID1 (character'4)
'IBLK - aumber öl data words for output record (in worde for ' F O R T '

and in 16-bit units for ' E P I D ')

CALL BU: : IT (LU: ; , IÜ! . :DDE,NBLKJ .define rr.ode for I/O aod buffer
length

Tl^f argunient 1OMODE is of type character*4 andmay ht- either 'FORT' or 'EPIO'; any other st ring is assumed
to be 'FORT'. The argunient NBLK specides (he buffer size (and record length] for the ou tpu t of BOS-records.
Tiie arjjunienl N B L K i; in macli iue words for the Option 'FORT' and in 16-bit unit for thc Option 'EPIO' and
ha? to be a mul t ip le of 180 in thr latter case. For input the buffer size is taken from the actual record lengi l i ,
tlie value of argumenl NBLK is irrelevant and uiay be zero. If the arguljient NBLK is zero for writing. a default
value is assumed. If BUNIT is not called for a u n i t . the mode 'FORT' is aspumed with the default buffer size

?ubprograms for t h p input /ou tpu t of BOS-rccords are described in the next ?eclion. A general inpul/output
subiirogram BSEQff exists, which provides a simple interfare t t > t l ie input out put. subprogranif and will be

*n, EPIO manual, DD/EE. '81-2, CERN Compul« .m Ljbrary i 101

sufficieutly generikl for mo?t applir.atlons 1t also includes the necessary call; for tlie transition from one record
to t l ie n e x t reti.rd (dl-opping of bankf of the previous recordf. garbage collectioiij. The use of subroutine BSEQR
i^ explamed in chapter 5.2 and a newcomer to BÖS reading this maiiual ma> directly skip to this chapter

5.1 Iiipiii/outpiit subprograms

Arguments

LU!^ = unit nuTr.ber
LIST - list of nemea

By calling

CALL BREAD(J'*l,LU:.r.LIST,'l,-2) read set of banks f rom unit LU"
* l read error
»2 end-of-data

the next BOS-record is read and the banks are stored in array JW. The list L1PT in this call may be only of the
one-character form. At return the lisl contains the names of the banks read in. in addit ion tlie Word JW(3) is
set to the index of ihe first bank of tlie record at a normal return. Alternate returns are taken in case of read
errors and the e n d - o f - d a t a condition. At the next call of BREAD after a read error the wrong record if skipped
and thf next record is read. By cal l ing

CALL BWRITE(JV,LU1I,LIST) write set of banks to unit LU'l

all hanks specified in the list LIST are written; if J W J I) is set to l before the call of BOSWR, the banks will
also be dropped. Since a buffer is used. it is importani to wrlte finally the last buffer, which is done using an
empty list (LIST = '0'),

CALL BV;RITE(JV;,LU:; . p o ')

or by a rewind of the data sei using subroutine BHWND. A single bank (N A M E . N R) is written by the call

CALL B'*'REB(J'*',LUi;,llA!.!E,NR> . v:rite single bank to unit LUN

in one BOS-record.
The data sei Ll'N is rewound by tlie call

CALL BRWHD(LUII) rev;ind data set unit LU!,"

This includes the mit put of the last retord in the buffer (for o u t p u r) After a rewinci a data set previously used
for wr i t ing may Le used for reading.

Example: The iollowing rode shows the Statements für a sequenc.e of operatiinis. in which a record is read,
processed and w n t t e n . After writing all banks of the record are dropped. and after a garbage the process is
repeated. The ba'k array]VV and the list 'E' is used

10 CALL B R E A D (I V , 1 . ' E 1 ,"10,*100)
(processing)

CALL B'm]TE(IV.' ,2. ' E ')
CALL BDROPdV. , ' E 1)
CALL B G A R B t l V .)
GOTO 10

100 CALL BV;RITE(I'. ' . ' .2, ' 0 ')
E:;D

Special read Option: A specia) Option of BREAD allows a preliminary read of a record. Af te r a call of
BREAD wi th argunient LIST - ", the user has a er es? t.o t h f hrst bank of the new record. a l t h o u R h th i - bank
is not stored äs an ordinary named bank and cannot be foiind by ihr f u n r t i o n s M.1NK ' M L I N K The user in.i\n ficcidc either lo accepl the record or tc> read the next record. 1t in .. tenain applicaüon onlv sei« i i-,i

recordf arc required the execution time of the progriiin wil l he shorler usni); t h i s O p t i o n

/.VP(T Ol'TlTT (SEQl'EATMLJ

CALL BREAD (J V . ' . L U . prel irair.ary read
• l read error
' 2 erid of -data

Tlie nexl rec.orii is read prel iminary. At a normal relurn JW(3) con ta ins the Index of t he first l i a r ik of the
record. A l t e r n a t e r t - turn- are laken in cast of read error? and the end-of-datii rondit ion
At a nexl call of B R E A D wi lh (h e samt un i t Ll.'N. Ihe same BÖS array JW and the usual one-character form of
the argument LIST t l i c banks of the preliminary read record are slored. U the nexl cal! has äs ihird argument
agam LIST — ' '. the next rerord will \ie read preliminary (ignoring the previous record).

Example: Assume that records froni uni t l are required only, if the first bank (HEAD.O) conlains the value
13 in its first word Withoul the special oplion this could be done with the following code.

10 CALL B R E A D C R . I , ' E 1 , »20 . - so)
H:D - N L K K C H E A D 1 ,0)
IF(I : ;D.EQ o) GOTO is
iF{iv , (i : iDn) .NE. i3) GOTO is

15 CALL B D R D P f l V . . ' E ')
CALL BGARBtl 'O
GOTO 10

\ \ i th the specia! opt.jon the code ha; two more Statements , but the execution time will be shorter.

10 CALL BREADCn',1. ' p.*20,*30)
Ü:D = iv (3)
IF (IW(I ! !D-3) .ne . i : ;TCHA('HEAD')) GOTO 10
IFClt f (I i ;D-2) . ! ;E o) GOTO 10
IF(IW(i : ;D+l) .ne . l3) GOTO 10
CALL BREAD uv; . i , • £ • , *2o ,*3o)

CALL B D R O P t l V , ' E ')
CALL BGARB(r.'.)
GOTO 10

.lob control Statements are given for the IBM VMS System of the DESY Computer center. For the input o u t p u l
in the 'FORT' m öde the DD Statement ha? t o sppcify a.; usual

//FTXXF001 DD DSi ;= . . .

for the ut ih LVN = XX.

The IBM verfiou oi the EPIO package uses the CERN 1OPACK package 2 and the rules on JCL explained in the
IOPACK l ser? Guide apply for Hie mode 'EPIO1. At DESY the DD-name of a file on uni t XX is IOFILEXX.
the reeordformar is l' (see IBM DD-card example below) with a blocksizc BLKSIZE = 2 x NBLK:

//G.IOFILEXX DD DS!> ,DCB'CRECFM=U,BLKSIZE=.. .) . .

5.2 General input /Output subprogram

The general fubprograiTi for fequential input 'output BSEQR contains all calls to read a data set sequential ly.
to wrile Ihe records on a fequent ia l data set (optionally). and also to drop the banks of the previou? record and
to mäh« a garbagr collection before a new record is read.]t may either be used directly or serve äs a model for
a similar, but specialized program for a rer ta in applicatioli. The following conventions apply;

• TliP basic array IW/RW in (ommon /BCS.1' is used to ftore t h p banks of the read records

• The list 'E' is used to keep the names of the banks.

