Internal Report
DESY-F14-86-02
July 1986

THE BOS SYSTEM

DYNAMIC MEMORY MANAGEMENT

FORTRAN77 VERSION

by

Volker Blobel

Eigentum der ;
Properfy of DESY Blb'l‘lz:::yk
Zugong:
Accessions: 1 9- AUG 1985
Leihfrist:

: T
Loan period: 7 d:)g;

DESY behalt sich alle Rechte fiir den Fall der Schutzrechtserteilung und fiir die wirtschaftliche
Verwertung der in diesem Bericht enthaltenen Informationen vor,

DESY reserves all rights for commercial use of information included in this report, especially in
case of filing application for or grant of patents.

"Die Verantwortung fiir den Inhalt dieses
Internen Berichtes liegt ausschlieRBlich beim Verfasser”

The BOS System

Dynamic memory management
FORTRANT7T7 Version

Volker Blobel
11. Institut fir Experimentalphysik
Universitat Hamburg
Luruper Chaussee 149
2000 Hamburg 50

July 25. 1986

Abstract

BOS is 2 program system for the dynamic management of data areas and for the input /output of sets
of data areas. The system supports a modular structure of the application program and portability for
both the software and the data sets. The main application is in the data analysis of high-energy-physics
experiments. This manual describes the use of the FORTRANT7 version.

10

A
B

C

Contents
1 Dynamic memory management

Initialization and Utility Programs
2.1 Imitialization
2.2 General rules

2.3 Conversion functions .

2.4 Utility subprograms for printing

Named banks
3.1 Operations with single named banks

3.2 Indices for named banks

3.3 Bank formats .
3.4 Sets of banks .

3.5 Changing the namesof bankso o

3.6 Garbage collection

Work banks

4.1 Operations with work banks

Input/Output (sequential)

5.1 Input/output subprograms

5.2 General input/output subprogram

Card image input

6.1 Databanks

6.2 Formatand textbankso e o

Direct access 1/0 of single banks

7.1 Introduction to direct-access operations
7.2 Initialization . TR EE

7.3 Open direct access

7.4 Direct access operations
7.5 Search operations . . .
7.6 Sequential read

7.7 Printout . . . S
7.8 Unloading and loading I

Changing the length of a bank
81 Work banks
8.2 Named banks . .

Tables
9.1 Printout o
9.2 Error conditions with program stop .

Program organisation using BOS

10.1 Modular program structure o

10.2 Module steering .
BOS records
Histograms

Summary of BOS

o B

o

P-RE - -)

10
11

12
13
13

14
15
16

18

18
19

23
24
24
24
27
28
31
33
38

34

List of Tables

R R e L

Structure of named banks . g 8% R0
Content of work bank created by BWIND
Structure of a work bank .
Structure of an BOS array
Systemsdata

Arguments of BOS subprograms o

Extended arguments in JW(1)
Return codes in JW(2)

LIST OF TABLES

12
24
25

26
26

1 Dynamic memory management

In the world of scientific computing the most popular programming language is FORTRAN. It is easy to learn,
produces efficient code for numerical computations and, last but not least, it is the traditional programming
language in science It has however, like other programming languages, certain limitations for the analysis of
large and complicated data samples, that are generated in big scientific experiments. The basic limitations in
this respect are

o fixed dimensions of data arrays, and
o fixed list (of arrays) in input/output

The fixed dimensions of array are not well suited for the many different variable-length data areas in certain
applications. The fixed list of arrays in input/output requires in principle, that the program in advance has
information about the content of the next record to be read and processed

These limitations are even more severe, when the whole analysis software, perhaps consisting of as many as
100000 lines of code, is in a continuous development. Another problem, beyond the programming language, is
the portability of data sets, which is complicated by the variability of the machine representation of data on
different types of computers.

An obvious way to improve the situation is the organisation of the different data areas dynamically by a
system, which can be realized as a set of FORTRAN subprograms. In these dynamic memory management
systems the data areas are usually called banks; each bank contains data, which belong close together. All
banks are stored in one large COMMON area. The basic operations, provided by the system, are:

e create a bank,

e find a bank,

o delete (drop) a bank, and
e garbage collection

In the garbage collection the existing data banks are compressed allowing new data banks to be created. The
main advantage of dynamic memory management systems is the fact, that they allow a certain structure for all
data. which is an esential condition for a modular structure of analysis programs.

The BOS system for the dynamic memory management was originally written in 1975 for the use by the
PLUTO collaboration at DESY. but has been used afterwards by several high-energy-physics experiments in
various countries. It includes in its design the input/output of data banks for sequential and direct-access data
sets This article describes the FORTRANT77 version. which is based on the same principles as the first version,
but has been completely reorganised and improved with respect to portability of both program code and data
sets. It is compatible in the respect, that sequential data sets written with the old version of the BOS system
can be read. The main new features are the following:

1. More than one array can be used.

2. An additional type of banks, the work bank, is introduced, especially for cases, where the number of data
words in a bank is frequently changed.

3. The system is written in standard FORTRAN77 (ANS FORTRAN 1978 Standard), a few machine de-
pendent library functions are used.

4. A format can be specified for banks (necessary for machine independent 1/0).
5. Machine independent 1O 1s introduced.

In the FORTRANT7T version of the BOS system up to 10 arrays, called BOS arrays JW, can be used to store
banks, one of which has to be the basic array IW in the COMMON BCS:

COMMOY/BCS/IV (ndim) ndim = constant

In most applications it will be sufficient to use only this basic array, which is used by the system for all
input/output buffers. There are banks of two types. named banks and work banks, stored in each array in the
low index part and the high index part. respectively. The structure of the arrays is shown below.

I DYNAMIC MEMORY MANAGEMENT

index content

1.. 50 | systems data (30 words)
51... | indices for named hanks
JW(14) . . " named bank

named bank

named bank

JW(15) ... | free space (gap)

JW(16) ... work bank
work bank

. IW(12) work bank

Named banks

Named banks are stored in the low index part of an array. They have assigned a name, which 1s a character
string of four characters, and a number, which is an arbitrary integer (positive or negative or 0). A bank with
a name NAME, a number NR and ND data words is created in the basic array by the statement:

IND = NBANK (NAME,NR,ND)

The index IND points to the bank, more precisely: the value of IND is the index within the array, which contains
the number of data words. The structure of a named bank is shown below.

index content

IND - 3 name NAME

IND - 2 number NR

IND - 1 index of next bank
IND number of data words
IND -1 data word 1

IND - 2 data word 2

iND - ND ;‘l;la word ND

According to the definition of the index IND, words of the data area are referenced by statements of the
form

VALUE = IW(IND+1)+IW(IND+2)
and data are stored in banks by statements of the form
IW(IND+3) = IVALUE

The name and the number of a named bank can be used to find the index of the bank in any program part; for
the basic array the statement

14D = NLINK(NAME,NR)
can be used to determine the index IND. A single bank can be dropped by

11D = NDROP (NAME,!R)

Larger data structures

By list of names larger data structures can be defined. This concept allows to perform operations on sets of
banks, which consist of all banks with names, which are in the list. Lists may be specified by a single character,
for example 'E’, and there is a subprogram BLIST to edit a given list (add, delete). An important operation
for sets of banks is output and input (1/0). A larger data structure can be written to an output medium by
one call, in which the list is specified. Input subprograms allow to read and store the data structure. 1/0
is possible in a fast, machine dependent way, and in a machine independent way, which allows the exchange
of data between different types of computer with automatic conversion of data words (integer, floating point,
text). This concept is based on the format of banks, which can be specified in a way similar to the FORTRAN
FORMAT statement. There is no automatic garbage collection in the area of named banks.

Work banks

Work banks are stored in the high index part of the array. In contrast to named banks no larger data structures
can be defined. no standard 170 exists and garbage collections are done automatically, if necessary. Each work
bank with ND data words is created with an individual identifier, with a statement

DATA ID/0/
CALL WBANK(IW,ID,ND,=*)

The structure of a work bank is given below

index | content
ID -3 | name (default is 'WORK)
ID -2 total nr of words in the bank NT
ID-1 | pointer to index 1D
ID [number of data words ND
-1 data word 1
ID + 2 data word 2
. [;
ID + ND data word ND

Work banks are useful and efficient for certain applications like shortliving data banks inside a program
module. Their use for the transmission of data between different program modules however tends to decrease
the degree of modularity. The system provides no subprograms for the input/output of work banks.

4 2 INITIALIZATION AND UTILITY PROGRAMS

2 Initialization and Utility Programs

2.1 [Initialization

All BOS-arrays have to be initialized. Thisis usually done in the MAIN program and preceded by the declaration
of the arrays. The basic array IW in COMMON 'BCS ' has to be declared with at least 1000 words. and 1t
has to be initialized as the first array, even if 1t is not used directly afterwards. Up to 10 arrays may be used.
however it js recommended to prefer the basic array. since the use of many arrays may contradict the concept
of modularity. For histogram like data banks it is recommended to vse the array KW in COMMON/HCS,

Arguments

I¥ = basic BOS array
J¥ = any BOS array
IDIM = dimension parameter of array

Declaration and subprogram calls

COMMDR/BCS/IW(NDIM) . . oviveee i ivnnannn basic array (necessary)
COMMOY/any/JW (NDIMJ) . ST I further array (optional)
COMMON/HCS/KW(NDINMK) further array (optional)
CALL BOS(IW,NDIM)..initialize basic array(necessary)
CALL BOS(JW,NDIMJ)........ ... vvv.,.initialize array J¥ (optional)
CALL BOS (KW, NDIMK). .. iR WA initialize array KV (optional)

By a call of BOS an BOS-array is initialized. Further calls of BOS with the same array as argument are ignored
for the basic array; other BOS-arrays are reset to the initial state, using the given dimension parameter or the
value at the previous call, if the dimension parameter in the call is zero

Example: The code below shows the initiahization of the basic array with 50000 words and of the array in
common ;HCS with 10000 words

CDMND!/BCS/ TV (50000)
REAL RY (50000)
EQUIVALENCE (I¥(1),Rw(1))
CDMMDI/HCS/KY¥ (10000)
REAL X¥ (10000)
EQUIVALENCE (KW (1).X¥(1))

CALL BOS(I%,50000)
CALL BOS(K¥,10000)

2.2 General rules
Arguments

Most of the subprograms act on a specific array, which may be either the basic array IW in common /BCS,
or any BOS-array JW. If the array has to be specified in the call, it is the first argument. Further arguments
are either of type integer or of type character string. These arguments are never modified by a call, with one
exception: the index 1D of a work bank. If a subprogram has to return some value. it is defined as a function
subprogram, and the returned value is zero, if the required operation could not be performed. A test on the
function value should follow a function call, when indicated in the description of the function call. The meaning
of the arguments is explained in each section together with the calls. In addition table 6 gives a complete
overview over all possible arguments

Extended arguments

Some subprograms in the BOS system have rarely used additional options, which are not selected by an argu-
ment; instead the user has to select such an option by setting the first word of the array, JW(1). to a certain
value. This word is reset to zero by a call to a BOS system subprogram (JW(1) = 0 means default option).

o

2.0 Crnversion functions

Error returns and return codes

Error conditions, meaning that the subprogram could not execute the required operation, are indicated either
by

o taking the alternate return in cases of subroutines, or by
e a returned value of zero in case of functions

In both cases the reason is indicated by the value of the second word of the BOS-array, JW(2), if necessary.
This return code is explained in each section together with the call (see also table 8). One design criteria of BOS
was to minimize the number of cases, where an error return is posssible. For some errors, where a continuation
is impossible (for example, if the bank structure is destroyed), the program will stop after printing the reason.

