Interner Bericht DESY F21-71/2 April 1971

> Elektroproduktion von π° -Mesonen im Bereich von $\Delta(1236)$ beim Impulsübertrag $q^2 = 15 \text{ fm}^{-2}$

> > von

DESY- LILICAL

¥.

Jörg Gayler

Elektroproduktion von π° -Mesonen im Bereich von $\Delta(1236)$ beim Impulsübertrag q² = 15 fm⁻²

von

Jörg Gayler

Zusammenfassung

In dieser Arbeit wird ein Experiment zur Elektroproduktion von π° -Mesonen im Bereich der Resonanz $\Delta(1236)$ bei einem Impulsübertrag $q^2 = 15 \text{ fm}^{-2} (0.58 (\text{GeV/c})^2)$ und Polarisationsgrad $\epsilon = 0.95$ beschrieben.

Ziel der Messung war die Untersuchung der π° -Winkelverteilung im Ruhesystem von Rückstoßproton und π° -Meson. Die gestreuten Elektronen und die Rückstoßprotonen wurden in magnetischen Spektrometern nachgewiesen. Die Reaktion $ep \rightarrow ep \pi^{\circ}$ wurde kinematisch vollständig bestimmt. Die gemessenen differentiellen Querschnitte lassen sich zwar nicht allein durch die magnetische Dipolamplitude M₁₊ beschreiben, es genügen aber S- und P-Wellen im $p\pi^{\circ}$ -System. Die 6 Koeffizienten, durch die sich die Winkelverteilung bei Dominanz von S- und P-Wellen beschreiben läßt, wurden in Fits an die Querschnitte in 8 Intervallen der invarianten Masse W des $p\pi^{\circ}$ -Systems von W = 1136 MeV bis W = 1276 MeV bestimmt. Deutlich wurde dabei Interferenz von S- und P-Wellen und Interferenz von Amplituden transversaler und skalarer virtueller Photonen nachgewiesen.

Eine Multipolanalyse in 6 W-Intervallen von W = 1176 MeV bis W = 1276 MeV ergab als wichtigste Ergebnisse:

Wie in der Photoproduktion erfolgt die Anregung von $\Delta(1236)$ vor allem durch die magnetische Dipolamplitude M₁₊. Jedoch beträgt die skalare Amplitude S₁₊ etwa 5 bis 10 % von M₁₊. Die elektrische Quadrupolamplitude E₁₊ ist in Resonanznähe sehr klein, ein Nulldurchgang ist mit den Daten verträglich. Zur Beschreibung der Winkelverteilung werden auch die nichtresonanten Multipole E₀₊, S₀₊ und M₁₋ benötigt.

Die Ergebnisse des Experiments stimmen mit dispersionstheoretischen Rechnungen etwa überein.

1.	Einleitung		
2.	Theoreti	sche und kinematische Grundlagen	3
	2.1 Kin	ematik	3
	2.2 Wir	kungsquerschnitt	5
	2.3 Mul	tipolentwicklung	7
	2.4 Iso	spinzerlegung und Watson's Theorem	12
3.	Der expe	rimentelle Aufbau	14
	3.1 Pri	märstrahl und Target	14
	3.2 Das	Elektronspektrometer	15
	3.2.1	Aufbau	15
	3.2.2	Prinzip der Optik	15
	3.2.3	Impuls- und Winkelmessung	16
	3.2.4	Berechnung der Akzeptanzen	17
	3.3 Das	Protonspektrometer	19
	3.3.1	Aufbau	19
	3.3.2	Akzeptanzen und Auflösungsvermögen	21
	3.4 Ski	zzierung der Elektronik und Datennahme	21
4.	Die Mess	ungen	23
	4.1 Tes	t der Apparatur durch elastische Streuung	23
	4.2 Die	Messungen zur π° -Produktion	26
5.	Die Auswe	rtung	27
	5.1 Dat	enreduktion	27
	5.2 Que: Met	rschnittsberechnung mit einer Monte-Carlo- hode	28
	5.2.1	Beschreibung des Verfahrens	28
	5.2.2	Zusammenfassung der ep-Koinzidenzen in Bins zur Berechnung der Querschnitte	33
	5.2.3	Verbliebener zufälliger Untergrund in den Hodoskopen des Protonarmes	35
	5.2.4	Vergleich der experimentellen Ereignisse mit Monte-Carlo-Ereignissen	35
	5.2.5	Kinematische Schnitte	36
	5.3 Kor:	rekturen und Fehler	36
	5.4 Die	resultierenden Querschnitte	38

6.	Bestimmung der Parameter \overline{A}_0 , \overline{A}_1 , \overline{A}_2 , C_0 ,		
	D _o u:	nd D ₁	40
	6.1	Fehlerbehandlung bei den Anpassungen	40
	6.2	Ergebnisse der Empirischen Analyse	42
7.	Mult	ipol-Fits	46
	7.1	Vorbemerkung	46
	7.2	Resonante Multipole bei W = 1236 MeV	46
	7.3	Bestimmung des Multipols M ₁₊ und seiner Interferenzterme als Funktion von W	49
8.	Verg	leich mit theoretischen Modellen	53
	Lite	raturverzeichnis	57

1. Einleitung

Während die Photoproduktion von π -Mesonen im Bereich der sogenannten ersten Resonanz $\Delta(1236)$ intensiv experimentell studiert wurde, gibt es zur Elektroproduktion von π -Mesonen wenig experimentelle Information, die klare Aussagen über den hadronischen Endzustand macht, dies obwohl schon 1964 ein erstes Koinzidenzexperiment zur Reaktion ep+ $ep\pi^{\circ}$ durchgeführt wurde.¹⁾Aus technischen Gründen wurden in den meisten Experimenten zur Elektroproduktion nur die gestreuten Elektronen nachgewiesen. Andererseits gibt gerade die Winkelverteilung der erzeugten π -Mesonen besonders deutlich Aufschluß über den Prozess der elektromagnetischen Anregung von Resonanzen.

Bei den meisten der bisherigen Koinzidenzexperimente ²⁻⁴) Bereich von $\Lambda(1236)$ war der Impulsübertrag q² nicht größer als etwa 10 fm⁻². Bei höheren q² lagen bislang sehr wenig Daten vor⁵. Bei keinem dieser Experimente war die vollständige Pion-Winkelverteilung gemessen worden. In jüngster Zeit wurden zwei weitere Koinzidenzexperimente zur m^o-Produktion durchgeführt⁸)⁹, wovon eines⁸ endgültig ausgewertet ist. Dabei wurden Daten bis q² = 1 (GeV/c)² genommen.

In einem Experiment am Deutschen Elektronen Synchrotron (DESY) wurde die π° -Produktion im Bereich von $\Lambda(1236)$ bei Impulsüberträgen q^2 von 15, 25 und 40 fm⁻² (0.58, 0.97 und 1.56(GeV/c)²) untersucht. Dabei wurden Impuls und Winkel des gestreuten Elektrons und des Rückstoßprotons gemessen. Über dieses Experiment liegen Berichte⁶) vor, welche die Ergebnisse der Messungen für q^2 = 15 und 25 fm⁻² bei einem Polarisationsgrad von ε = 0.95 in kurzer Form wiedergeben. Weitere Berichte über die Ergebnisse der

- 1 -

Messung bei $q^2 = 40 \text{ fm}^{-2}$ und über eine Messung bei $q^2 = 15 \text{ fm}^{-2}$ mit kleinerem Polarisationsgrad $\varepsilon = 0.5$ sind zu erwarten.

Die vorliegende Arbeit behandelt die Messung und Interpretation der π° -Winkelverteilungen bei invarianten Massen W des Pion-Nukleon-Systems von 1136 bis 1276 MeV bei q² = 15 fm⁻² und ϵ = 0.95.

Eine Arbeit über die Messungen bei $q^2 = 25 \text{ fm}^{-2}$ wird von J. May⁷ vorgelegt.

2. Theoretische und kinematische Grundlagen

Über die Kinematik und über die durch Wirkungsquerschnittsmessungen bestimmbaren Größen gibt es einige Berichte¹⁰⁾¹¹⁾. Hier sollen deshalb nur einige wichtige Formeln genannt und im weiteren oft benötigte Größen definiert werden. Generell wird angenommen, daß die Elektroproduktion durch Einphotonaustausch gemäß Abb. 1a beschrieben werden kann.⁺⁾ In den weiteren Formeln ist stets die Elektronenmasse vernachlässigt. Kinematische Größen, die mit dem Symbol "*" versehen sind, beziehen sich auf das Ruhesystem der hadronischen Teilchen, Größen ohne Stern sind Laborgrößen.

2.1 Kinematik

Bei der Streuung eines Elektrons an einem ruhenden Proton ist durch Impuls und Richtung des ein- und auslaufenden Elektrons der Viererimpulsübertrag q² auf das hadronische System und dessen invariante Masse W gegeben:

$$q^{2} = q_{0}^{2} - \dot{q}^{2} = -2 E E' (1 - \cos \sqrt{2})$$
 (2.1.1)

$$W^{2} = 2 M (E - E^{*}) + M^{2} + q^{2}$$
 (2.1.2)

Dabei ist E die Energie des primären, E' die des sekundären Elektrons, $\sqrt{2}$ der Elektronstreuwinkel, M die Protonmasse. Wird die ep-Streuung durch Ein-Photon-Austausch beschrieben (Abb. 1a), so ist durch die Kinematik des ein- und auslaufenden Elektrons auch der Polarisationsgrad ε des ausgetauscnten Photons bestimmt:

$$\varepsilon = (1 + 2 \dot{q}^2 / (-q^2) \tan^2 \sqrt{2} / 2)^{-1}$$
 (2.1.3)

Wird neben dem Elektron auch ein Hadron nachgewiesen(im vorliegenden

+) vgl. Ref. 29 und 30 zur Frage des Mehrphotonaustauches.

• 3 •

Fall das Rückstoßproton), so interessieren bei π -Einfachproduktion als weitere Meßgrößen die Erzeugungswinkel O⁴ und ϕ im Schwerpunktssystem der Hadronen (CMS). O⁴ und ϕ sind Polar- und Azimutalwinkel des Pions in einem Polarkoordinatensystem, dessen Achse äurch die \vec{q} -Richtung gegeben ist. Die kinematische Skizze Abb. 1b entsprechend der Anordnung der Apparatur (Abb.2) zeigt, daß Pionen, die in der Elektronstreuebene auf der Primärstrahlseite von \vec{q} nachgewiesen werden, $\phi = 0^{\circ}$ zugeordnet wird. Wegen der Schwerpunktsbewegung des hadronischen Systems, kann aus dem Laborwinkel O_p der nachgewiesenen Protonen nicht eindeutig auf O⁴ geschlossen werden. Bei gleichzeitiger Impulsmessung folgt O⁴ nach der Beziehung

4

$$\tan \mathfrak{I} = \sqrt{1 - 3} W^2 - \frac{-\sin \theta_p}{(\cos \theta_p - \beta_W / \beta_W)}$$
(2.1.4)

mit $\beta_W = |\vec{p}_W| / E_W$ und $\beta_H = |\vec{p}_N| / E_H$. E_W und $|\vec{p}_W|$ bzw. E_H und $|\vec{p}_N|$ sind Energie und Impuls des hadronischen Systems der Masse W bzw. des Rückstoßnukleons. E_W und $|\vec{p}_W|$ sind wegen $E_W = E - E^* + M$ und $E_W^2 = \vec{p}_W^2 + W^2$ durch das nachgewiesene Elektron gegeben.

Die Messung von Laborwinkel und Impuls des Protons erlaubt nicht nur eine eindcutige Bestimmung der Erzeugungswinkel im CMS, sondern liefert eine Zwangsbedingung, da bei Einfach π -Produktion die Masse des Restsystems gleich der Masse des nicht nachgewiesenen Teilchens ist.

Im weiteren oft benötigte Größen:

Die äquivalente Photonenergie $K = (W^2 - M^2)/2M$, (2.1.5)

die bei Absorption eines reellen Photons an einem Proton zu einem hadronischen Zustand der Masse W führt; der CMS-Dreierimpuls des Pions (und Protons)

 $\vec{p}_{\pi}^{*}^{2} = (W^{2} + \mu^{2} - M^{2})^{2} / 4 W^{2} - \mu^{2},$ (2.1.6) wobei μ für die Masse des π_{o} -Mesons steht; die Raum- und Zeitkomponente des Photonvierervektors q

<u>Abb.1a</u> Elektroproduktion von π-Mesonen mit Einphotonaustausch

Abb. 2

im Laborsystem bzw. q im CHS:

$$\begin{array}{rcl} c_{\circ} & = & \Xi - \Xi' \\ \left| \overrightarrow{q} \right| & = & \sqrt{\underline{q}_{\circ}^{2} - \underline{q}^{2}} \\ \underline{q}_{\circ}^{*} & = & \frac{1}{W} \left(\Box \underline{q}_{\circ} + \underline{q}^{2} \right) \\ \left| \overrightarrow{q}^{*} \right| & = & \frac{\Box}{W} \left| \overrightarrow{q} \right| \end{array}$$

2.2 Wirkungsquerschnitt

Der differentielle Elektronstreuguerschnitt ist bei Summation über die hadronischen Endzustände durch zwei durch die starke Wechselwirkung bestimmte Strukturfunktionen σ_t und σ_l in der Form

$$\frac{d^2 \sigma}{d \Omega dE'} = \Gamma_t \left(\sigma_t \left(W, q^2 \right) + \varepsilon \sigma_l \left(W, q^2 \right) \right)$$
(2.2.1)

gegeben ¹²⁾¹³⁾mit

$$\Gamma_{t} = \frac{\alpha}{2\pi^{2}} \frac{E'}{E} \frac{K}{-q^{2}} \frac{1}{1-\epsilon}$$
(2.2.2)

Hierbei entspricht $\sigma_t(W,q^2)$ dem Querschnitt für virtuelle transversale Photonen mit dem invarianten Massenquadrat $q^2 \cdot \sigma_l(W,q^2)$ entspricht der Absorption longitudinaler oder skalarer Photonen. Im Grenzfall $q^2 \rightarrow 0$ verschwindet σ_l (wegen Eichinvarianz), während σ_t in den Querschnitt reeller unpolarisierter Photonen übergeht.

 σ_t und σ_l sind mit den von Drell und Walecka¹⁴⁾ eingeführten Strukturfunktionen W₁ und W₂ gemäß den Beziehungen

$$W_{1} (W,q^{2}) = \frac{K}{4\pi^{2}\alpha} \sigma_{t} (W,q^{2})$$

$$W_{2} (W,q^{2}) = \frac{-q^{2}}{q^{2}} \frac{K}{4\pi^{2}\alpha} (\sigma_{t} (W,q^{2}) + \sigma_{\ell} (W,q^{2}))$$
(2.2.3)

- 6 -

verknüpft.

Während beim Nachweis des gestreuten Elektrons allein nur die totalen Querschnitte der virtuellen Photonabsorption gemessen werden, entspricht eine Koinzidenzmessung einer Messung des differentiellen Querschnittes für Pion-Photoproduktion. Die entsprechende Verallgemeinerung von Gleichung (2.2.1) ist¹⁵⁾

$$\frac{a^{5}\sigma}{a_{p}a_{z}^{\prime}a_{z}^{\prime}} = \Gamma_{t} \frac{d\sigma}{a_{0}^{\prime}}$$
(2.2.4)

mit

 $\frac{d\sigma}{d\Omega} = A + \epsilon B + \epsilon C \sin^2 \theta^* \cos 2\phi + \sqrt{\epsilon(\epsilon + 1)} D \sin \theta^* \cos\phi.$

Die Größen A, B, C und D sind Funktionen von W, q² und von cos0. A stellt den Photoproduktionsquerschnitt für unpolarisierte transversale Photonen dar und geht im Limes q² → O in den entsprechenden Querschnitt reeller Photonen über. B entspricht einem Querschnitt longitudinal polarisierter Photonen. Durch C ist die Abhängigkeit von der transversalen Polarisationsrichtung gegeben. Die Interferenz longitudinaler und transversaler Anregung führt zum Term D. Durch diese Interferenz ist es bei Koinzidenzmessungen möglich, auch sehr kleine longitudinale Beiträge nachzuweisen.

Unter der Annahme, daß der Wirkungsquerschnitt nur durch S- und P-Wellen im πN -System gegeben ist, läßt sich die Gleichung (2.2.4) folgendermaßen nach nur von W und q² abhängenden Koeffizienten A_i , B_i , C_i , D_i entwickeln (vgl. 2.3.):

$$A = A_{0} + A_{1} \cos 0^{*} + A_{2} \cos^{2} 0^{*}$$

$$B = B_{0} + B_{1} \cos 0^{*} + B_{2} \cos^{2} 0^{*}$$
(2.2.5)

$$C = C_{0}$$

$$D = D_{0} + D_{1} \cos 0^{*}$$

Liegt eine Winkelverteilung nur bei einem Mert von e vor, so können die A_i und B_i nicht separiert werden. Anstelle der 9 Größen der Gleichungen (2.2.5) können dann nur die 6 Größen

$$\overline{A}_{0} = A_{0} + \varepsilon B_{0}$$

$$\overline{A}_{1} = A_{1} + \varepsilon B_{1}$$

$$\overline{A}_{2} = A_{2} + \varepsilon B_{2}$$

$$C_{0}, D_{0}, D_{1}$$

$$(2.2.6)$$

ermittelt werden.

Bei hinreichender Genauigkeit der Meßwerte lassen sich natürlich auch Koeffizienten höherer Potenzen von cos d^{*} in obiger Entwicklung bestimmen. (vergl. Kap. 4.2.).

2.3 Multipolentwicklung

Nach den Feynmannregeln¹⁶⁾ ist das Übergangsmatrixelement $< p_e' p' p_{\pi} |T| p_e p_N > zum Prozeß ep <math>\rightarrow ep_{\pi}^{\circ}$ oder allgemeiner $eN \rightarrow eN\pi$ bei Einphotonaustausch proportional dem Produkt der leptonischen und hadronischen elektromagnetischen Ströme, die durch den Photonpropagator verknüpft sind.

$$\langle p_{e}', p_{N}', p_{\pi} | T | p_{e} p_{N} \rangle = e \overline{u}(p_{e}') \gamma_{\mu} u(p_{e}) \frac{1}{q^{2}} \langle p_{N}', p_{\pi} | J^{\mu} | p_{N} \rangle$$

(2.3.1)

Die inelastischen ep-Streuexperimente geben also, da der eye-Vertex bekannt ist, Aufschluß über die hadronischen Strommatrixelemente <pn', $p_{\pi} | J^{\mu} | p_{N} > .$

Im Bereich niedriger Energien, wo Resonanzen dominieren, liegt es nahe, diese Strommatrixelemente nach Endzuständen definierter

- 7 -

Drehimpulsquantenzahlen zu entwickeln. Für den Fall der Photoproduktion wurde dies 1957 von CGLN¹⁷⁾ durchgeführt. Die entsprechende Erweiterung auf Elektroproduktion findet sich

Die genannten Autoren entwickeln das T-Matrixelement zunächst in 4 bzw. bei der Elektroproduktion in 6 unabhängige CMS-Amplituden \mathcal{F}_i und diese schließlich in Multipole. Die in Gleichung (2.2.4) angeführten Größen A, B, C und D drücken sich als Funktion der \mathcal{F}_i wie folgt aus¹⁹⁾:

$$A = \frac{|\vec{p}_{\pi}^{*}|W}{MK} \left\{ |\vec{F}_{1}|^{2} + |\vec{F}_{2}|^{2} - 2\cos\theta^{*} \operatorname{Re}(\vec{F}_{1}\vec{F}_{2}^{*}) \right\} + \sin^{2}\theta^{*} \operatorname{C}$$

$$B = \frac{|\vec{p}_{\pi}^{*}|W}{MK} \frac{-q^{2}}{q_{0}^{*}2} \left\{ |\vec{F}_{5}^{*}|^{2} + |\vec{F}_{6}^{*}|^{2} + 2\cos\theta^{*} \operatorname{Re}(\vec{F}_{5}^{*};\vec{F}_{6}^{*};*) \right\}$$

$$(2\cdot3\cdot2)$$

$$C = \frac{|\vec{p} \star| W}{MK} \left\{ \frac{1}{2} |\vec{F}_{3}|^{2} + \frac{1}{2} |\vec{F}_{4}|^{2} + \text{Re} (\vec{F}_{2} \vec{F}_{3}^{*} + \vec{F}_{1} \vec{F}_{4}^{*} + \cos\theta^{*} \vec{F}_{3} \vec{F}_{4}^{*}) \right\}$$

$$D = -\frac{|\vec{p} \star| W}{MK} \sqrt{2} \sqrt{\frac{-q^{2}}{q_{0}^{*2}}} \operatorname{Re} \left\{ (\vec{F}_{1} + \cos\theta^{*} \vec{F}_{3} + \vec{F}_{4}) \vec{F}_{6} \vec{I}^{*} + (\vec{F}_{2} + \vec{F}_{3} + \cos\theta^{*} \vec{F}_{4}) \vec{F}_{5} \vec{I}^{*} \right\}$$

In den obigen Beziehungen wurden wie üblich die Kombinationen

$$\mathcal{F}_5' = \mathcal{F}_1 + \cos\theta \mathcal{F}_3 + \mathcal{F}_5 \qquad (2.3.3)$$

und

$$\mathcal{F}_6' = \cos \theta \mathcal{F}_4 + \mathcal{F}_6$$

bei Dennery¹⁸⁾.

gewählt, die keine transversal polarisierte Anteile enthalten. Die hier verwandten \mathcal{F}_i stimmen mit CGLN¹⁷⁾ ($\mathcal{F}_1 \dots \mathcal{F}_4$) und z.B. v.Gehlen²⁰ überein. Das Minuszeichen bei Dergibt sich aus der Definition des Azimuths ϕ (vgl. Kap. 2.1.). Die Multipolentwicklung der \mathcal{F}_{i} stellt eine Klassifizierung der Übergangsamplituden nach dem Endzustandsdrehimpuls $j = l\pm 1/2$ mit $l=l_{\pi}$ dar. Außerdem werden die Photonvariablen in sofern berücksichtigt, als bei der Anregung durch transversal polarisierte Photonen zwischen "magnetischen" Amplituden (symbolisch $M_{l\pm}$) bei Parität $P = -(-1)^{l}\gamma$ und "elektrischen " Amplituden (symbolisch $L_{l\pm}$) bei Parität $F = (-1)^{l}\gamma$ unterschieden wird. Dabei entspricht l dem Drehimpuls des γN -Systems abzüglich des Nukleonspins. Die skalaren Amplituden $S_{l\pm}$ und die longitudinalen Amplituden $L_{l\pm}$ führen zu Endzuständen der Parität $P = (-1)^{l}\gamma$. Auf Grund der Kontinuitätsgleichung $q_{\mu}J^{\mu} = 0$ sind skalare und longitudinale Amplituden nicht unabhängig, vielmehr ist

$$q_{c} \overset{*}{} S_{l\pm} = | \overset{*}{a} \overset{*}{} | L_{l\pm}$$

$$(2.3.4)$$

Die bei Dennery¹⁸⁾ durchgelührte Multipolentwicklung der \mathcal{F}_{i} mit den Legendrepolynomen $P_{l}(x)$ und ihren Ableitungen $P_{l}(x)$ und x = cos 0^{*} lautet:

$$\begin{split} \widetilde{f}_{1} &= \sum_{k=0}^{\infty} \left[\left[\left(2 M_{k} + + E_{k} + \right) P_{k+1}^{\prime} \left(x \right) + \left(\left(2 + 1 \right) M_{k} - + E_{k} \right) P_{k-1}^{\prime} \left(x \right) \right] \right] \\ \widetilde{f}_{2} &= \sum_{k=0}^{\infty} \left[\left[\left(2 + 1 \right) M_{k} + 2 M_{k} \right] P_{k}^{\prime} \left(x \right) \right] \\ \widetilde{f}_{3} &= \sum_{k=0}^{\infty} \left[\left(E_{k} + -M_{k} + \right) P_{k+1}^{\prime} \left(x \right) + \left(E_{k} - + M_{k} \right) P_{k-1}^{\prime} \left(x \right) \right] \\ \widetilde{f}_{4} &= 0 \end{split}$$

$$\begin{split} \widetilde{f}_{4} &= \sum_{k=0}^{\infty} \left[\left(M_{k} + - E_{k} - M_{k} - E_{k} - E_{k} \right) P_{k}^{\prime} \left(x \right) \right] \\ \widetilde{f}_{5} &= \sum_{k=0}^{\infty} \left[\left(2 + 1 \right) L_{k} + P_{k+1}^{\prime} \left(x \right) - 2 L_{k} - P_{k-1}^{\prime} \left(x \right) \right] \\ \widetilde{f}_{6} &= \sum_{k=0}^{\infty} \left[\left(2 L_{k} - \left(2 + 1 \right) L_{k} \right) P_{k}^{\prime} \left(x \right) \right] \end{split}$$

Um die Ausdrücke für den Streuquerschnitt zu vereinfachen, werden im folgenden häufig die Größer $\hat{S}_{l\pm}$ benutzt werden, die wie in Ref.⁴⁹⁾ durch

$$\hat{S}_{\ell\pm} = \frac{\sqrt{-q^2}}{q} L_{\ell\pm} = \frac{\sqrt{-q^2}}{|\vec{q}^*|} S_{\ell\pm}$$
(2.3.6)

gegeben sind.