: C E R N . 1OPACK R Mat thews CERN Computer Program Libriry Z30(

~>.2 General jn j iu l - o u f p u l

Retords with read errors are skipped

dllows lo use one i n p u t u n i t and np to four C i u t p i ' i unit!;. The mode [or eacli of these U H U S has to be

sei«!cd hy tlie user btiort the first cail of BSEQK hy u i.al) u: i t > > 'T . An ex.irnple for the minimal version of a
M A I N projjrani for reading a data set and processing (as^urned to l.e done in sut>i>rogram MODl'LE) if given

helow

COMH01i/BCS/IW(5000)
CALL BOS(r*,5000)

LU::R = i
10 CALL BSEQRtLUHR.IRET)

IF(IRET.LT.O) GOTO 100

CALL MODULE

GDTO JO
100 STDP

E1ID

In this MAIN program all records from unit l are read, after each inpul of a record the subprogram MODULE

is called for processuig.
Tlie subprogram BSEQR lias several optionf, described below.

Input

CALL BSEQR(LU:, 'R.IRET) . read f rom unit LL'IiR

The argument Ll 'NR ppecifiei the uni t for input. and may have the valuet l or 2 or 0. The value 0 means no
input , the list 'E' is reset to contain no bau k names; this Option may be used, if all banks are created durmg
procefsing. The value of the argument LUNR is relevant only at the first call of BSEQR and ignored aflerwards.
The return argument IRET ha? the value l, if a record has been read. If the end-condition is reached in BSEQR
(for example by an end-of-file on the input uni t) , the argument IRET i= 0 at return and will be -1. if BSEQR
i; called once more. The IF-statement in the MAIN program above assumes one pass throuph the processing

module after the end-condition. Thif wil] not be done if the lest is for IRET.LE 0.

Paramrtcr

By default BSEQR will f t t > i > reiding 2 secondf before the t imelimit or at an end-of-fiie on the inpul data set.

These l imi t sare defined by para neters, which can be changed by a call of BSEQP before the first call of BSEQR.

CALL BSEQPOISEC.HLIM) define parameter

Reading wi l l f top NSEC secontlf before the time limit or after N L I M records, where NL1M - 0 means Jio limit
If the user »ailts to stop reading at a certain condition, he may c a l l BSEQE at any tuiie.

CALL BSEQE require end condition

At the next call of BSEQR the end-condition is assumed.

Output

Default is no outpul. Output cai, be done to up to four different un i t s . The mode of output has to be defined
for each un i t by a call to BUNIT before the first call of BSF-QR (dt faul t mode is TORT1). A call to BSEQW
sets an outpul flag; actual output is done at the next call of BSEQR. If the end-condition if reached in BSEQR.

the buffers for used output un i t s will be writlen.

CALL BSEQV/tLUNV. ') eet Output f l a g

If L U N W is given negative, the n i tput to the unit is suppressed. (a u s w i th differejit values of the argument

can bt- in any order. The last va lue of the o u t p u t flag for all un l t s i; r e levan t .

<> CARD IMAGE INPVT

Flirther optioos

Thf subprogram BSEQR containf further option, which are di'scribcd in section 10

6 Card Image input

6.1 Data banks
Bank? may be read from card image records (or cards) in free format (cols. 1 - 7 2 are tised). The data for one
bank may be on one or several card image records. The following convenüons apply:

• integers: string of decimal digits, containing no decima.1 point and no blank, optionally signed.

• real tmmbers: string of decimal digitE with a decimal poinl and without blank, optionally signed and
optionally followed by Exponent wi th a letter E or D and an inleger.

• text data: string of chararters (except aponroph], enclosed in two apostrophs 011 the same rard image
record jslored with 4 characters per word).

• lab«l: the characters of the four columns l . .4 before the firsl digit or any of the chancters + or -. If
the label of a cardimage record is b lank , the record is considered a? a continuation records. If the label is
not blank, it is used äs the name of bank, in which the data are stored.

• comment: all characters after an ! or a single apostroph äs well a; any additional characters are treated
äs comment und ignored, A card Image record with a * in column l is trealed äs comment card

Any characters between integers, real numbers and texl are ignored. The. data are stored in a bank with a name
equal to the label. The bank number is enher giveii äs an integer between the label and a slash (• ') , or choosen
automatically äs 1+ the highest existing number of a bank of the given name, or zero, if no bank exiEts.

Special labels

The following card image records have a special meaning and are not ?tored,

UIIIT integer reading ia evritched to the given unit nurober (and

POFF

PQ11

EIIDQ

BWitched back to the ayatem input unit if EQF found)

printout of records is sv.itched oii

printout of records ie awitched on (defaul t)

last record (forcing return of the reading program)

The content of the card Image records is a? follows:

name integer, floating point. text data
name integer, floating point. text data ! comment

continuation of data
comment card

name nr / integer, floating point, text data ! comment
name nr / integer, floating point, text data

contiuuation of data
UfUT integer
PQFF
po:.
EliDQ

There are two subprograms for reading card image records, a funct ion reading one bank into any BÖS array
and a subroutine reading a sei of banks into the basic BÖS array.

d 2 Formal and text 19

CALL BREADC • , . Read records (starting f rom
System input uni t) and störe
data in banks in the basic array
IV in tommon / E C S / until 'E::Dqp-
record or EOF on eystem ioput
i s found

Il.'D = MREADCCJV) .one bank is read and stored in artay JV
I!(D = 0 for 'EKDQ'-record or EOF
In case of EOF in addition JW(2)=7

Example: The following card image records are read by BREADC, the resulting banks are shown below.

3.1E01 ' CÜMME;:TDATA 27 / 311 75 3.1
• T H I E is A CDM:/EJ;T
CO::S 32 57 0 'EXPERIMENT' 3.145
25.7 22 2

ES;DO

BA:JK (DATA. 27)

IHD

CDKMEKT

BANK (CO:iS,0)

I:ID+I 3ii
IND+2 75
IHD+3 3.1
IHD+4 31.0

I11D+1
IIID+2
IKD+3
I N D + 4
I1ID+5
lriD+6
IHD+7
1HD + 8

32
57.0
'EXPE'
• R I H E '
, ,,T .

3 .145
2 B . 7
22.2

6.2 Format and text banks

Additional options allow to define bank formatE by card image records and to störe text from whole carci image
records (cols. l - 72] in banks- These optiom are selected by the character strings SFMT. STEXT, STEXTC
and ENDS. The content of the card image records is äs follows.

name SFMT 'bank fo rmat '
name nr / STEXT

text

1 cc-ieru
! corament

text
E;;D$
name

text
$TEXT ! comment

E1IDS
n»me nr / ITEXTC

text

E:IDS
A card image record wi th the string SFMT directly dennes a bank forrnat Function MREADC will not return
afler reading)his record, but proceed and return with the index of the next bank stored.
After Unding the string STEXT or STEXTC all following card image record? will be read and stored äs text,
until a label END$ if found. Thr format of the text bank will automatically defined to be '18A'.

Example:

7 DIRECT ACCESS I/O OF SINGLE BANKS

HEAD $FMT '81,2A,(10F.101)'
KUIIC 4711 STEXT
A special trigger ia valid for this run.

Trigger 16 has been sv.itched off.