2.3 Conversion functions

Since in FORTRANTT character strings cannot be stored together with numerical data in the same common, the
BOS systeme includes two functions for the conversion between the representation as a character®d string and
the representation as packed integer. In the latter representation the four characters are stored in their internal
character codes from the left to the right in one machine word. The two functions are machine independent;
they use functions from the CERN program library. which exist for almost all types of computers. On some
machines the two representations are identical and the functions trivial

Arguments

CHST = character=4 string
IlST = integer

Subprogram calls

CHARACTER+4 CHST, CHAI!IT
INST = INTCHA(CHST).convert from character to integer

CHST = CHAINT(INST) &5convert from integer to character

When a named bank is created. the name NAME of the bank is stored in the integer representation within the
bank at index IND-3 For the conversion back to a character string, the function CHAINT should be used. The
functions should also be used. if text (character strings) is stored in the data part of a bank

Example. The name of a bank, stored in the integer representation within a named bank at the index IND-3,
15 converted to the character representation.

CHARACTER+4 CHAINT UAME
UAME = CHAINT(IW(IND-3)) conversion to character*4

Example. Text from a character string TEXT is stored in the data part of a bank with an index IND. The
function INTCHA is used to convert at each call four characters from the string into the integer representation.
The FORTRANTT function LEN and the substring feature is used

CHARACTER=55 TEXT

LA=1
DO 10 I=1,(LEN(TEXT)+3)/4 determine nr of words from length
LB=MI!'(LA+3 LE!(TEXT))
IV (IND+1)=INTCHA(TEXT (LA :LB))
10 LA=LB-+1

2.4 Utility subprograms for printing

The system contains some subprograms to print certain data of the arrays. The call of BOSTA is recommended
after initialization of all arrays and at the end of the program.

. i NAMED BANKS

Subprogram calls

CALL: BOSTA: isvire soromi oz i sagvd Bprint current status of all BOS
arrays including bank formats
and 1/0 status

CALL BOSFM........-....u. i print bank formats

CALL BOSID......print current status of 1/0

CALL BOSBL(JW)..... OO .. .print 1/0 statistic on banks in
array JW

CALL BOSBK(JIW)..........tprint list of current banks in
array JW

CALL BOSDP(JW) « W e ...print dump of array JV

3 Named banks

Named banks are the basic elements of the BOS system and should be used for long-living data. Their properties
allow a modular structure of big and complex programs. The structure of named banks is shown in table 1,
The system includes subprograms for various operations with single banks and sets of named banks including
input/output.

index | content

IND -3 | name NAME

IND -2 number NR

IND -1 index of next bank
IND number of data words
IND + 1 data word 1

IND + 2 data word 2

IND + ND | data word ND

Table 1. Structure of named banks

3.1 Operations with single named banks

Operations with single named banks require as arguments the name and the number of the named bank. They
are performed by functions, which start with the character 'N’ for banks in the basic array, and with the

character "M’ for an arbitrary BOS-array. Immediately after the function call a test on IND=0 should follow
in order to check the success of the operation.

Arguments

NAME = name of bank (character*4)

IR = number of bank

ND = number of data words of a bank (not negative)
ID = index of a named bank

Any character®4 string may be used as a name, except a string with first character +. As number of a bank
any integer is allowed. The number of data words may not be negative

4.2 Indices for named banks

Subprogram calls

15D = NLINK(NAME,!R)
1D = MLINK(JW,NAME,'R)
IF(11D.EQ.0) THE! .

determine index of named bank

Functions NLINK and MLINK determine the index IND of a named bank. The returned value is zero, if the
bank does not exist: therefore a test on IND=0 should follow. Other methods for the determination of the index
of a bank are discussed in chapter 3.2,

1D = NBAUK (NAME, IR, ND)

IND = MBANK(JW NAME,NR,!D)........ ...create named bank with ND data words
or change length to !ID data words

IF(IND.EQ.0) THEN .

Functions NBANK and MBANK are used to create a named bank with ND data words and to return the index
of the new bank. If the bank exists already, the number of data words is changed to the value given in the
argument. All additional words or all words in the case of a new bank are set to zero. If space is insufficient
(even after a garbage collection in the work bank area) to create a new bank or to increase the number of data
words, the returned value is zero and the return code JW(2) is set to 1 or 2; in this case a new bank is not
created and an existing bank is left unchanged (note that in the latter case the bank will exist after return, the
returned index however is zero). Programming methods for banks with a varying number of data words are
discussed in chapter 7.

Options: For special requirements the following options can be selected:

() =1 S, 0 AL Ko AR additional bank words left
unchanged

W) =2 ... RO SOLNES SO SPGRE S move bank to gap of free space

Ju(1) = 3 vie oimio ejerere bEONELSiE BiOMIY SALLE BI8ATAY S all other banks of the same name

are deleted

1f JW(1)=1 is set before the call, the additional data words are left unchanged. If JW(1)=2 is set before NBANK
or MBANK is called. the bank is moved to the gap, thus the moved bank will be immediately before the gap.
The option JW(1) = 3 allows to create a new bank, deleting all existing banks of the same name before. Since
use is made of the space of existing banks, this option will be efficient for very large banks, occupying a large
fraction of the total array

1ND = NDROP (NAME,!R)
1D = MDROP (J¥,NAME,UR) ;drop named bank

The named bank is dropped. Although it may still be i the BOS array, its index cannot be obtained by
NLINK/MLINK and the bauk will vanish at the next garbage collection

IND = NPRNT(NAME,!NR)

IND = MPRUT(JW, NAME,NR) .. - .print named bank

The named bank is printed If a format is defined for the bank name, it is used

3.2 Indices for named banks

The standard method to determine the mndex of a given bank is to use the functions NLINK and MLINK
Although these functions are fast (one call is equivalent to about two calls of a dummy function), there are
certain applications with loops etc. where the total time spent in the functions may become large. The algorithm
for indices of named banks is explained below and it will be shown, how function calls can be avoided

Name-indices

To each name appearing in a call of BOS system programs a name-index with values 51, 52 is assigned
This assignment is made at the first appearance of a name. The name-index for a given name NAME can be
obtained by the statement

& i NAMED BANK~

NAMI = NAMIND(NAME) return name-index for name [AME

If banks are existing for a given name, the index of the first bank (first means lowest number) is stored i
word JW(NAMI). Thus having determined the name-index NAMI for a given name by the above statement
the statement

IND = JW(NAMI) index of first bank

directly yields without a function call the index of the first bank, or zero. if no bank of the given name exists
During the execution of a program the name-index will never change. Therefore within a subprogram the
statements

DATA NAMI/O/ initialize with zero
IF (NAMI .EQ.0) HAMI=NAMIND (NAME) define !ANI at first call

can be used to determine the name-index at the first call of the subprogran, in order to save time.
The word JW(IND-1) in each bank contains the index of the next bank (1.1 mncreasing order of bank numbers)
of the same name, or zero, if no further bank exists. Thus by the statemen:

IND = JW(IND-1) next index
IF(IND.EQ.0) ... test IID = O

the next index can be determined without a function call.

Loops

If a loop has to be executed over all banks of a given name (in order of increasing number) one has to initialize
the index IND before the loop to NAMIND(NAME)+1 or NAMI+1; the following statements can then be used
for the loop:

IND = NAMI+1 initialize index IND
10 IND = JW(IND-1) next index
IF(IND.NE.O) THEN test termination of the loop

IND 1s index for the bank with
: number JW(IND-2)
GOTO 10
END IF

Note that a loop can be executed without any function call for the determination of indices.

Access to banks in random order

In some applications banks of certain names are required in some (random) order, determined by data and
program flow. A function call (NLINK, MLINK) would be possible, but requires of course some time. A faster
method in this case is to use subroutine BWIND, which creates a work bank containing all indices of named
banks for a given name with numbers between 1 and an upper limit (argument NRMAX of BWIND). This
subroutine is applicable in cases, where the bank numbers are (not too large) positive numbers.

CALL BWIND(JW,NAME, NRMAX, ID) . .create/modify work bznk with indices of

named banks

After the call the content of the work bank at index ID will be. ND will be the largest bank number of an
existing bank < NRMAX. In practice NRMAX should be set to some large number. For example if bank
numbers are expected in the range 1 ... 50, one can use NRMAX = 1000. The actual length of the work bank
will be the largest number of an existing bank. The work bank contains the actual values of the indices at the
time BWIND was called. If new banks are created or existing banks are dropped, the content is not changed
The use of BWIND is recommended in cases, where correlations between banks with a different name are used

Example: Assume banks with the names NAM1 and NAM2; a bank with the name NAM1I can be correlated
to a bank with the name NAM2 and vice versa. The corresponding number of the correlated bank may be
stored by the user for example in both cases in the first data word. The code allows the fast access to banks of
two names in a random order, only two calls of BWIND are necessary

14 Bank formats

index content S
1D ND .
D+1 index of bank (NAME,1) (or zero)

1D+2 index of bank (NAME,2) (or zero)

1D~ 1 index of bank (NAME,I) (or zero)

ID=ND | index of bank (NAME,ND)

Table 2: Content of work bank created by BWIND

DATA ID1/0/, 1D2/0/
CALL BWIND(JW,NANM1,61000,1D1)
CALL BWIND(JW,KNAM2,1000,1D2)

I = unx bank number of bank NAM1
1ND1=JW(ID1+I1) index of bank (NAM1,11)
IF(IND1.EQ.O) . . test index
I2=J%(IND1+1) bank number of bank NAM2
IND2=J¥ (ID2+12) index of bank (lAM2,12)
IF(IND2.EQ.0) : test index

3.3 Bank formats

The format of a bank describes the type of data stored in the bank. All banks of the same name have to
be described by the same format. This requirement of course has consequences for the design of banks. The
definition of a format is essential for machine-independent input/output, it is useful for the printing of banks and
if a bank is copied to a work bank. In machine-independent output, the data words are converted according to
the format to a standard 32-bit representation, and in machine-independent input the data words are converted
to the internal machine representation. It is recommended, not to use complicated formats (although it is
possible), and to prefer the floating-point format.

The format of a bank can be either mized or bit-packed. The type of the data words 1s described by a
character string FMT

Mixed format

The format desription FMT follows the same rules as FORTRAN-format statements, except that no length
information is specified:

I integer
F floating-point
A text (4 characters per word)

The character string defining the format is of the type
M tifaeewia

where the f, are format codes nf, nF, nA or n(...) for a group format specification (n = constant), for example:
'1.5F 2(1,3F)’

Outer parentheses of the format can be omitted. Note that, according to the FORTRAN rules, when format
control reaches the last (outer) right parenthesis and there are data words left, the format starts again by the
last preceding right parenthesis, including its group repeat count, if any, or, if no group specification exists,
then at the first left parenthesis of the format specification

If a bank contains only text, the use of the format "18A" is recommended, because in this case the printing
routines use a format without gaps.