Werden nur die Multipole mit L=o und L=1 mitgenommen, so ergibt sich aus den Gleichungen (2.3.5) und (2.3.2) folgende Multipolentwicklung der in Gleichung (2.2.5) definierten durch Messung von Wirkungsquerschnitten bestimmbaren Größen:

$$A_{0} = \frac{|\vec{p}_{\pi} \ast |W}{MK} \left\{ |E_{0+}|^{2} + |M_{1-}|^{2} + \frac{5}{2} |M_{1+}|^{2} + \frac{9}{2}|E_{1+}|^{2} - 3\operatorname{Re}(M_{1+}E_{1+}) + \operatorname{Re}\left[(3E_{1+}+M_{1+})M_{1-}\right] \right\}$$

$$B_{0} = \frac{|\vec{p}_{\pi} \ast |W}{MK} - \frac{-q^{2}}{q} \left\{ |S_{0+}|^{2} + |S_{1-}|^{2} + u|S_{1+}|^{2} - u\operatorname{Re}(S_{1+}S_{1-}) \right\}$$

$$A_{1} = \frac{|\vec{p}_{\pi} \ast |W}{MK} 2\operatorname{Re}\left[E_{0+} (3E_{1+} + M_{1+} - M_{1-}) \ast \right]$$

$$B_{1} = \frac{|\vec{p}_{\pi} \ast |W}{MK} - \frac{-q^{2}}{q} \left\{ 2\operatorname{Re}\left[S_{0+} (4S_{1+} + S_{1-}) \ast \right] \right\}$$

$$A_{2} = \frac{|\vec{p}_{\pi} \ast |W}{MK} \left\{ -\frac{3}{2} |M_{1+}|^{2} + \frac{2}{2} |E_{1+}|^{2} + 2\operatorname{Re}(M_{1+}E_{1+} \ast) \right\}$$

$$- 3Re \left[(3E_{1+} + M_{1+})M_{1-} \right]$$

$$B_{2} = \frac{|\vec{p}_{\pi}|W}{MK} - \frac{-q^{2}}{q^{*}2} \left\{ 12 |S_{1+}|^{2} + 12Re(S_{1+}S_{1-}) \right\}$$

$$C_{0} = \frac{|\vec{p}_{\pi}|W}{MK} \left\{ - \frac{3}{2}|M_{1+}|^{2} + \frac{9}{2}|E_{1+}|^{2} - 3Re(M_{1+}E_{1+}) + 3Re \left[(E_{1+} - M_{1+})M_{1-} \right] \right\}$$

- 10 -

$$D_{0} = -\frac{|\vec{p}_{\pi} * | W}{MK} \sqrt{2} \sqrt{\frac{-q^{2}}{q^{2}}} \operatorname{Re} \left[S_{0+} (3E_{1+} - M_{1+} + M_{1-}) * \right]$$
$$- E_{0+} (2S_{1+} - S_{1-}) * \right]$$
$$D_{1} = -\frac{|\vec{p}_{\pi} * | W}{MK} \sqrt{2} 6 \sqrt{\frac{-q^{2}}{q^{2}}} \operatorname{Re} \left[S_{1+} (E_{1+} - M_{1+} + M_{1-}) * \right]$$
$$+ S_{1-} E_{1+} * \right]$$

Für die in Gleichung (2.2.1) eingeführten virtuellen Photoproduktionsquerschnitte σ_t und σ_l ergibt sich hieraus durch Integration über den ganzen Raumwinkel

$$\sigma_{t} = 4\pi \quad (A_{o} + A_{2}/3)$$

$$= 4\pi \quad \frac{|\vec{p}_{\pi}|W}{MK} \quad (|E_{o+}|^{2} + |M_{1-}|^{2} + 2 |M_{1+}|^{2} + 6|E_{1+}|^{2})$$
(2.3.8)

$$\sigma_{\ell} = 4\pi \left(\frac{B_{0} + B_{2}/3}{MK} - \frac{-q^{2}}{q^{2}} \right)$$

= $4\pi \frac{|\vec{p}_{\pi} *|W}{MK} - \frac{-q^{2}}{q^{2}} \left(|s_{0+}|^{2} + |s_{1-}|^{2} + 8|s_{1+}|^{2} \right)$

Die hier benutzten Multipolamplituden sind wie bei CGLN¹⁷⁾ und z.B. v. Gehlen²⁰⁾ normiert. Die $\hat{S}_{l\pm} = \sqrt{-q^2} / |\vec{q} \star| S_{l\pm}$ sind mit den in Ref.⁴⁹⁾ verwandten identisch. Die Notation von Mistretta et al.³⁾ stimmt mit derjenigen dieser Arbeit überein mit Ausnahme des Multipols S₁₊:

 $S_{1+Mistretta} = 2 S_{1+Mistretta}$

Die Multipole von Jones¹¹⁾ und Ganßauge¹⁰⁾ unterscheiden sich von denen dieser Arbeit durch einen Faktor $4(2\pi)W$:

$$\begin{bmatrix} E_{l\pm} \\ M_{l\pm} \\ L_{l\pm} \end{bmatrix}$$
 = 4(2 π)W
$$\begin{bmatrix} E_{l\pm} \\ M_{l\pm} \\ q_{o} \end{pmatrix} / |q| S_{l\pm}$$

In den veröffentlichten Berichten⁶⁾ über dieses Experiment wurde der Faktor $(|\vec{p}_{\pi}^{*}|_{W/MK})^{1/2}$ in die Multipole gezogen, um sie direkter mit den Meßgrößen zu verbinden:

$$\begin{bmatrix} \mathfrak{l} \pm \mathfrak{l} \\ \mathfrak{M} & \mathfrak{l} \pm \mathfrak{l} \\ \mathfrak{S}_{\mathfrak{l} \pm} \end{bmatrix} = \left(\frac{| \overrightarrow{p}_{\pi} \ast | W}{\mathsf{M} \mathsf{K}} \right)^{1/2} \qquad \begin{cases} \mathbb{E}_{\mathfrak{l} \pm} \\ \mathfrak{M}_{\mathfrak{l} \pm} \\ \widehat{\mathfrak{S}}_{\mathfrak{l} \pm} \end{cases}$$

2.4 Isospinzerlegung und Watson's Theorem

Im Abschnitt 2.3 wurde der spezielle Ladungszustand der an der Reaktion beteiligten Nukleonen und des Mesons nicht festgelegt. Die 4 Reaktionen der Elektroproduktion von π -Mesonen an Nukleonen

$$ep \rightarrow ep\pi^{C}$$

 $ep \rightarrow en\pi^{T}$
 $en \rightarrow en\pi^{C}$
 $en \rightarrow ep\pi^{T}$

sind nicht unabhängig, sondern lassen sich zumindest in sehr guter Näherung durch nur 3 Amplituden beschreiben: A^+ , A^- und A° . A^+ und A^- transformieren sich bei Drehungen im Isospinraum wie Vektorkomponenten, während A° sich wie ein Skalar verhält⁺⁾. Die folgenden Formeln geben die Beziehungen zwischen den physikalischen Reaktionen mit definierten Ladungszuständen und den isovektoriellen Amplituden A^+ , A^- und der isoskalaren Amplitude A° wieder²³⁾¹⁸⁾.

+) vergl. Ref. 21 und Ref. 22 zur Frage, ob Isotensorkomponenten eine Rolle spielen. Eine Zerlegung der isovektoriellen und isoskalaren Amplituden in Amplituden mit definiertem Isospin im Endzustand (1/2 und 3/2) führt auf die Beziehungen:

$$A^{+} = \frac{1}{3} (A_{V}^{1/2} + 2 A_{V}^{3/2})$$

$$A^{-} = \frac{1}{3} (A_{V}^{1/2} - A_{V}^{3/2})$$

$$A^{\circ} = A_{S}^{1/2}$$
(2.4.2)

Nach einem Theorem von Watson²³⁾, das aus Zeitumkehrinvarianz und Unitarität der S-Matrix folgt, ist die Phase der Multipolamplitude $MU_{l\pm}^{I}$ mit definiertem Isospin I und Drehimpuls $j = l\pm 1/2$ mit der Streuphase δ_{Ij}^{l} der elastischen Pion-Nukleon-Streuung verknüpft:

$$MU_{l\pm}^{I} = \pm |MU_{l\pm}^{I}| \exp(i\delta_{Ij}^{l})$$
 (2.4.3)

Das Theorem gilt nur im Bereich voller Elastizität der betreffenden Streuphase.

Aus dem Watson-Theorem lassen sich wegen Gleichung (2.4.1) nur bedingt Schlüsse auf die Phasen der Multipole ziehen, wenn wie im vorliegenden Fall nur Daten zu einer bestimmten Reaktion vorliegen (ep \rightarrow ep π°). Nur wenn eine Isospinkomponente dominiert, wie z.B. $M_{1+}^{3/2}$ bei $\Delta(1236)$, oder wenn die Streuphasen für beide Isospinkomponenten praktisch gleich sind und die beiden Multipolkomponenten sich nicht gerade kompensieren, läßt die π -N-Streuung Schlüsse auf die Phase eines Multipols für eine bestimmte Reaktion zu.

3. Der experimentelle Aufbau

Die Abb. 2 und 3 geben einen Überblick über die wichtigsten Elemente der Apparatur, mit der an einem Wasserstofftarget gestreute Elektronen in Koinzidenz mit dem Rückstoßproton nachgewiesen wurden.

3.1 Primärstrahl und Target

Der mittels "langsamer Ejektion"²⁴⁾²⁵⁾ aus dem Synchrotron ausgelenkte Elektronenstrahl wird durch ein Transportsystem von 17 magnetischen Elementen zu einem Wasserstofftarget gebracht. Bei einer zum Zeitpunkt maximalen Feldes zeitlich symmetrischen Auslenkung und einer Pulsdauer ("Spill") von etwa 600 µsec ist die Energie des Strahls auf etwa 2% bis 3% scharf. Strahlprofilmessungen mit Silberphosphatgläsern²⁶⁾ ergaben als typische Breiten und Höhen des Strahls am Target 5 mm bzw. 3 mm. Aus der Breite am Faradaykäfig (s.u.) ergibt sich eine Winkeldivergenz der Größenordnung ±1 bis ±2 mrad.

Die Zahl der das Target passierenden Elektronen wird durch einen Faradaykäfig²⁷⁾ und zusätzlich zur Kontrolle durch einen Sekundär-Emissions-Vervielfacher (SEM)²⁷⁾ gemessen.

Über dem Drehpunkt der beiden Spektrometer ist das Wasserstofftarget aufgebaut. Die Zelle, deren Wände aus 80 µm starker Polyimidfolie bestehen, ist ein in Strahlrichtung liegender Zylinder von etwa 5 cm Durchmesser mit beidseitig aufgeklebten abgeflachten Kalotten. Sie ist 6 cm lang. In einem mit Helium gekühlten Wärmeaustauscher, der sich über der Zelle befindet, wird Wasserstoff kondensiert und tropft von dort direkt in die Zelle. Der Dampfdruck, mit dem der flüssige Wasserstoff im Gleichgewicht steht, wird durch eine Gegenheizung auf 0.4 ata gehalten. Für die Zahl der Protonen pro cm² ergibt sich bei 6 cm Targetlänge N_T = 2.652 . 10²³ cm⁻². Aus dem Fehler der Targetlänge, der Wasserstoffdichte und dem Einfluß von Bläschenbildung wurde ein Fehler von ± 1 % für N_T abgeschätzt.

- 14 -

1.00

Abb.4a &-Fokus in der Horizontalebene

<u>Abb.4b</u> Trajektorien in der vertikalen Ebene mit Targetabbildung

3.2 Das Elektronspektrometer

- 15 -

3.2.1 Aufbau

Der Aufbau des Spektrometers ist in Abb. 2 und 3 dargestellt. Es besteht aus 4 magnetischen Elementen: 2 Quadrupolen vom Typ QA und 2 nach oben ablenkenden Magneten vom Typ MA²⁷⁾. Die Teilchenbahnen werden mit Szintillationszählern bestimmt. Ein Schwellen-Čerenkovzähler und ein Sandwich-Schauerzähler dienen zur Teilchenidentifikation. Vor dem Schauerzähler ist für Flugzeitmessungen ein weiterer Szintillationszähler angeordnet. Alle Zähler befinden sich in einem lediglich zum Target hin geöffneten Abschirmhaus mit einer Wandstärke von 20 bis 30 cm Eisen. Der zentrale horizontale Winkel des Spektrometers gegen die Primärrichtung kann von 15° bis 57° variiert werden.

3.2.2 Prinzip der Optik

Der 1. Quadrupol des Spektrometers fokussiert horizontal und defokussiert vertikal. Umgekehrt fokussiert der 2. Quadrupol in der Vertikalebene, defokussiert also in der Horizontalebene (Abb. 4a und 4b). Sie erzeugen in beiden Ebenen bei nahezu gleichem Abstand vom Target hinter den Ablenkmagneten einen Winkelfokus. Durch Nachweis eines Teilchens am Winkelfokus kann jedoch nur sein Horizontalwinkel \Im direkt gemessen werden. Der Vertikalwinkel g läßt sich wegen der vertikalen Impulsdispersion nur zusammen mit einer Impulsmessung bestimmen. Wie in Abb. 4b skizziert, wird das Target in der Vertikalebene hinter dem Winkelfokus etwa im Verhältnis 1 : 1 abgebildet. Die Targetbilder zu verschiedenen Impulsen werden auf Grund der durch die Ablenkmagnete bewirkten Impulsdispersion räumlich getrennt. Die Targetbildebene ist infolge der chromatischen Aberration in den Quadrupolen nicht senkrecht zur optischen Achse, sondern schneidet diese nur sehr flach unter etwa 6° .

Die vertikale Ablenkung durch die MA macht die Optik praktisch unabhängig von der horizontalen Ausdehnung des Targets.

Analogrechenbilder zur Optik finden sich bei May⁷⁾.

3.2.3 Impuls- und Winkelmessung

Um Impuls, Vertikal- und Verizontalwinkel der gestreuten Elektronen zu messen, wurden in der Ebene des Winkelfokus und in der Targetbildebene Nodoskope aus Szintillationszählern aufgebaut.

Der Morizontalwinkel $\sqrt[3]{}$ wird mit 6 senkrecht stehenden Szintillatorstreifen mit einer Winkelakzeptanz von 2.7 mrad pro Zähler gemessen.

Direkt vor dem \mathcal{Y} -Nodoskop befindet sich ein weiteres Ssintillatorhodoskop von 16 waagerecht liegenden Szintillatoren, nit welchen der Vertikalwinkel \mathcal{Y} am Target in Abhängigkeit vom Tapuls p gemessen wird.

Abb.5 : Impulshouoskop (schematisch). Ereignis in Kanal 9

In der Targetbildebene befindet sich ein Szintillatorhodoskop von 40 Elementen, das zur Messung des Impulses p dient. Ein Impulskanal PQ_N ist durch eine Koinzidenz zwischen den Szintillatoren P_N und Q_N (Abb. 5) definiert. Die Impulsbreite der PQ-Kanäle beträgt 0.5 %des zentralen Spektrometerimpulses p_o(Grenze zwischen PQ₁₀ und PQ₁₁).

In Tabelle 1 sind die Impuls- und Winkelauflösungen für Elektronen von etwa 2.6 GeV Energie zusammengestellt (volle Halbwertsbreiten der entsprechenden Verteilungen).

Tabelle 1:	Impuls- und	Winkelauflösung	des	Elektron-
	spektrometers (FWHM)			

∆p/p _o	6.5	ٷ∆
0.6 %	2.7 mrad	4 bis 7 mrad
	1	je nach Impuls

3.2.4 Berechnung der Akzeptanzen

Der akzeptierte Raumwinkel des Spektrometers ist begrenzt durch die horizontale Ausdehnung des \Im -Hodoskops und durch die vertikale Ausdehnung des \Im -Hodoskops, für gewisse p- \Im -Kombinationen aber durch die vertikale öffnung des 2. Quadrupols. Die Impulsakzeptanz von ± 5 % wird nur durch das Impulszählerhodoskop begrenzt.

Die Akzeptanzen wurden mit Monte-Carlo-Rechnungen ermittelt, wobei für den Teilchentransport durch die Quadrupole zunächst die Transportgleichungen 1. Ordnung unter Einschluß der Dispersion durch impulsabhängige Quadrupolstärken benutzt wurden. Hierbei wurde mit effektiven magnetischen Längen und Quadrupolstärken gerechnet, die sich nach dem Trapezmodell aus der integrierten magnetischen Länge ergeben²⁸⁾. Die 2. Ordnung verschwindet bei Quadrupolsymmetrie. Glieder der 3. Ordnung ergaben kleine Korrekturen für achsenferne Strahlen im 2. Quadrupol, die zu besserer Übereinstimmung mit experimentellen Messungen führten (vergl. Kap. 4). Für die Ablenkmagnete wurden Terme 2. Ordnung berücksichtigt.

Der Raumwinkel $\Delta\Omega$ ist, wenn von den Teilchen nur verlangt wird, einen θ -Zähler und einen Impulskanal zu treffen, praktisch unabhängig vom Impuls. Es ist dann $\Delta\Omega = 0.95$ msr. Wird zusätzlich noch ein \mathcal{G} -Zähler gefordert, so nimmt der Raumwinkel zu den Rändern der Impulsakzeptanz hin ab (vergl. Abb.6).

Die Gesamtakzeptanz A des Spektrometers ist definiert als Integral über Raumwinkel und Impuls bezogen auf den Spektrometerimpuls p.:

$$A = \int \frac{dp}{p_{o}} d\Omega$$

Wird das φ -Hodoskop gefordert, so ist

A
, θ ,PQ = 0.0906 msr;

wird kein 9-Zähler gefordert, so ist

$$A_{\theta, PQ} = 0.0950 \text{ msr}.$$

Die Fehler der Akzeptanzen wurden aus der Genauigkeit, mit der die Felder und die Aufstellung der Magnete und die Maße und Positionen der Zählerhodoskope bekannt sind, zu 1 % abgeschätzt.

3.3 Das Protonspektrometer

3.3.1 Aufbau

Der Protonarm (vergl. Abb.3) enthält einen nach oben ablenkenden Magneten mit einer Öffnung von 23 x 110 cm² und einer integrierten Feldlänge von 120 cm, zwei Hodoskope von Szintillationszählern zur Bestimmung der Teilchenbahn in der vertikalen Ebene und ein 3. Hodoskop zur Messung der Flugzeit und des Horizontalwinkels. Das 1. Hodoskop (im Folgenden H1 genannt) im Abstand von etwa ⁴ m vom Target bedeckt eine Fläche von 8 cm Breite und 139.5 cm Höhe. Das 2. Hodoskop (im folgenden H2) und das 3. Hodoskop (im folgenden H3), die sich beide dicht beieinander im Abstand von etwa 7,5m vom Target befinden, bedecken eine Fläche von 15 cm Breite und 310 cm Höhe. Durch eine Unterteilung in 279 Kanäle in H1 und 310 Kanäle in H2 wird der Durchgang einer Teilchenbahn vertikal in H1 auf 0,5 cm , in H2 auf 1 cm genau gemessen. Für diese 279 bzw. 310 Kanäle werden 45 bzw. 50 Photomultiplier benötigt. Dies wird durch Anordnung nach einem binären Code (Gray Code) erreicht, wobei die verschiedenen Koinzidenzen zwischen je 5 Multipliern 31 Kanäle liefern. Abb. 7 zeigt die Anordnung einer Gruppe von 5 Szintillatoren zu einer Kammer von 31 Kanälen.

<u>Abb.7</u> : Szintillatorkammer. Beispiel eines Ereignisses in Kanal 17, definiert durch die Szintillatoren 1, 2 und 5.

Durch das 3. Hodoskop wird der Horizontalwinkel in 3 Bins von je 0,4[°] unterteilt. Dies wird durch 2 sich überlappende Szintillatoren erreicht. Wegen der großen vertikalen Ausdehnung ist H3 vertikal vierfach unterteilt, besteht also aus 8 Szintillatoren. Die Dicke der Szintillatoren in den Hodoskopen H1, H2 und H3 beträgt 4, 8 und 10 mm. Die vertikale Stellung und die Neigung der Hodoskope kann je nach den vorliegenden kinematischen Bedingungen verstellt werden. Ein Helisumsack reduziert auf dem größten Teil der Strecke zwischen Streukammer und H1 die Vielfachstreuung.

Gegen den Primärstrahl sind die Hodoskope durch Beton bzw. durch Blei abgeschirmt.

3.3.2 Akzeptanzen und Auflösungsvermögen

Die Akzeptanz des Protonarmes wird unten von der Magnetöffnung und sonst von den Hodoskopen H1 und H2 begrenzt. H3 hat effektiv auf die Akzeptanz wenig Einfluß. Es ist zwar wie H2 15 cm breit, bei der Auswertung wurde aber nur von speziellen Ereignissen eine Koinzidenz mit H3 gefordert (vergl. 5.1). Die Akzeptanzen und das Auflösungsvermögen des Spektrometers wurden mit Monte-Carlo-Rechnungen ermittelt. Dabei wurden die Bahnen der Protonen durch den Magneten in kleinen Schritten gemäß der zum Teil in 3 Komponenten, zum Teil nur in der Hauptkomponente gemessenen Feldverteilung berechnet. Der Raumwinkel ist nicht unabhängig vom Impuls und liegt im für die Messung interessierenden kinematischen Bereich zwischen 5,5 und 6,5 msr. Dies entspricht bei der vorliegenden Messung einer mittleren Akzeptanz im CMS von 0.2 sr = $0.016/4\pi$.

Die Impuls- und Winkelauflösung ist in erster Linie durch die Vielfachstreuung in H1 begrenzt. Die Impulsauflösung lag bei Impulsen von 0.5 GeV bis 1.2 GeV und einem Feld von 6 kGauß bei etwa 6-8% (FWHM).Die Auflösung der Vertikalwinkel betrug etwa 7 bis 22 mrad (je nach Kinematik). Horizontal wurden die Streuwinkel auf etwa 8 bis 15 mrad aufgelöst. Wegen der Vielfachstreuung lohnt sich die Ortsauflösung von 0.5 cm für H1 und 1 cm für H2 erst richtig bei höheren Impulsüberträgen q² und damit größeren Protonimpulsen.

3.4 Skizzierung der Elektronik und Datennahme

Eine ausführliche Beschreibung der Elektronik findet sich bei May⁷⁾. Hier sollen nur die wichtigsten Züge wiedergegeben werden (vgl.Abb.8a,b).Eine Hauptkoinzidenz (EM) des Elektronarms öffnet Gates zu Zwischenspeichern, die nach jedem Ereignis von einer Rechenmaschine (CII 9010) ausgelesen werden.

Abb. 8 b

Für EM werden gefordert: die Signale des Cerenkov- und des Schauerzählers (C und S), ein Signal des Flugzeitzählers (T) und ein gemischtes Signal des V-Hodoskops (0). Die volle Information über beide Spektrometer wird in die Rechenmaschine nur eingelesen, wenn eine Koinzidenz zwischen EM und dem gemischten Signal von H1 und dem gemischten Signal von H2 vorliegt, wenn also in beiden Hodoskopen wenigstens ein Multiplier ansprach. Neben dem Inhalt der Zwischenspeicher für alle Hodoskope werden die Impulshöhen von S, Č und T und die gemessene Zeitdifferenz zwischen T und H3 eingelesen. Da gleichzeitig Protonimpulse von etwa 400 MeV bis eta 1.3 GeV akzeptiert werden, treten bei den Abständen von H1 und H2 von 4 bzw. 7,5 m vom Target sehr große Zeitunterschiede auf. Die Gates der Multiplier der Protonseite sind deshalb 20 nsec bei H1 und 40 nsec bei H2 und H3 geöffnet, während auf der Elektronseite die Koinzidenzauflösung etwa 10 nsec beträgt. Mittels verzögerter Koinzidenzen wurde der Anteil an zufälligen Koinzidenzen, die zu EM führen, als vernachlässigbar (<0.2 %) nachgewiesen. Dagegen ist ein erheblicher Anteil der Ereignisse der Protonhodoskope nur zufällig und nicht mit dem nachgewiesenen Elektron korreliert (vgl. 5.1).