EHD$

The lext Option STEXT allows of course also to read card image records like the ones explained in chapler
6.1 and to störe the text in a bank. The following card image records would be ptored äs lext in the bank
(BNKS,311):

B?,rKS 311 / $TEXT
DATA 27 / 311 75 3.1 3 1E01 ! COMMEHT
+ THIS is A CDMME:;T
COHS 32 57.0 'EXPERIXEt.T1 3 145

25.7 22.2 ! COMWEM
END$

For bank? wi th text of this kind the subprogram BCALLC allows to inlerprete the text and to störe the banks
defined by the text äs if t hey are read by MREADC or BREADC.

CALL BCALLC (J 'ü , 1IAME, :.'R) isterprete text f rom bank

The bank (NAME,NR) in array JVV is assumed to contain text in its data pari, which is interpreted like reading
card image records and the bank? are slored in array JW. A Statement

CALL BCALLC(JW, 'BHKS ' ,311)

would. for the example above, create just the banks of the cxample in the chapter 6.1. If the character string
STEXTC is used instead of ITEXT, the call of BCALLC for the bank is done automatically after reading the
text.

7 Direct access I/O of single banks

7.1 Introduction to direct-access operations

Single banks can be wrilten on a direct-access data set and can be read in a random order. The method used
and the basic propertief are described briefly.

The Standard FORTRAN77 features for direct access are used. A direct-access data set has a fixed number
NREC of records and a fixed number IRECL of word? per record. About 5 % of the records are used äs directory
records, which conlain for all stored banks name N A M E and number NR and the number of the data record of
the bank. Directory records tan have continuation records The first three records of a direct-access data set
are syslem records, which contain the Status of the data set. The following records are data record?, followed
by unused records and. finally, by the directory records. There is no limitation on the l eng th of banks; long
banks are automatically split to more than one data record.

If a bank (N A M E . N R] has to be read, a hash function is used to calculate from the name NAME and the
number NR the number of the directory record, froni which the number of the data record is obtained. The
data record is read and possibly also the next record(p). if the bank is split, and the bank is stored in the BÖS
array. Usually only two records have to be read. If a bank (NAME.NR) has to be writ ten, the bank is added
to the last used data record and possibly to the next record(s), and an entry is inade in the directory record.
If the bank already exisls on the data set, and has the same length, the bank content in the data record(s]
is ovenvritten by the contenl of the new bank. If the existing bank has a different length, the existing bank
is dropped. Dropping a bank means, that the bank is deleted from the data record(s) and from the direclory
record.

Simultaneous access for read, write and drop is possible by more than one Job at a time. In order to allow
modification of the data set by more than one Job. the data set is temporarily reserved for one Job, using the
System records.

A value of 1000 .. .2000 for IRECL, optimized for the specifk direct-access unit, is recommended. Both
NREC and IRECL have to be > 20.

At the i tütialization of a data set a password can be sppcified. Operations which rnod i fy the data set are
possible only if the correct password is given (BDABF). oiherwisr they are ignored. Read operations are alwa\
possible.

7.2 Initial i/a t ion

A direcl-access data set has to be initialized once by the subprogram IMTDA. which can run outside BÖS. In
an in i t ia l iza i ior i the System records anci all other records are preset.

Arguments

LU:i - unit
IRECL - number of worde / record
KREC = number of records
PASSV.'D - pasB*'ord (character '4)

Subprogram call

CALL l:, :TDA(LU!;, IRECL, 1,'REC .PASSWD) initialize direct-accesa data set

On IBM the following DD card is necessary (4*IRECL = constant):

//FTXKF001 DD DSi;= SPACE=(4*IRECL,:!REC) .U^IT- DISP=(t ,E¥,CATLG) ,
/ / DCB=(BLKSIZE=4*IRECL)

7.3 Open direct access

A dirert-access data set has to be opeiied by a call of subroutine BDABF before any other call of direct-access
subprograms, described in the following. If the data set is not opened, all further callä will be ignored. The
value of IRECL has to identical lo the value, given in the initialisation.

Arguments

LUi^ = unit
IRECL = number of worde/recoid
DSIi = data-set name exc lue ive access

= ' ' shared access possible (see belov,)
PASSV.'D - pasa/.ord (character*4)

Subprogram rall

CALL BDABF (LU!:, IRECL, DS'l . PASSV.'D) open direct access data eet

If the data-set name is specified. no DD card is necessary and access is exclusive to one Job. allowing also
faster execution especially of the subprogram BDAWR (wri t ing of banks). Simultaneous access is possible wi th
a blank DSN; in this case the DD card giveu below is necessary:

\\FTXXF001 DD DSti= . . . ,DISP = SHR

7.4 Dirt-ct access operations
ArgumentH

LU:,' = unit
l i A M E . i i R - name end number of bank
I'!D - indej of banK

Subprogram ralls

CALL BDA*R(JV. ,LUl ; . H A K E . M l) add bank to direct accesa dato
eet

CALL BDADR(LU:'. IIAME.ÜR) drop bank on direct acceea data

set

I:;D = MDARD(JV;.HJ:I,I;AME,I;R) read bank from direct access data

sei

22 DIKECT ACCE3X i O Of 5/.NX.U BAKU*

7.5 Search operations

Funktion N D A N R allows search Operation? for banks exist ing 011 a dirett-access data set. Defining a bank
nuniber NR in tlie argument. the search tau be in the direction of increasing bank nuniber usm^ tlie argumem
"GE' (greater or equal] , or "i the direction of decreasing bank number usiiig the argument 'LE' (less or equal).
A check wether a bank w i t h a given number existE on the data set is possible «sing the argument 'EQ' (equal).
The relurned value N N K will be zero, i(no bank with the specified condition can be found (therefore it is not
possible to search for a bank with number 0).

Argumente

LU:," - unit
HAME = name of bank
LEG = 'LE' ; NUR is largest batik or less than or equal to KR (or zero)

= 'EQ' ; N ' JR ifl t lR (or zero)
= 'GE' ; :iKR iß Bmaliest bank nr greater than or equal to '..R (or zero)

'.'R - nuniber of bank

Subprograrn call

!,:JR - :;DA:iR(LU:i, KÄME, LEG, NR) aearch data aet for bank nuir.ber

Example: The banks wi th name 'CCAL' are read in increasing order of bank nuniber. slart ing at NR = 100.

KR=100-1

10 NR-HDAHR(LU:i. 'CCAL' . 'GEP,

IFOiR.EQ.O) GDTD .

II;D=HDARD (jv; , LU:I . • CCAL • .
IF(I11D E Q . O) GQTÜ 10

GOTD 10

no further bank on data eet

not enough epace to störe bank

Example: Assume coiistants are stored in banks with th« name 'CCAL'. tliey are valid for a ränge of data
runf NRUM .. .NRl'N2, and are stored on the direct-access data set with the number equal to NRUN1 (the
nuniber of the first run, for which they are valid]. For a given run number NRUN one has, according to the
rule above. to use tlie bank wi th the largest nuniber < NRUN.

:;RUI:= . .
NR =:;DAt:R(Lu:j,'ccAL' /LE'.URUH)
IF(NR.EQ 0) GDTD ... error: no batik existing

I ! l D - M D A R D (J W , L U i l , ' C C A L ' , I I R)
IFdUD.EQ.O) GDTD ...

read bank

not enough space

7.6 Sequential read

Banks from a direct-access data set can be read sequentially in the order of the data records.

Argument

LU!. = unit of direct accees data set

Subprogram call

IHD - HDARStJVi .LUU) - .read next bank from data set LU!;

The n ex t bank from thf data set is read, starting with the first bank. For calls after the end-condition readinf
Starts again with the first bank.

