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Siehst Du den Mond dort stehen?
Er ist nur halb zu sehen,

Und ist doch rund und schon.

So ist’s mit manchen Sachen,

Die wir getrost belachen,

Weil uns’re Augen sie nicht seh’n.

Fur
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Zusammenfassung

Mit dem Crystal Ball Detektor wurde ani e*e” Speicherring DORIS 1I das Verzweigungs-
verhaltnis B,, fir den Zerfall der Y(1S) und Y(2S) Resonanzen in Myon-Paare sowie zum
ersten Mal das Produkt aus ihrer myonischen Breite T, und ihrem Verzweigungsverhaltnis
in Elektron-Paare. B,.. gemessen. Es ergaben sich Werte vou

B,.(1S) = (2.31=0.12=0.10) %
I"W(ls)-Bec(IS) = (312161 1.7) eV
und
B,uu('.?S) = (1.22=0.28 = 0.19) %
Fuu(zs)'Bee(ZS) = (G.:) = 1.5 + 10) e\‘?,

wobei die beiden Fehler jeweils die statistische und die systematische Unsicherheit der Mes-
sung angeben. Unter Beniitzung des derzeitigen Weltmittelwertes von Be.(1S) = (2.52 =
0.17)} % konnte zum ersten Mal die myonische Partialbreite

T,.(1S) = (1.24 + 0.06 = 0.11) keV

gemessen werden. Dartiberhinaus konnte in der Abhangigkeit des Wirkungsquerschnittes
von der e e~ Schwerpunktsenergie erstmals die erwartete Interferenz zwischen Myou-Paar
Erzeugung im Kontinuum und in Resonanzzerfallen beobachtet werden.

Aus dem Ergebnis fir B,,(1S) erhalt man den Skaleuparameter A der Starken Wech-
selwirkung. indem man fir das Y(1S) das Verhaltuis von B, und der Zerfallsrate B, 11
drei Gluonen auswertet. Renormiert man die Quanten-Chromo-Dynamik mit Hilfe des MS
Schemas fir vier “flavors™. so findet man

AMS - (210 2 25715°) MeV'.
Diese Zalil entspricht einer Starken Kopplungskonstanten von

oM (=5 GeV') = 0.184 = 0.006~ 957,

-0.01%

Die ersten Fehler an diesen Resultaten geben die jeweiligen experimentellen. und die zweiten
Fehler die theoretischen Unsicherheiten an. Da letztere beim derzeitigen Stand der Theo-
rie eigentlich prinzipiell nicht bestimmbar sind, sollten sie nur als ungefahre Schatzuugen
betrachtet werden.
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Abstract

Using the Crystal Ball detector at the e*e” storage ring DORIS II we have measured the
branching fraction B,, to muon pairs of the Y(1S) and Y(2S) resonances and for the first
time the product of the muonic partial width I';, and the branching fraction B.. to electrons
for both resonances. We obtain

B,.(1S) = (2.314£0.12+0.10) %
I,.(1S)-B.(1S) = (31.2+1.6%1.7)eV
and
B,.(2S) = (1.22+0.28+0.19) %
T,.(25)-Be(28) = (6.541.541.0)eV,

where the errors given are the statistical and systematic uncertainties, respectively. Inserting
the present world average value of B..(1S5) = (2.52 & 0.17) % we measure for the first time
the muonic partial width

T,.(1S) = (1.24 4 0.06 + 0.11) keV.

In addition we present the first evidence for the expected interference between u-pair pro-
duction in the continuum and in Y(1S) decays.

Using our result on B,,(1S) we derive a value for the scale parameter A of the strong
interaction from exploiting the ratio of B, to the branching fraction By of the T(1S) to
three gluons. In the MS renormalization scheme for the theory of Quantum Chromo Dynamics
(QCD) we find for four flavors

ANS = (210 4 25712°) MeV.
We convert this number into a measurement of the strong coupling constant
oM (=5 GeV) = 0.184 + 0.006* 507

In both results the experimental and the theoretical errors are listed, respectively. The values
for the theoretical uncertainties should be taken as an educated guess. Given today’s state
of the art in QCD, they are in principle unknown.
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Chapter 1

Introduction

In the past 35 years substantial progress has been achieved in understanding strongly inter-
acting matter. Milestones in the experimental findings were the discovery that the proton is
not point-like [1], the observation of structure inside the nucleon [2], the discovery of quarks
with the new flavors charm [3] and beauty [4], and the proof of the existence of gluons [5])-
The possible mass range for the presumably last missing element in the zoo of strongly in-
teracting elementary particles, the top quark, has by now been considerably narrowed by
indirect methods [6], indicating its possible detection in the near future.