10 i NAMEIL BANKS

Bit-packed format

The 32 rightmost bits of each machine word are used, they contain either 32-bit words or two 16-bit words or
four &-bit words The format description is:

'B32' for 32-bit words
'B16" for two 16-bit words
'BO8’ for four 8-bit words

In machine-independent output the content (32 rightmost bits) of the machine words are transmitted without
conversion. In machine-independent input, the data are transmitted to the 32 rightmost bits of each machine
word. If the named bank is copied to a work bank (BKTOW), the data are unpacked according to the format
(expansion). If a work bank is copied to a named bank (BKFRW) and the format for the name is bit-packed,
the data are packed (compression). In printing named banks with a bit-packed format the content of the banks
are printed unpacked.

Arguments

NAME = name of bank
FMNT = character string for mixed format
= 'B32' or 'B16' or 'B08' for bit-packed format

Subroutine call

CALL BKFMT (IAME,FMT) .. . format FNT is assigned to all banks with

the name NAME

The bank format for the given name is defined. The call is ignored, if the format has already been defined
by a call. On output the format descriptions are added automatically to the records, in a subsequent input
the format description are read. Thus formats are also defined by input of records. However, the first call of
BKFMT overwrites a format defined from a record. If the format description in a call has a syntax error, the
program will stop at the first usage of the erroneous format description.

Examples: The interpretation of several format strings is given.

format of data words:

CALL BKFMT('HEAD','2I,3F') ITFFFIIFFFIIFFF. .. (IIFFF repeated)
CALL BKFMT('DATA','F') FFFFF . . (all floating-point)
CALL BKFMT('DATA',’'(F)") FFFFF. . (all floating-point)

CALL BKFMT('TRAC','2I,A,2(21,F),(F)') IIAIIFIIFFFFFF..

CALL BKFMT('RAWD','B16') 16-bit packed

3.4 Sets of banks

For various operations (input/output, printing etc.) it s necessary to define a set of banks, which belong
together. In BOS a set of banks is defined by the list of all names of banks, which belong to the set. This is
simple, but not completely general: the case where <ome banks of a given name are included in the set of banks
and others of the same name are not included in the set, cannot be described. If, in any operation, the list
contains names of banks, which are not existing. these names are 1ignored.

A list of names may be an internal list or an explicit string of names, for example '"HEADTRACLIST’ for the
names HEAD, TRAC and LIST. Internal lists are specified by a single character L: the character can have one
of the values

¢ E R S T and 0 (empty list)

The names of internal lists are stored in the BOS array. The subroutine BLIST can be used to edit an internal
li<t (add names. delete names). The function NLIST can be used to obtain the n-th name of a list

5 Changing the names of banks 11
Arguments
OPT = ‘L=' set intermal list L to LIST, L=CERS o or T
= 'L+* add list LIST to internal list L
= 'L-* delete list LIST from internal list L
LIST = explicit string of names
= 'L’ character, specifying the internal list; L =CERS TO
I = index within a list

Subprogram calls

CALL BLIST(JV,OPT,LIST) ; .. change internal list according to option
OPT using list LIST

The internal list specified within OPT is either set equal to the list LIST ('L="). or the names from list LIST
are added to or deleted from the internal list ('L+" or 'L-")

CHARACTER=4 IILIST
NAME = NLIST(JY,N,LIST)...........ovno-n return !i-th name from list LIST or blank

The name of the N-th entry in the list LIST is returned. The value blank (NAME = ') is returned, if N < 1
or N = the number of names in the list.

CALL BDROP(J¥,LIST) R BTSRRI SEATO Y (67 ..drop set of banks defined by list LIST

All banks with names in the list LIST are dropped.

CALL BPRUT(JV,LIST).print set of banks defined by list LIST

All banks with names in the list LIST are printed.

Examples: A few calls of BLIST are shown, together with the content of the internal list E after each call.
content of list E after call

CALL BLIST(JV,'E=', 'HEADRAWD') HEAD RAUWD

CALL BLIST(JV,'R=", 'SHO¥")

CALL BLIST(Ju,'E+', 'R") HEAD RAWD SHOY
CALL BLIST(JW,'E+",'TRAC') HEAD RAWD SHO% TRAC
CALL BLIST(J¥,'E-','SHO¥') HEAD RAVWD TRAC
CALL BLIST(Jv,'E+','TRAC') HEAD RAWD TRAC

NAME = NLIST(J%,2,'E") returned function value is NAME='RAWD'

CALL BLIST(JV,'E='.'0") empty

3.5 Changing the names of banks

The name and number of a named bank can be changed by subprograms NSWAP /MSWAP and BSWAP

Arguments

IAML, NAM2 = names of banks
lR1, NR2 = numbers of banks

12 4 WORK BANKS

Subprogram calls

IND = NSWAP(NAMI1,NR1,NAMZ2,NR2)
IND = MSWAP(JW,NAM1,NR1,NAM2,NR2) change name and number

If both banks are existing, the bank (NAMI1,NR1) will get name NAM2 and number NR2, and the bank
(NAM2,NR2) will get the name NAM1 and the number NR1: the index of the (new) bank (NAMI,NR1) is
returned‘ If only one of the banks exists, its name and number is changed to the other name and number, and
its index is returned.

CALL BSWAP (JW, NAM1,NAM2)..... exchange names NAM1 and NAM2

All banks names NAM1 are changed to NAM2 and all bank names NAM?2 are changed to NAM1. If banks of
one of the names do not exist, the banks of the other name are renamed. The order of the two names in the
argument is irrelevant.

Example: The names "TRAC’ and 'SPUR’ are exchanged two times. After the two calls the banks have the
old names again.

CALL BSWAP(JVW, 'TRAC', 'SPUR') exchange names
CALL BSWAP(JW, 'TRAC', 'SPUR') change names back

3.6 Garbage collection

Garbage collection in the area of named banks regains the space occupied by dropped banks. The position of
remaining banks may change by this operation. Garbage collection for the area of named banks is not done
in any system subprogram (with the exceptions of BDASQ and BDALD and also the general mput-output
program BSQER) and has to be called explicitly by the user. In typical applications this is done by the user in
regular intervals, for example before a new record is read in.

CALL BGARB(JW)garbage collection for named bank area

4 Work banks

Work banks are created with an individual index ID. They should be used preferentially inside a program module
and not for the transmission of data between modules, since their properties may contradict the requirements
of modularity and no input/output is foreseen. They are however useful and efficient inside a module; they
do not disturb the area of named banks and allow a garbage collection with automatic update of all indices of
work banks. The structure of a work bank is given below. Garbage collection in the region of the work hanks
is done automatically, if neccessary, with update of all individual indices of existing works banks

index content

ID -3 name (default is "'WORK")
ID-2 total number of words in the bank NT
ID-1 pointer to index ID

1D number of data words ND
ID-1 | data word 1

ID -2 data word 2

ID - ND data word ND

Table 3: Structure of a work bank

When a work bank is created, the index of the work bank is stored in ID, and the address of the word 1D is
stored in the work bank at JW(ID-1). This allows the system to update the content of indices ID automatically
during a garbage collection. This method requires, that the content of the work bank is referenced directly with
the index ID, which was used during the creation of the bank. If the argument ID is nonzero at entry to a work
bank subroutine, it is checked: it should point to a work bank, and word JW(ID-1) should contain the address

4.1 Operations with work banks 13

of the word ID. If the value of ID 1s incorrect. the program will stop. Before a work bank is created, the index
1D must have the value zero. The value of an index should never be changed by the user directly

Work bank indices or the work bank data part should not be an argument in a subprogram. if the subprogram
itself may create or drop a work bank

4.1 Operations with work banks

Arguments
0] = index of the work bank
ID = number of data words of the work bank (not negative)

Subprogram calls

DATA 1ID/0/
CALL WBANK(JW,ID,ND,#). %create work bank
* 1nsufficient space

A work bank with ND data words is created, the index is stored in ID. If the bank already exists (ID # 0 at
entry), the number of data words will be changed to the value of ND given in the argument. For a successfull
operation, the normal return is taken with index 1D defined

The alternate return is taken in case of insufficient space; if space is insufficient (even after a garbage collection
in the work bank area) to create a new bank or to increase the number of data words, the return code JW(2)
1= set to 1 or 2 and in this case a new bank is not created and an existing bank is left unchanged.

CALL WDROP(J¥,ID).....drop work bank

The work bank at index [D is dropped and 1D is set to zero. If ID = 0 at entry, immediate return 1s taken.
CALL WPRNT(JW,ID).... z : .. print work bank

The work bank at index 1D is printed. As an exception the index may also be an index of a named bank

CALL WSWAP(Ju,6ID1,ID2) exchange indices for work banks

The indices ID1 and ID2 of the banks are exchanged. If one of the indices is zero, the index is transferred

A garbage collection in the area of work banks is done automatically, when necessary. The user never has to
call the garbage collection directly, but for completeness the call 1s given.

CALL WGARB(JV) ..) garbage collection for work banks

Example: A work bank with 1000 words 1= created and used. After the use the work bank is printed and
dropped

DATA ID/O/
CALL ¥BANK(J¥,ID,1000,+100)
JW(ID+1)=31416

CALL ¥PRNT(JV,ID)
CALL ¥DROP (J¥,ID)

4.2 Bank copy to or from work banks

A named bank in an array JW1 can be copied to a work bank in array JW2 and vice versa. If a format of the
type ‘bit packed’ is specified for the named bank and a copy 1= done to a work bank, the work bank will contain
the data unpacked into single words. Conversely, if a work bank is copied to a named bank and the format of
the named bank 1s specified as 'bit packed’, the work bank is assumed to contain unpacked data and the named
bank will contain the data in packed form

WI“II T Swvww——" rn— ol Y . a 2 - o P o e . 2 " .

14 i INPUT OUTPUT (SEQI ENTIAL)

Arguments

Ju1 = BOS array of named bank
NAME, iR= name and number of bank

Ju2 = BOS array of work bank
pey) = index of work bank

Subprogram calls

CALL BKTOW(JW1 NAME, MR, J¥2,ID,*)..... copy named bank (source) to
work bank (target)
+ named bank not existing

CALL BKFRW(JW1, NAME,!R,J¥2,ID,+)copy from work bank (source)
to named bank (target)
+ work bank not existing

If the target bank is existing before the call, the content will be replaced. 1f the source bank does not exist, the
alternate return is taken.

5 Input/Output (sequential)

This chapter explains the subprograms for the input/output of sets of named banks, which are defined by lists
of names. There are two posiibilities for the input/output:

o a standard mode selected by the option 'FORT’, which is fast and recommended, if a data set is read
several times on the same machine; it is based on standard FORTRAN 1/0: all records have the same
fixed length;

a machine-independent mode selected by the option "EPIO’, based on the CERN EPIO package ': this
mode includes data conversion according toi the format description of the banks; in writing floating point
and integer data are converted to the IBM representation, character data are converted to ASCII code;
in reading, the words are converted back to internal machine representation; if the format is bit packed,
the rightmost 32 bits are written and read without conversion.