Die CII 9010 transferiert die Daten zu einer IBM 360/75, die sie auf Platte und schließlich auf Magnetband abspeichert und erste Analysen durchführt.
4. Die Messungen

4.1 Test der Apparatur durch elastische Streuung

Um die gesamte Apparatur eingehend zu testen, wurden ausführliche Messungen elastischer e-p-Streuung durchgeführt, sowohl unter Nachweis des Elektrons allein, als auch in Koinzidenz mit dem Rückstoßproton. Wie weit die dabei gewonnenen Daten verstanden werden können, wurde durch Vergleich mit Monte-Carlo-Rechnungen, welche die Messungen möglichst genau simulierten, geprüft. Bei diesen Simulationen wurden an Hand der bekannten Abhängigkeit des Streuquerschnittes von Energie und Streuwinkel e-p-Ereignisse im Target unter Einschluß von Strahlungskorrekturen erzeugt und die Teilchen unter Berücksichtigung von Effekten wie Bremsstrahlung, Vielfachstreuung und Energieverlust und Kernabsorption für die Protonen durch die Spektrometer verfolgt. Hier sollen die Tests diskutiert werden. Weitere Details zu den Rechnungen finden sich im Abschnitt über die Auswertung der inelastischen Daten (5.2) und bei May⁷⁾, wo die Erzeugung der physikalischen Ereignisse unter Einschluß der Strahlung diskutiert wird.

Die meisten Messungen zur Prüfung der Apparatur wurden bei der Primärenergie E = 2.630 GeV und beim mittleren Elektronstreuwinkel $v_e^{}$ = 15° gemacht. Trotz der Energieauflösung des Elektronspektrometers von etwa 0.6% kann die Konsistenz von Primärenergie und Impulseichung des Spektrometers relativ zueinander auf etwa 1 ‰ geprüft werden. Abb. 9 zeigt die W-Verteilungen experimentell gemessener und simulierter Ereignisse. Wird die Primärenergie bei der Simulation um 2 ‰ zu hoch gewählt, so werden deutliche Abweichungen sichtbar. Die Genauigkeit der relativen Eichung von Primärenergie und Spektrometerimpuls wird durch den Meßfehler des mittleren Streuginkels $\Delta v_e \approx \pm 0.02^\circ$ nicht wesentlich beeinflußt. Bei elastischer Kinematik ist

- 23 -

$$E' = E / (1 + \frac{E}{M} (1 - \cos \frac{1}{P})),$$

also

$$\left(\frac{\partial E'}{\partial v_e}\right)_E = -\frac{E'^2}{M} \sin v_e$$
.

Dies führt bei den vorliegenden Parametern auf eine durch Δv_e verursachte Peakverschiebung von $\Delta E' \stackrel{\sim}{\sim} 0.6$ MeV.

Absolut lag die gemessene mittlere Energie um einige pro mille unter der nominellen Energie des Synchrotrons. Deshalb wurde bei den inelastischen Messungen als Primärenergie die Energie angenommen, die mit dem Elektronspektrometer bei von Zeit zu Zeit eingeschobenen elastischen Tests gemessen wurde.

Die gemessenen elastischen Zählraten stimmten innerhalb eines Fehlers von ±3^d/₂ mit den bekannten Querschnitten²⁵⁾ überein.

Elastische e-p-Koinzidenzmessungen (4 Constraints) lieferten sehr nützliche Tests. Durch die Protonen, deren Kinematik durch im elastischen Peak nachgewiesene Elektronen im Prinzip festliegt, läßt sich die Justierung der Hodoskope, die Ablenkung im Magnetfeld, die Akzeptanz des Protonarms und die Behandlung der Vielfachstreuung überprüfen. Darüber hinaus ergeben sich auch Rückschlüsse auf das Elektronspektrometer. Letzteres, weil mit dem Protonarm (Horizontalwinkel $\Theta_p = 63,5^{\circ}$) die Vertikalwinkel der Elektronen gegen die Laborebene im Prinzip empfindlicher gemessen werden, als mit dem Elektronspektrometer selbst (Horizontalwinkel $\vartheta_e = 15^{\circ}$). Die Elektron-Vertikalwinkel werden nämlich im Verhältnis - sin Θ_p/sin ϑ_e in Proton-Vertikalwinkel übersetzt.

4 Beispiele solcher Tests:

 Die Wahrscheinlichkeit zu elastisch gestreuten, im Elektronarm nachgewiesenen Elektronen auch das Proton nachzuweisen, stimmt innerhalb der Fehler von etwa 1 % bei Messung und Rechnung überein und liegt bei etwa 0.5.

<u>Abb. 12:</u> Die Abweichung der Mittelwerte der Verteilungen über H, und H₂ als Funktion von $\mathscr Y$ zwischen Monte Carlo und Experiment.

- Die gemessene Impulsverteilung von in Koinzidenz mit Elektronen nachgewiesenen Protonen ist in Abb. 10 zusammen mit der entsprechenden Monte-Carlo-Verteilung dargestellt.
- 3. Die Verteilung von Protonen über die Kanäle der Protonhodoskope H1 und H2 zu Elektronen, die im elastischen Peak und in einem bestimmten Kanal des Elektron-G-Hodoskops liegen, sind in Abb. 11 wiedergegeben. Die Ausdehnung der Verteilungen ergibt sich im Wesentlichen durch Vielfachstreuung und die Vertikalwinkelakzeptanz des Elektron-G-Zählers. Werden die Mittelwerte über die H1- Kanäle und über die H2-Kanäle für jeden G-Zähler gebildet (Abb. 12), so lassen sich noch sehr kleine Dejustierungen nachweisen. Durch Korrekturen 3. Ordnung für den Quadrupoldurchgang der Elektronen konnte die Übereinstimmung zwischen Messung und Rechnung verbessert werden.
- 4. Die fehlende Masse zur Reaktion e p \rightarrow e p zeigt Abb. 13.

- 25 -

4.2 Die Messungen zur π° -Produktion

Die vorliegenden Daten zum Impulsübertrag $q^2 = 15 \text{ fm}^{-2}$ wurden beim kleinsten Winkel $\vartheta_{\rm p}$ = 15° des Elektronspektrometers genommen. Der zentrale Impuls des Spektrometers p = 2.631 GeV/c wurde bei der Primärenergie E = 3.271 GeV so gewählt, daß die Akzeptanz in W von etwa 1100 MeV bis etwa 1320 MeV reichte. Die Messung wurde so angelegt, daß die 6 Koeffizienten, durch die sich die Winkelverteilung (Gl. 2.2.6) bei Dominanz von Sund P-Wellen beschreiben läßt, als Funktion von W etwa von W = 1130 MeV bis W = 1280 MeV bestimmt werden können. Um einen hinreichenden Teil der 0-¢-Ebene zu überdecken, wurden 4 Messungen durchgeführt, die sich lediglich durch den Horizontalwinkel $_{p}^{o}$ des Protonarmes unterschieden, nämlich bei $_{D}^{o}$ = 30 o , 42°, 48°⁴ und 54°. Die Verteilung der Ereignisse über die cos0*- ϕ -Ebene als Funktion von W ist in den Abb. 14 und 15 dargestellt. Bei den mittleren Werten von W wird bei $0_p = 42^{\circ}$ die gesamte 0[#]-Verteilung bei ¢ ∿ 00° akzeptiert. Um die Abhängigkeiten in $\cos\phi$ und $\cos(2\phi)$ zu trennen, sind noch mindestens 2 weitere Stellungen des Protonarmes nötig. Aus den symmetrischen Anteil der Abweichung der seitlichen Messungen von der zentralen bei $0_{p} = 42^{\circ}$ ergibt sich die durch die Polarisation bedingte cos(2\$)-Abhängigkeit. Der Vergleich der seitlichen Messungen bei verschiedenen coso* liefert die Interferenzterme longitudinaler und transversaler Photonen mit ihrer zu $\phi = 90^{\circ}$ antisymmetrischen cosø -Abhängigkeit. Die starke Änderung der Geometrie der Zerfallskegel als Funktion von W erforderte noch die 4. Messung bei $0_{\rm p} = 48^{\circ}$, um auch bei kleinen W, wo die Akzeptanz für $0_{\rm p} = 30^{\circ}$ verschwindet, die Winkelverteilung voll analysieren zu können.

Abb. 14: Verteilung der experimentellen Ereignisse in der $\cos \theta^{\#} - \phi$ -Ebene für die verschiedenen Horizontalwinkel θ_p des Protonarms als Funktion von W.

Abb. '5: Verteilung der exparimentellen Ereignisse in der cost ---Ebene für die verschiedenen Horizontulwinkel 1 des Frat narms als Funktion von W.

5. Die Auswertung

Die Daten wurden Ereignis für Ereignis in im wesentlichen 2 Schritten ausgewertet. Im ersten Schritt wurden sie auf mutmaßlich gute ep-Ereignisse reduziert (Kap. 5.1). Dieser Teil ist ausführlicher bei May⁷⁾ (in der bei $q^2 = 25$ fm⁻² benutzten Form) diskutiert. Durch Vergleich mit Monte-Carlo-Rechnungen wurden im zweiten Schritt (Kap. 5.2) die differentiellen Querschnitte berechnet. Hier wurden ebenfalls einige Cuts angebracht und Korrekturen durchgeführt.

Beiden Auswerteprogrammen standen zur kinematischen Klassifizierung der Ereignisse durch Monte-Carlo-Rechnungen gewonnene Datensätze zur Verfügung, welche für jedes der beiden Spektrometer die mittleren Laborimpulse und die mittleren horizontalen und vertikalen Laborwinkel pro Zählerkombination enthalten.

5.1 Datenreduktion

Die volle kinematische Analyse beschränkte sich auf Ereignisse, bei denen die Kinematik des Elektrons eindeutig bestimmt war. Mehrfachereignisse im Elektronarm wurden gesondert behandelt (vergl. 5.3). Infolge der langen Öffnungszeiten der Gates von H1 und H2 (vergl. 3.4) entstanden sehr viele zufällige Koinzidenzen zwischen den beiden Spektrometern. Tatsächlich mußten die Ereignisse zur Reaktion ep \rightarrow ep π° unter den je nach Stellung des Protonarms 2-5mal häufigeren zufälligen Ereignissen herausgesucht werden. Dieser nicht mit den Elektronen korrelierte Untergrund in den Protonhodoskopen bestand fast ausschließlich aus ungeladenen oder sehr niederenergetischen Teilchen. Dies äußerte sich darin, daß die Zahl der Ereignisse, die weder in H1 noch in H2 innerhalb einer Kammer eine Koinzidenz aufweisen, um ein Vielfaches überhöht ist. Gleichzeitig zeigte sich, daß - 28 -

bei echten Mehrfachereignissen, bei denen also mehr als eine Kammer pro Hodoskop ansprach, fast immer nur in einer Kammer mehrere Multiplier ein Signal lieferten, obwohl nur 5 der 31 Kanäle einer Kammer durch nur einen einzigen Multiplier definiert sind. Nach Ausschluß aller Ereignisse, deren durch H1 und H2 bestimmte Trajektorie nicht innerhalb des kinematisch zulässigen Impulsbereiches durch das Target ging, ließ sich der größte Teil des verbliebenen Untergrundes dadurch entfernen, daß alle Ereignisse, die weder innerhalb H1 noch innerhalb H2 eine Koinzidenz aufwiesen, eliminiert wurden. Dadurch wurden auch etwa 3 % der echten Ereignisse eliminiert. Eine Koinzidenz mit H3, das etwa 5 % weniger Akzeptanz hat als H2, wurde nur gefordert, wenn π^+ -Produktion mit π^+ -Nachweis kinematisch nicht auszuschließen war und, um Zufällige zu eliminieren, wenn in H2 nur ein Multiplier angesprochen hatte. Ereignisse, die kinematisch als "-Produktion interpretiert werden konnten, wurden eliminiert, falls sie die Flugzeit relativistischer Teilchen aufwiesen (gemessen wurde die Zeitdifferenz von T und H3 (vgl. 3.4)). Bei Ereignissen mit Teilchen in mehreren Kammern eines Hodoskops mit möglichen Trajektorien durch das Target ließ sich die Entscheidung für eine Kammer vor allem dadurch treffen, daß mehrere Multiplier pro Kammer gefordert wurden. Weitere Kriterien waren, die gemessene Flugzeit relativ zu den gemessenen Impulsen und die fehlende Masse zur Reaktion ep+ $ep\pi^{\circ}$. Etwa 1 % der Freignisse blieb jedoch mehrdeutig und wurde nur in Form einer allgemeinen Korrektur berücksichtigt (vgl. 5.3).

5.2 Querschnittsberechnung mit einer Monte-Carlo-Nethode

5.2.1 Beschreibung des Verfahrens

Auf Grund einer Vielzahl von Effekten erschien es sehr schwierig, die im CMS von Pion und Proton definierten differentiellen Querschnitte $d^{5}C/d\Omega_{e}dEd\Omega^{*}$ ohne Monte-Carlo-Methoden aus den gemessenen Raten zu berechnen. Solche Effekte sind gegeben durch die ausgedehnte in viele Intervalle unterteilte Akzeptanz des Protonarmes, die endlichen Zählerbreiten, Vielfachstreuung (für die Protonen unterschiedlich je nach H1-Kanal), interne und externe Strahlung der Elektronen u.a.m.. Um diese störenden Effekte konsequent zu berücksichtigen, wurde das Experiment mit höherer Statistik möglichst genau simuliert, ausgehend von einer angenommenen Abhängigkeit des Querschnittes von den Variablen W, q², o^{*} und o. Um den experimentellen Querschnitt an einer bestimmten Stelle $\vec{x}_{o} = (W_{o}, q_{o}^{2}, o_{o}^{*}, \phi_{o})$ zu ermitteln, werden solche Zählerkombinationen zwischen beiden Spektrometern zu einem Bin zusammengefaßt, die bevorzugt Ereignisse aus der engen Umgebung von \vec{x}_{o} akzeptieren. Aus dem in der Rechnung angenommenen Querschnitt ($d^{5}Z/d\Omega_{e}dE^{*}d\Omega^{*}$)_{me}, der Monte-Carlo-Zählrate N_{mc} im Bin zu \vec{x}_{o} und der experimentellen Zählrate N_{exp} im Bin folgt der gemessene Querschnitt:

$$\left(\frac{d^{5} \mathcal{G}}{d\Omega_{e} dE' d\Omega^{*}} \right)_{exp} \quad \stackrel{\sim}{\sim} \quad \frac{\frac{N_{exp}}{N_{mc}}}{\frac{1}{M_{e}} dE' d\Omega^{*}} \left(\frac{d^{5} \mathcal{G}}{d\Omega_{e} dE' d\Omega^{*}} \right)_{mc}$$
(5.2.1.1)

Diese Relation versteht sich zwar etwa von selbst, doch soll ihre Gültigkeit etwas genauer diskutiert werden.

Mit den Abkürzungen \mathcal{E}_{exp} (\vec{x}) und $\mathcal{E}_{mc}(\vec{x})$ für die differentiellen Querschnitte $(d^{5}\mathcal{E}(\vec{x})/d\vec{x})_{exp}$ bzw. $(d^{5}\mathcal{E}(\vec{x})/d\vec{x})_{mc}$ ist der Erwartungswert von N_{exp} gegeben durch

$$\left\langle N_{exp} \right\rangle = N_{T} Q \int \mathcal{G}_{exp}(\vec{x}) w_{exp}(\vec{x}, \vec{x}_{o}) d\vec{x}$$
 (5.2.1.2)

Dabei ist:

Q die Zahl der primären Elektronen, N_T die Zahl der Targetatome pro cm², $w_{exp}(\vec{x}, \vec{x}_0)$ die Wahrscheinlichkeit, das bei \vec{x} entstandene Ereignis im Bin zu \vec{x}_0 nachzuweisen. - 30 -

Die Integration erstreckt sich über den gesamten Bereich von \vec{x} bzw. über den Teilbereich, wo w $(\vec{x}, \vec{x}_{o}) \neq 0$ ist. Die Simulation geht vom Querschnitt $\vec{G}_{mc}(\vec{x})$ und der Wahrscheinlichkeit w_{mc} (\vec{x}, \vec{x}_{o}) aus:

$$\langle N_{mc} \rangle = N_{T}Q \int \mathcal{G}_{mc}(\vec{x}) w_{mc}(\vec{x}, \vec{x}_{o}) d\vec{x}$$
 (5.2.1.3)

Durch $R_{exp}(\vec{x})$ und $R_{mc}(\vec{x})$ seien die relativen Abweichungen der differentiellen Querschnitte von ihren Werten bei \vec{x}_{o} gegeben, also

$$\begin{aligned} \zeta_{exp}(\vec{x}) &= \zeta_{exp}(\vec{x}_{o}) (1 + R_{exp}(\vec{x})) \\ \zeta_{mc}(\vec{x}) &= \zeta_{mc}(\vec{x}_{o}) (1 + R_{mc}(\vec{x})) \end{aligned}$$
(5.2.1.4)

Damit liefert die Kombination der Gleichungen (5.2.1.2) und (5.2.1.3) (wobei zur Vereinfachung die Argumente von $w_{exp}(\vec{x},\vec{x}_{o}), w_{mc}(\vec{x},\vec{x}_{o}), R_{mc}(\vec{x})$ und $R_{exp}(\vec{x})$ unterdrückt sind:

$$\zeta_{exp}(\vec{x}_{o}) = \langle N_{exp} \rangle_{mc} \langle M_{mc} \rangle$$

mit

$$\delta = 1 + \frac{\int \mathcal{E}_{mc}(\vec{x})(w_{mc} - w_{exp})d\vec{x} + \mathcal{E}_{mc}(\vec{x}_{o})\int(R_{mc} - R_{exp})w_{exp}d\vec{x}}{\int \mathcal{E}_{mc}(\vec{x}_{o})\int(1 + R_{exp})w_{exp}d\vec{x}}$$

$$\approx 1 + \frac{\int \mathcal{E}_{mc}(\vec{x})(w_{mc} - w_{exp})d\vec{x} + \mathcal{E}_{mc}(\vec{x}_{o})\int(R_{mc} - R_{exp})w_{mc}d\vec{x}}{\int \mathcal{E}_{mc}(\vec{x})w_{mc}(\vec{x})d\vec{x}}$$

(5.2.1.5)

Diese Gleichung enthält gegen Gl.(5.2.1.1) zwei Korrekturterme, von denen der erste die Abweichung auf Grund falscher Berechnung der Wahrscheinlichkeit w $\exp(\vec{x},\vec{x}_{o})$ enthält, während der zweite die Abweichung auf Grund unterschiedlicher relativer Querschnittsänderungen in der Umgebung von \vec{x}_{o} wiedergibt. Da die Differenz $R_{mc}(\vec{x}) - R_{exp}(\vec{x})$ bei \vec{x}_{o} verschwindet, kann der 2. Term also klein gehalten werden, wenn $w_{exp}(\vec{x})$ bei wachsendem Abstand von \vec{x}_{o} schnell genug abfällt. Eine Komplikation bei der Simulation des Experiments entsteht durch die Strahlungskorrekturen. Es existieren zwar Rechnungen für inelastische Koinzidenzmessungen³¹. Es ist aber schwierig, die für vereinfachte apparative Bedingungen angegebenen Formeln auf die vorliegende Apparatur zu übertragen. Deshalb wurde es vorgezogen, die durch interne wie externe Strahlung bedingten Effekte gleich bei der Produktion der Ereignisse zu berücksichtigen. Ausgangspunkt dabei war die Technik der Strahlungskorrekturen, wie sie für den Nachweis des Elektrons allein bekannt ist³².

Ein Programm, das genauer bei May⁷⁾ beschrieben ist, lieferte ausgehend von einer angenommenen W- und q²-Abhängigkeit des totalen Querschnitts für π° -Produktion Elektronereignisse nach einer Wahrscheinlichkeitsverteilung wie sie bei einer Verteilung der Primärenergie von 3 %• Halbwertsbreite, unter Berücksichtigung von externer Bremsstrahlung und interner γ -Emission nach einer Peakingapproximation³²⁾ gegeben ist. Als Ansatz für den Querschnitt wurde eine relativistische Breit-Wigner-Verteilung folgender Form gewählt:

$$\frac{d^{2} \mathcal{L}}{d\Omega \ dE'} (\pi^{\circ}) \sim \frac{\Gamma_{t} |\vec{q}|^{1 \cdot 6} G_{E}^{2}(q^{2})}{KW} \frac{\Gamma(W)}{(W-M^{*})^{2} + \Gamma^{2}(W)/4}$$
(5.2.1.6)

Dabei ist:

M^{*} die Masse W = 1236 MeV $G_E(q^2)$ der Dipolformfaktor $|\vec{q}|^{1.6} \cdot G_E(q^2) (|\vec{q}| \text{ in GeV})$ ein empirischer Formfaktor, der die Einarmdaten zur 1. Resonanz gut wiedergibt³³⁾

 $\Gamma(W) \text{ ist eine massenabhängige Breite, die durch}$ $\Gamma(W) = \frac{0.128(0.85) |\vec{p}\pi| / \mu)^3}{1 + (0.85 |\vec{p}\pi| / \mu)^2} \quad (GeV) \text{ parametrisiert ist}^{34}.$

Die richtige Normierung des Querschnitts bezüglich der erzeugten Ereignisse ist dann gegeben, wenn bei beliebigem W und q 2 $\frac{d^{2} \mathcal{G} (\pi^{\circ})}{d \boldsymbol{\Omega} d E'} \quad \text{mit der vom Programm gelieferten Elektronenrate pro GeV und sr } \mathbb{Z}_{p}$ folgendermaßen verknüpft ist:

$$Z_{e} S = \frac{d^{2} \mathcal{E}}{d\Omega \ dE'} (\pi^{\circ}) N_{T} Q \qquad (5.2.1.7)$$

Dabei entspricht S der Strahlungskorrektur, die bei Einarmmessungen den gemessenen unkorrigierten Querschnitt mit dem unter Einschluß von externer Bremsstrahlung strahlungskorrigerten verknüpft:

$$S = \left(\frac{d^2 \mathcal{G}}{d\Omega \ dE'}\right)_{\text{korrigiert}} / \left(\frac{d^2 \mathcal{G}}{d\Omega \ dE'}\right)_{\text{gemessen}} (5.2.1.8)$$

S wird analytisch von Gl. (5.2.1.6) ausgehend nach der Peakingapproximation berechnet (vgl. Ref.7), wobei allerdings im vorliegenden Fall keine Beiträge von Weitwinkelbremsstrahlung berücksichtigt wurden (vgl. 5.3). Für S ergaben sich Werte von 1.35 (W = 1136 MeV) bis 1.09 (W = 1276 MeV).

Die erzeugten e⁻-Ereignisse enthalten neben den kinematischen Variablen des primären und sekundären Elektrons die Information, daß ein γ-Quant der Energie k in primärer oder sekundärer Richtung emittiert wurde. Für kleine k wurde dabei gleiche Wahrscheinlichkeit für beide Richtungen angenommen.

Zur Simulation der Koinzidenzmessung wurden die Ereignisse benutzt, indem für den Zerfall in Pion und Proton die CMS-Winkel ound φ nach einer geeigneten (s. unten) Verteilung gewählt wurden. Die Wirkung eines emittierten Photons auf das nachzuweisende Proton wurde als kinematische Korrektur behandelt, indem am e-virt.γ-e-Vertex bei Emission in Primärrichtung für das einlaufende Elektron die Energie E-k bzw. bei Emission in Sekundärrichtung für das auslaufende Elektron die Energie E'+k genommen wurde:

Die Querschnittsberechnung zum vorliegenden Experiment wurde einmal iteriert. Zunächst wurde eine isotrope CMS-Winkelverteilung angenommen. Die Koeffizienten der Winkelverteilung wurden durch Fits an die gewonnenen Querschnitte in 8 W-Intervallen bestimmt. Anschließend wurde eine zweite Auswertung durchgeführt, die von der bei der ersten gefundenen W-abhängigen Winkelverteilung ausging, um die durch den zweiten Korrekturterm in Gl. (5.2.1.5) gegebenen Fehler zu verkleinern.