Parallel to the experimental progress the theoretical development led from the concept
of quarks [7] and partons (8] to a field theory of strong interaction, the Quantum Chromo
Dynamics (QCD) [9]. Its basic approach of an underlying local gauge symmetry was taken
from the successful “theory of light and matter”, the Quantum Electro Dyvnamics (QED) [10].
and its later unification with the theory of weak interactions to the Electroweak Theory 111
The proof of their renormalizability [12] ensured that predictions for physical processes could
be obtained from these theories with the help of perturbation expansions. However, two facts
render perturbative calculations in QCD much harder and less accurate than in QED. In the
GeV energy range the strong coupling constant a, is more than 20 times larger than the
electromagnetic coupling aem. and there is a self-interaction between the mediating bosons,
the gluons, which is absent in the case of photons.

The cleanest way to study strong interactions is the investigation of two-quark systems.
Among these the spectroscopy of quarkonia yields the richest harvest of information. Quarko-
nia are bound states of a quark and its antiquark and their energy level schemes are similar to
the positronium levels in QED. In Figure 1.1 we have plotted the level schemes for the heavy
quarkonia bottomonium (bb) and charmonium (¢c). A similar level scheme can be plotted
for the lighter strangeonium (s§). Its lowest lying states are the 'Sq 7'(958), the 35, ¢(1020),
the ' P, h'(1380), and the *P; states fo(~ 1525), f1(1510), £5(1525). However, all these states
are more or less influenced by SU(3)4 mixing with uti+dd and are therefore no pure ss states.
The absence of SU(3),; mixing effects for the heavy quarkonia facilitates the understanding
of level spacings, and the occurrence of states below the respective open meson (DD, BB)
threshold opens the possibility to study a variety of decay channels and various transitions
within the quarkonia systems. Relativistic effects and non-perturbative QCD effects. which
are still large for charmonium, decrease with increasing quark masses. This would suggest
ideal conditions for the bound top-quark system. However, given a top-quark mass of more
than 89 GeV [14], the top-quark decays on-shell into a W-Boson and a b-quark. Thus the
weak decay of the topomum O(tt) »W*W BB dominates and strong decay channels or
cascade decays will hardly be observed. In addition, the ® widths may even be larger than
the distance between successive toponium states {15!, Therefore the tf spectroscopy does not
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Figure 1.1: Energy level schemes for charmonium, and bottomonium {13]. States with dashed
lines have not yet been observed. The arrows indicate measured radiative transitions. The
numbers in parentheses give the mass in MeV. The spectroscopic notation n ***'L; lists the
radial quantum number n, the spin multiplet 2s + 1. the angular momentum L. and the total
spin J. Above the open meson threshold considerable mixing between 35, and *D, states
may occur via coupled channel effects.

look very promising, and the bb system appears to be the “Hydrogen atom of QCD”, where
the strong interaction can be studied with the least distortions.

The bb states with the quantum numbers of the photon, JPC = 177, are called T reso-
nances, and can be directly produced in e'e”-annihilation into one virtual photon (Fig. 1.2).

e b
Figure 1.2: The production of Y-resonances in et e -annihilation.

Figure 1.3 shows the total cross section of ete~ — hadrons in the center-of-mass (c.m.)
energy region around 10 GeV. The data was taken by the CLEO detector at the CESR e¥e”
storage ring in Cornell (USA) [16l. The production of the T(15) to T(65) states shows up as
resonances in the ete™ cross section.