Example:

data-set not initialized or Et iD-DF-DATA
insuff ic ient space for bank

PrJntoul

10 Ii;D=MDARS(Jir,LU!I)
IF t JV . (2) "E.O) GDTO .
I F d K D . E Q . O) GOTD 10

GOTO 10

7.7 Printout

Arguments

LU!I = unit of direct accese data set

KÄME = name of bank: all bank numbers are printed in Order

1: all namee of banks of the data set are printed

= '+DIR': the directory records are listed

Subprogram call

CALL BDAPRUU:I,::AME) ,Print table of coBtent

7.8 Unloadiog and loading

All banks on a direct-access dala set ean be copied to a sequential data sei (Standard] ufing subprogram
BÜASQ. In this tase the sequential data set will contain BOS-records, each with a single bank. Banks from a
sequential data set can be added to a direct access data set using subprogram BDALD. This subroutine uses
internall) the subprogram BDAWR; thus banks already present on the direct access data set are replaced. A
faster Version avoiding some overhead present in this verfion will be prepared in the future.

It i? import an t to nole, that both subprogram- use ihe normal storage of named bankf dur ing Operation.
If bankf with ideiitical names are present in ihe BÖS array, these may be deleted. U is recommended, to äse
either an addition^il BÖS array for these subprogramt or to use these subprograms m an special job. It is further
recommended to sele.ct in BDABF the Option with exelusive access, if BDALD is used These programs call the
garbage collection subrout ine BGAKB' The sequential data sets are rewound betöre return.

Arguiuents

LUl.'l = unit of direct accese data set
LU!i2 = unit number oi sequential data set

Subpi-ogram calls

CALL BDASQ(JV. ' ,LUi : i ,LU] ;2) Copy all banks from data eet LUI11
to data eet LU112

CALL BDALD (J'f, LUÜ l. LUN2) Add all banks to date eet LUH1
from data set LU:i2

8 Changing the length of a bank

Named and work banks are contiguous (wi thoul gaps) in storage, and tlierefore the change of the number of
data Word s of a bank is a dislortmg Operation. However for certain applications this is cerla'lily necessary and
should be done in an t-fficienl way. äs explamed below.

TABLKS

8.1 Work banks

In work banks the word J\V(lD-2) contains NT, Ihe total number of words of the batik If a work bank is
created with ND dal a words using WBANK, then NT-ND + 4. The value of NT (and not ND) is used in System
°pe-rauons (shif t of bat ik?] äs the length of the bank. If by a >ub?equent call of W B A N K wi th the same index 1D
the number ND of data words is increased, the System ha? to shift the work bank and also work banks created
afler the initial creation of the work bank under consideration The length NT is updated. If by a subsequent
fall of WBANK the number ND of data words is reduced, only the value of J W (I D] = ND is changed, while NT
is left unchanged. This U a simple and fast Operation (whic)i rould also be done by the user directly withoul
a subprogram call]. If afterward s the number ND of data words is increased again, this is possible without a
shift of banks a; long äs ND < NT — 4. If the number ND of data wordf of a work bank is frequemly changed
(and the bank is never dropped]. the total length will approach the maximum length and there will be only few
tirne-consuming shift operations

8.2 Named banks

If the number ND of data words of an existing bank i; increased by NBANK or MBANK, the bank will be
copied to the gap (fref space] and increased in length, the bank at the prevjoti? position is dropped. If the
bank under consideration is the last named bank (just before the gap), no copy is necessary. In the general
case however the copy Operation i? necessary. because a shift (llke in the case of work bank?) is not possible
for named banks (indkes of other banks would change) If ihr number ND of data word? of a named bank is
reduced by a call of N B A N K or MBANK by more than 4 words. this Operation is possible wi thout a copy; the
Systems marks the gap between named banks äs if it is dropped bank (when a named bank is dropped. the
content of JW(IND] = ND is changed to -ND-4). This. is not possible for a deerease by less than 4 words and
the System will copy the bank to the gap. äs in the case of an increase of ND.
The condusion from this discussion is the following: the frequent change of the number of data words ND of
named banks should bf avoided. This can be avoided by using a work bank, which allows frequent changes in
an efficient way. If the final number of data words i; reaehed, the bank can be copied to a named bank using
subprogram BKFRW

9 Tables

The structure of BÖS arrays is shown in table 4. Each array has System words in the first 50 words, explained
in table 5. followed by a region of fixed length for the indices of named banks. and followed. by the named banks.
Separated by the unused späte (gap). the work bank; extends to the end of the array. The table 5 explains the
Systems data in the first 50 word? of each array. Word? wi th default value specified can be changed by the user
after the initialization. In lables 6, 7 and 8 the arguments of BÖS System progra.ru?. the extended arguments
and the return todes are given.

Index
1 ... 50
51 ...
JW(14) . . .

J W (J 5)
JW(16) . . .

. . . JW(12)

Systems dala (50 words)
indices for named banks

named bank
naitifd bank

named bank
free space (gap]

work bank
work bank

work bank

Table 4: Structure of an BÖS array

(i.J l,nnkf

word
JW(1]
JW(2)
JW(3]
JW(4]
J W (5)
JW(6)
JW(7)
JW(8)
JW(9)
JW(10)
JW(ll)
JW(12)
JW(13)
JWJ14)
JW(15)
JW(16)
JW(17)
JW(18}
JW(19)
JW(20)
JWJ21)
JW(22)-JW(27)
JWJ2S)
JW(29)
JWJ30)
JW(31)- JW(36)
JW(37)
JW{38)

defauli value
0

content
additional (inpu t) argument
return code (ou t pu t) argument
index of firsi bank of last record

-

5
6
100
100
4Hbbbb
4Hbbbb

print Hag for cord image records
card input unil
print output unit
number of messages to be printed
number of banks to be printed
name (2 * A 4) of array, defined by default for
the array? in commons /BCS/ and /HCS/
number of airay (1...10)
length of array
address of array
first index of named bank area
first index of gap
first index of work bank area
number of deleted words of named bank?
number of deleled words of work bank?
index of lowest deleted named bank
index of highest deleted work bank
index of link bank
indice? of work banks for lists C, E, R, S, T

index of 1/O-statistic kank
check word (= 12345]
statistic: number of return codes 1 - 6

slarting at 1. th i? word is increased by ! for every garbage collettion
for named bankt or drop of named banks

JW(39)
JW(40)
JW(41)-JW(50)

number of garbage collections [BGARB]
number of garbage collections (WOARB)
histogram of u?ed space before 'garbage collection
n BGARB and WGARB, and in BDROF before the
bank? are dropped, in 10 percent bin?