5.2.2 Zusammenfassung von ep-Koinzidenzen in Bins zur Berechnung der Querschnitte

Der Transport der Elektronen und Protonen, deren Erzeugung im vorigen Abschnitt beschrieben wurde, durch die Spektrometer (vgl. 3.2.4 und 3.3.2) führt zu Monte-Carlo-Ereignissen, die wie die experimentellen Daten in Form der getroffenen Zähler beider Spektrometer vorliegen. Monte-Carlo-Ereignisse und experimentelle Ereignisse wurden dann von einem Programm in gleicher Weise ausgewertet: Anhand der für beide Spektrometer unabhängig berechneten Datensätze mit horizontalen und vertikalen Laborwinkeln und Laborimpulsen (Beginn Abschn.5) wurden für alle Ereignisse W, cosof und ¢ berechnet, um sie in die in diesen Variablen definierten Bins einzuordnen. Das heißt, daß zur Klassifizierung die bei den Monte-Carlo-Ereignissen vorliegende Information über die tatsächlichen kinematischen Variablen am Vertex nicht benutzt wurde. coso^{*} wurde nach Gl. (2.1.4) berechnet, also unter Ausnutzung des gemessenen Erzeugungswinkels und des gemessenen Impulses des Protons, ohne Ein-Pion-Zwangsbedingung.

Für W wurde eine Bin-Größe von $\Delta W = 20$ MeV gewählt. In q² wurde die Akzeptanz des e-Spektrometers nicht unterteilt. Damit war $\Delta q^2 \stackrel{\sim}{\sim} 1.8 \text{ fm}^{-2}$. Das Raster in der $\cos 0^{\text{\#}}$ - ϕ -Ebene wurde im Hinblick auf die unterschiedlich gute Auflösung von cos⊙^{*} und ¢ nicht äquidistant gewählt. Die Streuungen der akzeptierten ø-Werte pro Bin, also der ø-Werte wie sie bei den Monte-Carlo-Ereignissen am Vertex vorliegen, liegen für -0.95 - cos - 0.9 zwischen 3° und 8°. Die Streuungen der coso[#]-Verteilungen in den Bins variieren zwischen 0.01 (bei $\cos 0^{\bigstar} \stackrel{\sim}{\sim} \pm 1$) bis etwa 0.1 (bei $\cos 0^{\bigstar} \stackrel{\sim}{\sim} 0$). Das entspricht also einer Streuung von O* von etwa 7°. Bei sehr kleinen W wird die Auflösung in cos0[#] naturgemäß schlechter. Bei W = 1136± 10 MeV und $\cos 0 \stackrel{\star}{\sim} \stackrel{\sim}{\sim} 0$ erreichen die Streuungen der $\cos 0 \stackrel{\star}{\sim} -$ Verteilungen in manchen Bins Werte von etwa 0.2. Die angegebenen Streuungen enthalten die durch y-Emission bewirkte Verbreiterung. Die nach Gl. (5.2.1.1) resultierenden Querschnitte wurden für die Mittelwerte von coso Hund ¢ der in den Bins akzeptierten Monte-Carlo-Ereignisse berechnet.

Die erste Auswertung mit isotroper Winkelverteilung im CMS lieferte Ergebnisse, die von den Endergebnissen zwar im Einzelnen abwichen, die wesentlichen Zuge aber gut wiedergaben. Dies war nach Versuchsauswertungen von simulierten Experimenten mit willkürlich vorgegebenen CMS-Winkelverteilungen zu erwarten (Beispiel in Abb.16).

 $\begin{array}{c} \frac{dw}{d\Omega^{\bullet}} \left[sr^{*} \right] \\ 0.14 \\ 0.12 \\ 0.08 \\ 0.06 \\ 0.06 \\ 0.04 \\ 0.02 \\ -\frac{1}{2111} \\ 0.02 \\ -\frac{1}{2111} \\ 0.03 \\ 0.00 \\ -\frac{1}{2111} \\ 0.00 \\ 0.00 \\ -$

Abb. 16:

Simuliertes Experiment (W=(1236±10) MeV, $0_p = 42^{\circ}$).

- vorgegebene Winkelverteilung

Resultat der mit isotroper CMS-Verteilung durchgeführten Auswertung.

5.2.3 Verbliebener zufälliger Untergrund in den Hodoskopen des Protonarmes

Die Ereignisse mit nur einem Szintillator pro Kammer sowohl in H1 als auch in H2 waren schon bei der Datenreduktion (vgl. 5.1) eliminiert worden. Vergleiche mit den Monte-Carlo-Zählraten ergaben jedoch, daß bei den verbleibenden Ereignissen die Einfachkanäle immer noch überhöht waren. Deshalb wurden bei den experimentellen und gerechneten Daten zusätzlich Ereignisse mit Einfachkanälen in den unteren 4 Kammern von H1, die in direkter Sicht zum Target stehen, eliminiert. Dieser Untergrund führt aber nicht nur zu zusätzlichen Ereignissen, sondern ein echtes Ereignis kann durch eine Zufallskoinzidenz innerhalb einer Kammer in einem falschen Kanal erscheinen. Darauf wurde korrigiert, indem den Monte-Carlo-Ereignissen derartige Zufallsereignisse mit der entsprechenden Fehlkodierung beigemischt wurden. Die Anzahl dieser Zufallsereignisse ergab sich aus der gemessenen Wahrscheinlichkeit für Mehrfachereignisse innerhalb eines Hodoskops. Eine Fehlkodierung innerhalb einer Kammer ergab sich für etwa 5 % der Ereignisse. Diese Korrektur hat, soweit festgestellt, keinen signifikanten Einfluß auf die Ergebnisse des Experiments.

5.2.4 Vergleich der experimentellen Ereignisse mit den Monte-Carlo-Ereignissen

Die Übereinstimmung experimenteller und gerechneter Daten wurde in Verteilungen verschiedener Variablen geprüft.

In Abb. 17 sind 2 Beispiele von Verteilungen der fehlenden Masse (Missing Mass) wiedergegeben, die beim Nachweis des gestreuten Elektrons und des Rückstoßprotons die Auflösung der π° -Masse darstellen. Die in 5.2.5 erwähnten Schnitte sind dabei nicht angebracht. Die Auflösung hängt von der jeweiligen Kinematik ab. Die Verteilungen werden mit wachsendem W breiter, was neben kinematischen auch apparative Gründe hat. Zu einem gewissen Teil wird die Verbreiterung auch durch die Strahlungseffekte bewirkt.

Abb. 17:

Missing Mass-Verteilungen bei Experiment und Monte Carlo bei verschiedener Kinematik.

<u>Abb.18:</u> Kinematische Schnitte bei W = (1256⁺10) MeV und $\Theta_p = 30^{\circ}$. ______ Schnitte , _____ Akzeptanzgrenzen.

- 36 -

5.2.5 Kinematische Schnitte

Abhängig von der jeweiligen Auflösung der π° -Masse in den Missing-Mass-Plots wurden individuell für die verschiedenen W-Bereiche und Einstellungen des Protonarms für Experiment und Simulation identische Missing-Mass-Cuts gemacht.

Dadurch erzielte Vorteile sind:

- a) Reduktion des eventuell noch verbliebenen Untergrundes;
- b) bessere Bestimmung der kinematischen Variablen W, q^2 , $0^{\texttt{*}}$ und ϕ .

Da die Auflösung vom Protonimpuls abhängt, wurden die Schnitte impulsabhängig durchgeführt. Abb.18 zeigt ein Beispiel dieser Schnitte in der durch Missing-Mass und cos0[#] gegebenen Ebene.

5.3 Korrekturen und Fehler

Eine Reihe von bisher nicht erwähnten Korrekturen wurde durchgeführt bzw. in Betracht gezogen.

Kernabsorption von Protonen:

Ausgehend von inelastischen Reaktionsquerschnitten³⁵⁾ wurden je nach der Zahl der zu durchlaufenden Szintillatoren Korrekturen von 0.5 bis 2.4 % (im Mittel 1%) angebracht. Diese Korrekturen waren schon bei der Auswertung der Monte-Carlo-Ereignisse durch Elimination entsprechender Anteile von Ereignissen berücksichtigt worden.

Weitwinkelbremsstrahlung:

Für ep-Koinzidenzen aus dem elastischen Strahlungsschwanz wurde nicht korrigiert. Bei der vorliegenden Messung war der größte Horizontalwinkel für Protonen $0_p = 54.1^\circ$. Der Protonwinkel für elastische Streuung unter $\mathscr{Y}_e = 15^\circ$ bei E = 3.271 GeV ist $0_p = 59.5^\circ$. Das heißt bei Weitwinkelbremsstrahlung

mit γ -Emission in sekundärer Elektron-Richtung erscheinen die Protonen unter $\Theta_p = 59.5^{\circ}$, bei γ -Emission in primärer Elektronrichtung ist der Protonlaborwinkel noch größer. Elastische Ereignisse mit in der Nähe der Peakingrichtungen emittierten Photonen bilden also keinen Untergrund zur π° -Messung. Die Missing-Mass-Verteilungen (Beispiele in Abb.17) ließen keine Überhöhung in der Nähe verschwindenden Massenquadrats erkennen.(Für weitere Diskussion s. May⁷⁾.)

Zweifach-*π*-Produktion:

Ereignisse mit 2 Pionen im Endzustand (Schwelle: W = 1208 MeV für $\pi^{\circ}\pi^{\circ}$, W = 1217 MeV für $\pi^{+}\pi^{-}$) können zwar nachgewiesen werden, sind aber durch die Schnitte in den Missing-Mass-Verteilungen abtrennbar. Das Verhältnis der Nachweiswahrscheinlichkeiten für Zweifach- π -Ereignisse und Einfach- π° -Ereignisse innerhalb der gemachten Cuts (5.2.5) wurde mit Monte-Carlo-Rechnungen zu weniger als 2 % bei W = (1256 ± 10) MeV und weniger als 10% bei W = (1276 ± 10) MeV abgeschätzt. Hinzu kommt, daß die Querschnitte für Zweifach- π -Produktion in dem betrachteten Energiebereich weit unter denen für Einfachproduktion liegen dürften (in der Photoproduktion ist bei entsprechenden Energien $\zeta_{tot}(\gamma p + p \pi^{+} \pi^{-})/\zeta_{tot}(\gamma p + p \pi^{\circ})$ < 1 $\frac{3^{36}}{3^{6}}$.

Mehrdeutige Ereignisse:

Mehrfachereignisse im Elektronspektrometer wurden unter Berücksichtigung der Impulshöhen des Cerenkov- und des Schauersignals analysiert. Da weder Korrelationen mit den in Koinzidenz nachgewiesenen Protonen nachzuweisen waren noch sich eine von den übrigen Ereignissen abweichende W-Abhängigkeit nachweisen ließ, wurden die verbleibenden Ereignisse durch eine für die einzelnen Messungen etwas verschiedene Korrektur von etwa 10 % berücksichtigt. Der Rest der mehrdeutigen Ereignisse im Protonarm führte zu einer Korrektur von 1 %. Zählerverluste:

Für Zählerverluste im Elektronarm wurde insgesamt eine Korrektur von (0.5 ± 0.5) % abgeschätzt. Auf der Protonseite sind entsprechende Verluste zu vernachlässigen, da dort bei ungenügender Ansprechwahrscheinlichkeit eines Zählers, das Ereignis meistens nur in einen anderen Kanaltransferiert wird.

Insgesamt wurde ein allgemeiner Normierungsfehler von ± 5 % abgeschätzt, der sich aus folgenden Anteilen durch quadratische Addition ergibt:

Akzeptanz	des	Elek	tr	onsı	pek	tr	ome	ete	rs	:	•			1 9	1
Akzeptanz	des	Pro	otor	nspe	ekt	ro	met	er	s:		•			1.5	5%
Targetdic	hte	und	Tar	rget	tlä	ing	e:			•				1	of 12
Leertarge	trat	;e (~1;	70):				•						0.5	573
Intensitä	tsme	ssun	g:											2	76
Mehrfache	reig	niss	e:											2	70
Zählerver	lust	e:								•	•	•		0.5	5%
Totzeitve	rlus	te:								•	•	•		zu	vernachlässigen
Verbliebe	ner	Unte	rgı	rund	1:			•					•	1	76
Strahlung	skor	rekt	ure	en:		•		•		•	•		•	3	70

Summe bei quadratischer Addition 5 %

Für die Fehler der zentralen Werte von W für die 8 W-Intervalle ergibt sich nach relativer Anpassung von Primärenergie und Elektronimpulsmessung aus einem Fehler der absoluten Impulsbestimmung von 3 $\#_{0}$ ein Fehler von ± 2.5 MeV. Der Fehler der angegebenen Werte von q² beträgt ± 0.1 fm⁻².

5.4 Die resultierenden Querschnitte

Die resultierenden differentiellen Querschnitte sind in der Tabelle 6 (am Schluß der Arbeit) als Funktion von W, cost und ϕ aufgeführt. Dabei ist der Impulsübertrag q² $\stackrel{\sim}{\sim}$ 15 fm⁻², sowie die Polarisation $\varepsilon \stackrel{\sim}{\sim}$ 0.95 fast konstant (weitere Einzelheiten zur Kinematik in Tab.2). In Tab. 6 sind lediglich statistische Fehler angegeben. In 5.3 wurde ein allgemeiner Normierungsfehler von ±5 % abgeschätzt. In 6.1 finden sich weitere Fehlerschätzungen, die in den Fits von Kap. 6 berücksichtigt wurden.

Die Ergebnisse von Tab. 6 sind eine Vielzahl weit über $\cos \phi$ und ϕ verteilter Querschnitte bei relativ geringer Einzelstatistik. Deshalb lassen sich die Resultate im Grunde nur durch Fits, die alle Daten der jeweiligen Winkelverteilung einschließen, sinnvoll physikalisch interpretieren (s. Kap.6). Für die in Abb. 19 gegebenen $\cos \phi$ -Verteilungen mit ϕ in der Nähe von 90°, die nur einen Ausschnitt aus den Daten darstellen, wurde ein gröberes Raster gewählt als bei den in Tab. 6 aufgeführten Ergebnissen. Die in Abb. 19 mit eingezeichneten Kurven sind die in Kap. 6 beschriebenen Fits an alle Daten der jeweiligen Winkelverteilung.

Tabelle	2:	Kinematische	Größen	zu den	vorliegenden	Daten	bei
		E = 3.271 Ge	1, J =	15°.			

W [GeV]	1.136	1.156	1.176	1.196	1.216	1.236	1.256	1.276	
K [GeV]	0.219	0.243	0.268	0.293	0.319	0.345	0.372	0.399	
$q^2 \left[fm^{-2} \right]$	15.62	15.50	15.37	15.24	15.11	14.98	14.84	14.70	
q^2 GeV ²	0.608	0.604	0.598	0.593	0.588	0.583	0.578	0.572	
q [GeV]	C.543	0.565	0.587	0.609	0.632	0.656	0.680	0.704	
q GeV	0.950	0.960	0.971	0.982	0.994	1.007	1.020	1.033	
g ₩ [GeV]	-0.087	-0.064	-0.041	-0.018	0.0014	0.026	0.048	0.069	
q * [GeV]	0.785	0.780	0.775	0.771	0.767	0.764	0.762	0.760	
p [★] π _O [GeV]	0.132	0.154	0.176	0.195	0.215	0.233	0.251	0.268	
ε	0.951	0.950	0.948	0.947	0.945	0.943	0.941	0.939	
Γ_{\pm} 10 ³ GeV	2.265	2.447	2.622	2.786	2.937	3.076	3.208	3.328	
0									

- 39 -

6. Bestimmung der Parameter A, A, A, C, C, D, und D,

Um die 6 Koeffizienten, durch die nach den Gl. (2.2.4) bis (2.2.6) die Winkelverteilung bei Dominanz von S- und P-Wellen im π N-System beschrieben werden kann, als Funktion von W zu bestimmen, wurden für die 8 W-Intervalle (1136 ±10) MeV bis (1276 ± 10) MeV 8 unabhängige Fits durchgeführt. Da die kleinsten experimentellen Zählraten pro Einzelzelle (Bin) unter 10 lagen, wurde nicht nach der Methode der kleinsten quadratischen Abweichungen angepaßt. Ausgehend von der Annahme, daß sowohl die experimentellen Zählraten pro Einzelzelle als auch die Monte-Carlo-Zählrate einer Poissonverteilung genügen, wurden die Koeffizienten \overline{A}_0 bis D₁ nach der Methode maximaler Wahrscheinlichkeit ("maximum likelihood") bestimmt.

In 6.1 werden die bei den Fits berücksichtigten Fehler diskutiert. Die Ergebnisse folgen in 6.2.

6.1 Fehlerbehandlung bei den Anpassungen

Es wurde versucht, realistische Fehler für die angepaßten Parameter dadurch zu erhalten, daß neben den rein statistischen auch systematische Fehler berücksichtigt wurden.

Tests hatten zwar gezeigt, daß die Resultate innerhalb der statistischen Fehler relativ unempfindlich gegen Änderungen in den Auswertemethoden wæren. Insbesondere war untersucht worden:

- a) die Abhängigkeit von der genauen Lage der Missing-Mass-Cuts (vergl. 5.2.5),
- b) die Abhängigkeit von der speziellen Wahl der Zelleneinteilung (vergl. 5.2.2) und
- c) wie weit die resultierenden Winkelverteilungen von der bei der Monte-Carlo-Rechnung angenommenen W-- und q²-Abhängigkeit der totalen π⁰-Querschnitte und den Strahlungskorrekturen abhängen.

Für Punkt c) wurden die Daten mit Hilfe von Monte-Carlo-Ereignissen analysiert, die unter Annahme eines in W und q^2 konstanten totalen π° -Querschnitts unter völliger Vernachlässigung der Strahlungskorrekturen erzeugt worden waren. Bei Fits an die so gewonnenen Querschnitte zeigte sich, daß trotz großer Abweichungen in einzelnen Querschnitten, die relativen Größenverhältnisse der so bestimmten Koeffizienten der Winkelverteilung befriedigend mit denen der genaueren Auswertung übereinstimmten.

Dennoch hängen die Ergebnisse empfindlich von Meßfehlern ab. Wesentlich für die resultierenden Koeffizienten sind dabei:

- 1) die relative Normierung der 4 verschiedenen Messungen zu $0_p = 30^\circ$, 42° , 48° und 54° und
- 2) die richtige Berechnung des vom Protonspektrometers akzeptierten Raumwinkels als Funktion des Protonimpulses und damit als Funktion von O.

Zu den Fehlern vom zweiten Typ tragen neben den geometrischen Fehlern der Hodoskope und den Fehlern, die beim Teilchentransport durch den Magneten bei sehr verschiedenen Impulsen auftreten, auch kinematische Verzerrungen bei, die aus dem Fehler der Primärenergie und der absoluten Impulsmessung durch das Elektronspektrometer oder auch der Primärstrahlrichtung entstehen können. Hinzu kommt eine Unsicherheit in der Untergrundbehandlung bei den Protonhodoskopen. Tatsächlich wächst die Zahl der Multiplier, die für die einzelnen (W, $\cos(,\phi)$ --Bins benötigt werden im Mittel mit fallendem Protonimpuls stark an. Untergrund jeglicher Art wird allerdings nicht unabhängig vom Spektrometerwinkel Θ_p sein, so daß verbleibender Untergrund auch zu Fehlern vom Typ 1 beiträgt, die ansonsten im wesentlichen durch die Messung der Primärintensität gegeben sind.

Um diese typischen Meßfehler in die Fehler der resultierenden Winkelverteilung umzusetzen, wurde die Normierung jeder Einzelmessung nicht festgesetzt, sondern mit 3 % Standardabweichung normalverteilt freigelassen, d.h. für jede der 4 Ein- 42 -

zelmessungen wurde ein Korrekturfaktor k für alle Querschnitte der betreffenden Messung eingeführt und gleichzeitig die Likelihoodfunktion um einen Faktor $\exp(-(k-1)^2/2(\Delta k)^2)$ erweitert mit $\Delta k = 0.03$. Ganz entsprechend wurde ein Parameter eingeführt, der es dem Fit erlaubte, die Impulsabhängigkeit der Akzeptanz des Protonarmes und damit die Querschnitte als Funktion von Θ^{\bigstar} korreliert zu modifizieren. Der hierdurch zugestandene Fehler betrug +(-) 5% bei einem Protonimpuls von 1.2 GeV mit linearer Abnahme bis -(+) 5% bei etwa 400 MeV.

Diese zusätzlichen Parameter hatten praktisch keinen Einfluß auf die resultierenden Koeffizienten der Winkelverteilung. Sie dienten lediglich zu einer Berücksichtigung von weiteren Meßfehlern, um damit realistische Fehler der Koeffizienten zu erhalten.

6.2 Ergebnisse der Empirischen Analyse

Ausgehend von dem Ansatz (vergl. Kap. 2.2) $\frac{d\mathbf{G}}{d\Omega^*} = A_0 + \varepsilon B_0 + (A_1 + \varepsilon B_1) \cos \Theta^* + (A_2 + \varepsilon B_2) \cos^2 \Theta^* + \varepsilon C_0 \sin^2 \Theta^* \cos 2\phi + \sqrt{\varepsilon(\varepsilon+1)} (D_0 + D_1 \cos \Theta^*) \sin \Theta^* \cos \phi$

für die Winkelverteilung wurden unabhängig für jeden der 8 Werte der invarianten Masse W folgende 6 Größen bestimmt:

$$\overline{A}_0 = A_0 + \varepsilon B_0$$
, $\overline{A}_1 = A_1 + \varepsilon B_1$, $\overline{A}_2 = A_2 + \varepsilon B_2$, C_0 , D_0 und D_1 .

Tab. 3 und die Abb. 20 und 21 enthalten neben diesen 6 Koeffizienten noch die totalen Querschnitte für Einfach- π° -Produktion, die nach

$$\overline{\mathcal{C}}_{t}(\pi^{\circ}) = \mathcal{C}_{t}(\pi^{\circ}) + \varepsilon \mathcal{C}_{g}(\pi^{\circ}) = 4\pi (\overline{A}_{o} + \overline{A}_{2}/3)$$
(6.2.2)

Tabelle 3: Koeffizienten der Winkelverteilung in $\mu b/sr$ und totaler π° -Querschnitt $\overline{\zeta}_{t}(\pi^{\circ})$ in μb bei $q^{2} \approx 15$ fm⁻² (Fehler s. Text, Kinematik s. Tab. 2)

M	[MeV]	A _o '	Λ ₁	A ₂	Со	Do	^D 1	<u></u> ζ _t (π [°])	x ²	Freiheits- grade
	1136	3.8o±0.30	1.71±0.35	-0.28 ±0.70	0.62 ±0.43	-1.11 ±0.25	-0.66 ±0.51	46.6 ±2.6	43	60
	1156	7.00±0.49	2.45±0.42	-2.57 ±0.88	-1.10 ±0.60	-2.01 ±0.42	-2.10 ±0.61	76.9 ±4.0	75	80
	1176	13.01±1.04	2.56±0.60	-5.25 ±1.48	-2.18 ±1.24	-3.00 ±0.88	-3.73 ±0.88	140.3 ±8.0	96	95
	1196	17.97±0.61	2.42±0.61	-9.55 10.98	-5.41 ±0.76	-1.48 ±0.49	-3.73 ±1.03	184.1 ±4.8	117	116
	1216	20.22±0.60	1.80±0.68	-9.80 ±0.97	-9.46 ±0.75	-0.53 +0.47	-5.73 ±0.84	212.9 ±5.4	152	132
	1236	17.98±0.66	2.18±0.67	-10.53 ±1.07	-8.98 10.81	0.02 ±0.44	-3.69 ±0.74	182.8 ±4.3	125	119
	1256	15.03±0.55	1.93±0.56	-9.92 ±0.81	-8.82 10.68	-0.06 ±0.40	-2.98 ±0.66	146.9 ±4.2	76	102
	1276	10.22±0.46	0.05±0.49	-5.89 ±0.82	-7.62 ±0.66	0.24 ±0.37	-1.82 ±0.58	103.6 ±3.3	82	83
		5								

<u>Abb.20:</u> Koeffizienten der Winkelverteilung bei q²≈15fm⁻², £≈0.95. Dispersionstheorie (v. Gehlen,s. Kap.8)

<u>Abb.21</u> : Totaler $\tilde{\eta}^{\circ}$ -Erzeugungsquerschnitt $\overline{\mathcal{G}}_{t}(\tilde{\eta}^{\circ}) = \mathcal{G}_{t}(\tilde{\eta}^{\circ}) + \mathcal{E}\mathcal{G}(\tilde{\eta}^{\circ})$ bei $q^{2}\approx 15$ fm⁻², $\mathcal{E}\approx 0.95$. Dispersionstheorie (v. Gehlen, vgl. Kap.8)

bestimmt wurden. Die angegebenen Fehler schließen den Normierungsfehler von ± 5 % (vergl. 5.3) nicht ein. Die Terme \overline{A}_0 , \overline{A}_2 und C_0 zeigen klar Resonanzstruktur. Sie lassen sich zu einem großen Teil durch die magnetische Dipolamplitude M₁₊ erklären. Völlige M₁₊-Dominanz hätte $\overline{A}_0:\overline{A}_2 = -5:3$, $\overline{A}_2 = C_0$ und $\overline{A}_1 = D_0 = D_1 = 0$ zur Folge. Die Größenverhältnisse von \overline{A}_0 , \overline{A}_2 und C_0 entsprechen dem zwar ungefähr, jedoch zeigen die Daten deutliche Interferenz von S- und P-Wellen durch den signifikant positiven Term \overline{A}_1 und Interferenz von Amplituden longitudinaler und transversaler Photonen.