The apparent widths of the T(1S) to T(3S) resonances in Figure 1.3 are governed by the
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Figure 1.3: Total observed cross section of et e — hadrons versus the e*e™ center-of-mass
energy as measured at CESR.

c.m. energy resolution of CESR, being about 4 MeV. Their true widths are only a few 10
keV. On the other hand, the YT(4S) to Y(6S) resonances are much broader than the storage
ring resolution. Their widths range from 24 MeV to 110 MeV, since their masses lie above
the energy threshold for open bottom production (Fig. 1.4a). This is an example for the
Okubo-Zweig-lizuka (OZI) rule {17}, claiming that decays without qq annihilation are largely
preferred.! The main decay modes of the Y-resonances are listed below, roughly ordered
according to their partial decay widths.

o Decay to two B-mesons above the threshold for open bottom production (Fig. 1.4a).
e Hadronic or electromagnetic transitions to lower lying Y-states (Fig. 1.4b and )
e Annihilation to 3 gluons or 2 gluons plus a photon (Fig. 1.4d and e)

e Annihilation to 1 virtual photon (Fig. 1.4f and g)

Decays to one gluon are forbidden by color conservation since a single gluon is not a color
singlet. A two-gluon or two-photon final state is not possible due to the Landau-Yang theo-
rem [18]. The decay into three photons is negligibly small, as it is proportional to al .
Those decay modes, which invelve quark-antiquark annihilation to gluons, can in principle
be calculated in QCD and compared to the experimental values. However, the mean binding
radius of the quarks is still too large to neglect confinement, and thus non-perturbative effects.
These effects are usually factorized into the wave function leaving a perturbatively calculable
part. Predictions for partial decay widths thus depend on model calculations for the wave
functions (e.g. non-relativistic potential models), and on the validity of perturbative QCD.
In ratios of two partial widths of the same resonance the dependence on the wave function
cancels, and the ratio can be expressed in a power series of the strong coupling constant a,.
Such a ratio is formed by the expressions for the 3-gluon width Tgg of the Y-states and
their leptonic width Tz, which can be measured as the ratio of the corresponding branching
Since the 3 gluon decay leads to a large variety of final states,
subtracting the sum of all

fractions Bgg, and By.
the corresponding branching fraction can only be measured by

IThe OZI rule is meanwhile understood as originating from the running of the strong coupling constant a,,
since diagrams without quark annihilation involve only soft gluons.
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Figure 1.4: Possible Y decay modes. The hatched regions indicate fragmentation or soft
gluon exchange.

other branching fractions from unity. The calculation of this latter sum also relies on the
knowledge of By. The measurement of the electromagnetic decay T — (( thus leads to
an experimental result, which can be compared to perturbative QCD predictions. If the
perturbative expansion is well behaved, the strong coupling constant a, can be extracted
from this measurement. Apart from the strong coupling constant, fundamental parameters
of the Y-resonances, namely their total widths and some branching ratios for cascade decays,
are determined with the help of the T decay to lepton pairs.

Since the total widths of the three lowest Y(nS) states, n=1,2,3, are about two orders
of magnitude smaller than the energy resolution of today‘s ete” -colliders, these total widths
can only be obtained from the ratio of a partial decay width to the corresponding branching
fraction. The only channel where both partial width and branching fraction can be measured,
is the leptonic decay. The knowledge of the total width is in turn mandatory to convert
theoretical predictions for partial widths into values for measurable branching fractions.

Furthermore, a precise knowledge of the leptonic branching ratio is needed to determine
branching ratios for cascade decays between the Y-resonances, since such decays are usually
measured in exclusive final states, where the lower lying resonance decays to a lepton pair.



In this work we present a measurement of the decay to muon pairs for the T(1S) and the
Y(2S). The data was collected from the e*e” storage ring DORIS II at DESY during the
years 1983 through 1986 using the Crystal Ball detector.

We measure the branching fraction to muons by analyzing the excess of u-pairs on reso-
nance compared to the continuum g-pair production. A value for the product of the muonic
width and the branching fraction to electrons is obtained by fitting the observed u-pair cross-
section as a function of the c.m. energy in the region of the respective resonance.