In both modes a buffer is used and existing format description of banks are automatically written and therefore
available in subsequent programs reading the data set
For each unit LUN the mode is selected by a call of subprogram BUNIT

Arguments

Lun = unit number

I0MODE = mode of 1/0, either 'FORT' or 'EPID’ (character=d)

UBLE = number of data words for output record (inm words for 'FORT'

and in 16-bit units for 'EPI0')

define mode for I/0 and buffer
length

CALL BUNIT(LU!, IOMODE, NBLK)

The argument IOMODE ig of type character*4 and may be either 'FORT or 'EPIO"; any other string 15 assumed
to be '"FORT’. The argument NBLK specifies the buffer size (and record length) for the output of BOS-records.
The argument NBLK is in machine words for the option 'FORT and in 16-bit unit for the option 'EP10" and
has to be a multiple of 180 in the latter case For input the buffer size is taken from the actual record length,
the value of argument NBLK is irrelevant and may be zero, If the argument NBLK is zero for writing, a default
value is assumed. 1f BUNIT is not called for a unit, the mode "FORT" 1s assumed with the default buffer size
Subprograms for the input/output of BOS-records are described in the next section. A general input/output
subprogram BSEQR exists, which provides a simple interface to the input output subprograms and will be

“H Grote and | MeLaren, EPIO manual, DD/EE/81-2. CERN Computer Center Program Library 1101

51 Input- cutput subprograms 15

sufficiently general for most apphieations It also includes the necessary calls for the transition from one record
to the next record (dropping of banks of the previous records. garbage collection). The use of subroutine BSEQR
is explamed in chapter 5.2 and a newcomer to BOS reading this manual may directly skip to this chapter

5.1 Input/output subprograms
Arguments
Lul = unit number

LIST = list of names
By calling

CALL BREAD(JW,LUMN,LIST,*1,%2)........... read set of banks from unit LUl
»1 read error
*2 end-of-data

the next BOS-record is read and the banks are stored in array JW. The list LIST in thic call may be only of the
one-character form. At return the list contains the names of the banks read in. In addition the word JW(3) is
cet to the index of the first bank of the record at a normal return. Alternate returns are taken in case of read
errors and the end-of-data condition. At the next call of BREAD after a read error the wrong record is skipped
and the next record is read. By calling

CALL BWRITE(JV .LUL . LIST)........write set of banks to unit LUl

all banks specified in the list LIST are written; if JW(1) is set to 1 before the call of BOSWR, the banks will
also be dropped Since a buffer is used, it is important to write finally the last buffer, which is done using an
empty list (LIST = "0},

CALL BWRITE(JW,LUN,'0')
or by a rewind of the data set using subroutine BRWND. A single bank (NAME,NR) is written by the call

CALL BWRSB(J¥, LUl NAME NR) vrite single bank to unit LUI

in one BOS-record
The data set LUN is rewound by the call

CALL BRYND(LU!) .)) . _rewind data set umit LUL

This includes the autput of the last record in the buffer (for outpur) After a rewind a data set previously used
for writing may be used for reading.

Example: The following code shows the statements for a sequence of operations, in which a record is read,
processed and written. After writing all banks of the record are dropped and after a garbage the process 1s
repeated. The basic array IW and the list "E’ is used

10 CALL BREAD(IV,(1,'E’,#10,+100)
(processing)

CALL BYRITE(I¥,2,'E')
CALL BDROP(IV,'E")
CALL BGARB(IV)
GOTO 10

100 CALL BWRITE(IY,2,'0")
EID

Special read option: A special option of BREAD allows a preliminary read of & record After a call ol
BREAD with argument LIST = "', the user has access to the first bhank of the new record. although this hank
1s not stored as an ordinary named bank and cannot be found by the functions ALINK MLINK The vser i
then decide either to accept the record or te read the next record. Il in a certain application only selecied
records are required. the execution time of the program will be <horter usmg this aption

In i O INPUT OUTPUT (SEQUENTIAL)

CALL BREAD(JY LU ,* *.+.*) preliminary read
*1 read error
42 end of-data

The next record 1= read preliminary. At a normal return JW(3) contains the index of the first bank of the
record. Alternate returns are taken in case of read errors and the end-of-data condition

At a next call of BREAD with the same unit LUN | the same BOS array JW and the usual one-character form of
the argument LIST the banks of the preliminary read record are stored. If the next call has as third argument
again LIST = "' the next record will be read preliminary (ignoring the previous record).

Example: Assume that records from unit 1 are required only, if the first bank (HEAD,0) contains the value
13 in its first word Without the special option this could be done with the following code.

10 CALL BREAD(I%,1,'E",+20,+30)
1D = NLINK('HEAD',0)
IF(I!D.EQ.0) GOTO 15
IF(I%(IND+1).lE.13) GOTOD 15

15 CALL BDROP(I%,'E")
CALL BGARB(I%)
GOTO 10

With the special option the code has two more statements, but the execution time will be shorter.

10 CALL BREAD(I%,1,' *',6+20,+30)
IND = I¥(3)
IF(I%(IND-3).ne INTCHA('HEAD')) GOTO 10
IF(IW(IND-2).4E 0) GOTO 10
IF(IW(IND+1).ne 13) GOTO 10
CALL BREAD(IW,1,'E’,+20,+30)

CALL BDROP(IV,'E’)
CALL BGARB(1%)
GOTO 10

Job control statements

Job control statements are given for the IBM VMS system of the DESY computer center. For the input output
in the 'FORT" mode the DD statement has to specify as usual

//FTXXFOO1 DD DSl=.

for the unit LUN = XX.

The IBM version of the EPIO package uzes the CERN I0PACK package * and the rules on JCL explained in the
JIOPACK Users Guide apply for the mode '"EPIO’. At DESY the DD-name of a file on unit XX 1= IOFILEXX,
the recordformat 15 17 (see IBM DD-card example below) with a blocksize BLKSIZE = 2 » NBLK:

//G.IOFILEXX DD DS!= .DCB=(RECF!=U,BLKSIZE=. . .),...

5.2 General input/output subprogram

The general subprogram for sequential input ‘output BSEQR contains all calls to read a data set sequentially,
to write the records on a sequential data set (optionally), and also to drop the banks of the previous record and
to make a garbage collection before a new record is read. It may either be used directly or serve as a model for
a similar, but specialized program for a certain application. The following conventions apply:

e The basic array IW/RW in common /BCS ' is used to store the banks of the read records
e The list "E' is used to keep the names of the banks.

2CERN, I0PACK !sers Guide, R Matthews CERN Computer Program Library 230(

5.2 General mput output subprogram 17

e Records with read errors are skipped

BSEQR allows ta use one mput unit and up 1o four outper unis. The mode for each of these units has to be
selected by the user before the first call of BSEQR by a call o 110 NIT. An example for the minimal version of &
MAIN program for reading a data set and processing (assumed to be done in subiprogram MODULE) is given
helow

€040l /BCS/T¥ (5000)
CALL BOS(IV,5000)
LUIR = 1

10 CALL BSEQR(LUIR,IRET)
IF(IRET.LT.0) GOTO 100

CALL MODULE

GOTO 10
100 STOP
E!ID

In this MAIN program all records from unit 1 are read, after each input of a record the subprogram MODULE
is called for processing
The subprogram BSEQR has several options, described below.

Input

CALL BSEQR(LUNR, IRET).read from unit LUIR

The argument LUNR specifies the unit for input, and may have the values 1 or 2 or 0. The value 0 means no
input, the list 'E’ is reset to contain no bank names; this option may be used, if all banks are created during
processing. The value of the argument LUNR is relevant only at the first call of BSEQR and ignored afterwards
The return argument IRET has the value 1, if a record has been read. If the end-condition is reached in BSEQR
(for example by an end-of-file on the input unit), the argument IRET is 0 at return and will be -1, if BSEQR
i called once more The IF-statement in the MAIN program above assumes one pass through the processing
module after the end-condition. This will not be done if the test is for IRET.LE.O.

Parameter

By default BSEQR will stop reading 2 seconds before the timelimit or at an end-of-file on the input data set.
These limits are defined by para neters, which can be changed by a call of BSEQP before the first call of BSEQR.

CALL BSEQP(!SEC,lLIM) . define parameter

Reading will stop NSEC seconds before the time limit or after NLIM records, where NLIM = 0 means no limit
If the user wants to stop readiny at a certain condition, he may call BSEQE at any time.

CALL BSEQE..:.oiiuvs. SRR & .. require end condition

At the next call of BSEQR the ¢nd-condition is assumed.

Output

Default is no output. Output can be done to up to four different units. The mode of output has to be defined
for each unit by a call to BUNIT before the first call of BSEQR (defsult mode is 'FORT’). A call to BSEQW
sets an output flag; actual output is done at the next call of BSEQR. If the end-condition 1s reached in BSEQR.
the buffers for used output units will be written.

CALL BSEQUW(LUN®W).........coovvnnn set output flag

If LUNW is given negative, the catput to the unit is suppressed. Calls with different values of the argument
can be in any order. The last value of the outpur flag for all units s relevant.

18 G CARD IMAGE INPUT

Further options

The subprogram BSEQR contains further option, which are described in section 10

6 Card image input

6.1 Data banks

Banks may be read from card image records (or cards) in free format (cols. 1- 72 are used). The data for one
bank may be on one or several card image records. The following conventions apply:

integers: string of decimal digits, containing no decimal point and no blank, optionally signed.

real numbers: string of decimal digits with a decimal point and without blank, optionally signed and
optionally followed by exponent with a letter E or D and an integer.

o text data: string of characters (except apostroph), enclosed in two apostrophs on the same card image
record (stored with 4 characters per word).

label: the characters of the four columns 1 .. .4 before the first digit or any of the characters + or -, If
the label of a cardimage record is blank, the record is considered as a continuation records, If the label is
not blank, it is used as the name of bank, in which the data are stored

comment: all characters after an ! or a single apostroph as well as any additional characters are treated
as comment and ignored. A card image record with a + in column 1 is treated as comment card

Any characters between integers, real numbers and text are ignored. The data are stored in a bank with a name
equal to the label. The bank number is either given as an integer between the label and a slash (/), or choosen
automatically as 1+ the highest existing number of a bank of the given name, or zero, if no bank exists.

Special labels

The following card image records have a special meaning and are not stored.

UNIT integer reading is switched to the given unit number (and is
switched back to the system input unit if EOF found)

POFF printout of records is switched off
PON printout of records is switched on (default)
ENDQ last record (forcing return of the reading program)

The content of the card image records 1s as follows:

name integer, floating point, text data

name integer, floating point, text data ! comment
continuation of data

. comment card

name nr / integer, floating point, text data ! comment

name nr / integer, floating point, text data
continuation of data

UNIT integer

POFF

POK

ENDQ

There are two subprograms for reading card image records, a function reading one bank into any BOS array
and a subroutine reading a set of banks into the basic BOS array.