Da alle älteren Messungen nur einen viel kleineren Teil des Phasenraumes von π° -Meson und Proton erfaßt haben, konnte die Interferenz von S- und P-Wellen in der Elektroproduktion bisher nicht beobachtet werden. Bei Photoproduktion von π° -Mesonen in der Nähe der ersten Resonanz tritt dieser Interferenzterm sehr viel weniger in Erscheinung⁵⁰⁾. Die einzigen bisher veröffentlichten Daten +), die Information über Beiträge longitudinal polarisierter Photonen im π^{O} -Kanal enthalten, sind das Experiment von Mistretta et al.³⁾ bei $q^2 \stackrel{<}{=} 10 \text{ fm}^{-2}$ und die Messung von Kajiura et al.⁴) bei $q^2 = 3$ und 8 fm⁻². Kajiura et al. haben Querschnitte bei $0 = 180^{\circ}$ durch Nachweis der Vorwärts-Protonen bei mehreren Werten der Polarisation & gemessen. Das heißt aber (vergl. Gl. 6.2.1), daß die longitudinalen Beiträge direkt und nicht über die Interferenzterme gemessen wurden. Es ergab sich keine Evidenz für longitudinale Anteile bei $0\frac{1}{\pi} = 180^{\circ}$.

Die Apparatur von Mistretta et al.³⁾, die auf $\mathbb{G}_{\pi}^{\bigstar} \stackrel{\geq}{\approx} 100^{\circ}$ beschränkt war, gestattete es nicht, zwischen D_o und D₁ zu unterscheiden. Diese Autoren erhielten deshalb nur unter der Annahme D = 0 Ergebnisse für D₁, die abgesehen von einem Meßpunkt (q² = 10 fm⁻², W = 1232 MeV) im Vorzeichen mit dem vorliegenden Experiment übereinstimmen.

+) Das Experiment von Siddle et al.⁹⁾ ist mit dem vorliegenden direkt vergleichbar. Da bis jetzt nur vorläufige Daten vorliegen, wird dieses Experiment hier nicht diskutiert. Bei einem kürzlich (ebenfalls bei DESY) abgeschlossenen Experiment⁸⁾ zur π° -Produktion im Bereich von $\Delta(1236)$ bei $q^2 = 0.35 (\text{GeV/c})^2 (9 \text{ fm}^{-2})$ und $q^2 = 1 (\text{GeV/c})^2 (25.7 \text{ fm}^{-2})$ ließ sich kein cos¢-abhängiger Anteil in der Winkelverteilung nachweisen. Allerdings wurde bei diesem Experiment der Impuls der Protonen nicht gemessen. Infolgedessen liefert es über D₁ (wie auch \overline{A}_1) keine Information, wohl aber über D_o. Die Messung bei $q^2 = 1 (\text{GeV/c})^2$ wird bei May⁷) mit den beim gleichen Impuls-übertrag genommenen Daten des vorliegenden Experiments verglichen.

Bei der vorliegenden Messung werden D_0 und D_1 unabhängig bestimmt und erweisen sich beide als von Null verschieden. D_1 hat resonante Form als Funktion von W, was Interferenz eines resonanten longitudinalen Multipols mit M_{1+} vermuten läßt (weiteres hierzu in Kap. 7). Die Amplituden longitudinal polarisierter Photonen, die hier zwar sehr deutlich über die Interferenz mit transversalen Amplituden nachgewiesen werden, sind zu klein, um zu Einarm-Messungen in Resonanznähe wesentlich beizutragen. Beispielsweise läßt sich aus den vorliegenden Daten bei W = 1216 MeV und $q^2 = 15.1 \text{ fm}^{-2}$ für das Verhältnis der totalen π^0 -Erzeugungs-Querschnitte longitudinal und transversal polarisierter Photonen etwa 1 bis 3 % abschätzen (vgl. die Ergebnisse von Kap. 7.3). Einarmmessungen bei $q^2 = 0.6 (\text{GeV/c})^2 \text{ ergeben}^{37}$

$$\frac{\mathcal{G}_{\ell}}{\mathcal{G}_{t}} = \frac{\mathcal{G}_{\ell}(\pi^{\circ}) + \mathcal{G}_{\ell}(\pi^{+})}{\mathcal{G}_{t}(\pi^{\circ}) + \mathcal{G}_{t}(\pi^{+})} = 0.14 \pm 50 \%$$

Die bisherige Analyse ging von der Annahme aus, daß die Winkelverteilung durch S- und P-Wellen im Pion-Proton-System dominiert wird. Um die Abhängigkeit der obigen Ergebnisse von dieser Annahme zu überprüfen, wurden in Fits mit 9 Parametern die Glieder der nächst höheren Ordnung in der Winkelverteilung mitbestimmt. Der differentielle Ouerschnitt wurde alsofolgendermaßen parametrisiert: - 45 -

$$\frac{d\mathbf{G}}{d\Omega^{*}} = \overline{A}_{0} + \overline{A}_{1} \cos^{\ast} + \overline{A}_{2} \cos^{2} \cos^{\ast} + \overline{A}_{3} \cos^{3} \cos^{\ast}$$

$$+ \varepsilon (C_{0} + C_{1} \cos^{\ast}) \sin^{2} \cos^{\ast} \cos^{2} \phi$$

$$+ \sqrt{\varepsilon (\varepsilon+1)^{\ast}} (D_{0} + D_{1} \cos^{\ast} + D_{2} \cos^{2} \cos^{\ast}) \sin^{\ast} \cos\phi$$

$$(6.2.3)$$

Die Ergebnisse dieser Fits zeigen vor allem folgendes:

- Die Resultate für A₀, A₂, C₀, D₀ und D₁ stimmen sehr gut mit denen von Tab. 3 überein. Die Standardabweichungen für diese Größen fallen 1-2 mal größer aus als diejenigen von Tab. 3.
- 2) Die vorliegenden Daten reichen nicht aus, um die õosound cos³ - Anteile in der Winkelverteilung sicher zu trennen.
- 3) χ^2 wird bei zwei Fits durch Einschluß von \overline{A}_3 , C_1 und D_2 etwas stärker erniedrigt als bei bloßer Reduktion der Zahl der Freiheitsgrade um 3 zu erwarten wäre. In diesen beidenFällen ergibt sich die Wahrscheinlichkeit, daß die Verbesserung in χ^2 nur zufällig erreicht wurde zu 5 %. Die Daten werden aber nicht als ausreichend betrachtet, auf signifikante Beiträge von \overline{A}_3 , C_1 oder D_2 zu schließen.

7. Multipol-Fits

7.1 Vorbemerkung

Eine Multipolanalyse der vorhandenen Daten auf rein empirischer Basis, derart daß z.B. nicht mehr als Dominanz von S- und P-Wellen im π N-System vorausgesetzt würde, ist nicht nöglich. Denn auch unter dieser Annahme gibt es 7 (komplexe) Multipolamplituden (vgl. 2.3) E₀₊, S₀₊, \mathbb{M}_{1-} , S₁₋, M₁₊, E₁₊ und S₁₊. Es wären also 14 Parameter zu bestimmen. Andererseits wird die genessene Winkelverteilung unter der gleichen Annahme durch nur 6 Parameter beschrieben, und auch durch Variation von ε läßt sich die Zahl der Meßgrößen nur auf 9 erhöhen⁺⁾. Erst zusammen mit einem entsprechenden Datensatz über π^+ -Produktion ließe sich nach einer Isospinzerlegung das Theorem von Watson (vgl. 2.4.) ohne weitere Annahmen zur Bestimmung der Phasen der Multipole aus den π -N-Streuphasen anwenden.

Im folgenden wird deshalb vor allem versucht, die dominante M₁₊-Amplitude und ihre Interferenzterme mit anderen Multipolamplituden zu isolieren.

7.2 Resonante Multipole bei W = 1236 MeV

Die sicherste Bestimmung von M_{1+} läßt sich bei W 1236 MeV durchführen. In den 3 Meßgrößen \overline{A}_2 , C_0 und D_1 kommen nur Multipolamplituden mit l = 1 vor (vgl. Gl. 2.3.7). Es wird angenommen, daß diese Größen sich durch $|M_{1+}|^2$ und die Interferenzterme, die M_{1+} enthalten, weitgehend erklären lassen. Da die π -N-Streuphasen P_{11} und P_{31} nahe bei 0° sind, P_{33} aber in der Resonanz durch 90° geht, wird der zu \overline{A}_2 und C_0 gleich beitra-

gende Interferenzterm Re(M_1+M_1-) vernachläßigt. Dasselbe Phasen-

⁺⁾ Es liegen noch nicht vollständig ausgewertete Daten bei \mathscr{Y}_{e} = 57°, ε = 0.5 vor, die aber von geringerer Statistik als die vorliegenden Daten sind.

- 47 -

argument gilt für die Isospin 3/2 Anteile von S_{1+} und E_{1+} in den Interferenztermen $\operatorname{Re}(E_{1+}M_{1-}^{\bigstar})$, $\operatorname{Re}(E_{1+}S_{1-}^{\bigstar})$, $\operatorname{Re}(S_{1+}M_{1-}^{\bigstar})$ und $\operatorname{Re}(S_{1+}S_{1-}^{\bigstar})$. Bei S_{1+} scheint der Isospin 3/2 Anteil nach der gemessenen W-Abhängigkeit von D_1 zu überwiegen. Aber auch unabhängig von der Phasenlage tragen diese in kleinen Größen quadratischen Terme zur Messung wenig bei und sollen deshalb vernachlässigt werden.

Damit lassen sich nach $Gl.(2.3.7)\overline{A}_2$, C und D darstellen als

$$\overline{A}_{2} = \frac{|\vec{p}_{\pi} *|W}{MK} \left\{ -\frac{3}{2} |M_{1+}|^{2} + \frac{9}{2} |E_{1+}|^{2} + 9 \operatorname{Re}(M_{1+}E_{1+}) + 12\varepsilon |\hat{s}_{1+}|^{2} \right\}$$

$$C_{0} = \frac{|\vec{p}_{\pi} *|W}{MK} \left\{ -\frac{3}{2} |M_{1+}|^{2} + \frac{9}{2} |E_{1+}|^{2} - 3 \operatorname{Re}(M_{1+}E_{1+}) \right\}$$

$$(7.2.1)$$

$$(7.2.2)$$

$$D_{1} = -\frac{|\vec{p}_{\pi} *|W}{MK} - 6\sqrt{2} \operatorname{Re}\left[\hat{s}_{1+}(E_{1+} - M_{1+}) * \right]$$

$$(7.2.3)$$

Durch einen Fit an die Daten bei W = 1236 MeV sollen $|M_{1+}|$, Re $(M_{1+}S_{1+})$ und Re $(M_{1+}E_{1+})$ ermittelt werden. Für die quadratischen Glieder in $|E_{1+}|$ und $|S_{1+}|$ gelten die Ungleichungen

$$|\mathbf{E}_{1+}|^{2} \stackrel{\geq}{=} \frac{\left(\operatorname{Re}\left(\mathbf{M}_{1+}\mathbf{E}_{1+}^{\dagger}\right)\right)^{2}}{|\mathbf{M}_{1+}|^{2}} \quad \text{und} \quad |\hat{\mathbf{S}}_{1+}|^{2} \stackrel{\geq}{=} \frac{\left(\operatorname{Re}\left(\mathbf{M}_{1+}\hat{\mathbf{S}}_{1+}^{\dagger}\right)\right)^{2}}{|\mathbf{M}_{1+}|^{2}}, \quad (7.2.4)$$

wobei für die Isospin 3/2 Anteile das Gleichheitszeichen wegen des Watsontheorems gilt (vgl. 2.4). Bei Benutzung von (7.2.4) mit Gleichheit werden also in $|E_{1+}|^2$ und $|\hat{S}_{1+}|^2$ die Projektionen von E_{1+} und \hat{S}_{1+} auf M_{1+} berücksichtigt. Ebenso wird die Korrektur Re $(\hat{S}_{1+}E_{1+}^{*})$ aus den Projektionen von \hat{S}_{1+} und E_{1+} auf M_{1+} gebildet. Um zu prüfen wie weit \overline{A}_{0} durch die entsprechende Multipoldarstellung wiedergegeben wird, wurde

$$\overline{A}_{0} = \frac{|\vec{p}_{\pi}^{*}|W}{MK} \left\{ \frac{5}{2} |M_{1+}|^{2} + \frac{9}{2}|E_{1+}|^{2} - 3 \operatorname{Re}(M_{1+}E_{1+}^{*}) + 4\varepsilon |\hat{s}_{1+}|^{2} \right\} + \overline{A}_{0s}$$
(7.2.5)

- 48 -

gesetzt, mit einem freien Parameter \overline{A}_{0} , \overline{A}_{1} und D werden weiterhin als freie Parameter mitgenommen. Damit ergibt sich also ein Fit, der sich von dem in 6.2 bei W = 1236 MeV nur durch die Parametrisierung unterscheidet.

Die Ergebnisse in Tab. 4 zeigen nur einen kleinen resonanten E_{1+} -Beitrag von etwa - 3 % von M_{1+} ; für den resonanten Anteil von S₁₊ ergeben sich immerhin etwa - 7% von M_{1+} .Die Ergebnisse von Tab. 4 enthalten den Mormierungsfehler von ± 5 % (vgl.5.3), dagegen sind keine Fehler enthalten, die durch die gemachten physikalischen Annahmen entstehen können.

Das Ergebnis für M_{1+} läßt sich auch als Übergangsformfaktor $G_{\underline{N}}^{*}(q^{2})$ ausdrücken²) nach

$$G_{M}^{*2}(q^{2}) = \frac{\left| \vec{p}_{\pi}^{*} \right|_{W}}{MK} \left| \frac{M}{1} \right|_{1}^{2} \frac{3\Gamma}{\alpha \sin^{2} \delta} \frac{(W^{2} - M^{2})W}{\left| \vec{q} \right|^{2}}$$
(7.2.6)

Mit der Resonanzbreite $\Gamma = 120$ MeV und der P₃₃-Streuphase $\delta = 90^{\circ}$ ergibt sich aus $|M_{1+}|$ bei W = 1236 MeV

$$G_{M}^{\bigstar 2}(q^{2}) = 0.63 \pm 0.07$$

Dieses Resultat ist zusammen mit dem entsprechenden Ergebnis dieses Experiments bei $q^2 = 25 \text{ fm}^{-2}$ und mit den Ergebnissen anderer Autoren in Abb. 22 dargestellt. Die Übereinstimmung mit den Ergebnissen von Bartel et al.³⁸⁾ ist gut, obwohl bei diesem Experiment $G_M^{(q^2)}$ nur aus der W-Abhängigkeit des totalen ep-Querschnitts ermittelt werden konnte. Die in Ref. 8) angegebenen, in Abb. 21 mit eingezeichneten Resultate wurden nicht aus der gemessenen Winkelverteilung, sondern aus der W-Abhängigkeit der totalen π° -Querschnitte bestimmt. (Vgl. 7.3 und Kap. 8 zur W-Abhängigkeit von $|M_{1,1}|$.)
Tabelle 4 :

+) M_{1+} , E_{1+} , S_{1+} und ein nicht durch diese Multipole allein zu erklärender Anteil \overline{A}_{os} von \overline{A}_{o} bei

W = 1236 MeV, und $q^2 = 15 \text{ fm}^{-2}$.

(Die Multipole sind in $(\mu b)^{1/2}$ angegeben, Fehler s. Text, Kinematik s. Tab. 2).

$\left(\frac{\left \vec{p}_{\pi}^{*}\right W}{MK}\right)^{1/2} M_{1+} $	$\frac{ \vec{p}_{\pi} W}{MK} M_{1+} ^2$
2.51 ± 0.13	6.3 ± 0.7

$$\left(\frac{|\vec{p}_{\pi}^{*}|W}{MK}\right)^{1/2} \frac{\operatorname{Re}(M_{1+}E_{1+}^{*})}{|M_{1+}|} \frac{\operatorname{Re}(M_{1+}E_{1+}^{*})}{|M_{1+}|^{2}} -0.028 \pm 0.015$$

$\left(\frac{ \vec{p}_{\pi}^{*} W}{MK}\right)^{1/2} \frac{\operatorname{Re}(M_{1+}S_{1+}^{*})}{ M_{1+} }$	$\frac{\frac{\text{Re}(M_{1+}S_{1+}^{*})}{ M_{1+} ^{2}}}$
-0.169 ± 0.035	-0.067 ± 0.014

 $A_{os} = (1.71 \pm 0.88) \ \mu b/sr$

⁺⁾ Bei der vorligenden Kinematik unterscheiden sich $\$_{1+}$ und $\$_{1+}$ um weniger als 0.5% (vgl. Tab. 2 und Gl. 2.3.6)

7.3 Bestimmung des Multipols M₁₊ und seiner Interferenzterme als Funktion von W.

In größerem Abstand vom Resonanzdurchgang kann M_{1+} nicht allein aus den Größen \overline{A}_2 , C_0 und D_1 gewonnen werden, weil dann die Interferenz von M_{1+} mit M_{1-} stark zu den Querschnitten beitragen kann. Ausgehend von der Annahme, daß die Winkelverteilung sich im wesentlichen durch M_{1+} und seine Interferenzterme beschreiben läßt, wird versucht, $|M_{1+}|^2$ und die 5 Interferenzterme $\operatorname{Re}(M_{1+}E_{0+}^{\bigstar})$, $\operatorname{Re}(M_{1+}S_{0+}^{\bigstar})$, $\operatorname{Re}(M_{1+}M_{1-}^{\bigstar})$, $\operatorname{Re}(M_{1+}E_{1+}^{\bigstar})$ und $\operatorname{Re}(M_{1+}S_{1+}^{\bigstar})$ als Funktion von W zu bestimmen. Die übrigen Terme in $\operatorname{Gl.}(2.3.7)$ sollen möglichst als Korrekturen berücksichtigt werden.

Folgende Annahmen und Vernachlässigungen werden gemacht:

1) die quadratischen Terme |E₀₊|², |S₀₊|², |E₁₊|² und |S₁₊|² werden (entsprechend zu Kap. 7.2) aus den Projektionen dieser Multipole auf M₁₊ gebildet, z.B.

$$|E_{0+}|^2 = \frac{\text{Re}(M_{1+}E_{0+})^2}{|M_{1+}|^2}$$

2) Da die π -N-Streuphasen P₁₁ und P₃₁ klein sind, kann (unter Vernachlässigung von Im(M₁₋)) $|M_{1-}|$ etwas besser als nach der bei 1) angegebenen Methode durch

$$M_{1-} = \frac{\operatorname{Re}(M_{1+}M_{1-})}{\cos \delta}$$

berücksichtigt werden. δ ist die P₃₃-Streuphase⁵¹⁾. Bei W = 1236 MeV hängt diese Berechnung zu empfindlich von der Streuphase P₃₃ und der Annahme Im(M₁) = 0 ab. Deshalb wird dort für die Korrekturen $|M_{12}|^2$ der Mittelwert aus den Resultaten bei W = 1216 MeV und W = 1256 MeV benutzt.

3) Die Beiträge des nicht mit M₁₊ interferierenden Multipols S₁₋ werden vernachlässigt. 4) Wegen der gemessenen W-Abhängigkeit von D₁ kann angenommen werden, daß M₁₊ und S₁₊ näherungsweise gleichen Phasenverlauf haben. Um die Interferenzterme, die S₁₊ aber nicht M₁₊ enthalten, zu berücksichtigen, wird dies vorausgesetzt. Weil unter dieser Annahme

$$S_{1+} = Re \left(\frac{M_{1+} S_{1+}}{|M_{1+}|^2} \right)^{M_{1+}}$$

folgt für die Interferenzterme mit E₀₊, E₁₊, M₁₋ und S₀₊

$$\operatorname{Re}(S_{1+}E_{0+}) = \frac{\operatorname{Re}(M_{1+}S_{1+}) \operatorname{Re}(M_{1+}E_{0+})}{|M_{1+}|^2} \quad \text{etc.}$$

5) Interferenzterme, die weder M₁₊ noch S₁₊ enthalten, werden vernachlässigt.

Mit den erwähnten Näherungen für die Terme, die M_{1+} nicht enthalten, werden die Größen \overline{A}_0 , \overline{A}_1 , \overline{A}_2 , C_0 , D_0 und D_1 also dargestellt (vergl. (2.3.7)) als

$$\overline{A}_{0} = \frac{\left|\stackrel{\stackrel{\bullet}{P}}{\pi}\right|^{W}}{MK} \left\{ \left| E_{0+} \right|^{2} + \left| M_{1-} \right|^{2} + \frac{5}{2} \left| M_{1+} \right|^{2} + \frac{9}{2} \left| E_{1+} \right|^{2} \right. \\ \left. - 3 \operatorname{Re}(M_{1+}E_{1+}^{*}) + \operatorname{Re}(M_{1+}M_{1-}^{*}) + \varepsilon\left(\left|\hat{S}_{0+}\right|^{2} + 4\left|\hat{S}_{1+}\right|^{2}\right)\right) \right\} \\ \overline{A}_{1} = \frac{\left|\stackrel{\stackrel{\bullet}{P}}{\pi}\right|^{W}}{MK} \left\{ 2 \left\{ \operatorname{Re}(M_{1+}E_{0+}^{*}) + \varepsilon \operatorname{Re}(4\hat{S}_{1+}\hat{S}_{0+}^{*})\right\} \\ \overline{A}_{2} = \frac{\left|\stackrel{\stackrel{\bullet}{P}}{\pi}\right|^{W}}{MK} \left\{ -\frac{3}{2} \left| M_{1+} \right|^{2} + \frac{9}{2} \left| E_{1+} \right|^{2} + 9 \operatorname{Re}(M_{1+}E_{1+}^{*}) \\ \left. - 3 \operatorname{Re}(M_{1+}M_{1-}^{*}) + 12 \varepsilon\left|\hat{S}_{1+}\right|^{2} \right\}$$
(7.3.1)

$$C_{o} = \frac{|\vec{p}_{\pi}|W}{MK} \left\{ -\frac{3}{2} |^{M}1+|^{2} + \frac{9}{2}|E_{1+}|^{2} - 3Re(M_{1+}E_{1+}) - 3Re(M_{1+}M_{1-}) \right\}$$

- 51 -

$$D_{0} = \frac{\left| \vec{p} *_{\pi} \right|^{W}}{MK} \sqrt{2} \left\{ \operatorname{Re}(M_{1+} \hat{s} *_{0+}) + 2 \operatorname{Re}(\hat{s}_{1+} \mathbb{E} *_{0+}) \right\}$$
$$D_{1} = -\frac{\left| \vec{p} *_{\pi} * \right|^{W}}{MK} \sqrt{2} \quad 6 \quad \left\{ -\operatorname{Re}(M_{1+} \hat{s} *_{1+}) + \operatorname{Re}(\hat{s}_{1+} \mathbb{E} *_{1+$$

Die Ergebnisse der Fits, die gegenüber den Fits zur Bestimmung von \overline{A}_0 , \overline{A}_1 , \overline{A}_2 , C_0 , D_0 und D_1 (Kap. 6.2) lediglich eine andere Parametrisierung darstellen, finden sich in Tab.5 und den Abb. 23 und 24. Der Normierungsfehler von ± 5 % ist in $|M_{1+}|^2$ nicht enthalten. Fehler, die auf den physikalischen Annahmen beruhen, sind nicht berücksichtigt (für die eingezeichneten Kurven s.Kap.8). Für W = 1136 MeV und W = 1156 MeV werden keine Ergebnisse angegeben, da hier die Multipole M_{1+} , E_{0+} , M_{1-} und S_{0+} alle von gleicher Größenordnung sein können, womit die für den Fit benötigten Annahmen nicht erfüllt wären.

Die Ergebnisse für $|M_{1+}|^2$, $Re(M_{1+}E_{1+})$ und $Re(M_{1+}S_{1+})$ sind in befriedigender Übereinstimmung mit den für W = 1236 MeV unter anderen Annahmen gewonnenen (vgl. Tab. 4, Kap. 7.2). Sie haben folgende charakteristischen Züge:

Neben M_{1+} hat auch S_{1+} resonantes Verhalten, erkenntlich daran, daß $\operatorname{Re}(M_{1+}S_{1+}^{*}) / |M_{1+}|^2$ über den ganzen W-Bereich konstant bei etwa - 6 % bleibt. Der resonante E_{1+} -Pol wird in der Nähe der Resonanz sehr klein; eine Nullstelle wäre mit den Daten verträglich.