The outline of this thesis is as follows. In Chapter 2 we review the underlying theory. Sec-
tion 2.1 presents the basic ideas of today’s “Standard Model” of elementary particle physics.
The problem of renormalization is addressed for QED and QCD in Section 2.2. As an ex-
ample for renormalization scheme dependence of QCD predictions the above mentioned ratio
of Tyee/Tee of the T states will be discussed. Section 2.3 deals with the process ee— ppu.
We study radiative corrections to this process as well as interference effects between the
resonance production and the continuum process. In addition we discuss their modeling by
Monte Carlo event generators and describe special modifications of the event generator used
in our analysis. Finally, Section 2.4 treats the process e*e” — e*e”, which is used for the
luminosity measurement.

Chapter 3 describes the experimental setup and its simulation by Monte Carlo (MC) tech-
niques. Details of the MC simulation, however, which we have developed to precisely model
the response of the tracking chamber and the calorimeter, are presented in the appendix.

Chapter 4 treats the data selection, the luminosity measurement, and the beam energy
determination. It is shown, why the interference between continuum and resonance requires
a precise knowledge of the c.m. energy. Details of the determination of this energy scale with
the help of the multihadronic cross-section are again given in the appendix. We describe the
selection of luminosity events, multihadronic events, and p-pair events.

The continuum background in our u-pair sample is studied and subtracted in Chapter 5 to
obtain the observed cross-section for resonance decays to muons. We thoroughly investigate a
bunch of systematic error sources connected with this subtraction, since the analysis heavily
relies on a correct reproduction of acceptance changes between on- and off-resonance data.

The method of extracting B, and T',,B.. from the measured event numbers and cross-
sections is explained in Chapter 6 and the results are given. It is studied, whether we need
the interference term in the cross-section to describe the measured data.

Finally, Chapter 7 contains the discussion of our results and compares them to those of
other experiments. We check whether the B,, value for the Y(1S) is consistent with that
of the T(2S) and whether it can be scaled to the J/¢'. A value for the muonic width of the
Y(1S) is obtained and compared to the electronic width. The total widths of the T(1S) and
Y(2S) resonances are determined. At the end of this chapter we derive values for the QCD
scale parameter A and the strong coupling constant a, from our result on B, of the T(1S).
The dependence of these numbers on the renormalization scheme is discussed.

In Chapter 8 the results are summarized and conclusions are presented.



Chapter 2

Theoretical Fundamentals

2.1 The Standard Model of Elementary Particle Physics

“So when some fool physicist gives a lecture at UCLA 1n 1983
and says ‘This is the way it works, and look how wonderfully
similar the theories are’, it’s not because Nature s really similar;
it‘s because the physicists have only been able to think

of the same damn thing, over and over again.”

R.P. Feynman [19](page 149) giving one possible reason
why the theories of different forces are similar.

A comprehensive picture of elementary particle physics has emerged from the experimental
and theoretical work of the 60", 70", and 80". It is widely accepted and thoroughly tested
and therefore called the “Standard Model” (SM). We will outline its basic ideas below’.

2.1.1 The Building Blocks of Matter

Table 2.1: Periodic system of the building blocks of matter.

Particles Generations Q Forces
(m/GeV) I II II1 (Qem/€) | Grav. Weak Emag. Strong
Leptons || v, (< 107%) v, (S350) v, (< 0.03) 0 X X
| e(5x107*) p(0.1) T (1.8) -1 X x x
Quarks | u (5 x107°) ¢ (1.3) t (140) 2/3 X x x x
| d (9 x107%) s(0.2) b (5) -1/3 x x x x

The building blocks of matter are spin-1/2 fermions which are point-like down to a scale
of 107®*m. They can be ordered in a “periodic system”, horizontally in groups of equal
electromagnetic charge Q.. = @ - €, and vertically in generations (Table 2.1). The higher
generatious essentially iterate the properties of the first generation at higher particle masses.
The number of generations is not predicted in the SM. It has been shown recently [21] that
the number of light neutrino generations (m, < 45 GeV) is exactly three.

Neutrinos are the particles of lowest mass in each generation, and it is still an open
question, if they are in fact massless. The properties of the 7-neutrino are inferred from 7

1Section 2.1 follows. in parts, the synopsis given by W. Majerotto {201.

6



2.1. THE STANDARD MODEL OF ELEMENTARY PARTICLE PHYSICS 7

decays. Up to the present no reaction induced by a v, has been observed. Together with the
three charged particles e, u, and 7 the neutrinos build up the family of leptons, which does
not participate in the strong interaction.