Table 5. Systems data

t- TABLES

lype
ch
ch

argumenl

< h ' 4

ch'4

DSN
FMT

ID
IN D
IW/JW
LIST

LUN
IRECL
N
NAME
NBLK
NBLK16
ND
NDIM
NR
NREC
NRMAX
OFT
PASSWD

explaiialion
data sei name
formal of named bank
of the type 'f] ,f2 ', where f l. f2 ... are formal t öd es n l for integer fieldf-,
nf for floating point fields , nA for text fields or n(. . .) for a group formal Epecification.
For packed 32bit, 16 bit or 8 bit words FMT is 'B32'. 'B16' or !B08'.
Index of a work bank
index of a named bank
BÖS-array
list, def in ing set of banks
either in ihe form ' N A M l N A M 2 . . . N A M n ' ,
or a single letter, which may be either C, E, R, S ,T or 0 (empiy list).
logical I/O-unit number
number of words in a direct access record
sequence number of a name in a list
name of a bank
block size in machine words for Standard (machine dependent) writing
block size in 16 bit wordp (or machine independent writing (should be multiple of 180)
number of data words in a bank
dimension of array
number of named bank
number of records for direct access dala sei
largest number of a named bank in BWIND
option selecled in BLIST of the type 'L—' or 'L---' or 'L-'
Pass word for dir«! access data sets
alternate return of the form «statementnr

Table 6: Arguments of BÖS subprogi-ams

conte.nt
of JW(1)

= 1
= 2
=3

= 1

explanation subprograrn
additional words noi set to zero NBANK,MBANK,WBANK, . . .
move bank to gap of free space
create bank and drop all other banks
of the same name
drop banks after write

N B A N K , M B A N K

NBANK,MBANK
BOSWR

Table 7: Extended arguments in JW(l)

content
of JW(2)

1
2

explanatioji
insuff. space to create new bank
insuff . space to increase length

3 bank not found
4
5
6
7

read error (I/O error)
read error (error in rerord struclure)
read error (insufficient space to st.ore retord)
end-of-data

subprogram
NBAN"K,MBANK ; WBANK, . . .
N B A N K , M B A N K , W B A N K , . . .
BKTOW,BKFRW

Table 8: Return codef in JW(2)

I PrJnloul

9.1 Printout
Bank prinlout and crriain messages (for example a nonzero re turn code) are printed on ihe unit specifted bj
JW(6). The amount of printout is limited by JW(7) and J W (8)

l Retuni code not zero. Up to JW(7) meesages are printed.

2. F'nntout of bank? by user calls. Up to JW.'(8) banks are printed

The system words JW(6) . . JW(8] can be rhanged by the user at any time after initialization of the arrays.
All printout is suppresscd by def in ing JW(6) = 0.

9.2 Error conditions with program stop

All meäsages concerning errors with program stop are printed on the System outpu t unit JW(6). The error is
explained in the printout, for so nie error? additional Information i? printed,

1. Initialization errors (in subprogram BÖS):

• basic array 1W not firsl array

• more t hau 10 arrays used

• array to short for in i t ia l izalJon

2. Argument errors - wrong argument i? printed:

• array in argument not inicialized

• negative number of data words (ND<0] (NBANK, MBANK, WBANK]

. error in argument LIST or OFT (BLIST)

• 1/0 unit used with inkompatible Operation? (read after write etc.)

• error in format FMT (BKFMT) (for this error the program will stop at the first application of a
formal)

3. Internal space problem. For certain Operation.' the system needs some space in an BOS-array. If not
enough space is reserved for this, the program has to stop. The name of the internal subroutine is printed
together with the message: CALL BNRES before initializalion to increase space reserved for internal
operations by 100 words, in addition a list of existing banks lf printed.

4. Too many different names used. If more t hau the maximum number of different n am es is used, the
program has to stop. A comrnent is printed, including the niessage: CALL BNMAX(NMAX) before
initialization for a niaximum number of NMAX names. The default value for N M A X i? 100. In addition
a list of all used names is printed Often this cotldition will be caused by errors in the user program with
the specification of values of the argument name. which really are not names.

3. Bank struclure destroyed. In some System subprograms the validity of the bank structure can be checked.
If eirors are detecled. a pari of the array i? printed before the program stop

In case of an error wi'h program stop the BÖS subprogram BABEND is called. The Standard version of this
subprogram calls in turn subroutine ABEND, which usually print? a trace back of subprograms before the stop.
At a given Installation it may be necessary to use a modified version of subprogram BABEND, if 110 acceptable
Version of subprogram ABEND is available.

10 PROGRAM ORGAMSATlü* (.'^MG BÖ

10 Program Organisation using BÖS

10.1 Modular prograrn structure

The BÖS System if p r j ruan ly designed for the use in the reconstruction and analysis Programm nf h igh eliergy
physics experimentf. In these programs usualK record? or evenlf are processed sequenlially and a M A I N
pro gram should have a niodular f t ruc tu re a; shown in t t i e f igure below.

Ini t ia l izat ion
V

10 - MODULE

l MODULE l

V
STOP

The prote?sing loop starts wilh a call to an lO-module, which performs the read anri write Operation;. Then
the different processing modules are called.

A module for data processing can be steered completely by data in banks. A complete pragram for the
?equential processing of data records may consist out of a MAIN program, which call; an input / ou tpu t module
|for example BSEQR] and all the processing modules. A new processing module can be added by add ing one
line in the M A I N program.

A smgle processing program module can be detned äs a sei of subprogramE wi t l i a steering subroutine.
wliidi performs a certain task of dalä reduction (evenl reconslruction, event analysis). The concept of a
profiram modulp requiret t« have a mmimum dependence on other programs. not belonging to the module. 1t
is recommendcd to use the following general conventions:

• all batik; are ?loted in the basic array IW/RW

• all bank names of (he current data (event data) are stored in the l i f t 'E'

It U further recommended to observe ihe following rule in ihr design of dala bank? and processing modules
"A bank vnth a given namt u created and cnrnpleidy filitd in ont module only, and no chatigtf to tht data are
made in modules app'ierf later."

A module requires input data, preferentialiy baiik^ wi t l i a snigle n^me. and will produre outpul data (re?u l (? j .
which preferentially are stored in output banks with a singie name The data fiow within a module is shown in

the figure below

10. i .Woduliir prcpram ,'truc(ure Zfl

input banks l l l l
t -t -l- + +

\ /

\ /
\ /

V V V

output banke

V V V

/ l \ l \ l \ + + +

l l l

In the «xample below ii is a^fumed, that the module rcquires input data in bankf with the name BKIN.
and pruduces new data, which are stored in ihe bank BKl'T. A data reduction module could have a structure
äs fhown in the listing below.

SUBRQUTINE :^ODUL
COHM011/BCS/IW(1000)
REAL Ri:(1000)
EQUIVALENCE (IV,1 (1) , RVf CD)
IKTECER !;AMI/O/

" at first entry determine narae-iadices and define formst

1 for output bank

IF{I :AHI .EQ.O) THEI:
NAHI=!IAMIND('BKII] ')
I IAHU'UAHIHDC'BKUT')
CALL BKFMTCBKUT' , '3I .2F')

EKD IF

inunediate return, if either output bank already exiets,

* or input bank does not exiet

I F (I V (: ; A M U) :;E.O aa.n'dJAHi) . E Q . O) GOTO 100
* add name of Output bank to liet ' E '

CALL BLISTCI".1.'. ' E + ' , ' B K U T ')
* prepare loop on all input baaks

I1IDI=NAMI + 1

IFdllDI EQ.O) GOTO 100
tlR-=IT((IÜDI-2)
create output bank w i t h same number äs input bank

IFCHIDU.EQ.O) GOTO 100

* data reduction for data in bank (BKII.' , i.'R) , index 11,'DI

* result will be utored in output bank (BKUT.^FO, Index I1IDU

GDTO 10
100 RETUR:;

END

In the above program the name-indices for input and oulpul bank? are deternüned at the first entry to
allow fa=t access lo the bank; In addition the formal of the ou tpu l bank is defined Then il JE checked. welher

JO PROGKAM ORGANISATKrt (."SING BÖS

computation is necessary. If either the output banks already exist. or ihe inpu t banks do not exist. computation
is not necessary or not possible and the module returns immeehately to the calling program If the user wantf

to repeat the computation (for example, if the module has been improved), he can drop the Output banks betöre

the cal) of the module by the statement

CALL B D R O P C I K . ' B K U T 1)

and then the module will create new banks. If computation has lo be done in the module, the name of the
output banks will be added to the list 'E', in order to get the bankf written together w i t h the other data banks.
Then a loop is executed over all input banks. Note that the banks numbers do not have to be consecutive.