(.2 Format and text banks 14

CALL BREADC : SRS 1 Read records (starting from
system input unit) and store
data in banks in the basic array
IV in common /BCS/ until ‘ENDQ’-
record or EOF on system input

is found

IND = MREADC(J¥)...--............. one bank is read and stored in array JU
1D = 0 for 'ENDQ'-record or EOF
In case of EOF in addition JW(2)=7

Example: The following card image records are read by BREADC, the resulting banks are shown below

DATA 27 / 311 75 3.1 3.1E01 ! COMMENT
» THIS IS A COMMENT
cONS 32 57 O 'EXPERIMENT' 3.145

25.7 22.2 ! COMMENT

E!NDQ
BAlK (DATA,27) BAlNK (co!s,0)
1D 4 1D 8
IND+1 311 IND+1 32
IND+2 75 11D+2 57.0
IMND+3 3.1 IND+3 ‘EXPE’
IND+4 31.0 11D+4 'RIME’

IID+6 ‘T

1ND+6 3.145
IND+7 25.7
IND+8 22.2

6.2 Format and text banks

Additional options allow to define bank formats by card image records and to store text from whole card image
records (cols. 1- 72) in banks. These options are selected by the character strings SFMT, STEXT, STEXTC
and ENDS$. The content of the card image records is as follows.

name $FNT 'bank format' ! comment

name nr / S$TEXT ! comment
text
text

ENDS

name $TEXT ! comment
text

E!D$

name nr / $TEXTC ! comment
text

E!D$

A card image record with the string SFMT directly defines a bank format. Function MREADC will not return
after reading this record, but proceed and return with the index of the next bank stored.

After finding the string STEXT or STEXTC all following card image records will be read and stored as text,
until a label END$ is found. The format of the text bank will automatically defined to be "18A°

Example:

20 7 DIRECT ACCESS 1/0 OF SINGLE BANKS

HEAD S$FMT 'BI,2A, (10F,10I)'

RUNC 4711 STEXT

A special trigger is valid for this run.
Trigger 16 has been switched off

ENDS

The text option STEXT allows of course also to read card image records like the ones explained in chapter
6.1 and to store the text in a bank. The following card image records would be stored as text in the bank
(BNKS,311):

NKS 311 / $TEXT

DATA 27 / 311 75 3.1 3 1EO01 ! COMMENT
* THIS IS A COMMENT
CONS 32 57.0 'EXPERIMENT' 3.145

25.7 22.2 ! COMMENT
ENDS$

For banks with text of this kind the subprogram BCALLC allows to interprete the text and to store the banks
defined by the text as if they are read by MREADC or BREADC.

CALL BCALLC(JW,NAME,NR).............. .interprete text from bank

The bank (NAME,NR) in array JW is assumed to contain text in its data part, which is interpreted like reading
card image records and the banks are stored in array JW. A statement

CALL BCALLC(JW, 'BNKS', 311)

would, for the example above, create just the banks of the example in the chapter 6.1. If the character string
STEXTC is used instead of $TEXT, the call of BCALLC for the bank is done automatically after reading the
text.

7 Direct access I/O of single banks

7.1 Introduction to direct-access operations

Single banks can be written on a direct-access data set and can be read in a random order. The method used
and the basic properties are described briefly.

The standard FORTRAN77 features for direct access are used. A direct-access data set has a fixed number
NREC of records and a fixed number IRECL of words per record. About 5 % of the records are used as directory
records, which contain for all stored banks name NAME and number NR and the number of the data record of
the bank. Directory records can have continuation records. The first three records of a direct-access data set
are system records, which contain the status of the data set. The following records are data records, followed
by unused records and, finally, by the directory records. There is no limitation on the length of banks; long
banks are automatically split to more than one data record.

If a bank (NAME,NR) has to be read, a hash function is used to calculate from the name NAME and the
number NR the number of the directory record, from which the number of the data record is obtained. The
data record is read and possibly also the next record(s), if the bank is split, and the bank is stored in the BOS
array. Usually only two records have to be read. If a bank (NAME,NR) has to be written, the bank is added
to the last used data record and possibly to the next record(s), and an entry is made in the directory record.
If the bank already exists on the data set, and has the same length, the bank content in the data record(s)
is overwritten by the content of the new bank. If the existing bank has a different length, the existing bank
is dropped. Dropping a bank means, that the bank is deleted from the data record(s) and from the directory
record.

Simultaneous access for read, write and drop is possible by more than one job at a time. In order to allow
modification of the data set by more than one job, the data set is temporarily reserved for one job, using the
system records.

A value of 1000 ...2000 for IRECL, optimized for the specific direct-access unit, is recommended. Both
NREC and IRECL have to be > 20.

At the initialization of a data set a password can be specified. Operations which modify the data set are
possible only if the correct password is given (BDABF), otherwise they are ignored. Read operations are always
possible.

e e e = T S A = ==

72 Imuahzavion 21

7.2 Initialization

A direct-access data set has to be initiahized once by the subprogram INITDA. which can run outside BOS. In
an initialization the system records and all other records are preset

Arguments

LUl = unit

IRECL = number of words/record
IREC = number of records

PASSUWD = password (character=4)

Subprogram call

CALL INITDA(LUL, IRECL,NREC,PASSWD).. . initialize direct-access data set
On IBM the following DD card 1s necessary (4*IRECL = constant):

//FTXXFOO1 DD DS!i=.. ., SPACE=(4+IRECL,NREC) ,UNIT=. .. DISP=(NEW, CATLG),

// DCB=(BLKSIZE=4+IRECL)

7.3 Open direct access

A direct-access data set has to be opened by a call of subroutine BDABF before any other call of direct-access
subprograms, described in the following If the data set i1s not opened, all further calls will be ignored. The
value of IRECL has to identical to the value, given in the initialization.

Arguments

LUl = unit

IRECL = number of words/record

DSl = data-set name: exclusive access

= : shared access possible (see below)
PASSYD = password (character+4)
Subprogram call
CALL BDABF (LUN, IRECL,DS!,PASS¥D) open direct access data set

If the data-set name is specified, no DD card is necessary and access i1s exclusive to one job. allowing also
faster execution especially of the subprogram BDAWR (writing of banks). Simultaneous access is possible with
a blank DSN: in this case the DD card given below is necessary:

\\FTXXF001 DD DS!i= .DISP=SHR

7.4 Direct access operations

Arguments

Lul = unit

NAME,liR = name and number of bank
1D = index of bank

Subprogram calls

CALL BDAWR(JW LU NAME,LR) .. add bank to direct access data

set

CALL BDADR(LUN,VAME NR).. drop bank on direct access data
set

IID = MDARD(JV,LUN, LAME,NR) .. read bank from direct eccess data

set

22 T DIRECT ACCESS | O OF SINGLE BANKS

7.5 Search operations

Function NDANR allows search operations for banks existing on a direct-access data set, Defining a bank
number NR in the argument, the search can be in the direction of increasing bank number using the argument
'GE’ (greater or equal), or in the direction of decreasing bank number using the argument 'LE’ (less or equal).
A check wether a bank with a given number exists on the data set is possible using the argument 'EQ’ (equal).
The returned value NNR will be zero, if no bank with the specified condition can be found (therefore it is not
possible to search for a bank with number 0).

Arguments

LUN = unit

NAME = name of bank
LEG = 'LE' : UNR is largest bank nr less than or equal to IR (or zero)
= 'EQ' : MNR is NR (or zero)
- ‘GE' - UNR is smallest bank nr greater than or equal to NR (or zero)

NR = number of bank

Subprogram call
NNR = NDANR(LUN,NAME,LEG,MR)... search data set for bank number

Example: The banks with name 'CCAL’ are read in increasing order of bank number, starting at NR = 100.

NR=100-1

10 NR=NDANR(LUY, 'CCAL', 'GE' lNR+1)
IF(NR.EQ.0) GOTO ... no further bank on data set
IND=MDARD(JW,LU!, ‘CCAL',NR)
IF(IND.EQ.O) GOTO 10 not enough space to store bank
GOTO 10

Example: Assume constants are stored in banks with the name 'CCAL’, they are valid for a range of data
runs NRUN1 .. NRUN2, and are stored on the direct-access data set with the number equal to NRUN1 (the
number of the first run, for which they are valid). For a given run number NRUN one has, according to the
rule above, to use the bank with the largest number < NRUN

NRUN=. ..

NR =NDANR(LU!N,'CCAL','LE" NRUN)

IF(IR.EQ.0) GOTO ... error no bank existing
Jw(1)=1

11D=MDARD(J¥ LUl 'CCAL' liR) read bank

IF(IND EQ.O) GOTO ... not enough space

7.6 Sequential read

Banks from a direct-access data set can be read sequentially in the order of the data records.

Argument

LU = unit of direct access data set

Subprogram call
IND = MDARS(IW, LUN) i:s o izoios viosiaia siose v read next bank from datea set LUN

The next bank from the data set is read, starting with the first bank. For calls after the end-condition reading
starts again with the first bank.

Example:

Printout 23

10 IND=NDARS(JV . LUI)
IF (Jw(2) .1[E.0) GOTO data-set not initialized or ElD-DF-DATA
IF(ILD.EQ.0) GOTO 10 insufficient space for bank
I/AME=CHAINT (JV(IND-3))
NR =Ju(IND-2)

11D=MDROP (Jv , NAME, liR)
GOTO 10

7.7 Printout
Arguments

LU = unit of direct access data set

JAME = name of bank: all bank numbers are printed in order

' ‘. all names of banks of the data set are printed
*+DIR': the directory records are listed

"

Subprogram call

CALL BDAPR(LUN,NAME)Print table of content

7.8 Unloading and loading

All banks on a direct-access data set can be copied to a sequential data set (standard) using subprogram
BDASQ. In this case the sequential data set will contain BOS-records, each with a single bank. Banks from a
sequential data set can be added to a direct access data set using subprogram BDALD. This subroutine uses
internally the subprogram BDAWR; thus banks already present on the direct access data set are replaced. A
faster version avoiding some overhead present in this version will be prepared in the future.

It is important to note, that hoth subprograms use the normal storage of named banks during operation.
If banks with identical names are present in the BOS array, these may be deleted. It is recommended, to use
either an additional BOS array for these subprograms or to use these subprograms in an special job. It is further
recommended to select in BDABF the option with exclusive access, if BDALD is used. These programs call the
garbage collection subroutine BGARB! The sequential data sets are rewound before return.