The family of quarks consists of the 6 flavors up, down, strange, charm, bottom, and top.
There exists only indirect evidence for the top quark constraining its mass with a precision
of about 35 GeV [6]. The symmetry between quarks and leptons, and the mass pattern, also
shown in Table 2.1, cannot be explained in the framework of the SM.

2.1.2 The Forces

As indicated in Table 2.1, four types of forces act between the fundamental particles: gravi-
tation, the weak, the electromagnetic, and the strong interaction. The gravitation cannot yet
be included in the SM, since a consistent quantum theory of gravitation is missing. Unified
models including gravitation, like Supergravity or Superstring Theories, are beyond the scope
of present experiments.

Formally, the remaining three forces arise from requiring local gauge symmetry of the un-
derlying Lagrangian, namely the symmetry under the gauge group SU(3)c xSU(2)LxU(1)y
(see Table 2.2). The local gauge invariance of the Lagrangian is achieved by adding a “min-
imal substitution” term in the covariant derivative, which consists of a product of coupling
strength, group generators, and gauge fields.

Table 2.2: Gauge symmetry structure of the forces.
The left-right arrow indicates the mixing in the GSW-Model. The term in square brackets
is valid for the Z°, only.

Local Gauge Minimal Coupling Vector Force
Symmetry Subst. Constant Bosons
GSW - { SU(2) g FWH }g’é{ oy = (g2[+¢7))/4r | WYW~Z° weak
Model U(1)y 92_'YBM Qem= €[4T o elmag.
QCD SU(3)c | 2\NGY a, = g2/4m E1y ---y B8 strong

The symmetry group SU(2)LxU(1)y describes the electroweak interaction (Glashow-
Salam-Weinberg (GSW) Model). The group SU(2), denotes transformations in the space of
the weak isospin I of lefthanded (L) fermion doublets and has three generators, e.g. the Pauli
matrices 7;, i=1,2,3. The corresponding quanta of the gauge fields introduced by requiring
local gauge invariance of the Lagrangian are the three vector bosons W+, W~, and W°. The
U(1)y group describes phase transformations with the weak hypercharge, Y¥=2(Q-1IY),
acting as a generator. This implies one gauge boson B. The SU(2)r bosons W only cou-
ple to left-handed fermions, whereas the B boson couples to the weak hypercharge, i.e. all
fermions (except hypothetical right-handed neutrinos). The observed neutral vector bosons,
the photon 7 and the neutral weak boson Z°, are linear combinations of B and W, such that
the photon does not couple to neutrinos. The mixing angle is called Weinberg angle . It
relates the coupling strengths g and ¢’ and thereby defines the electromagnetic coupling e via

e = gsinfy = g' cosbw. (2.1)

Its value is sin® 6y = 0.226 + 0.005 [22]. Due to this mixing, only the charged weak currents
(W+,W~) maintain the V-A coupling, i.e. the coupling to left-handed fermions, only. The
coupling of the neutral weak current (Z°) depends on the charge and weak isospin of the
fermions.
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The group SU(3)c is the symmetry of Quantum Chromo Dynamics (QCD) describing
the strong interaction. It has 8 generators, e.g. the Gell-Mann matrices );, i=1,...,8 and is
embedded in the space of the three quark colors (C): red (r), blue (b), and green (g). Again,
the quest for local gauge invariance gives rise to 8 gauge bosons, the gluons.

The algebrae SU(2) and SU(3) are non-abelian. To maintain gauge invariance, the field
strength tensor must include terms which lead to a self-coupling among 3 or 4 gauge bosons.
Thus, the gauge bosons themselves carry the charge of the corresponding interaction. The
U(1) group is abelian, and therefore the photon does not couple to itself. Since both, the
photon and the Z°, have Y* = Iy = 0, neither v—Z°, nor Z°—Z° couplings exast.