Optione in BSEQR

Subprogram BSEQR may be used directly äs the lO-module or may serve äs a model for a more specialized
version. In high energy physics experiments one record usually contains the data of one event (interaction
of elementary particles), which is characterised by a run and an event number. Subroutine BSEQR contains
options lo select certain events or nins or to ignore certain runs. A fast record skipping method is used. A
necessary condition for the use of the Option is the storage of the run and evenl number in the firsl (header)
bank, with a fixed name and number, of all records (note that in writing records the order of banks in a record
is defined by the list of names, not by the order of bank creation). If a records does not contain the specified
bank ae first bank, the record will be accepted.
The User can define the relevalH parameters for the bank containinjr run and event number by a call of BSEQH.

CALL BSEQH(MME.NR,IRU:l , IEVT) define header bank

The meaning of the arguments is: the bank (NAME.NR) will contain the run number at word IRUN and the
event number at word 1EVT. The default assumption is equivalent lo the call

CALL B8EQHCHEAD P ,0 ,2 .3)

Possible optione are

• select certain event numbers (SEVT)

• select certain run numbers (SRUN]

• ignore certain run numbers (IRUN].

The priority of the options is in the order given; if for example the Option SEVT is used, the oplions SRUN
and IRUN cannot be used. The use of the options require banks with names SEVT, SRUN and IRUN, whicli
most easily are defined on card image records and read with the subroutine BREADC (se° next chapter). Tht-

content of the card image records is äs follows:

SEVT nrun nevt nevt nevt . . .
SRUü crun nrun nrunl -nruc2 . . .
IRUN nrun nrun nrun nrunl -nrun2

! selected events
! selected runs
! runs to be ignored

Any number of these card image records if allowed. The SEVT card image record ha? to contain the run
number äs first integer, followed by (he evenl numbers. The SRUN and I R U N card Image records contain the
run numbers. If a whole ränge N R U N l . .NRUN2 of run numbers is required, this can be specified in the form

NRUN1 -NRUN2 (upper limit of ränge given äs a negative number).
If the user wants to skip the run of the current event he may call BSEQS.

CALL BSEQS ekip current run

An example of a MAIN program, where all options are used, is given below.

read data carde

defiae beader bank

define limit parameters

CALL BOS(Itf ,5000)

CALL BREADC
CALL BSEQH('HEAD'.0,1.2)
CALL BSEqp(S,1000)

10.2 Module f t M

LU:;R = i
10 CALL BSEtJR(LU: ,R , IRET)

I F (I R E T . L T 0) GOTO 100

CALL MODULE
CALL BSEQUX3)
IF(. .) CALL BSEQU(4)
I F (. . .) CALL BSEq'.f '(-3)

IF(.) CALL BSEQS

IF(...) CALL BSERE

GOTO 10

100 STOP

END

skip run

force end-condition

SRUN 22345
30100

21234
30200

-21260 21261

30300 -30399

card image records
1 single bean runs
! coemic runs

1Ü.2 Module steering

A module sliould contain the logk for the iniüalizalion of the module and other special situations (run start or
run end for example]. The Situation can be determnied from the data in banks and is supported by subprogram
BSEQR, if the header bank containmg run and event number is defined. BSEQR provides some data for

the steering of a module in a common /CMODUL/, explained al the end of this section. Further steering
Information is provided by the use of the subprogram SMODUL.

SMODUL h äs to be called äs the first executable Statement in each module with the module name (called
'SUBNAM' here) a? argument:

SUBPROGA:: SUBIIAV.
COMMOI:/BCS/ . . .
CALL S M O D U L t ' S U B K A V 1)

100 RETURi:
Et lD

The subprogram SMODUL has three functionf book keeping on modules, sleering of histogram call? and
steenng of debug prmtout

Book keeping. AI a call of SMODUL a bank (BOOK,0) is either created or extended; the name of the module
is recorded in two consecutive words (A formal) and the date is recorded in a third word (integer). If the name
of the module is already contamed in the bank BOOK, the date of the previous application of the module is
rcturned (IDATEL) in the sleering fommon and the date within the bank BOOK is overwritten by tlie actual
dale

Hintogram eteermg. Usually a module contains some calls to a his togramming package, to allow checks on
the data processing. Histogram packages usually allow only one identifier ID (integt-f) for each hislogram. If
scveral miidule; include histogram calls, so ine book keeping i? necessary to avold the multiple use of histogram

iilentifier; m differenl modules. Thi; book keeping is done by SMODUL and allows up to 99 internal identifiers
wi th in onf module, independent of identitiers used in other modules. SMODUL returns in tlie steering common
an offset 1HA jin Steps of 100 for differeiit modules) for each argument 'SUBNAM'. Histogramming calls should
be done with identifier ID = IHA -t- I, where l fi t i tenial identifier) is an integer hetween l and 99. If IHA ha«
a negative value. h i f togrammming calls should be suppressed.

If histogramming in a module should be suppressed, the user of a module has lo call

before the first call of the module SUBNAM. Then in laler calls of the module the hi?log"m offset IHA will
have the value -1.

PKOGIIAM OfiGAMS'M'lO* USWG BÖ?

The BÖS System inclndes simple his logrammine routinrs. which au iomat ica l ly «.«c an offfei for t he histogram
identifier and allow t,n suppress l l i e histogramming by .1 call of H1STOF.
Steering of debug printout. l 'sually a module coni am; some debug pr intout S ta t emen t s . Tlii? debug prinioul
should be controlled by ihe flap]DB in l l i e sieermg coninion. w i th the following meainng:

value '• meaning
ll i i i - .''
IDB - l
IDB - 2
IDB = 3

no printout
minimum prinioiit
more print OUT
even more printout

If a user of a module wanls debug printout for the following 1COVNT call? of the module with a value IDEB,
he has to call

CALL SETDB (' SUBKAM ' , IDEB , ICDim)

Then in the following ICOUNT call? of the module SUBNAM the debug flag IDB is sei to the ar^ument value
IDEB. and to zero for the following calls.