Arguments

LUN1 = unit of direct access data set
LUI2 = unit number of sequential data set

Subprogram calls

CALL BDASQ(JW, LUN1, LUL2) Copy all banks from data set LUN1

to data set LUN2
CALL BDALD(JW,LUN1,LUN2) _Add all banks to data set LUN1
from data set LUN2
8 Changing the length of a bank

Named and work banks are contiguous (without gaps) in storage, and therefore the change of the number of
data words of a bank is a distorting operation. However for certain applications this is certainly necessary and
should be done in an efficient way, as explained below

24 9 TABLES

8.1 Work banks

In work banks the word JW(ID-2) contains NT, the total number of words of the bank. 1If a work bank is
created with ND data words using WBANK, then NT=ND<+4. The value of NT (and not ND) is used in system
operations (shift of banks) as the length of the bank. If by a subsequent call of WBANK with the same index ID
the number ND of data words is increased. the system has to shift the work bank and also work banks created
after the initial creation of the work bank under consideration. The length NT is updated. If by a subsequent
call of WBANK the number ND of data words is reduced, only the value of JW(ID) = ND is changed, while NT
is left unchanged. This is a simple and fast operation (which could also be done by the user directly without
a subprogram call). If afterwards the number ND of data words is increased again. this is possible without a
shift of banks as long as ND < NT — 4. If the number ND of data words of a work bank is frequently changed
(and the bank is never dropped). the total length will approach the maximum length and there will be only few
time-consuming shift operations.

8.2 Named banks

If the number ND of data words of an existing bank is increased by NBANK or MBANK, the bank will be
copied to the gap (free space) and increased in length, the bank at the previous position is dropped. If the
bank under consideration is the last named bank (just before the gap), no copy is necessary. In the general
case however the copy operation is necessary, because a shift {like in the case of work banks) 1s not possible
for named banks (indices of other banks would change). If the number ND of data words of a named bank is
reduced by a call of NBANK or MBANK by more than 4 words, this operation is possible without a copy; the
systems marks the gap between named banks as if it is dropped bank (when a named bank is dropped, the
content of JW(IND) = ND is changed to —ND—4). This is not possible for a decrease by less than 4 words and
the system will copy the bank to the gap, as in the case of an increase of ND.

The conclusion from this discussion is the following: the frequent change of the number of data words ND of
named banks should be avoided. This can be avoided by using a work bank, which allows frequent changes in
an efficient way. If the final number of data words is reached, the bank can be copied to a named bank using
subprogram BKFRW

9 Tables

The structure of BOS arrays is shown in table 4. Each array has system words in the first 50 words, explained
in table 5, followed by a region of fixed length for the indices of named banks. and followed by the named banks.
Separated by the unused space (gap). the work banks extends to the end of the array. The table 5 explains the
systems data in the first 50 words of each array, Words with default value specified can be changed by the user
after the initialization. In tables 6, 7 and 8 the arguments of BOS system programs, the extended arguments
and the return codes are given.

index | content

1...80 systems data (50 words)
51... indices for named banks
JW(14) ... named bank

named bank

named bank

JW(15) ... free space (gap)

JW(16) ... work bank
work bank

. JW(12) work't;ank

Table 4: Structure of an BOS array

x1 Work banks

o
2

word default value | content

JW(1) 0 N additional (input) argument

JW(2) | return code (output) argument

JW(3) index of first bank of last record

JW(4) 1 print flag for card image records

JW(5) |5 | card input unit

IW(6) 6 | print output unit

JW(T7) 100 ‘ number of messages to be printed

JW(8) 100 number of banks to be printed

JW(9) 4Hbbbb name (2*A4) of array, defined by default for

JW(10) ‘, 4Hbbbb the arrays in commons /BCS/ and /HCS/

JW(11) [| number of array (1...10)

JW(12) | length of array

JW(13) ‘ address of array

JW(14) first index of named bank area

JW(15) first index of gap

JW(16) first index of work bank area

JW(17) number of deleted words of named banks

JW(18) number of deleted words of work banks

JW(19) index of lowest deleted named bank

JW(20) index of highest deleted work bank

JW(21) | index of link bank

JW(22)- TW(27) indices of work banks for lists C, E, R, S, T

JW(28)

JW(29) index of 1/0-statistic bank

JW(30) | check word (=12345)

JW(31)- JW(36) ‘ statistic: number of return codes 1- 6

JW(37)

JW(38) starting at 1, this word is increased by 1 for every garbage collection
for named banks or drop of named bank:

JW(39) number of garbage collections (BGARB)

JW(40) number of garbage collections (WGARB)

JW(41)-IW(50) ‘ histogram of used space before warbage collection
i BGARB and WGARB, and in BDROP before the
banks are dropped, in 10 percent bins

Table 5: Systems data

26 4 TABLES

type argument | explanation

ch DSN data set name
ch FMT format of named bank
| of the type 'f1,f2............ ', where f1, {2 .. are format codes nl for integer fields,
nf for fioating point fields , nA for text fields or n(...) for a group format specification,
‘ For packed 32bit, 18 bit or 8 bit words FMT is 'B32’, 'B16' or 'BO&".
1D index of a work bank
| IND index of a named bank
| IW/JW | BOS-array
ch | LIST list, defining set of banks
either in the form '"NAMINAM2. . NAMn',
or a single letter, which may be either C, E, R, S T or 0 (empty list),
LUN logical 1/O-unit number
IRECL number of words in a direct access record
N sequence number of a name in a list
ch*4 | NAME name of a bank
NBLK block size in machine words for standard (machine dependent) writing
NBLK16 | block size in 16 bit words for machine independent writing (should be multiple of 180)
ND number of data words in a bank
NDIM dimension of array
NR number of named bank
NREC number of records for direct access data set
NRMAX | largest number of 2 named bank in BWIND
ch*2 | OPT option selected in BLIST of the type 'L="or 'L+" or 'L’
ch*4 | PASSWD | Pass word for direct access data sets
. alternate return of the form sstatementnr

Table 6: Arguments of BOS subprograms

content
of JW(1) | explanation subprogram
=1 additional words not set to zero NBANK,MBANK WBANK...
=2 move bank to gap of free space NBANK ,MBANK
=4 create bank and drop all other banks
of the same name NBANK,MBANK
=1 drop banks after write BOSWR -
Table 7: Extended arguments in JW(1)
content |
of JW(2) | explanation) | subprogram o
1 [insuff. space to create new bank NBANK MBANK WBANK....
2 | insuff. space to increase length NBANK MBANK WBANK....
3 bank not found BKTOW BKFRW
4 read error (1/0 error)
5 read error (error in record structure)
6 read error (insufficient space to store record)
7 | end-of-data

Table 8: Return codes in JW(2)

(=]
]

9.1 Printout

9.1 Printout

Bank printout and certain messages (for example a nonzero return code) are printed on the unit specified by
JW(6). The amount of printout is limited by JW(7) and JW(3):

1. Return code not zero. Up to JW(7) messages are printed

2. Printout of banks by user calls. Up to JW(8) banks are printed
The system words JW(6) ... JW(8) can be changed by the user at any time after initialization of the arrays.
All printout is suppressed by defining JW(6)=0.
9.2 Error conditions with program stop

All messages concerning errors with program stop are printed on the system output unit JW(6). The error is
explained in the printout, for some errors additional information is printed.

1. Initialization errors (in subprogram BOS):
e basic array IW not first array
e more than 10 arrays used
e array to short for initialization
2. Argument errors — wrong argument is printed:

e array in argument not initialized
negative number of data words (ND<0) (NBANK, MBANK, WBANK)
error in argument LIST or OPT (BLIST)

1/0 unit used with incompatible operations (read after write etc.)

error in format FMT (BKFMT) (for this error the program will stop at the first application of a
format)

3. Internal space problem. For certain operations the system needs some space in an BOS-array. If not
enough space is reserved for this, the program has to stop. The name of the internal subroutine is printed
together with the message: CALL BNRES before mitialization to increase space reserved for internal
operations by 100 words, in addition a list of existing banks is printed.

4 Too many different names used. If more than the maximum number of different names is used, the
program has to stop. A comment is printed, including the message: CALL BNMAX(NMAX) before
initialization for a maximum number of NMAX names. The default value for NMAX is 100. In addition
a list of all used names is printed. Often this condition will be caused by errors in the user program with
the specification of values of the argument name, which really are not names.

5 Bank structure destroyed. In some system subprograms the validity of the bank structure can be checked
If errors are detected, a part of the array is printed before the program stop

In case of an error with program stop the BOS subprogram BABEND is called. The standard version of this
subprogram calls in turn subroutine ABEND, which usually prints a trace back of subprograms before the stop.
At a given installation it may be necessary to use a modified version of subprogram BABEND, if no acceptable
version of subprogram ABEND is available.

28 100 PROGRAM ORGANISATION USING BOs

10 Program organisation using BOS

10.1 Modular program structure

The BOS system is primarily designed for the use in the reconstruction and analysis programs of high energy
physics experiments. In these programs usually records or events are processed sequentially and a MAIN
program should have a modular structure as shown i the figure below,

Initialization

A
B Pmmmmm +
| v
| 4 mm e me e +
[| |
| | I0 - MODULE |
| | I
| B -
| v
| e P -
| | I
| e - v
| | | STOP
| | MODULE 1 |
| | |
| R -
| v
|
|
|
| Fom e +
	JODULE n
frmmm e ——— +	
v	
R D +

The processing loop starts with a call to an 10-module, which performs the read and write operations. Then
the different processing modules are called.

A module for data processing can be steered completely by data in banks. A complete program for the
sequential processing of data records may consist out of a MAIN program, which calls an mput/output module
(for example BSEQR) and all the processing modules. A new processing module can be added by adding one
line in the MAIN program,

A single processing program module can be defined as a set of subprograms with a steering subroutine
which performs a certain task of data reduction (event reconstruction, event analysis). The concept of a
program module requires to have a minimum dependence on other programs. not belonging to the module. It
1s recommended to use the following general conventions:

® all banks are stored in the basic array TW/RW
e all bank names of the current data (event data) are stored in the hst 'E’

It is further recommended to observe the following rule in the design of data banks and processing modules:
"A bank with a gren name 1s created and completely filled 1n one module only, and no changes to the data are
made 1n modules applied later.”

A module requires input data, preferentially banks with a single name. and will produce output data (results),
which preferentially are stored in output banks with a single name The data flow within a module is shown in
the figure below

101 Modular program structure 2

input banks | | I | I |

\ | /
\ | /
\ | /
v v \
Frmmrimmm e e +
| |
| MODULE |
| |
P e +
v v v
/ | \
/ [\
/ | \
t——— - - Pmm——— +
output banks | | | | | |
- + - + = +

In the example below it is assumed, that the module requires input data in banks with the name BKIN,
and produces new data, which are stored in the bank BKUT. A data reduction module could have a structure
as shown 1n the listing below

SUBROUTINE MODUL
COMMO!/BCS/ TV (1000)

REAL R¥(1000)
EQUIVALENCE (I¥(1),RW(1))
INTEGER lIAMI/O/

. at first entry determine name-indices and define format
* for output bank
IF(1:AMT .EQ.0) THEI!
HAMI=LAMIND("BKIL")

LAMU=LAMIND('BKUT ")
CALL BKFMT('BKUT','31.2F')
END IF
g immediate return, if either output bank already exists,
. or input bank does not exist
IF (I¥ (1/AMU) .VE.O . OR IW(NAMI) EQ.0) GOTO 100
. add name of output bank to list 'E’
CALL BLIST(IY,'E+"', 'BKUT')
* prepare loop on all input banks

INDI=NANI+1

IIDI=I%(INDI-1)

IF(IIDI.EQ.0) GOTO 100

IR=IV(11DI-2)

* create output bank vith same number as input bank
LIDU=!IBAIK (*BKUT',!iR, 10)
IF(INDU.EQ.0) GOTO 100

1

o

» data reduction for data in bank (BKIN, IR), index INDI
* result will be stored in output bank (BKUT,!R), index INDU
‘
GOTO 10
100 RETUR!
ElD

In the above program the name-indices for input and output banks are determined at the first entry to
allow fast access 1o the banks. In addition the format of the output bank 1s defined Then it is checked, wether

30 10 PROGRAM OKGANISATION USING BOS

computation is necessary. 1f either the output banks already exist, or the input banks do not exist, computation
is not necessary or not possible and the module returns immediately to the calling program. If the user wants
to repeat the computation (for example, if the module has been improved), he can drop the output banks before
the call of the module by the statement

CALL BDROP('I¥,'BKUT')

and then the module will create new banks. If computation has to be done in the module, the name of the
output banke will be added to the list 'E’, in order to get the banks written together with the other data banks.
Then a loop is executed over all input banks. Note that the banks numbers do not have to be consecutive.