The range r of the forces is related to the mass m of the mediating bosons via r ~ 1/m
(h=c=1). Therefore the weak interaction with m ~ 100 GeV has a very short range of less
than 10~2 fm, whereas the electromagnetic force (m=0) is of infinite range. In principle, also
the strong force should have infinite range because the gluons are massless. However, all free
particles are SU(3)¢ singlets due to the confinement mechanism (see below). Since the gluons
are SU(3)¢ octet bosons, they do not couple to SU(3)c singlet states. Thus, the range of
the strong force is restricted to the dimensions of strongly bound systeims, which is typically
1 fm.

2.1.3 The SU(2)xU(1)xSU(3) Structure of Fermions

Table 2.3:  Multiplet structure and charges with respect to the gauge group
SU(2),x U(1)y xSU(3)c for the first family of fermions.
The square brackets indicate, that right-handed neutrinos may not exist.

[ Multiplets [ SU(3)c Singl. | SU(3)c Triplets | Iy | Y& 2 iotet |
T b q
SU(2). Doublets (Vc ) ( " ) ( b ) ( " ) +1/2 -1 +1/3
e | d /r d /L d /i —-1/2
SU(2), Singlets (Ver) uf uk u$h 0 0] +4/3
SU(2). Singlets er d%x d di 0 -2 -2/3

Each fermion generation has the same multiplet structure with respect to the gauge groups.
The properties of the first generation are shown in Table 2.3. the subscripts L and R denote
the left- and right-handed component of the fermion spinors ¥ = 1y + yYgr, where ¥y =
(1 —~s)%/2 and ¥g = (1 + 7s)¥ /2. Right-handed neutrinos would only exist if neutrinos are
massive. Grouping left-handed fermions to doublets creates the V-A (~ 7u(1 —7s)) structure
of the charged weak current and implies the parity violation of the weak interaction.

The left-handed weak isospin doublets define the weak eigenstates d’, s’, and b’. The
observed mass eigenstates d, s, and b from Table 2.1 are superpositions of these states. Their
relation is given by an unitary matrix, the Cabibbo-Kobayashi-Maskawa matrix Mckm 23]

d’ d
s’ = AICKM S . (2.2)
b’ b

This matrix can be parametrized with the help of three angles cos#6;;, describing the mixing
of the " with the j'* generation, and one phase écp, which is (if a non-integer multiple
of 7) responsible for CP-violation. If the weak and the mass eigenstates were identical, no
transitions between different quark flavors would be possible.
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2.1.4 The Masses

Exact local gauge invariance would require all gauge bosons to be massless. Additionally,
exact SU(2); symmetry is only possible for massless fermions. On the other hand, for the
SU(3)c symmetry of the strong interaction the fermion masses do not cause problems. Thus,
the fermion and weak gauge boson masses have to be accommodated within the electroweak
SU(2)LxU(1)y theory. The standard way is to introduce a spontaneous symmetry breaking
of the ground state (vacuum), termed Higgs-mechanism [24], in a formalism extended to
non-abelian groups by Kibble {25]. The minimal Higgs model introduces one complex isospin
doublet of scalar Higgs fields. Three of its components create mass terms for the W+ W-,
and Z°, whereas the 4'" component shows up as a massive scalar, the Higgs particle. 1t has
not yet been found, and its mass is highly uncertain. Recent work [26,6] has managed to
constrain its mass to 44 GeV < mp < 1000 GeV.

The fermion masses arise from their Yukawa couplings to the Higgs field. Since this
coupling has to be proportional to the fermion mass, there are as many coupling constants
as different quark and lepton masses exist.

2.1.5 Open Questions

“What is the connection between physics and life?”

Most urgent question in physics, as felt by approximately every
fifth student, but by not a single one of about 200 “grown-up”
theorists and experimentalists, in a survey at CERN [27].

In the SM, there is no relationship between the SU(3)¢ symmetry and the SU(2)p,xU(1)y
symmetry, between their gauge bosons, or between their coupling constants, 1.e. there 1s
yet no “unification” of these forces. In addition, the weak and electromagnetic forces are
only partially unified. There are still two separate interactions, expressed in two coupling
constants. They are related to each other via the Weinberg angle (cf. Eq. 2.1), whose value
is not predicted by the SM. Thus, a real unification of the forces (even without gravitation)
is still a pending problem.

whowTowt o wwTowtowt owmowmow
| | | | | |

I I
l I

|

|

ZO
Figure 2.1: Triangle graphs in the GSW-Model.