The contelit of ihe steering common.. CMODI'L is äs follows:

* STEERING OOHMOt:
LDGICAL BEG JOB , EJ.'DRU:: .BEGRÜN , REVE;.:T ,E!.'D JOB , OTHDAT
COMHON/CMODinySEG JOB, ENDRUN. BEGRUB REVENT.EHD JOB. OTODAT,

LCCRU!i,:;ccRu;;.NEVEi]T,
IHA,IBS,IDB,1DATEL

Logical f lags , set at the return fron; BSEQR (require BSEQH) :
true . . . (falee otherwise)

BEGJOB at first record only
EüDRUi; at the firet event after a run (last run is = LCCRUlO
BEGRUi; at firat event of a run (run is I I C C R U I J)
REVEt.T if header bank found (event read in)
ENDJOB after end-of-data (no record read in)
DTHDAT if no header bank found (no event}

Numerical data , aet at the return froir. BSEIJR

'_CCRL!'. run number of previous event
NCCRUN • current run number
NEVE'.'T current event number

Numerical data . aet at the return frora SMDDUL

IHA offset for histograns (multiple of 100)
IBS offset for BDS-histograma

IDB debug flag (0 jneans no debug printout)

IDATEL date, if module already applied to event (elae 0)

A BÖS records

The structure of BÖS rorord*. a^ wri i ten by BWRITE and af actepted by BREAD. is described. The btidy of
a record i? a sequenrc of banks, where eacli bank lia? (äs in Morage) a header of four words(name. number of
bank. dumniy, mimber of data words N D) followt-d by ND riata words. Reading if fasler, if the banks of each
namc are groupcd together, and if the bankf of each name are ordered according lo increasing number (th is is
done by B W R j T E) . The Sp l i t t ing of banks m two or more parts if allowed. Splitting in two parts means, that a
rer ta i i i bank wi th total ND data word? is splitted into two consecutive banks. each with a header of four words
a.« above, with ND) and ND2 data words (ND=NDH-ND2). In both lO-modes BOS-rscords are divided into
Segments, each wi th a segment code. The fegment rode IC has the following possib!? values:

scgment code content
IC - 0
IC - l
IC - 2
IC = 3

complete BOS-record
firft pari of a BOS-retord
pari (neither first nor last) of a BOS-rer.ord
last part of a BOS-record

In the mode 'FORT' ihe body of a BOS-record is splitted into segmenls, fitting into a given buffer. Each record
can be read with an I0-list

: ;TOT, (IBUF(I) , I= I , J :TOT)

The array IBUF will tlien contain Segments. Each segrnelit Starts wi th the words

'HIDD' , 0. duaimy, N T , IC,

followed by (NT-1) words, where the (NT-1) words contain banks, and IC is the segment Code. In the mode
'EP10' the Standard EPIO physical and logical headers are used except that the log i cal record type (word 2 of
the logical record header] is set to the segment code IC.

B Histograms

Thf BÖS System includes somc simple hisiogrammmg roulines. They use the common/HCS/ and the user has
to jnit ial ize this common, if one of the calls is used. Each t-et of programs has. äs first a rgument . the idetitifier
ID. There are two possible ranges of allowed values. If the subprogram S.MODUL (see chapter 10) is not used.
the ideutifier ID may be an integer between l and 9999999'J9. If however the subprogram SMODl'L is used.
iis argument ID may only be m the ränge] to 99 and the ident i f ier is constructed from the numerical identifier
ID (a rgument) and the name of the subprogram.

One- and two-dimenRional histograms

The HIST and CORR subprograms for unweighted one- and two-dimensional histograms do not require booking
and automatical ly determme the bin li l iuts. The bin defini t ion however if pofsible. One-dimensional histograms
have 120 bins. Two-dimensional histogramf have 50*100 bins, the printoul shows the content of bms with an
'X' for more than (> (ounts in a bin, the projections are prmted in addition.

l -dimenaional n i s togra r . 120 bins
CALL D H I S T (I D , X A , X B) definc l imits for 1-dim histogram
CALL THIST(ID.TEXT) definc text
CALL U H I S T (I D . X) ectry for velue x
CALL PHIST(ID) print hietogram (ID=0 -> all)

2-dimenBional bistograrr.. 50-100 eins
CALL D C O R R (I D . X A , X B . Y A , Y B) define limita for 2-dim hiatogram
CALL T C O R R (I D , T E X T) define text
CALL U C D R R (I D , X , ¥) entry for pair x . y
CALL PCORR(ID) print histogram (ID-0 -> all)

OF SOS

C Summary of BÖS

HELP toi

oooao
0 D

0 0

OOGOD

D D

0 0

DOOOO

QC10D

Q D

0 0

Q D

D 0

Q 0

3RQO

0000

0 0

0

0000

0

0 D

FORTRAN 77 Version

l see below

FuDction calls

Subroutine calle

Arguments

Data cards

General 10 program

BÖS hiBtograme

Libraries

Send comments to uaer F14BLO al DHHDESY3 (uee ((SEHDMAIL)) at DESY)

page
numbers are

for manual
pBge

Function calla:

CHST

INST
IND
IND
I N D
IliD

ItiD
ItiD
IliD
KAMI

I;::R
IND
I:;D
HAUE
IND

CHAIKT(IHST) *4 . .converaion to character Btring 5
riTCHA(CHST) conversion frora character string . , S
M B A K K U V . N A M E . N R . Ü D) create named bank 7
MDARD(J '* ' ,LUl i ,NAHE.NR> read bank f rom da-ds 21
M D A R S (J V . L U H) read da-ds sequentially 22
MDRQP(J \ t ' ,NAME, i ;R) drop named bank 7
MLINK(JVr.KA!.IE.:,'R) find index of named bank 7
MPR11T (JW . NAME, NR) print named bank 7
MREADC(J'A') . , read bank from cards 17
HSlt'APC J W . N A M 1 , U R l ,I iA!/2,NR2)e>.chan6e name and number 12
NA.Mi::D(NAME) get naroe-index fön nane B

N B A N K O l A M E . l i R . Ü D) create named bank 7
t i D A ! (R (L ü i : , : i A H E . L E C , N R) - . . - B^t number of bank on da-de 22
'^DROP (NAME, ÜR) drop naned bank 7
i:Li : ;K(: iAHE,t i 'R) f i nd index of named bank 6
«LIST (JV1,!], LIST) -4 . .get nane f rom l i et 11
N P R N T C K A H E . N R) print named bank 7

(N AM l. URl . N A M 2 , N R 2) .exchange name and number 12
*4 means character*4 function

-page

Subroutine calls:

CALL BCALLC (JV . r.h'M , i:R) interprete text f rom bank 17

CALL BDABF(LUti,IRECL,DS:;,PASSVi3) .open dn-da 21

CALL BDADR(LU:;,i;AME.I!R) drop bank on da-ds 21

CALL BDALD(JV. ,LUN1,LU"2) load da-ds froir, neq-ds 23

CALL BDAPR(LU:;,::A:/E) print content of da-ds 23

CALL BDASq(JV;.LU!.rl,LU::2) unload da-de to seq-de 23

CALL BDAV.rR(JY;,LU!;.!!AME,::R) v.ritc bank on da-ds 21
CALL BDROPCJlf.LIST) drop set of banks 11

CALL BGARBUO garbage collection (named banks) ... 12

CALL BKFKT(NAME.FKT) define baok format 10

CALL BKFRW(Jtfl.i;AME.tlR.JT(2.ID,») . copy bank from work bk area 14

CALL BKTOK'(JVl.!.'AME,liR.J'/2,ID,*) .copy bank to *ork bk area 14

CALL BLIST(JW.OFT.LIST) Update list of names U

CALL BÖS (Jil. i.'DIK) initlalize BÖS array 4

CALL BPRNT(JW.LIST) print aet of banks 11

CALL BREADC read banka irom carda 19

CALL BREAD(JY',LUN.LIST,*1,*2) . . , .read BOS-record 15

CALL BRW::D(LU:J) rewind unit LUli 15

CALL BSWAP(JV;.llAMl,i:AM2) exchange namea .- 12

CALL BÜHITCLUH.IOHODE.HBLK) define mode of 10 14

CALL BVIHD(JW,NAME,NRUAX.ID)create bank oi indices 8

CALL BWRITECJV.tUK,LIST) write BDS-record 15

CALL B>'RSB(JV;,LUt;.:,rAHE,NR) write eingle bsnk 15

CALL I!!ITDA(LU::.:RECL.tiREC.PAES"iirD)iiiitialize da^ds 21

CALL VfBA!iK(JW,ID.llD.*) create workbank 13

CALL VDRDP(JW,ID) drop workbank 13

CALL WGARB(JW) garbage collection Uorkbanka) 13

CALL Vi'PRKTCJVMD) print *orkbaok 13
CALL tfS'*'AP(JW,IDl.ID2) exchange workbanku 13