In der Nähe der Resonanzstelle ist auf Grund der Phasen von M_{1+} und $M_{1-}(s.o.)$ eine Nullstelle von $\operatorname{Re}(M_{1+}M_{1-})$ zü erwarten. Dies wird durch die Messung deutlich bestätigt. Die Werte für $\operatorname{Re}(M_{1+}M_{1-})/|M_{1+}|^2$ entsprechen Werten für $\frac{|\vec{p}\pi|W}{MK}|M_{1-}|^2$

von etwa 0.5 µb. Im Gegensatz zu ^M1- ^{hat E}o+ ⁱⁿ der Nähe der Resonanzstelle beträchtliche Imaginärteile.

Im Vergleich zur Photoproduktion³⁹⁾ fällt auf, daß $\operatorname{Re}(M_{1+}E_{0+})$ für W <1200 MeV umgekehrtes Vorzeichen hat. $\operatorname{Re}(M_{1+}M_{1-}^{*})/|M_{1+}|^2$ scheint in der Photoproduktion etwas kleiner zu sein, jedoch erscheint der charakteristische Nulldurchgang in gleicher Weise. Die Werte für $\operatorname{Re}(M_{1+}E_{1+}^{*})/|M_{1+}|^2$ stimmen etwa überein. Mit den vorliegenden Daten direkt vergleichbare experimentelle Information enthält das Experiment von Siddle et al.⁹⁾. Zur Zeit liegen aber nur vorläufige Ergebnisse vor.

Bei Vergleichen mit den Ergebnissen von Mistretta et al.³⁾ sollte beachtet werden, daß die dort angegebenen Ergebnisse eines $\operatorname{Re}(\operatorname{M}_{1+}\operatorname{M}_{1-}^{*})$ einschließenden Fits auf einem Fehler beruhen. Bei diesen Fits war der Interferenzterm $\operatorname{Re}(\operatorname{M}_{1+}\operatorname{M}_{1-}^{*})$ in $\overline{\operatorname{A}}_{o}$ ("A" in Ref. 3) mit falschem Vorzeichen enthalten, während er in den anderen Termen richtig enthalten war. Dies führt zum Teil zu Abweichungen außerhalb der in Ref. 3 zitierten statistischen Fehler. Die Ergebnisse eines anderen Fits, bei dem M₁₊ und $\operatorname{Re}(\operatorname{M}_{1+}\operatorname{E}_{1+}^{*})$ allein aus A₂ und C₀ ("C" und "F" in Ref. 3) bestimmt wurden, bleiben davon unberührt. Die resultierenden Werte für $\operatorname{Re}(\operatorname{M}_{1+}\operatorname{E}_{1+}^{*})/|\operatorname{M}_{1+}|^2$ sind von ähnlicher Grösse wie die des vorliegenden Experiments. Bei q² \sim 0.25 und 0.4 (GeV/c)² ist keine Nullstelle von $\operatorname{Re}(\operatorname{M}_{1+}\operatorname{M}_{1+}^{*})$ zu erkennen.

Tabelle 5 :	Ergebnisse für $ M_{1+} ^2$ [µb] und die Interferenzterme von M_{1+} mit	
	E_{1+} , S_{1+} , M_{1-} , E_{0+} und S_{+} (Fehler s. Text, Kinematik s. Tab. 2).	

W [MeV]	$\frac{ \vec{p}_{\pi}^{*} W}{MK} M_{1+} ^{2}$	$\frac{\operatorname{Re}(M_{1+}E_{1+})}{ M_{1+} ^{2}} [\%]$	$\frac{\frac{\operatorname{Re}(M_{1+}S_{1+}^{*})}{ M_{1+} ^{2}} [\%]$	$\frac{\frac{\operatorname{Re}(M_{1}+M_{1}^{*})}{ M_{1}+ ^{2}} [\%]$	$\frac{\frac{\operatorname{Re}(M_{1+}E_{0+}^{\star})}{ M_{1+} ^{2}} \left[\% \right]}{ M_{1+} ^{2}}$	$\frac{\frac{\operatorname{Re}(M_{1+}S_{0+}^{\bigstar})}{ M_{1+} ^2} \left[\% \right]$
1176	4.77 ± 0.22	- 5.7 ± 4.4	- 6.8 ± 1.8	- 28.1 ± 4.6	16.1 ± 6.0	- 41.8 ± 13.3
1196	6.82 ± 0.21	- 5.4 ± 1.6	- 5.1 ± 1.5	- 17.9 ± 2.5	15.0 ± 4.8	- 13.8 ± 5.1
1216	7.97 ± 0.26	- 1.0 ± 1.3	- 7.7 ± 1.2	- 9.0 ± 2.0	10.3 ± 5.3	- 3.2 ± 4.5
1236	6.83 ± 0.21	- 2.6 ± 1.4	- 6.0 ± 1.3	- 3.7 ± 3.0	16.5 ± 5.4	2.2 ± 4.6
1256	5.60 ± 0.19	- 2.1 ± 1.6	- 6.4 ± 1.6	4.6 ± 4.5	17.7 ± 5.1	1.3 ± 4.8
1276	3.96 ± 0.19	+ 3.2 ± 2.6	- 6.3 ± 2.2	11.0 ± 6.9	1.7 ± 6.3	4.3 ± 6.7

8. Vergleich mit theoretischen Modellen

Die Ergebnisse des vorliegenden Experiments erlauben detaillierte Vergleiche mit theoretischen Modellen⁺⁾. Im Quarkmodell werden die Übergänge vom Nukleon zu $\Delta(1236)$ als Übergänge zwischen Zuständen mit dem Quarkbahnimpuls L = 0 beschrieben. Die Anregung von $\Delta(1236)$ wird durch einen Spinflip erreicht, was Absorption magnetischer Dipolstrahlung entspricht⁴⁰⁾. Im Rahmen von SU₆-Symmetrie (vergl. Ref. 34) sind sowohl das SU₃-Oktett, welches das Nukleon enthält, als auch das SU₃-Dekuplett mit $\Delta(1236)$ in einem SU₆-Multiplett (56,L=0⁺), innerhalb dessen die Raumfunktionen aller Dreiquarkzustände gleich sind. Daraus ergibt sich eine Proportionalität zwischen dem Übergangsformfaktor $G_M^{*}(q^2)$ und den Nukleonformfaktoren $G_M^{*}(q^2)$. (Vergl. Clegg⁴¹⁾ zu den Mehrdeutigkeiten die beim Vergleich von Übergangsformfaktor und Nukleonformfaktor beim nichtrelativistischen Quarkmodell entstehen.)

Das vorliegende Experiment zeigt, daß die Amplitude M_{1+} den Hauptbeitrag zur Anregung von $\Delta(1236)$ liefert, daß der elektrische Quadrupol E₁₊ in Resonanznähe sehr klein ist, daß aber die skalare Amplitude immerhin 5 bis 10 % der magnetischen beträgt. Der Übergangsformfaktor fällt etwa so schnell (bzw. etwas schneller³⁸⁾) mit q² ab wie der Nukleonformfaktor (vgl. Abb. 22).

Die bislang numerisch erfolgreichsten Modelle zur Photo- und Elektroproduktion von π -Mesonen im Bereich von $\Delta(1236)$ stützten sich auf die Dispersionstheorie⁴³⁾. Ausgehend von Dispersionsrelationen zu festem t (Impulsübertrag auf das Nukleon) für die invarianten Amplituden zur Photo- und Elektroproduktion¹⁷⁾⁴⁴⁾ werden durch Partialwellenprojektion Dispersonsrelationen für die Multipolamplituden M_o aufgestellt, die von der Form

$$M_{\ell}(W) = M_{\ell}^{(inhom)}(W) + \frac{1}{\pi} \int_{M+U}^{\infty} dW' \frac{\operatorname{Im} M_{\ell}(W')}{W' - W - i\varepsilon}$$
(8.1)

sind.

⁺⁾ Einen Überblick über die existierenden Modelle zur Elektroproduktion von π-Mesonen im Bereich von Δ(1236) geben Arbeiten von W. Bartel33) und F. Gutbrod⁴2).

- 54 -

Werden nur die Borngraphen

mit der Multipolprojektion $M_{l}^{(Born)}$ der Borngraphen und kinematischen Funktionen K_{ll}^{\prime} . Die Relationen (8.1) sind dann also ein gekoppeltes System von Integralgleichungen. Eine andere Möglichkeit besteht darin, $M_{l}^{(inhom)}(W)$ durch ein Modell, das neben den Borntermen höhere Graphen, etwa Boxdiagramme⁴⁶⁾ oder Leiterdiagramme⁴⁷⁾, berücksichtigt, explizit zu berechnen.

Zur Lösung der Dispersionsrelation (oder des Systems) werden die π N-Streuphasen über das Watsontheorem (vgl. 2.4) zu einer Verknüpfung von ReM_l und ImM_l herangezogen. Da das Watsontheorem aber nur im Bereich voller Elastizität der betreffenden Streuphase gilt, müssen für die Phasen der Multipole bei hohen Energien plausible Ansätze gemacht werden.

Bei v. Gehlen²⁰⁾ wird das durch die 7 Multipole $M_{1+}^{3/2}$, $E_{1+}^{3/2}$, $S_{1+}^{3/2}$, $E_{0+}^{1/2}$, $E_{0+}^{3/2}$, $S_{0+}^{1/2}$ und $S_{0+}^{3/2}$ gegebene Gleichungssystem mit Hilfe einer Variationstechnik näherungsweise gelöst. Zunächst werden Lösungen für $M_{1+}^{3/2}$, $E_{1+}^{3/2}$ und $S_{1+}^{3/2}$ unter Vernachlässigung der Koppelglieder an die S-Wellenmultipole (K₁₀ in Gl. 8.2) gefunden. Dann werden die Multipole $E_{0+}^{1/2}$, $E_{0+}^{3/2}$, $S_{0+}^{1/2}$ und $S_{0+}^{3/2}$ unter Berücksichtigung ihrer Kopplungen untereinander und an $M_{1+}^{3/2}$, $E_{1+}^{3/2}$ und $S_{1+}^{3/2}$ iterativ bestimmt. Schließlich werden die Realteile der übrigen P-Wellenmultipole unter Vernachlässigung der Imaginärteile aus ihren Kopplungen an die 7 schon bestimmten Multipole und den Borntermen berechnet. Das Modell macht also genaue Aussagen über die Beiträge von S-Wellen zu den differentiellen Querschnitten. Die nach diesem Modell zu erwartende W-Abhängigkeit der 6 Koeffizienten \overline{A}_0 , \overline{A}_1 , \overline{A}_2 , C_0 , D_0 und D_1 wie sie durch das vorliegende Experiment bestimmt werden, ist in Abb.20 eingetragen. Abb. 21 zeigt den entsprechenden Vergleich für $\overline{\xi}(\pi^{\circ}) = 4 \pi(\overline{A}_{\circ} + \overline{A}_{2}/3)$. Die absolute Normierung von M₁₊ wurde durch Anpassung von \overline{A}_{\circ} an das vorliegende Experiment erreicht. Als Pionformfaktor wurde der isovektorielle Anteil des Diracformfaktors F^V₁ benutzt.

Die W-Abhängigkeit aller 6 Koeffizienten wird im wesentlichen gut wiedergegeben, doch sind besonders in \overline{A}_0 und \overline{A}_1 systematische Abweichungen zu erkennen. Die Ergebnisse für $|M_{1+}|^2$ und die Interferenzterme von M_{1+} (vgl. 7.3) werden in den Abb. 23 und 24 mit v. Gehlens Resultaten verglichen. Ähnlich wie bei \overline{A}_0 zeigt sich auch bei $|M_{1+}|^2$ in der Theorie ein etwas schnellerer Abfall oberhalb der Resonanz. Die Abweichungen in den Iterferenztermen können zum Teil auch auf den in Kap. 7.3 gemachten Annahmen beruhen.

In Abb. 23 sind die Ergebnisse eines Modells von Gutbrod 47) mit eingezeichnet. Hier wird die Bethe-Salpeter-Gleichung⁴⁸⁾ für $\gamma p \rightarrow p \pi^{\circ}$ mit j = 3/2, I = 3/2 und positiver Parität mit durch Pion- und Nukleonaustausch gegebenen Übergangspotentialen entlang einer Kurve in der komplexen W-Ebene iterativ gelöst. M_o^(inhom)(W) (vgl. Gl. 8.1) wird dann aus der Lösung auf dieser Kurve bcrechnet. Zwei Abschneideparameter werden so gewählt, daß M_{1+} und E_{1+} in Resonanznähe für $q^2 = o$ richtig wiedergegeben werden. Wie Abb. 23 zeigt, sind die Verhältnisse E1+/M1+ und S1+/M1+ in guter Übereinstimmung mit den experimentellen Ergebnissen. M₁₊ ² wurde aus den Voraussagen des Modells für $M_{1+}^{3/2}(W,q^2)/M_{1+}^{3/2}(W,o)$ berechnet, wobei $M_{1+}^{3/2}(W,o)$ den Ergebnissen von Noelle, Pfeil und Schwela³⁹⁾ entnommen wurde. Die Amplituden $M_{1+}^{1/2}(W,q^2)$ und $S_{1+}^{1/2}(W,q^2)$ wurden in Bornscher Näherung berücksichtigt. Dies bedeutet im Bereich der vorliegenden Meßwerte eine Korrektur von weniger als 3 % für M₁₊ und weniger als 20 % für Re(S₁₊M[∦]₁₊)/|M₁₊|².

Beide Modelle sagen voraus, daß sich die W-Abhängigkeit von $M_{1+}(W,q^2)$ mit q^2 ändert und nicht allein durch den Schwellen-

- 56 -

faktor $|\dot{q}|$ gemäß

$$\frac{M_{1+}(W,q^2)}{|\vec{q}| G_{M}^{*}(q^2)} \approx \frac{M_{1+}(W,o)}{K G_{M}^{*}(o)}$$
(8.3)

gegeben ist. Bei den Experimenten, bei denen $G_{M}^{*}(q^2)$ aus der W-Abhängigkeit totaler Querschnitte gewonnen wird, ⁸⁾³⁸⁾ wird die Gültigkeit von Gl. (8.3) angenommen. Abb. 25 zeigt die Ergebnisse des vorliegenden Experiments für $|M_{1+}|$ im Vergleich zur Photoproduktion. Letztere ist durch eine Freihandkurve durch die Werte von $|M_{1+}^{3/2}|$ der Fits von Noelle et al.³⁹⁾ dargestellt. Die Daten zeigen noch stärker als die Modelle von Gutbrod⁴⁷⁾ und v. Gehlen²⁰⁾, daß $M_{1+}(W,q^2)/|\vec{q}|$ unterhalb der Resonanz stärker mit q^2 abfällt als oberhalb.

- 57 -

Literaturverzeichnis

- J.P. Perez y Jorba, P. Bounin, J. Chollet;
 Phys. Letters 11 (1964) 350
- W.W. Ash, K. Berkelman, C.A. Lichtenstein, A. Ramanauskas, R.H. Sieman; Phys. Letters 24B (1967) 165
 C.W. Akerlof, W.W. Ash, K. Berkelman, C.A. Lichtenstein, A. Ramanauskas, R.H. Sieman; Phys. Rev. 163 (1967) 1482
- C. Mistretta, J.A. Appel, R.J. Budnitz, L. Carroll,
 J. Chen, J.R. Dunning, M. Goitein, K. Hanson, D.C. Imrie,
 R. Wilson; Phys. Rev. 184 (1969) 1487
 Imrie, Mistretta, Wilson; Phys. Rev. Letters 20 (1968) 1074
- N. Kajiura, K. Baba, R. Hamatsu, N. Ishihara, S. Kaneko,
 T. Katsura, T. Ohsugi, S. Fukui, M. Hongoh, T. Ohsuka,
 K. Ueno, K. Huke, T. Katayama, Y. Kobayashi, T. Yamakawa;
 Lett. Nuovo Cimento 3 (1970) 714
- 5) F.W. Brasse, J. Engler, E. Ganssauge, M. Schweizer; DESY 67/34 (1967), Nuovo Cimento 55A (1968) 679
- 6) W. Albrecht, F.W. Brasse, H. Dorner, W. Fehrenbach, W. Flauger, K.H. Frank, J. Gayler, V. Korbel, J. May, P.D. Zimmerman, A. Courau, A. Diaczek, J.C. Dumas, G. Tristram, J. Valentin, C. Aubret, E. Chazelas, E. Ganssauge; DESY 70/36 (1970), DESY 70/65 (1970), Nucl. Phys B25 (1971) 1, B27 (1971) 615
- 7) J. May, Dissertation, Hamburg 1971
- 8) J. Moritz, Dissertation, Karlsruhe 1970, DESY F23-71/1 (1971)
- 9) R. Siddle, B. Dickinson, M. Ibbotson, R. Lawson, H. Montgomery, N.V.P.R. Nuthakki, W.J. Shuttlework, A. Sofair, O.T. Tumer, J. Fannon, R.D. Hellings, J. Allison, A.B. Clegg, F. Foster, G. Hughes, P.S. Kummer; Konferenzbeitrag Kiev 1970, vgl. auch Ref. 52)
- 10) E. Ganssauge, DESY-F21 68/3 (1968), interner Bericht, vgl. auch Ref. 33)
- 11) H.F. Jones; Nuovo Cimento 40A (1965) 1018
- 12) M. Gourdin; Nuovo Cimento 21 (1961) 1094
- 13) L.N. Hand, Phys. Rev. 129 (1963) 1834
- 14) S.D. Drell, J.D. Walecka; Ann. of Phys. 28 (1964) 18

- 58 -

15)	C.W. Akerlof, W.W. Ash, K. Berkelman, M. Tigner; Phys. Rev. Letters 14 (1965) 1036
16)	vgl. z.B. J.D. Bjorken, S.D. Drell, Relativistische Quantenmechanik (Mannheim 1966, BI)
17)	G.F. Chew, M.L. Goldberger, F.E. Low, Y. Nambu; Phys. Rev. 106 (1957) 1345
18)	P. Dennery; Phys. Rev. 124 (1961) 2000
19)	N. Zagury; Nuovo Cimento 52A (1967) 506
20)	G. v. Gehlen; Nucl. Phys. B9 (1969) 17, Nucl. Phys. B 20 (1970) 102 und private Mitteilung
21)	A.I. Sanda, G. Shaw; Columbia NYO-1932(2)-168 (1970)
22)	D. Schwela, Nucl. Phys. B26 (1971) 525
23)	K.M. Watson; Phys. Rev. 95 (1954) 228
24)	F.W. Brasse, G. Hemmie, W. Schmidt; DESY 65/18 (1965)
25)	W. Schmidt; DESY F22-69/2 (1969)
26)	V. Eckardt; DESY 67/12 (1967)
27)	DESY Handbuch
28)	K.G. Steffen, High Energy Beam Optics, Interscience Publishers (1965)
	Numerische Werte von I. Borchardt (private Mitteilung)
29)	S. Rock et al., Phys. Rev. Letters 24 (1970) 748
30)	R.N. Cahn, Y.S. Tsai; Slac-Pub-722 (1970)
31)	C. de Calan, G. Fuchs; Nuovo Cimento 38 (1965) 1594
	P. Urban, F. Widder; Phys. Letters 22 (1966) 526
32)	L.W. Mo, Y.S. Tsai; Rev. Mod. Phys. 41 (1969) 205
33)	W. Bartel, DESY F22-69/3 (1969)
34)	R.H. Dalitz, D.G. Sutherland; Phys. Rev. 146 (1966) 1180
35)	D.F. Measday, C. Richard-Serre; CERN 69-17 (1969)
36)	Aachen-Berlin-Bonn-Hamburg-Heidelberg-München Collabora- tion; DESY 68/8 (1968)

- 37) W. Bartel, B. Dudelzak, H. Krehbiel, J. McElroy, U. Meyer-Berkhout, W. Schmidt, V. Walther, G. Weber; DESY 68/42 (1968), Phys. Letters 27B (1968) 660
- 38) W. Bartel, B. Dudelzak, H. Krehbiel, J. McElroy,
 U. Meyer-Berkhout, W. Schmidt, V. Walther, G. Weber;
 DESY 68/53 (1968), Phys. Letters 28B (1968) 148
- 39) P. Noelle, W. Pfeil, D. Schwela; Nucl. Phys. B26 (1971) 461
- 40) C. Becchi and G. Morpurgo; Phys. Letters 17 (1965) 352
- 41) A.B. Clegg; Proc. Int. Liverpool Conf. on Electron and Photon Interact. at High Energies (Daresbury Nucl. Phys. Lab. 1969)
- F. Gutbrod; Proc. Int. Liverpool Conf. on Electron and Photon Interact. at High Energies (Daresbury Nucl. Phys. Lab. 1969)
- 43) z.B. H. Rollnik; Proc. Int. Heidelberg Conf. on Elementary Particles (North-Holland, Amsterdam, 1968) S.400
- 44) S. Fubini, Y. Nambu, V. Wataghin; Phys. Rev. 111 (1958) 329
- 45) z.B. F.A. Berends, A. Donnachie, D.L. Weaver; Nucl. Phys. B4 (1968) 1

D. Schwela, H. Rollnik, R. Weizel, W. Korth; Z. Phys. 202 (1967) 452 und Ref. 20)

- 46) F. Gutbrod, D. Simon; DESY 67/1 (1967), Nuovo Cimento 51A (1967) 602
- 47) F. Gutbrod; DESY 69/22 (1969) und private Mitteilung
- 48) E.E. Salpeter, H.A. Bethe; Phys. Rev. 84 (1951) 1232
- 49) G. v. Gehlen; Bonn Univ. PI 2-80 (1970)
- G. Fischer, H. Fischer, G. v. Holtey, H. Kämpgen, G. Knop,
 P. Schulz, H. Wessels, W. Braunschweig, H. Genzel, R. Wedemeyer; Nucl. Phys. B16 (1970) 93
- 51) Particle Data Group; UCRL-20030 πN (1970) P33-Phase "Roper via Moorhouse"

- 60 -

52) Nach Abschluß dieser Arbeit (Februar 1971) wurden Daten zum Impulsübertrag q² = 0.4 bis 0.5 (GeV/c)² publiziert, die hier nicht mehr diskutiert werden können : R.D. Hellings, J. Allison, A.B. Clegg, F. Foster, G. Hughes, P. Kummer, R. Siddle, B. Dickinson, M. Ibbotson, R. Lawson, H.R. Montgomery, W.J. Shuttleworth, A. Sofair , J. Fannon ; DNPL/P 65, Daresbury (1971) <u>Tabelle</u> 6

$W = 1136 \text{ MeV}$; $q^2 = 15.62 \text{ fm}$	$\overline{m^2}$; $\varepsilon = 0.951$
---	--