It can be inferred from renormalization arguments, that there may be links between QCD
and the GSW-Model, respectively between quarks and leptons. Triangle graphs like those in
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Figure 2.1 would lead to non-renormalizable divergencies unless un"ks‘lepwnsQ = 0. Given
identical numbers of lepton and quark generations, this leads to Ne(Qu + Qa) = —Qe, 1€
N¢ = 3. Thus, electric quark charge and the number of colors N¢ may be linked through a
yet undiscovered symmetry. On the other hand, given 3 colors, the above equation requires
identical numbers of quark and lepton families, which may also be a hint to new symmetries.

A unified theory should also reduce the large number of free parameters in the SM.
Whereas the SU(3)c part has only one free parameter, namely the coupling constant a,, the
electroweak part has 2 coupling constants, 2 free parameters in a minimal Higgs sector, 6
corresponding Yukawa couplings of the quarks to the Higgs field (the quark masses), and
4 CKM mixing parameters. If neutrinos have a Dirac mass, analogously 6 lepton Yukawa
couplings and 4 lepton mixing parameters will enter the theory. For massless neutrinos, as
assumed in the minimal standard model, no neutrino mixing is possible, and the Yukawa
couplings of the 3 charged leptons are left. Thus there are at least 18 free parameters in the
SM, which are listed in Table 2.4.

Table 2.4: The 18 free parameters of the minimal standard model. The quarks masses and
the value of écp are typical numbers given in the literature. All other parameters have been
taken from Ref. [22].

o, a_ L Gr mg my sin#,, | sinfy3 | sinf;3 bcp
(Il =5 GeV) | (gl =0) | (TeV?) | (GeV) | (GeV)
0.19 137.035990 | 11.6637 | 91.16 > 44 0.220 0.046 0.004 380°
+0.03 +0.000006 | £0.0002 | £0.03 | < 1000 | +£0.003 4+0.016 | £0.003 | +40°
me m,, m, ™mg My m, me my m
(keV) (MeV) | (GeV) | (MeV) | (MeV) | (GeV) | (GeV) | (GeV) | (TeV)
510.9991 105.65839 1.784 9 5 0.19 1.3 4.8 0.14
+0.0002 4+0.00003 +0.003 +2 +1 +0.02 +0.1 +0.3 :E0.044J

Due to relations between cem,g,9', Gr {the Fermi constant), 8w ,mz, mw, and (®), . (the
Higgs field vacuum expectation value) there is some freedom to chose 3 of these parameters,
besides the Higgs mass my, in order to cover the electroweak coupling constants and the Higgs
sector. We list that set of parameters, which has been most precisely measured, namely aepm,
Gp, and M. It is (on tree level) connected to the more fundamental set g, g', and (¥} __ via

1 2 12
oy = — 99
47rg2 +g:2
Gf_"l - \/§(§>fmc (2'3)
24 2
mz = L-:;Hg—<q))vac'

a—

The values of the 18 parameters cannot be derived from the SM. Especially the wide spread
of the mass values covering 6 orders of magnitude (even more than 11 orders, if neutrinos are
massive) is not understood. The iteration of leptons and quarks in 3 generations remains a
mystery.

Thus, in spite of its tremendous success, the SM leaves some important questions open.
Today’s high energy physics research has two goals. First to further test the SM and pin
down its parameters more precisely (especially a,, m¢, my, siné;;, and bcp), and second, to
search for physics beyond the SM to obtain a deeper insight into its origin. In this thesis we
can make a small contribution to the first item, namely the measurement of a,.
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2.2 Renormalization of Gauge Theories

“The shell game that we play to find mo and g is
technically called ‘renormalization’. But no matter how
clever the word, it is what I would call a dippy process!”

R.P. Feynman [19] (page 128).

A crucial feature of any gauge theory is its renormalizability. The absorption of di-
vergencies occuring in the calculation of physical processes is mandatory for perturbative
expansions. The other mandatory condition is the smallness of the expansion parameter to
guarantee convergence. After Feynman, Tomonoga, and Schwinger (28] the calculations in
modern gauge theories are expansions in terms of the coupling constant. Each subprocess of
a given coupling constant power can be illustrated as a Feynman diagram, which is evaluated
following certain rules.