Subroutine calle for printout of generei ioformation:

CALL BOSBK(JVi) .print table of current banks 6

CALL BDSBL print bank I/O atatietic 6

CALL BOSDP (J"*) dump BÖS array 6

CALL BOSFM print bank f ormats 6

CALL BDSIO print I/O atatiatic 6

CALL BOSTA print status oj all BUS arraya..... 6

Arguments:

DSU * data aet name
FMT * format of named bank
ID index of a work bank
I!ID index of a named bank
r*VJlf BDE-array
LEG "2 'LE' or 'EQ' or ' G E '
LIST * list, defining eet of banks

LU!. loßicel I/0-unit number
IOMODE * I/O mode, ' F O R T ' or ' E P I D 1

IRECL nr of worda in a da record
11 sequ. nr of a name in a l i et
JJAKE "4 name of a bank
NBLK . .buf fe r size for 10
!JD nurnber of data words in a bank

NDIH dirr.ension of BÖS-array
KR number of named bank

IJREC number of records for da-ds
KRMAX largest nr of a named bk (B'i'IND)
OFT '2 option aelected in BLIST

PASS'i'D . * password fo r da ds

Sl'MMAHV OF B0> 37

*ret alternate return

- means character gtring

Data carde:

Dame . d a t a . . . ! comment l * comment
name nr / . . d a t a . . . l UKIT unit
riame $FHT 'bank format ' ! POFF

l PD:J
name nr / $TEXT or STEXTC l EJJDQ
...data cards
EHD$!

General 10 program and module control program:

CALL BSEQP(t;SEC,:lLIM) parameter for general 10 program. . . 17
CALL BSEQH(HAHE,HR,IRUN,IEVT)specify header bank 30

CALL BSEQR(LU:;R,IRET) general IQ program/input of record. 17
CALL BSEQV.'(LUNW) eet flag for Output 17

CALL BSEQS skip current run 30

CALL BSEQE end condition 17

CALL HISTOF (' aubnam ') auppress histograms 31

CALL SETDBCsubnam1 ,IDEB , ICOUNTj .aet debug flag 32

CALL SMODUL('Bubnam') atart module 31

Model Job including MAIN prograir:

// JOB

// EXEC JFORTCLG,CVER=9,
/ / L L B I ^ ' R O I U T L . B O S L I B ' , LIBRAR:ES. . .
/ / LLB2= 'ROIUTL.CERN.PACKLIB '
* ***** Model M A I N program ****-*»
* declare BÖS commons and initialize BÖS

BASIC BÖS common for data pioceesing
COHHON/BCS/I1(50000)
REAL RW(50000)
EQUIVALE»CE(R! t (l) . I t f (l))
Common /HCS/ for BDS histograma
COHM01VHCS/KHI(10000)
CALL BOSCIW,50000)
CALL BOSfK«,10000)

* read data carde
CALL BREADC

* run and event uumber in ' H E A D ' . O at words 2 and 3
CALL B S E Q H C H E A D ' , 0 , 2 . 3)

* aelect 10 raode, if necesaary
C CALL BUHITCUIIIT.IDMOffi.NBLK)

LUI:R-I
" event processing loop

10 CA1L BSEQRtLUIIR. I f tET)
IFflRET LT.O) GOTO 100

* call irodulee here

GDTO 10

100 STOP
E Ü D

//G.FT01F001 DD DUMHY
//G.SYSI:: DD -
. . (data cards)

Data cards for run and event selection (requires BSEQHj

SEVT nrun nevt nevt nevt

SW.', nrun nrun nrun l -nrun2

IRU!, nrun nrunl -nrun2 nrun

! eelected eventB

! eelected rune

! runs to be ignored

Common ;:ith steering data:
LOGICAL BEG JOB .ECDRUI," , BEGRUIC , REVEi.'T .EKD JOB . OTHDAT

CDKMON/Cl-lODUL/BECJOB , EliDRUt; . BEGRUS' , REVEKT .El.'D JOB , OTHDAT ,

IHA,IBS.IDB,IDATEL

Logical flags, eet at the return from BSEQR (require BSEQH) :

true . . . (false otherwise)

BEGJDB at firet record only
E!.'DRUi. at tbe firat event after a run (last run ie - LCCRUN)

BEGRUK at first event of a run (run IE [ICCRUM

REVEliT if header bank foiuid (event read in)

ENDJOB after end-of-data (no record read in)

OTHDAT if no header benk found (no event)

!-umerical data, set at the return from BSEQK :

LCCRU'l run number of previoua event

;JCCRUÜ current run number

ÜEVENT current event number

üumencal data. aet at the return fron SMODUL :

IHA offset for hiatograms (multiple of 100)

IBS offeet for BOS-hiBtograms

IDB debug flag (0 meane no debug printout)
IDATEL date. if module already applied to event (elee 0)

BÖS histogramming programs

Initialization of CO!.!].!OIVHCS/K'J,'(ndim) required. Histogram identifier ID:

ID = l. .9999999, if SMODUL not used

ID = l 99 Kith SMODUL (aame ID in different modulea allowed)

each call (including print-call) refers to aelected module only

HIET and CORR subprograme ior l- and 2-dimeneional, unweighted histo-

grams, automatic bin size determination. if limits undefined Cbooking

of hißtograma not necessary)

1-dimenaional histograir, 120 bine

CALL DHIST(ID,XA,XB) define limits for 1-dim histogram. . . .
CALL THIST(ID,TEXT) define text

CALL UHIST (ID. X) entry for value x

CALL PHIST(ID) print hiatogram (ID=0 -> all)

C SUMMAflYOFBOS

2-dimenBioßsl histogram, 50*100 bins
CALL DCORRUD.XA.XB.YA.YB) def ine limits for 2-dira hißtogrero,
CALL TCQRR(ID.TEXT) def ine t*xt
CALL UCQRR(ID,X,10 entry for pair x.y
CALL PCORR(ID) print hietogram (ID=0 -> sll)

Libraries at DESY:

For the IBM MVS System at the DESY Computer center the lo»d librsries
for the BDS System and for the CERN PACKLIB, required by the BÖS
•ystem, »re:

ILB1-R01UTL.BOSLIB
LLB2-R01UTL.CERN.PACKLIB

The procedure JFORTCLG with option CVER-9 ahould be uaed to g«t the
veraion 10 of th« Siemens Compiler (otheruiae you get by default tbe
veriicm l, -> Help PROCS) .

The BQS System ia available in (only aligthly) different veraiaas
for th« following typea of Computer-. IBM, VAX. GQULD.
All veraions are kept at DESY on a HI8TORIAH file «ith dat« aet name

DSU - FHBLO.HISBQS.Dyymmdd
for the BQS eyatem. At the time of prictlng the data Set nane for tbe
latest veraion ia:

DEN - F14BLO-HISBOS,D860723B

In addition there are files of card deckB for th« different versions
in the form.

DSU - F14BLO.HISBOS.VAX.Dyymadd