Options in BSEQR

Subprogram BSEQR may be used directly as the 10-module or may serve as a model for a more specialized
version. In high energy physics experiments one record usually contains the data of one event [interaction
of elementary particles), which is characterised by a run and an event number. Subroutine BSEQR contains
options to select certain events or runs or to ignore certain runs. A fast record skipping method is used. A
necessary condition for the use of the option is the storage of the run and event number in the first (header)
bank, with a fixed name and number, of all records (note that in writing records the order of banks in a record
is defined by the list of names, not by the order of bank creation). If a records does not contain the specified
bank as first bank, the record will be accepted.

The user can define the relevant parameters for the bank containing run and event number by a call of BSEQH.

CALL BSEQH(NAME,NR,IRUN,IEVT)......... define header bank

The meaning of the arguments is: the bank (NAME.NR) will contain the run number at word IRUN and the
event number at word IEVT. The default assumption is equivalent to the call

CALL BSEQH('HEAD',0,2,3)
Possible options are
e select certain event numbers (SEVT)
e select certain run numbers (SRUN)
e ignore certain run numbers (IRUN).

The priority of the options is in the order given; if for example the option SEVT is used, the options SRUN
and IRUN cannot be used. The use of the options require banks with names SEVT, SRUN and IRUN, which
most easily are defined on card image records and read with the subroutine BREADC (see next chapter). The
content of the card image records is as follows:

SEVT nrun nevt mevt mevt ... selected events
SRUN nrun nrun norunl -nrun2 .. selected runs
IRUN nrun nrun nrun oruni -orun2 . ! runs to be ignored

Any number of these card image records is allowed. The SEVT card image record has to contain the run
number as first integer, followed by the event numbers. The SRUN and IRUN card image records contain the
run numbers. If a whole range NRUN1.. .NRUN2 of run numbers is required, this can be specified in the form
NRUN1 -NRUN2 (upper limit of range given as a negative number).

If the user wants to skip the run of the current event he may call BSEQS

CALL BEBEQS ... awusrvassins s mesere) s/sjransss skip current run

An example of a MAIN program, where all options are used, is given below.

COMMON/BCS/TW (5000)

CALL BOS(IW,5000)

CALL BREADC read data cards

CALL BSEQH('HEAD',0,1,2) define header bank
CALL BSEQP(5,1000) define limit parameters

10.2 Module steering 31

LUIR = 1
10 CALL BSEQR(LUIR,IRET)
IF(IRET.LT.O) GOTO 100

CALL MODULE

CALL BSEQU(3)

IF(..) CALL BSEQW(4)
IF(...) CALL BSEQ¥(-3)

IF(..) CALL BSEQS skip run
IF(...) CALL BSEQE force end-condition
GOTO 10
100 STOP
END

card image records
SRUN 22345 21234 -21260 21261 ! single beam runs
SRUN 30100 30200 30300 -30399 ! cosmic runs

10.2 Module steering

A module should contain the logic for the initialization of the module and other special situations (run start or
run end for example). The situation can be determined from the data in banks and is supported by subprogram
BSEQR, if the leader bank containing run and event number is defined. BSEQR provides some data for
the steering of a module in a common /CMODUL/, explained at the end of this section. Further steering
information is provided by the use of the subprogram SMODUL.

SMODUL has to be called as the first executable statement in each module with the module name (called
’SUBNAM’ here) as argument:

SUBPROGAN SUBNAN
couMOoN/BCS/
CALL SMODUL('SUBLAM®)

100 RETUR!
END

The subprogram SMODUL has three functions: book keeping on modules, steering of histogram calls and
steering of debug printout
Book keeping. At a call of SMODTL a bank (BOOK,0) is either created or extended; the name of the module
is recorded in two consecutive words (A format) and the date is recorded in a third word (integer). If the name
of the module is already contained in the bank BOOK, the date of the previous application of the module is
returned (IDATEL) in the steering common and the date within the bank BOOK is overwritten by the actual
date.
Histogram steering. Usually a module contains some calls to a histogramming package, to allow checks on
the data processing. Histogram packages usually allow only one identifier ID (integer) for each histogram. If
several modules include histogram calls, some book keeping is necessary to avoid the multiple use of histogram
identifiers in different modules. This book keeping is done by SMODUL and allows up to 99 internal identifiers
within one module, independent of identifiers used in other modules. SMODUL returns in the steering common
an offset IHA (in steps of 100 for different modules) for each argument 'SUBNAM’ Histogramming calls should
be done with identifier ID = THA + 1, where | (internal identifier) is an integer between 1 and 99. If IHA has
a negative value, histogrammming calls should be suppressed

If histogramming in a module should be suppressed. the user of a module has to call

CALL HISTOF('SUBNAN')

before the first call of the module SUBNAM. Then in later calls of the module the histogmym offset [HA will
have the value -1

32 10 PROGRAM ORGANISATION USING BOS

The BOS system includes simple lustogramming routines, which automatically use an offset for the histogram
identifier and allow to suppress the histogramming by a call of HISTOF
Steering of debug printout. lsually a module contains some debug printout statements. This debug printout
should be controlled by the flag IDB in the steering common. with the following meaning

value meaning

IDB = 0 | no printout

IDB = 1 | minimum printout
IDB = 2 | more printout
IDB = 3 | even more printout

If a user of a module wants debug printout for the following ICOUNT calls of the module with a value IDEB,
he has to call

CALL SETDB('SUBINAN', IDEB, 1COUNT)
Then in the following ICOUNT calls of the module SUBNAM the debug flag IDB is set to the argument value
IDEB. and to zero for the following calls.
The content of the steering common/ CMODIUIL/ is as follows:

» STEERING COMMON
LOGICAL BEGJOB,ENDRU! ,BEGRU!/ ,REVE!T ,ENDJOB, OTHDAT
COMMON/CMODUL/BEGJOB, ENDRU! , BEGRU! ,REVENT ,ENDJOB, OTHDAT,
+ LCCRUII , NiCCRU, NEVENT,
+ IHA IBS,IDB, IDATEL

Logical flags, set at the return from BSEQR (require BSEQH):

true ... (false otherwise)
BEGJOB at first record only
ENDRUN at the first event after a run (last run is = LCCRUI)
BEGRUN at first event of a2 run (run is !HCCRUN)
REVENT if header bank found (event read in)
ENDJOB after end-of-data (no record read in)
OTHDAT if no header bank found (no event)

Numerical data, set at the return from BSEQR:

LCCRUN run number of previous event
NCCRUN - current run number
NEVENT current event number

Numerical data, set at the return from SMODUL

THA offset for histograms (multiple of 100)

IBS offset for BOS-histograms

1DB debug flag (0 means no debug printout)

IDATEL date, if module already applied to event (else 0)

33

A BOS records

The structure of BOS records, as written by BWRITE and as accepted by BREAD, is described. The body of
a record is a sequence of banks. where each bank has (as in storage) a header of four words(name, number of
bank, dummy, number of data words ND) followed by ND data words. Reading is faster, if the banks of each
name are grouped together, and if the banks of each name are ordered according to increasing number (this is
done by BWRITE), The splitting of banks in two or more parts 1= allowed. Splitting in two parts means, that a
certain bank with total ND data words is splitted into two consecutive banks, each with a header of four words
as above, with ND1 and ND2 data words (ND=ND1+ND2). In both 10-modes BOS-records are divided into
segments, each with a segment code. The segment code IC has the following possible values:

segment code | content
e s

IC=0 ‘ complete BOS-record

1C:=1 | first part of a BOS-record

1I€=2 part (neither first nor last) of a BOS-record
Ic=3 | last part of a BOS-record

In the mode 'FORT' the body of a BOS-record is splitted into segments, fitting into a given buffer. Each record
can be read with an 10-list

NTOT, (IBUF(I),I=1,NTOT)
The array IBUF will then contain segments. Each segment starts with the words
‘HIDD', O, dummy, NT, IC,

followed by (NT-1) words, where the (NT-1) words contain banks, and IC is the segment code. In the mode
"EPIO" the standard EPIO physical and logical headers are used except that the logical record type (word 2 of
the logical record header) is set to the segment code IC.

B Histograms

The BOS system includes some simple histogramming routines. They use the common/HCS/ and the user has
to initialize this common, if one of the calls is used Each set of programs has, as first argument, the identifier
ID. There are two possible ranges of allowed values. If the subprogram SMODUL (see chapter 10) is not used,
the identifier ID may be an integer between 1 and 999999999, If however the subprogram SMODUL is used,
its argument 1D may only be in the range 1 1o 99 and the identifier is constructed from the numerical identifier
ID (argument) and the name of the subprogram.

One- and two-dimensional histograms

The HIST and CORR subprograms for unweighted one- and two-dimensional histograms do not require booking
and automatically determine the bin limits. The bin definition however is possible. One-dimensional histograms
have 120 bins. Two-dimensional histograms have 50100 bins, the printout shows the content of bins with an
X’ for more than 6 counts in a bin; the projections are printed in addition.

1-dimensional histogram, 120 bins

CALL DHIST(ID XA .XB)define limits for 1-dim histogram
CALL THIST(ID,TEXT) :define text

CALL UHIST(ID,X) Wi SHeNIARAE entry for value x

CALL PHIST(ID)....print histogram (ID=0 -> all)
2-dimensional histogram, 50+100 bins

CALL DCORR(ID,XA XB,YA,YB)..... .define limits for 2-dim histogram
CALL TCORR(ID,TEXT) : Nisang define text

CALL UCORR(ID.X.Y)................entry for pair x.,y

CALL PCORR(ID).................. .print histogram (ID=0 -> all)

C Summary of BOS

00000 0000
0 0 0 0
0 o 0 0
HELP for 00000 0 0
0 [0
0 0 0 0
00000 oooo

Function calls
Subroutine calls

Arguments
Data cards

General I0 program
BOS histograms

Libraries

oooo
0 0
0
0000 FORTRAN 77 version
0
0 0
0000

see below

|
|
|
|
|
|
|
|
|
v

Send comments to user F14BLO at DHHDESY3 (use ((SENDMAIL)) at DESY)

Function calls:

CHST = CHAINT(INST) 4
INST = INTCHA(CHST)

11D MBAIIK (JVW , NAME, iR, D)

IND = MDARD(JW,LUN, NAME,NR)......
IND = MDARS(JW,LUN)
IND = MDROP(JW,NAME,NR)
IND = MLINK(JW,NAME,!R)

IND = MPRNT(JW,NAME,NR)
IND = MREADC(JW)c-oooo--
IND = MSWAP (J¥,NAM1,NR1,NAM2,!R2)
NAMI = HAMIND(NAME)

IND = NBANK (NAME,NR,ND)

IR = NDANR(LUI,!AME LEG,NR)
IND = NDROP (NAME,NR) ..)
IND = NLINK(NAME,NR)-
NAME = NLIST(J¥,N,LIST) *4 .
IND = NPRNT(NAME,NR) ..