$\cos \Theta^{\textbf{*}}_{\pi}$	$\Phi \begin{bmatrix} o \end{bmatrix}$	$\frac{1}{\Gamma_{t}} \frac{d^{5}\sigma}{d\Omega \ dE' d\Omega^{*}} \left[\frac{\mu b}{sr}\right]$	$\cos \Theta^{\! \ast}_{\! \pi}$	Φ[°]	$\frac{1}{\Gamma_{t}} \frac{d^{5}\sigma}{d\Omega \ dE' d\Omega^{*}} \left[\frac{\mu b}{sr}\right]$	$\cos \Theta_{\pi}^{*}$	¢[°]	$\frac{1}{\Gamma_{\rm t}} \frac{{\rm d}^5\sigma}{{\rm d}\Omega {\rm d}{\rm E}'{\rm d}\Omega^{\rm H}} \left[\frac{\mu {\rm b}}{{\rm sr}} \right]$
-0.983	89.	1.7 +- 0.7	-0.110	87.	4.7 +- 1.8	0.432	87.	4.0 +- 1.6
-0.837	93.	2.3 +- 1.3	-0.081	147.	5.9 +- 2.1	0.486	53.	4.2 +- 2.2
-0.698	189.	2.8 +- 1.6	-0.057	132.	4.7 +- 1.2	0.501	95.	3.4 +- 1.7
-0.661	90.	2.8 +- 1.2	-0.033	94.	2.8 +- 1.4	0.557	132.	5.2 +- 1.3
-0.659	153.	2.6 +- 1.2	-0.023	48.	2.7 +- 1.1	0.569	122.	5.8 +- 2.6
-0.656	2.	3.4 +- 1.6	-0.011	122.	7.3 +- 3.0	0.579	46.	3.5 +- 1.1
-0.656	93.	2.4 +- 1.2	0.020	149.	6.4 +- 3.1	0.582	149.	5.0 +- 1.6
-0.627	18.	7.4 +- 1.4	0.112	52.	2.8 +- 1.2	0.666	35.	3.5 +- 1.8
-0.623	173.	3.6 +- 1.4	0.127	121.	2.4 +- 1.1	0.671	132.	6.0 +- 1.9
-0.583	24.	1.9 +- 1.0	0.145	88.	4.6 +- 1.8	0.706	94.	4.4 +- 1.6
-0.563	168.	2.5 +- 1.2	0.150	132.	5.3 +- 1.3	0.712	89.	6.6 +- 2.0
-0.549	150.	6.0 +- 1.5	0.155	47.	3.3 +- 1.2	0.741	146.	9.9 +- 2.1
-Ú.504	33.	2.1 +- 0.9	0.187	93.	4.5 +- 1.7	0.756	167.	4.4 +- 1.6
-0.464	90.	1.8 +- 1.0	0.224	147.	7.5 +- 4.0	0.767	88.	4.5 +- 2.3
-0.427	167.	7.9 +- 3.6	0.233	120.	6.3 +- 2.2	0.779	148.	5.5 +- 2.1
-0.404	147.	3.2 +- 1.1	0.236	53.	1.6 +- 0.7	0.792	189.	6.3 +- 2.5
-0.361	39.	4.7 +- 2.5	0.254	131.	7.8 +- 1.8	0.794	206.	7.6 +- 3.3
-0.342	133.	4.3 +- 1.3	0.324	94.	4.0 +- 1.7	0.806	1.	5-2 +- 2.8
-0.305	145.	5.3 +- 1.9	0.358	87.	2.8 +- 1.4	0.824	92.	6.4 +- 2.9
-0.304	44.	2.3 +- 1.0	0.358	121.	4.7 +- 1.6	0.857	169.	3.0 +- 1.7
-0.235	93.	2.7 +- 1.2	0.373	53.	4.3 +- 1.4	0.884	94.	5.1 +- 2.6
-0.226	89.	2.5 +- 1.2	0.398	148.	5.8 +- 2.8	0.886	168.	5.4 +- 3.1
-0.215	132.	2.8 +- 0.9	0.414	47.	3.5 +- 1.4	0.995	116.	5.5 +- 1.4
-0.173	46.	1.9 +- 0.9	0.427	130.	4.6 +- 1.2			

W = 1156 MeV ; $q^2 = 15.50 \text{ fm}^{-2}$; $\epsilon = 0.950$

$\cos \Theta_{\pi}^*$	φ[°]	$\frac{1}{\Gamma_{t}} \frac{d^{5}\sigma}{d\Omega \ dE' d\Omega^{*}} \left[\frac{\mu b}{sr} \right]$	$\cos \Theta^{\! *}_{\pi}$	$\Phi[\circ]$	$\frac{1}{\Gamma_{t}} \frac{d^{5}\sigma}{d\Omega \ dE' d\Omega^{*}} \left[\frac{\mu b}{sr} \right]$	$\cos \Theta_{\pi}^{\pmb{\ast}}$	$\Phi[^{\circ}]$	$\frac{1}{\Gamma_{t}} \frac{d^{5}\sigma}{d\Omega \ dE' d\Omega^{*}} \left[\frac{\mu b}{sr} \right]$
-0.980	14.	1.3 +- 0.6	-0.188	45.	4.8 +- 1.4	0.649	132.	3.8 +- 2.0
-0.933	67.	2.2 +- 1.2	-0.159	80.	4.1 +- 2.2	0.651	37.	2.3 +- 1.3
-0.841	191.	4.2 +- 2.2	-0.151	113.	12.4 +- 3.5	0.651	79.	8.9 +- 3.0
-0.937	75.	6.1 +- 2.2	-0.108	131.	13.5 ← 6.8	0.672	45.	4.8 +- 2.2
-0.817	87.	5.7 +- 3.0	-0.081	85.	7.8 +- 1.8	0.672	84.	7.4 +- 1.7
-0.779	166.	1.7 +- 0.8	-0.067	119.	11.4 +- 2.4	0.691	112.	13.5 +- 5.6
-0.772	186.	3.0 +- 1.7	-0.063	51.	5.2 + 2.0	0.728	120.	9.4 +- 2.0
-0.748	148.	4.9 +- 1.2	-0.015	48.	5.3 +- 1.5	0.731	35.	7.8 +- 3.1
-0.715	134.	4.7 +- 1.2	0.010	112.	11.8 +- 2.7	0.774	35.	6.7 +- 3.8
-0.706	77.	4.1 +- 1.3	0.077	82.	12.0 +- 5.3	0.787	28.	4.0 +- 1.8
-0.653	84.	4.1 +- 1.4	0.082	52.	3.5 +- 1.3	0.800	133.	7.8 +- 1.9
-0.635	147.	3.6 +- 1.8	0.085	119.	8.8 - 2.1	0.812	84.	5.8 +- 2.3
-0.034	3.	3.4 +- 1.2	0.119	112.	7.8 +- 1.9	0.830	150.	7.1 +- 3.0
-0.614	-19.	4.9 +- 2.3	0.125	85.	8.8 +- 1.9	0.837	17.	4.5 +- 2.3
-0.600	16.	6.2 +- 2.1	0.164	48.	6.0 + 1.7	0.848	2.	4.0 +- 1.8
-0.582	131.	4.3 +- 1.1	0.234	53.	7.1 +- 2.0	0.850	78.	9.7 +- 3.4
-0.577	24.	2.9 +- 1.3	0.281	111.	8.4 +- 2.0	0.854	130.	10.5 +- 3.5
-0.521	121.	8.4 +- 2.1	.0.282	119.	10.6 +- 2.5	0.856	-3.	6.1 +- 3.5
-0.519	28.	3.0 +- 1.6	0.301	85.	8.6 +- 1.8	0.875	171.	8.2 +- 4.8
-0.503	78.	8.6 +- 2.9	0.349	81.	7.3 +- 3.6	0.892	132.	5.7 +- 2.9
-0.485	34.	2.6 +- 1.2	0.392	47.	4.2 +- 1.2	0.895	152.	7.0 +- 3.3
-0.470	84.	5.2 +- 1.4	0.408	52.	4.0 +- 1.4	0.911	209.	7.2 +- 4.1
-0.453	130.	9.2 +- 2.4	0.434	111.	12.4 +- 3.0	0.912	83.	6.3 +- 3.1
-0.420	36.	4.2 +- 1.4	0.436	119.	9.0 +- 2.2	0.916	149.	8.6 +- 3.1
-0.375	120.	4.9 +- 1.2	0.501	85.	6.4 +- 1.5	0.923	75.	6.9 +- 2.7
-0.318	43.	4-5 +- 1-5	0.506	81.	6.1 +- 3.4	0.929	169.	7.5 +- 2.9
-0.307	39.	4.4 +- 2.2	0.516	52.	4.7 +- 1.9	0.930	192.	18.5 +- 6.0
-0. 303	129.	6.5 +- 3.0	0.554	112.	10.7 +- 3.1	0.934	144.	8.8 +- 5.2
-0.281	114.	20.1 +- 8.7	0.592	44.	5.6 +- 1.3	0.953	68.	9.7 +- 5.0
-0.268	84.	5.9 +- 1.5	0.603	119.	9.4 +- 1.9	0.970	29.	7.3 +- 1.5
-0.238	120.	8.1 +- 1.8			1			

W = 1176 MeV ; $q^2 = 15.37 \text{ fm}^{-2}$; $\epsilon = 0.948$

$\cos \Theta_{\pi}^{*}$	\$ [°]	$\frac{1}{\Gamma_{t}} \frac{d^{5}\sigma}{d\Omega \ dE' d\Omega^{*}} \left[\frac{\mu b}{sr} \right]$	$\cos \Theta^{\boldsymbol{\ast}}_{\pi}$	$\Phi[\circ]$	$\frac{1}{\Gamma_{t}} \frac{d^{5}\sigma}{d\Omega \ dE' d\Omega^{*}} \left[\frac{\mu b}{sr} \right]$	$\cos \Theta_{\pi}^{*}$	φ[°]	$\frac{1}{\Gamma_{t}} \frac{d^{5}\sigma}{d\Omega \ dE' d\Omega^{*}} \left[\frac{\mu b}{sr} \right]$
-0.27B	۹.	3.1 +- 1.7	-0.276	77.	9.4 +- 1.7	0.664	38.	9.3 +- 3.1
-0.952	39.	6.0 +- 3.1	-0.267	39.	9.7 +- 3.0	0.677	45.	4.9 +- 2.3
-0.931	48.	7.7 +- 2.8	-0.262	82.	12.3 +- 3.9	0.681	81.	8.4 +- 3.0
-0.931	188.	4.4 +- 2.3	-0.242	110.	19.2 +- 2.8	0.697	71.	7.0 4- 2.3
-0.921	62.	4.6 +- 2.3	-0.200	104.	11.3 +- 4.0	0.745	50.	14 1 4- 2.1
-0.915	169.	5.1 +- 2.1	-0.170	45.	8.6 +- 1.1	0.745	106	22 5 4- 9 2
-0.903	153.	5.0 +- 1.9	-0.170	40.	15.1 +- 0.1	0.795	34	9 6 4- 6 3
-n.863	137.	9.3 +- 3.3	-0.111	118.	27.6 +-12.1	0.780	110	12.3 += 3.0
-0.859	58.	14.3 +- 4.5	-0.079	50.	6.1 +- 3.2	0.199	26	7 9 4- 3.9
-0.849	149.	6.1 +- 2.4	-0.070	109.	15.7 +- 2.4	0.002	20.	7 9 4- 3 3
-0.845	66.	3.9 +- 1.4	-0.068	11.	13.9 +- 2.7	0.807	16	8 0 4- 6 6
-0.820	72.	5.5 +- 3.0	-0.051	82.	13.4 +- 3.7	0.844	75	0.2 += 2.2
-0.808	146.	9.0 +- 3.8	-0.042	103.	$18 \cdot 1 + 4 \cdot 1$	0.848	- 4	10-9 +- 5-6
-0.777	13%.	8.4 +- 1.6	-0.027	40.	16 7 4- 3 1	0.848	16.	6.9 +- 3.1
-0.722	127.	11.7 +- 2.3	0.087	51	13 6 4 3.0	0.852	112.	16.9 +- 6.0
-0.712	69.	13.0 +- 2.7	0.093	51.	12.4 - 3.0	0.052	-10	8.5 +- 3.8
-0.696	113.	9.0 +- 3.0	0.104	0.2	17 2 4- 2 0	0.858	153	16-1 +- 7-6
-0.668	74.	8.6 +- 1.9	0.144	82.	19 7 4- 6 3	0.860	120-	12.1 +- 4.0
-0.658	129.	5.1 +- 2.8	0.143	69	12 7 += 2.6	0-864	0.	4.2 +- 1.8
-0.609	110	10.0 +- 2.2	0.102	53	11.7 += 2.6	0.879	68.	20.8 +- 8.8
-0.602	-10	5 2 4- 2 0	0.263	109.	21.1 +- 3.1	0.906	120-	10.5 +- 3.7
-0 501	-10.	6 1 4 - 1 7	0.270	103	20.7 +- 4.3	0.908	73.	12.7 +- 4.5
-0.581	15.	10 2 +- 2 2	0.310	78.	14.9 +- 2.7	0.909	134.	12.5 +- 6.3
-0.549	60	15.0 4- 6.1	0.313	83.	13.5 +- 3.2	0.925	149.	11.2 +- 4.0
-0 533	26	0 1 4- 2 1	0.384	48.	7-0 +- 1-8	0.926	67.	10.8 +- 3.1
-0.693	20.	10 4 +- 2.8	0.400	53.	13.6 +- 3.1	0.926	133.	14.3 +- 4.2
-0.492	33	14.4 +- 4.2	0.411	103.	16.2 +- 3.8	0.935	226.	10.3 +- 5.2
-0 474	76	12.8 += 2.1	0.428	109.	13-4 +- 2-2	0.944	133.	14.2 +- 6.2
-0.467	117.	10-4 +- 3-4	0.489	78.	14.0 +- 2.7	0.956	-40.	14.3 +- 7.4
-0.438	81.	24-8 +- 7-9	0.515	51.	6.0 +- 2.4	0.957	190.	20.3 +- 8.2
-0.390	36-	7.7 +- 1.8	0.519	82.	7.9 +- 2.4	0.961	59.	8.5 +- 3.8
-0-387	110-	15.4 +- 2.5	0.562	103.	13.3 +- 3.4	0.961	171.	12.1 +- 4.9
-0.366	104.	14.5 +- 5.3	0.581	46.	9.1 +- 1.8	0.972	15.	10.7 +- 1.9
-0.306	43-	7.1 +- 2.0	0.586	109.	16.6 +- 2.6	0.979	168.	11.0 +- 4.0
-0.291	110.	9.4 +- 4.1						

W = 1196 MeV ; $q^2 = 15.24 \text{ fm}^{-2}$; $\epsilon = 0.947$

$ \begin{array}{c} \cos \Theta_{TL}^{*} \Phi \begin{bmatrix} 0 \\ -1 \\ -1 \\ \hline f \\ \frac{1}{f} \\ \frac{d^2 \sigma}{d\Omega \ dE' d\Omega'^{*}} \\ \hline grightharpoonup \\ \hline grightarpoonup \\ \hline grightarpoonup \\ \hline $									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\cos \Theta_{\pi}^*$	\$ [°]	$\frac{1}{\Gamma_{t}} \frac{d^{b}\sigma}{d\Omega \ dE' d\Omega^{*}} \begin{bmatrix} \mu b \\ sr \end{bmatrix}$	$\cos \Theta^{\textbf{*}}_{\pi}$	$\Phi\!\!\left[^{o}\right]$	$\frac{1}{\Gamma_{t}} \frac{d^{5}\sigma}{d\Omega \ dE' d\Omega^{*}} \left[\frac{\mu b}{sr} \right]$	$\cos\Theta_\pi^{\!\!*}$	$\Phi[\circ]$	$\frac{1}{\Gamma_{t}} \frac{d^{5}\sigma}{d\Omega \ dE' \ d\Omega^{*}} \left[\frac{\mu b}{sr} \right]$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-0.957	152.	6.3 +- 2.2	-0.272	38.	18.7 +- 3.2	0.444	106.	16.9 +- 6.6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-0.956	170	3-1 +- 1-5	-0.264	108.	12.2 +- 3.8	0.470	80.	14.3 +- 6.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-0.946	4.	7.4 +- 3.1	-0.232	101.	17.5 +- 2.2	0.497	77.	21.3 +- 2.8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-0.944	-20-	6-1 +- 2-7	-0.197	72.	27.4 +-10.3	0.541	155.	15.7 +- 4.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-0-936	16.	5.9 +- 2.9	-0.163	45.	15.1 +- 2.3	0.546	51.	6.6 +- 2.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-0.931	26.	7.8 +- 3.1	-0.124	41.	11.7 +- 4.2	0.547	164.	16.1 +- 2.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-0-927	- 39-	11.5 +- 5.4	-0.109	107.	21.5 +- 7.3	0.550	184.	17.1 +- 3.6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-0.924	35.	4.3 +- 1.9	-0.095	76.	18.6 +- 2.5	0.551	174.	19.3 +- 3.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-0.923	132.	4.2 +- 1.5	-0.082	175.	24.0 +- 5.4	0.576	46.	12.6 +- 2.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-0.912	45.	10.6 +- 4.5	-0.080	185.	11.8 +- 4.2	0.586	101.	18.7 +- 2.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-0-910	124.	7.4 +- 2.3	-0.068	101.	27.4 +- 3.0	0.605	109.	14.5 +- 4.8
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-0.895	41 -	8.0 +- 4.4	-0.059	166.	14.6 +- 3.7	0.647	181.	13.2 +- 7.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-0.869	49.	10.1 +- 2.7	-0.035	50.	18.6 +- 7.2	0.666	164.	12.1 +- 6.6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-0-860	120.	10.2 +- 3.0	-0.007	46.	16.6 +- 2.3	0.668	172.	16.0 +- 6.0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	-0.853	113.	4.7 +- 2.3	0.052	108.	9.8 +- 5.2	0.683	75.	15.3 +- 2.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-0-842	56.	14.0 +- 2.9	0.060	175.	15.4 +- 2.4	0.689	37.	10.4 +- 3.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-0-814	64 -	10.2 +- 3.7	0.076	166.	14.9 +- 2.4	0.696	44 .	11.5 +- 3.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-0-783	120.	13.0 +- 3.0	0.080	51.	13.8 +- 3.5	0.743	71.	24.2 +- 6.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-0.753	60.	15.3 +- 3.4	0.085	185.	19.2 +- 3.9	0.747	36.	9.9 +- 2.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-0.749	111.	13.0 +- 1.9	0.091	157.	14.9 +- 3.6	0.749	102.	17.2 +- 2.3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-0-720	104-	11.9 +- 3.5	0.094	101.	21.7 +- 2.6	0.776	108.	14.9 +- 3.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-0.680	66-	19.3 +- 2.6	0.108	76.	24.7 +- 3.0	0.786	36.	8.1 +- 3.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-0.617	72.	17.8 +- 5.5	0.130	80.	18.3 +- 7.0	0.810	74.	12.3 +- 3.4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-0-596	109.	19-8 +- 2.8	0.183	47.	19.5 +- 2.9	0.816	25.	12.2 +- 5.1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-0.591	-1.	12.0 +- 2.2	0.196	193.	16.1 +- 5.7	0.826	27.	11.7 +- 3.6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-0.571	5.	9.2 +- 3.5	0.216	185.	18.2 +- 3.2	0.850	103.	18.1 +- 5.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-0.569	-17.	8.2 +- 2.7	0.223	175.	14.2 +- 2.2	0.857	69.	17.8 +- 3.8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-0.564	15.	12.1 +- 2.4	0.224	165.	19.8 +- 2.6	0.858	-18.	15.8 +- 5.0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	-0.552	103.	19.2 +- 2.9	0.234	156.	15.6 +- 2.8	0.860	16.	8.5 +- 3.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-0.544	-18.	21.2 +- 7.5	0.247	101.	24.3 +- 3.0	0.862	110.	15.6 +- 4.3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-0.526	19.	5.3 +- 2.3	0.251	52.	13.2 ← 2.8	0.870	1.	8.0 +- 2.4
-0.520 $68.$ $17.7 + 2.8$ 0.301 $77.$ $28.3 + 3.5$ 0.899 $110.$ $15.5 + 3.9$ -0.470 $73.$ $18.4 + 3.0$ 0.382 $184.$ $15.9 + 3.0$ 0.934 $123.$ $25.0 + 7.8$ -0.461 $32.$ $13.0 + 4.8$ 0.391 $48.$ $12.4 + 2.2$ 0.943 $57.$ $10.5 + 3.1$ -0.452 $27.$ $17.3 + 3.1$ 0.393 $165.$ $15.7 + 2.3$ 0.961 $121.$ $10.4 + 3.8$ -0.446 $107.$ $17.8 + 3.3$ 0.398 $52.$ $12.2 + 2.5$ 0.961 $121.$ $10.4 + 3.8$ -0.394 $102.$ $18.6 + 2.4$ 0.398 $155.$ $17.0 + 3.0$ 0.964 $49.7.7 + 3.8$ -0.362 $32.$ $11.4 + 5.0$ 0.408 $147.$ $30.9 + 9.0$ 0.969 $229.$ $16.5 + 7.2$ -0.352 $70.$ $19.9 + 5.1$ 0.410 $194.$ $20.9 + 6.7$ 0.972 $162.$ $10.7 + 2.1$ -0.274 $75.$ $16.6 + 2.5$ 0.433 $101.$ $20.6 + 2.5$ 0.980 $8.$ $11.1 + 2.3$	-0.526	24.	9.4 +- 2.3	0.299	80.	14.5 +- 6.3	0.896	66.	11.9 +- 3.6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-0.520	68.	17.7 +- 2.8	0.301	77.	28.3 +- 3.5	0.899	110.	15.5 +- 3.9
-0.461 $32.$ $13.0 + -4.8$ 0.391 $48.$ $12.4 + -2.2$ 0.943 $57.$ $10.5 + -3.1$ -0.452 $27.$ $17.3 + -3.1$ 0.393 $165.$ $15.7 + -2.3$ 0.961 $121.$ $6.9 + -3.3$ -0.446 $107.$ $17.8 + -3.3$ 0.398 $52.$ $12.2 + 2.5$ 0.961 $121.$ $10.4 + -3.8$ -0.394 $102.$ $18.6 + -2.4$ 0.398 $155.$ $17.0 + -3.0$ 0.964 $49.$ $7.2 + -3.8$ -0.370 $35.$ $10.7 + -2.0$ 0.405 $175.$ $14.3 + -2.2$ 0.964 $135.$ $12.8 + -4.8$ -0.362 $32.$ $11.4 + 5.0$ 0.408 $147.$ $30.9 + -9.0$ 0.969 $229.$ $16.5 + -7.2$ -0.352 $70.$ $19.9 + -5.1$ 0.410 $194.$ $20.9 + -6.7$ 0.972 $162.$ $10.7 + -2.1$ -0.274 $75.$ $19.6 + -2.5$ 0.433 $101.$ $20.6 + -2.5$ 0.980 $8.$ $11.1 + -2.3$	-0.470	73.	18.4 +- 3.0	0.382	184.	15.9 +- 3.0	0.934	123.	25.0 +- 7.8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-0.461	32.	13.0 +- 4.8	0.391	48-	12.4 +- 2.2	0.943	57.	10.5 +- 3.1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-0.452	27.	17.3 +- 3.1	0.393	165.	15.7 +- 2.3	0.950	111.	6.9 +- 3.3
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-0.446	107.	17.8 +- 3.3	0.398	52.	12.2 +- 2.5	0.961	121.	10.4 +- 3.8
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-0.394	102.	18.6 +- 2.4	0.398	155.	17.0 +- 3.0	0.964	49.	7.2 +- 3.8
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-0.370	35.	10.7 +- 2.0	0.405	175.	14.3 +- 2.2	0.964	135.	12.8 +- 4.8
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-0.362	32.	11.4 +- 5.0	0-408	147.	30.9 +- 9.0	0.969	229.	16.5 +- 7.2
-0.285 42. 16.1 +- 3.9 0.433 101. 20.6 +- 2.5 0.980 8. 11.1 +- 2.3 -0.274 75. 19.6 +- 2.5	-0.352	70.	19.9 +- 5.1	0.410	194.	20.9 +- 6.7	0.972	162.	10.7 +- 2.1
-0.274 75. 19.6 +- 2.5	-0.285	42.	16.1 +- 3.9	0.433	101.	20.6 +- 2.5	0.980	8.	11.1 +- 2.3
	-0.274	75.	19.6 +- 2.5				<i>b</i>		

W = 1216 MeV; $q^2 = 15.11 \text{ fm}^{-2}$; $\epsilon = 0.945$

$\cos \Theta_{\pi}^*$	Φ[°]	$\frac{1}{\Gamma_{f}} \frac{d^{5}\sigma}{d\Omega \ dE' d\Omega^{*}} \left[\frac{\mu b}{sr} \right]$	$\cos \Theta^{\textbf{*}}_{\pi}$	$\Phi\!\!\left[^{\circ}\right]$	$\frac{1}{\Gamma_{\overline{t}}} \frac{d^{5}\sigma}{d\Omega \ dE' d\Omega^{*}} \left[\frac{\mu b}{sr} \right]$	$\cos\Theta_\pi^{\textbf{*}}$	$\Phi^{\left[o \right]}$	$\frac{1}{\Gamma_{t}} \frac{d^{3}\sigma}{d\Omega \ dE' d\Omega^{*}} \left[\frac{\mu b}{sr} \right]$
-0.981	163.	8.3 +- 1.5	-0.242	158.	9.8 +- 3.1	0.460	175.	16.7 +- 5.2
-0.969	129.	16.4 +- 6.0	-0.241	94.	29.3 +- 4.4	0.467	186.	14.8 +- 5.2
-0.964	119.	5.4 +- 2.5	-0.201	184.	8.1 +- 1.9	0.494	75.	22.2 +- 3.1
-0.960	116.	11.0 +- 4.1	-0.186	175.	9.7 +- 1.9	0.536	72.	20.7 +- 8.5
-0.925	-14.	10.1 +- 4.6	-0.179	165.	13.6 +- 2.1	0.564	51.	7.7 +- 2.9
-0.910	3.	11.6 +- 5.3	-0.153	192.	10.9 +- 4.9	0.567	145.	20.8 +- 2.7
- (. 919	111.	14.6 +- 3.4	-0.151	70.	31.2 +- 5.8	0.585	46.	15.5 +- 2.1
-0.918	14.	7.R +- 4.2	-0.139	44.	12.3 +- 2.0	0.591	95.	27.0 +- 4.9
-0.916	103.	7.0 +- 2.7	-0.138	156.	11.7 +- 1.9	0.592	98.	35.2 +- 4.4
-0.913	120.	7.9 +- 3.6	-0.129	40.	21.4 +- 5.0	0.593	155.	12.8 +- 2.0
-0.887	31.	11.7 +- 4.6	-0.089	147.	21.7 +- 4.5	0.610	193.	14.2 +- 5.0
-0.871	109.	8.2 +- 2.4	-0.087	94.	35.6 +- 5.5	0.614	165.	17.7 +- 2.9
-0.864	38.	15.3 +- 4.2	-0.071	98.	21.8 +- 2.9	0.616	175.	15.3 +- 3.5
-0.863	102.	10.9 +- 2.7	-0.070	74.	25.4 +- 3.3	0.662	186.	10.3 +- 3.0
- 0.838	46.	15.6 +- 3.4	-0.023	165.	14.2 +- 2.6	0.672	74.	20.9 +- 3.4
-0.808	53.	13.4 +- 4.2	-0.002	175.	13.9 +- 3.1	0.677	38.	12.2 +- 3.3
-0.787	109.	19.5 +- 4.1	0.003	71.	24.3 +- 7.9	0.701	44 -	8.5 +- 2.5
-0.776	51.	15.7 +- 4.5	0.004	155.	14.5 +- 2.2	0.709	145.	24.6 +- 7.6
-0.746	101.	15.6 +- 1.8	0.005	46.	18.9 +- 2.2	0.723	154.	22.0 +- 4.4
-0.724	95.	20.0 +- 4.5	C.008	185.	13.4 +- 3.5	0.743	174.	16.9 +- 3.0
-0.717	57.	11.9 +- 2.1	0.023	193.	13.5 +- 5.3	0.743	192.	15.4 +- 6.1
-0.642	64.	17.3 +- 3.2	0.068	146.	20.0 +- 2.6	0.745	165.	15.8 +- 3.0
-0.575	100.	19.0 +- 2.2	0.076	95.	34.0 +- 6.0	0.756	68.	23.7 +- 4.7
-0.570	94.	24.3 +- 3.R	0.088	98.	29.0 +- 3.6	0.757	95.	25.6 +- 5.2
-0.569	62.	25.8 +- 7.0	0.102	51.	26.2 +- 6.3	0.759	184.	17.3 +- 4.0
-0.568	1-	12.1 +- 2.1	0.108	75.	28.4 +- 3.6	0.762	98.	23.6 +- 2.9
-0.540	-1/.	20.8 +- 5.4	0.115	138.	18.3 +- 5.6	0.768	36.	12.3 - 2.8
-0.535	15.	15.1 +- 3.0	0.158	164.	19.3 +- 4.1	0.795	36.	6.6 +- 2.9
-0.507		11.7 +- 2.9	0.165	174-	12.3 +- 4.5	0.804	71.	27.4 +- 9.9
-0.500	-16.	12.0 +- 3.9	0.176	47.	23.2 +- 2.7	0.824	25.	8.6 +- 3.8
=0.608	17	10.4 +- 3.8	0.190	154.	17.3 +- 2.8	0.825	3.	10.3 +- 2.9
-0.489	66	22 0 - 2 7	0.228	194.	8.4 +- 3.7	0.829	27.	13.4 +- 3.4
-0.440	26	16 9 4- 2 5	0.231	145.	14.5 +- 1.9	0.836	67.	21.4 +- 4.3
-0.434	33	10.4 +- 7.5	0.245	52.	20.0 +- 3.5	0.859	-18.	7.9 +- 3.2
-0.416	00	23 2 + 2 4	0.248	95.	27.1 +- 6.0	0.861	100.	22.5 +- 4.8
-0.405	72	25.5 4- 6.6	0.258	98.	23.7 +- 3.5	0.863	16.	7.7 +- 2.8
-0.391	96	20 5 4- 6.0	0.200	137.	24.3 +- 4.5	0.882	94.	11.2 +- 5.5
-0.350	25	15.0 + 2.2	0.307	15.	23.9 +- 3.2	0.894	65.	7.2 +- 3.8
-0.349	30	17.5 4- 5.4	0.333	12.	24.6 +-11.9	0.901	59.	9.9 +- 4.7
-0.311	68.	30.9 4- 6.0	0.300	43.	21.0 +-10.4	0.915	101.	19.5 - 3.9
-0.307	185	10 0 4- 2 5	0.399	47.	14.9 +- 2.1	0.915	96.	7.7 +- 4.1
-0.302	176	7.2 4- 1.0	0.400	145.	17.2 +- 2.0	0.932	55.	1.6 +- 2.1
-0.278	167.	11.8 += 2.6	0.414	122.	20.2 +- 3.1	0.952	48.	0.H +- 3.D
-0.273	42.	13-7 +- 4-5	0.419	137	26 8 4- 6 3	0.957	1101.	20 2 4- 6 4
-0.253	73.	20.6 +- 3.4	0.422	52.	23.0 += 3.8	0.976	10.	074-24
-0.250	37.	15.6 +- 2.3	0.434	166.	22.4 += 5.2	0.991	159	12 5 4- 1.9
-0.747	99.	26.5 +- 3.0	0.445	95.	38.7 +- 7.8	0.771	150*	1243 4- 187

W = 1236 MeV; $q^2 = 14.98 \text{ fm}^{-2}$; $\epsilon = 0.943$

$\cos \Theta^{*}_{T\!L}$	$\Phi \begin{bmatrix} o \\ \end{bmatrix}$	$\frac{1}{\Gamma_{f}} \frac{d^{5}\sigma}{d\Omega \ dE' d\Omega^{*}} \left[\frac{\mu b}{sr} \right]$	cos ⊖ * π	$\Phi \begin{bmatrix} \circ \end{bmatrix}$	$\frac{1}{\Gamma_{t}} \frac{d^{5}\sigma}{d\Omega \ dE' d\Omega^{*}} \left[\frac{\mu b}{sr} \right]$	cos Θ <mark>#</mark> π	$\Phi\!\left[^{o}\right]$	$\frac{1}{\Gamma_{t}} \frac{d^{5}\sigma}{d\Omega \ dE' d\Omega''} \left[\frac{\mu b}{sr}\right]$
-0.990	126.	6.8 +- 1.3	-0.336	30.	11.2 +- 3.6	0.431	94.	27.8 +- 4.1
-0.962	107.	8.2 +- 3.1	-0.328	34.	12.4 +- 2.4	0.455	96.	18.7 +- 8.3
-0.960	41.	6.5 +- 2.7	-0.309	147.	8.7 +- 1.9	0.487	74.	23.3 +- 3.6
-0.919	107.	7.0 +- 1.8	-0.304	67.	17.1 +- 2.3	0.518	73.	27.5 +- 7.4
-0.905	102-	6-7 +- 2.5	-0.260	139.	7.9 +- 4.7	0.550	51.	9.7 +- 4.2
-0.985		9.9 +- 4.5	-0.252	92.	24.6 +- 2.7	0.552	96.	23.9 +- 9.5
-0.884	- 22	9.8 +- 4.1	-0.235	72.	16.7 +- 5.1	0.563	128.	28.3 +- 6.7
-0.881	17.	7 1 4 2 0	-0.235	164-	12.5 +- 3.3	0.586	46.	12.1 +- 1.9
-0.870	92.	9 6 4- 2 3	-0.233	154.	11.5 +- 2.1	0.594	135.	14.4 +- 1.9
-0.869	28.	7.1 4- 2.1	-0.227	31.	17.3 +- 2.3	0.601	93.	25.5 +- 4.0
-0-860	99.	8.5 4- 3.5	-0.218	96.	18-8 +- 6-5	0.650	144.	16.8 +- 2.7
-0-843	35.	7 9 4- 2 1	-0.215	1 /4.	9.2 +- 3.7	0.651	155.	13.4 +- 4.8
-0-817	64	7 7 4- 2 4	-0.146	195.	14.3 +- 1.9	0.658	40.	13.1 +- 4.0
-0.800	40.	6.9 4- 3.3	-0.148	68.	23.6 +- 3.6	0.662	73.	12.5 +- 3.1
-0.775	86 -	17.6 +- 6.6	-0.127	43.	17.0 +- 2.9	0.670	166.	11.0 +- 5.4
-0-771	98.	11.9 +- 2.0	-0.123	137.	10.7 +- 2.2	0.708	45.	13.4 +- 3.7
-0.755	49.	9 9 4- 2 0	-0.101	39.	22-1 +- 4-7	0.716	135.	16.9 +- 4.1
-0.753	93.	16.3 +- 1.9	-0.085	93.	31.2 +- 3.7	0.720	70.	22.9 +- 4.0
-0-675	56-	11.5 4- 1.0	-0.084	96.	38.8 +-11.6	0.750	97.	27.2 +- 7.9
-0-616	62	22.0 +- ((-0.054	13.	19.7 +- 3.4	0.757	37.	12.3 +- 3.0
-0.594	97.	23 2 4 5 0	-0.029	155.	17.5 +- 4.8	0.764	145.	11.5 +- 2.0
-0.585	92.	16.1 += 1.0	-0.010	144.	14.3 +- 2.2	0.768	93.	22.6 +- 3.5
-0.577	87	25 7 4- 0.2	0.018	45.	20.6 +- 2.4	0.793	155.	14.5 +- 2.5
-0.542	59	19 6 4- 3 1	0.023	70.	31.7 +- 6.6	0.797	36.	8.5 +- 3.2
-0.540	0.	8.9 4- 2.1	0.051	136.	16.0 +- 1.9	0.800	194.	7.4 +- 3.0
-0.536	-16.	14.2 +- 6.4	0.081	93.	30.5 +- 4.2	0.816	175.	10.0 +- 2.5
-0.517	15.	9.6 +- 2.8	0.095	129	43.7 +-13.8 24.5 to 7.0	0.822	165.	15.5 +- 3.0
-0.513	2.	12.6 +- 2.6	0.112	50	13 8 4 5 3	0.825	20.	6.3 +- 3.0
-0.506	176.	5.1 +- 1.8	0.118	74	30.2 4- 4.4	0.826	185.	13.2 +- 3.5
-7.497	-17.	8.8 +- 3.3	0.161	144.	18-4 +- 3.5	0.841	21.	11.7 +- 3.3
- 0. 486	167.	8.4 +- 2.6	0.180	47.	16.7 += 2.2	0.843	-17	9.3 +- 2.1
- 0.477	16.	9.4 +- 2.1	0.213	135.	17.3 + 1.9	0.865	1.7	13.3 +- 3.4
-0.476	157.	9.2 +- 3.7	0.240	128.	22.2 +- 4.4	0.00.0	0.7	21 7 + 6 7
- 0.469	22.	10.0 +- 4.4	C.246	94.	29.7 +- 4.5	0.878	33.	6 3 4- 2 1
- 0.465	65.	17.7 +- 2.3	0.266	52.	17-9 +- 4-0	0.997	50	B 0 +- 2.1
-0.424	87.	23.8 +-10.1	0.277	96.	26-7 +- 9-0	0.018	56	13 7 4 6 8
- 0 + 420	92.	24.7 +- 2.5	0.304	74.	15.6 += 2.8	0.919	00.	12 3 4 5 7
-0.419	97.	15.5 +- 5.6	0.391	47.	17-0 +- 2-3	0.922	67	12 1 4- 6 1
-0.415	26.	18.0 +- 2.5	0.405	145.	23.9 +- 4.4	0.927	04	12 7 4- 3 6
-0.407	174.	5.4 +- 1.4	0.407	128.	21.0 +- 4.4	0.960	95.	11.0 4- 3.3
-0.389	165.	8.0 +- 1.5	0.409	135.	18.1 +- 2.0	0.974	13	5 3 4- 2 0
-0.377	184.	6.2 +- 1.9	0.418	52.	17.6 +- 3.8	0.991	124.	11.2 +- 2.1
-0.361	155.	9.n +- 1.7		1000000			1. 7.	

W = 1256 MeV; $q^2 = 14.84 \text{ fm}^2$; $\varepsilon = 0.941$

$\cos \Theta^{*}_{T\!C}$	$\Phi[^{\circ}]$	$\frac{1}{\Gamma_{f}} \frac{d^{5}\sigma}{d\Omega \ dE' d\Omega^{*}} \left[\frac{\mu b}{sr} \right]$	$\cos \Theta^{\! \star}_{\pi}$	$\Phi[\circ]$	$\frac{1}{\Gamma_{t}} \frac{d^{5}\sigma}{d\Omega \ dE' d\Omega^{*}} \left[\frac{\mu b}{sr} \right]$	$\cos \Theta^{\boldsymbol{*}}_{\boldsymbol{\pi}}$	$\Phi[\circ]$	$\frac{1}{\Gamma_{t}} \frac{d^{5}\sigma}{d\Omega \ dE' d\Omega^{*}} \begin{bmatrix} \mu b \\ sr \end{bmatrix}$
-0.989	53.	3.1 +- 0.9	-0.386	145.	9.2 +- 1.5	0.414	135.	14.9 +- 3.2
-0.961	93.	6.2 +- 2.5	-0.375	61.	15.9 +- 3.8	0.481	71.	20.2 +- 5.8
-0.979	79.	5.1 +- 2.9	-0.338	136.	11.0 +- 1.9	0.492	73.	13.0 +- 3.2
-0.918	91.	R.4 +- 3.6	-0.329	30.	11.2 +- 2.8	0.591	127.	13.9 +- 2.1
-0.916	85.	8.1 +- 1.9	-0.318	34.	10.1 +- 2.7	0.591	47.	11.4 +- 1.8
-0.868	91.	7.6 +- 2.7	-0.293	87.	29.1 +- 7.6	0.593	92.	20.5 +- 3.6
-0. 265	86.	7.6 +- 2.0	-0.282	65.	22.0 +- 2.7	0.619	135.	15.9 +- 2.9
-0.861	-19.	9.5 +- 3.7	-0.24.9	90.	19.1 +- 2.4	0.655	147.	24.2 +- 9.1
-0.856	17.	9.1 +- 2.7	-0.242	144.	12.4 +- 2.9	0.658	72.	6.2 *- 3.2
-0.942	26.	5.2 +- 1.7	-0.212	37.	9.5 +- 1.6	0.667	41.	7.8 +- 2.7
-0.814	34.	7.0 +- 2.7	-0.183	135.	13.6 +- 1.8	0.711	45.	6.0 +- 2.3
-7.813	29.	5.6 +- 3.0	-0.163	89.	17.5 +- 9.6	0.714	69.	10.7 +- 2.8
-0.773	39.	6.8 +- 1.9	-0.138	128.	15.1 +- 2.8	0.737	127.	8.1 +- 3.9
-0.755	85.	12.3 +- 1.7	-0.125	68.	19.7 +- 2.9	0.760	37.	7.0 +- 2.0
-0.740	90.	12.4 +- 2.0	-0.120	43.	13.8 +- 3.0	0.780	136.	12.2 +- 2.0
-0.716	48.	11.2 +- 1.7	-0.096	90.	21.4 +- 2.9	0.782	92.	15.7 +- 3.4
-0.639	54.	11.6 +- 2.4	-0.083	40.	15.5 +- 3.0	0.805	35.	10.0 +- 4.0
-0.607	54.	19.1 +- 5.4	-0.042	71.	23.4 +- 7.1	0.810	31.	6.2 +- 3.4
-0.590	85.	16.0 +- 2.4	-0.015	145.	12.5 +- 4.5	0.824	146.	10.7 +- 2.0
-0.582	90.	17.2 +- 2.3	-0.005	134.	13.1 +- 2.0	0.831	167.	12.9 +- 4.8
-0.577	165.	3.9 +- 1.0	0.016	45.	16.4 +- 2.3	0.833	156.	10.1 +- 2.8
-0.575	175.	2.3 +- 0.8	0.024	127.	16.7 +- 2.2	0.940	65.	10.4 +- 3.8
-0.557	183.	5.1 +- 1.8	0.064	91.	19.5 +- 3.1	0.842	27.	5.6 +- 2.2
-0.544	155.	6.R +- 1.4	0.064	70.	27.7 +- 5.1	0.850	187.	7.7 +- 3.3
-0.517	14.	5.3 +- 2.8	0.118	50.	14.3 +- 6.9	0.858	176.	9.0 +- 3.6
-0.515	0.	6.1 +- 1.9	0.144	72.	18.0 +- 4.5	0.862	17.	4.9 +- 2.0
-0.513	58.	15.1 +- 2.0	0.178	47.	15.7 +- 2.1	0.865	-18.	7.2 +- 3.6
-0.504	147.	5.7 +- 1.7	0.183	134.	16.7 +- 3.3	0.877	61.	8.6 +- 3.3
-0.495	2.	8.0 +- 1.7	0.216	127.	20.8 +- 2.4	0.878	92.	17.9 +- 5.9
-0.477	-15.	8.0 +- 3.1	0.230	92.	22.9 +- 4.0	0.883	1.	8.7 +- 2.8
-0.471	164.	8.5 +- 3.0	0.262	51.	17.7 +- 4.6	0.910	57.	5.8 +- 3.1
- 0.462	21.	9.1 +- 5.0	0.271	71.	23.1 +- 6.6	0.912	168.	5.9 +- 1.4
-0.455	17.	9.1 +- 1.9	0.299	73.	18.5 +- 4.1	0.922	91.	8.3 +- 2.8
-0.446	63.	13.8 +- 3.0	0.384	48.	18.0 +- 2.6	0.937	48-	6.8 +- 3.1
-0.436	154.	6.1 +- 1.5	0.401	126.	16.6 +- 2.3	0.957	92.	9.9 +- 4.3
-0.437	85.	19.7 +- 3.4	0.403	148.	12.4 +- 6.3	0.961	89.	5.1 +- 2.5
-0.413	90.	19.9 +- 2.3	0.408	51.	13.8 +- 3.6	0.99?	67.	7.9 +- 1.6
-0.300	26-	9.9 +- 1.6	C-412	92.	31.5 +- 5.2			

W = 1276 MeV; $q^2 = 14.70 \text{ fm}^{-1}$; $\epsilon = 0.939$

$\cos \Theta^{*}_{\pi}$	$\Phi \begin{bmatrix} o \end{bmatrix}$	$\frac{1}{\Gamma_{t}} \frac{d^{5}\sigma}{d\Omega \ dE' d\Omega^{*}} \left[\frac{\mu b}{sr} \right]$	$\cos \Theta^{\! \star}_{\pi}$	φ[°]	$\frac{1}{\Gamma_{t}} \frac{d^{5}\sigma}{d\Omega \ dE' d\Omega^{*}} \left[\frac{\mu b}{sr} \right]$	$\cos \Theta^{\pmb{*}}_{\pi}$	$\Phi\!\!\left[^{o}\right]$	$\frac{1}{\Gamma_{t}} \frac{d^{5}\sigma}{d\Omega \ dE' d\Omega^{*}} \left[\frac{\mu b}{sr} \right]$
-0.987	16.	3.4 +- 1.1	-0.411	62.	14.7 +- 6.1	0.255	71.	18.6 +- 4.5
-0.962	61.	5.0 +- 1.9	-0.396	87.	12.7 +- 3.2	0.266	51.	17.7 +- 5.8
-0.934	70.	5.9 +- 1.9	-0.393	135.	6.4 +- 1.1	0.280	72.	13.6 +- 5.2
-0.918	74 .	5.2 +- 1.5	-0.370	25.	7.6 +- 1.6	0.378	47.	11.3 +- 5.5
-0.876	76.	6.1 +- 1.8	-0.346	60.	12.1 +- 2.3	0.385	49.	9.6 +- 1.8
-0.867	81.	6.7 +- 2.4	-0.335	127.	11.1 +- 2.0	0.397	124.	11.1 +- 2.2
- n. 832	4 .	5.2 +- 2.8	-0.313	29.	4.8 +- 1.4	0.399	120.	10.0 +- 4.5
-0.830	22.	11.4 +- 4.4	-0.297	32.	4.1 +- 2.2	0.422	52.	6.6 +- 2.5
-0.790	30.	7.9 +- 2.3	-0.272	64.	12.7 +- 2.4	0.428	91.	17.3 +- 6.9
-0.782	78.	7.9 +- 1.9	-0.270	85.	20.7 +- 3.8	0.485	72.	17.9 +- 5.3
-0.754	82.	9.2 +- 1.3	-0.235	134.	8.9 +- 2.3	0.497	71.	9.6 +- 4.6
-0.745	30.	9.6 +- 2.0	-0.224	88.	11.8 +- 2.8	0.570	90.	16.0 +- 5.5
-0.718	166.	3.5 +- 1.4	-0.208	36.	7.3 +- 1.2	0.591	51.	7.6 +- 3.7
-0.691	175.	3.5 +- 1.5	-0.203	66.	31.0 ← 9.6	0.596	47.	6.2 +- 1.3
-0.671	47.	9.3 +- 1.9	-0.169	125.	11.0 +- 1.5	0.597	124.	10.3 +- 1.A
-0.634	77.	11.0 +- 5.0	-0.121	87.	18.5 +- 5.0	0.630	44 -	8.2 +- 3.0
-0.619	164 .	3.1 +- 1.1	-0.108	42.	10.0 +- 3.3	0.710	69.	14.4 +- 3.8
-0.617	155.	3.4 +- 0.9	-0.106	66.	17.5 +- 2.8	0.715	45.	4.5 +- 2.0
-0.604	52.	°.3 +- 4.5	-0.083	39.	10.7 +- 2.0	0.760	90.	15.3 +- 5.7
-0.588	52.	8.3 +- 2.4	-0.080	88.	20.9 +- 3.7	0.770	38.	3.8 +- 1.6
-0.588	82.	13.8 +- 1.7	-0.001	125.	8.6 +- 1.4	0.776	127.	9.0 +- 2.1
-0.562	145.	6.0 +- 1.2	0.022	44.	9.2 +- 1.5	0.813	35.	6.1 +- 2.R
-0.558	R7.	14.8 +- 5.0	0.027	120.	9.6 +- 4.7	0.838	136.	4.7 +- 1.3
-0.524	137.	6.9 +- 1.9	0.074	89.	18.8 +- 4.0	0.850	27.	4.4 +- 1.8
-0.503	0.	2.5 +- 1.3	0.080	69.	25.0 +- 4.6	0.853	148.	9.5 +- 4.0
-0.489	56.	12.2 +- 1.9	0.098	44-	8.4 +- 3.4	0.866	62.	5.5 +- 2.4
-0.483	2.	4.5 +- 1.1	0.153	71.	20.7 +-10.2	0.875	16.	4.2 +- 1.9
-0.478	-17.	12.7 +- 4.4	0.183	47.	11.4 +- 1.7	0.881	3.	3.0 +- 1.5
-0.469	22.	9.1 +- 3.9	0.198	124.	12.5 +- 1.9	0.929	163.	5.9 +- 1.2
-0.457	144.	6.4 +- 2.0	0.215	120.	27.5 +-11.1	0.950	39.	4.9 +- 2.4
-0.434	84.	15.9 +- 2.1	0.231	90.	19.0 +- 5.4	0.993	46.	4.5 +- 1.3
-0.434	17.	4.9 +- 1.3						

Die vorliegende Arbeit entstand im Rahmen eines Experiments, das am Deutschen Elektronensynchrotron (DESY) von einer Gruppe des Laboratoire de Physique Atomique et Moléculaire du Collège de France, Paris, und der DESY-Gruppe F21 durchgeführt wurde.

Herrn Prof. Dr. E. Lohrmann danke ich für wohlwollende Förderung dieser Arbeit.

Allen Mitgliedern der Kollaboration möchte ich für die bei der Durchführung des Experiments geleistete Arbeit danken, besonders Herrn Dr. F.W. Brasse, der dem Experiment die entscheidenden Impulse gab. Darüberhinaus verdanke ich ihm viele Anregungen und Kritik.

Frau Dr. R. Pietsch sei für ihre Hilfe in einer frühen Phase des Experiments gedankt. Sehr anregende Diskussionen und Hilfe beim Entwurf eines Programms verdanke ich Monsieur R. Lachaux.

Den Herren J. Koll, G. Singer, K. Thiele und H. Weiß danke ich für ständige technische Hilfe, Frau K. Schmöger für sorgfältige Schreibarbeit. Ferner sei Herrn W. Krechlok für Programmierarbeiten gedankt. Frau Elsner und Herrn Knaut danke ich für die Anfertigung der meisten Zeichnungen.

Den Herren Prof. Dr. v. Gehlen und Dr. F. Gutbrod möchte ich dafür danken, daß sie mir ihre theoretischen Rechnungen zur speziellen Kinematik des vorliegenden Experiments zur Verfügung stellten. Dr. F. Gutbrod sei außerdem für seine ständige Bereitschaft zur Aufklärung theoretischer Fragen gedankt.