IND = NSWAP(NAML,NR1 DAMZ, unz)

page
numbere are
for manual

_ conversion to character string 5
_conversion from character string . 5
. .create named bank T
1

read bank from da-ds... S s

read da-ds sequentially . comivie B
drop named bank.. oenoe T
..find index of named bank e noy SO
_.print named bank. s ol B
read bank from cards oo s AT
exchange name and number. . o 12
.get name-index fom name ve 8
create named bank.. . e 7
get number of bank on da- ds B
. .drop named bank. . 7
find index of named bank. ... B
get name from list. S R U
print named bank.. .. S StaTirs WO 7
_exchange name and number. . 12

+4 means character*4 function

Subroutine calls:

CALL BCALLC(JV VNAME,NR).......
CALL BDABF (LUl , TRECL, DS!! , PASSUD)
CALL BDADR(LUN,NAME,NR)
CALL BDALD(Jv,LUN1,LUNZ)

--------------------------------- page
..interprete text from bank . AT
.open da-ds21
drop bank on da- ds . 21
load da-ds from seq-ds - 23

SUMMARY OF BOS

CALL
CALL
CALL
CALL
CALL B

BDAPR (LUN , LAME) .

BDASQ(J¥,LUN1, LUN2)

BDAYWR(J¥ , LU, NAME,1IR)

BDROP(J¥ ,LIST)
BGARB(JV) ..

print content of da-ds .. 0 23
_unload da-ds to seq-ds 23
write bank on da-ds .. 3 §
..drop set of banks 11

. garbage collection (nnmed banks) ... 12

CALL BKFMT(NAME,FNT)define bank format-.... 10
CALL BKFRY (JW1,NAME IR, JW2, ID -) .copy bank from work bk area 14
CALL BKTOW(J¥1,NAME, MR, J¥2,ID,*) .copy bank to work bk area 14
CALL BLIST(J¥,OPT,LIST)update list of names 11
CALL BOS(JW,NDINM) initialize BOS array 4
CALL BPRNT(JW,LIST) ..print set of banks e 11
CALL BREADCread banks from cards 19
CALL BREAD(JV,LUN, LIST *1, ‘2)read BOS-record..... eprsunsa: s siseas SOIG 15
CALL BRWHD(LUN) .,-u.ue . rewind unit LUN............ ... Sure 18
CALL BSWAP (JW,lAM1, 1AM2) ..exchange Dameso...tooos 12
CALL BUJIT(LUN, IONODE, NBLK) ..define mode of I0 s maee o 14
CALL BWIND(JW,NAME, NRMAX,ID)create bank of indices 8
CALL BWRITE(JW,LUN, LIST) ..write BOS-record ot G et udsiosans LD)
CALL B¥RSB(JW,LUN NAME,NR)..... ...urite single bank......... P £
CALL IH[TDA(LUN.IRECL.HREC,PASSWD)initiulize ETYT. [ORI |
CALL WBANK(JW,ID,ND,*) _create workbank0o- 13
CALL WDROP(J¥,ID)--. ..drop workbank ... e)
CALL WGARB(JW) garbage collection (workbankn) .. 13
CALL WPRNT(JV,ID)print workbamkiieiiee 13
CALL WSWAP(JW,ID1,ID2)exchange workbanks R |
Subroutine calls for printout of general information:

CALL BOSBK(J¥)print table of current banks 6
CALL BOSBLc.oocvcnnvens print bank I/0 statistic 6
CALL BOSDP(JW) -...... dump BOS array ety S 6
CALL BOSFM ... print bank formats 6
CALL BOSID print I/0 statistic 6
CALL BOSTA ..print status of all BOS arrays..... 6
Arguments

BB oo wiopeieieie b i s data set name

FNT o iiinvnenmnananannn &, s erevecs format of named bank

ID vvvevmonsasinnn . .index of a work bank

11D .index of a named bank

Iw/Jv e . . .BOS-array

LEG .2 .. 'LE' or 'EQ' or 'GE’

LIST . list, defining set of banks

LUt .. logical I/0-unit number

I0MODE . 1/0 mode, 'FORT' or 'EPIO'

IRECL nr of words in a da record

Nsequ. nr of a name in a list

NAME -4 name of a bank

NBLK .buffer size for 10

D & number of data words in a bank
NDIM .. .dimension of BOS-array

NR . . .number of named bank

NREC- . number of records for da-ds

NRMAX . ; largest nr of a named bk (BWIND)
OPT . oS BT e *2 .option selected in BLIST

PASSWD orstiste s * . .password for da ds

30 ,

*ret. A . alternate return
* means character string

Data cards:

name .. .data. ! comment | * comment
name nr / . .data | UNIT unit
name $FMT 'bank format' | POFF

| PON
name nr / $TEXT or $TEXTC | ENDQ
...data cards
END$ |

General I0 program and module control program:

CALL BSEQP(NSEC,!ILIM).. ... parameter for general I0 program. . 17
CALL BSEQH(!NAME, /IR, IRUN,IEVT)... . specify header bank...... 30
CALL BSEQR(LUNR, IRET)... .general I0 program/input of record. 17
CALL BSEQW (LUNW) ..set flag for output. R .
CALL BSEQS... BKip current rum...... ontane ... 30
CALL BSEQE. =X RN .end condition. ve -, L
CALL HISTOF ('subnam')suppress histograms. 31
CALL SETDB('subnam', IDEB,ICOUNT) .set debug flag. S .. 32
CALL SMODUL('subnam’)........ .. .start module.... 31
Model job including MAI! program:
I/ JOB
// EXEC JFORTCLG,CVER=9,
1/ LLB1="RO1UTL .BOSLIB', LIBRARIES
1/ LLB2="RO1UTL.CERl . PACKLIB'
» #esx+ Model M A I N program *s=+s»=+
» declare BOS commons and initialize BOS
» BASIC BOS common for data processing

COMMO!/BCS/ TW (50000)

REAL RW(50000)

EQUIVALENCE (R¥ (1) ,IW(1))
» Common /HCS/ for BOS histograms

COMMON/HCS /KW (10000)

CALL BOS(IW,50000)

CALL BOS(KW,10000)
. read data cards

CALL BREADC
. run and event number in 'HEAD',0 at words 2 and 3

CALL BSEQH('HEAD',0,2,3)
» select I0 mode, if necessary
4 CALL BUNIT(UNIT, IOMODE, NNBLK)

LUNR=1
. event processing loop

10 CALL BSEQR(LU!NR,IRET)
IF(IRET LT 0) GOTO 100
* call modules here

GOTO 10

SUMMARY OF BOs

100 STOP
END
//G _FTO1F001 DD DUMMY
//G.SYSIl DD =
(data cards)

Data cards for run and event selection (requires BSEQH):
SEVT nrun nevt mnevt nevt . . ! selected events
SRU!! nrun nrun nrunl -nrun2 ! selected runs

IRU! nrun nrunl -nrun2 nrun ! runs to be ignored

Common with steering data:

LOGICAL BEGJOB,E!IDRU!N , BEGRUN ,REVENT ,ENDJOB , OTHDAT
CONMO!/CHODUL/BEGJOB , ENDRUII, BEGRUN ,REVENT ,ENNDJOB, OTHDAT,
+ LCCRU!!, NCCRUII, lIEVENT,

“ IHA,1IBS,IDB, IDATEL

Logical flags, set at the return from BSEQR (require BSEQH)

true . .. (false othervise)
BEGJOB at first record only
ENDRUN at the first event after a run (last run is = LCCRUN)
BEGRU!! at first event of a run (run is [ICCRUY)
REVENT 1f header bank found (event read in)
ENDJOB after end-of-data (no record read in)
OTHDAT 1f no header bank found (no event)

llumerical data, set at the return from BSEQR:

LCCRUN run number of previous event
NCCRU!! current run number
NEVENT current event number

liumerical data. set at the return from SMODUL:

IHA offset for histograms (multiple of 100)

IBS offset for BOS-histograms

IDB debug flag (0 means no debug printout)

IDATEL date, if module already applied to event (else 0)

BOS histogramming programs

Initialization of COMMO!/HCS/KY¥(ndim) required Histogram identifier ID:
ID = 1.. 9999999, 1f SMODUL not used
ID=1........99 with SNODUL (same ID in different modules allowed)
each call (including print-call) refers to selected module only

HIST and CORR subprograms for 1- and 2-dimensional, unweighted histo-
grams, automatic bin size determination, if limits undefined (booking
of histograms not necessary)

1-dimensional histogram, 120 bins

CALL DHIST(ID, XA, XB) define limits for 1-dim histogram
CALL THIST(ID,TEXT).. define text

CALL UHIST(ID.X) = .entry for value x. o o

CALL PHIST(ID) “eviesveeso.o.....print histogram (ID=0 -> all)

38 C SUMMARY OF BOS

2-dimensional histogram, 50+100 bins

CALL DCDRE(ID.XA.XB.YA.YB) define limits for 2-dim histogram. :
CALL TCORR(ID, TEXT)..covvvenrernes QeFAne BEXE. . ooy voss o s oiimemanesne nes
CALL UCORR(ID, X, Y)ovovvcomneees entry fOr PALT X Y. -oecccorieettro
CALL PCORR(ID) .. cvuvennsnrmssrss print histogram (ID=0 -> 2ll)......---

Libraries at DESY:

For the IBM NVS system at the DESY computer center the load libraries
for the BOS system and for the CERN PACKLIB, required by the BOS
system, are:

LLB1=RO1UTL.BOSLIB

LLB2=RO1UTL.CERN _PACKLIB

The procedure JFORTCLG with option CVER=9 should be used to get the
version 10 of the Siemens compiler (otherwise you get by default the
version 1, -> Help PROCS) -

The BOS system is available in (only sligthly) different versions
for the following types of computer: IBN, VAX, GOULD.
All versions are kept at DESY on a HISTORIAN file with data set name
DSN = F14BLO.HISBOS . Dyymmdd
for the BOS system. At the time of printing the data set name for the
latest version is:
DSN = F14BLO.HISBOS .D860723B

In addition there are files of card decks for the different versions
in the form
DSN = PMBLD.KISBDS.VAX,Dyyndd