The basic idea of renormalization is the interpretation of mass, couplings, and fields
in the Lagrangian as to be “bare” quantities. These bare quantities are not measurable
and can be infinite. They are hidden through higher order processes resulting in effective
masses and couplings, which are the physically measurable quantities. A renormalization
procedure defines, how to modify the Langrangian through local counterterms to obtain finite
values for certain divergent Feynman diagrams. After the renormalization, the remaining
diagrams are free from serious divergencies order by order in perturbation theory. To maintain
the predictive power of the theory, the renormalization scheme must be a “systematic and
unambiguously fixed algorithm” [29], which satisfies the fundamental properties of locality,
causality, and unitarity.

In the following we will discuss the renormalization of the coupling constants in QED and

QCD.

2.2.1 Renormalization in QED

In the following we will discuss the renormalization of the electromagnetic photon-electron
coupling, which is shown in Figure 2.2 together with its one-loop corrections.
The Feynman rules demand to integrate each loop over the inner 4-momentum vector k,

\?~=>»+>«ow+}}w+3w+2m

Photon vac. pol. Vertex correction Electron self energy

Figure 2.2: The photon-electron coupling and its 1-loop corrections. Loop contributions to
external particles on their mass shell receive an extra factor 1/2 in the summation, which is
not explicitely listed here.

which is not fixed by momentum conservation (see Fig. 2.3). These integrals are logarith-
mically divergent for |k| — oo (UV divergence), and have to be renormalized. The vertex
correction and the electron self energy in addition diverge for ko — 0 (IR divergence). If all
external particles are on their mass shell, both divergencies from the vertex correction and
the electron self energy cancel due to the QED Ward identities [30]. In this case we are left
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q+k

Figure 2.3: The flow of 4-momenta in a loop diagram.

with the divergence of the photon vacuum polarization diagram. The amplitude M,, for this
diagram can be evaluated from the Feynman rules as {31}

f
M, = O~~~ = DO(-iz")DL), (2.4)
7 7 7

where the tree level photon propagator Diog is defined in the Feynman gauge (omitting the
usual 4§ term in the denominator) as

0 19ap
Daﬁ! = —?, (25)

with g.s being the metric tensor. The tensor integral £ is given by

&'k L o
@ryidtE-my T —my

— T = (—l)Tr/ Qe (2.6)

where m; is the mass of the fermion inside the loop, and Q@ its electric charge in units of e.

The renormalization procedure now comprises three steps.

1. The regularization, i.e. the redefinition of the integrals, such that they become mathe-
matically well defined objects.

to

The renormalization prescription, i.e. a strategy, how to remove the now well-defined
divergencies.

3. The momentum scale, at which the renormalization is performed.

A choice of a Renormalization Scheme (RS) is defined by a choice for each of the three items.
Following Duke and Roberts {32] we will call a Renormalization Convention (RC) to be a
choice of a RS up to, but not including a choice of scale. Hence, a RS is made up by a RC
plus a choice of scale.

Regularization

The most widely used regularization procedure is that of dimensional regularization {33]. The
Feynman integrals are evaluated in a space-time dimension D = 4 — € slightly less than 4.
To keep the multiplying (bare) coupling constant dimensionless, an arbitrary (positive) scale
parameter p has to be introduced via

f dik (/ di—k
2my M @me

At the end of the calculation, the limit ¢ — 0 is performed.
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Applying dimensional regularization, the tensor integral ©#° from Eq. (2.6) can be de-
composed |31] into a scalar integral ¥ and a Lorentz tensor part ¥ according to

7 =¢”% + ¢°¢"ZL. (2.7)
Since the latter term is o ¢°¢°, it does not contribute to physical matrix elements due to
current conservation, and the photon propagator on the one-loop level can be written as

: 1 1 1
DY) = + —~—O— = - (? - 52(92)?) (2.8)
= DL + Mo(g"))-
The quantity Ho(g*)= —(q%)/¢* is called unrenormalized photon vacuum polarization. In

the two physically most important limits it can be written as

2

ILe(o? Qie? 2 la 4o + 1 m} _gggg for |g*| < m]
=L 1-= —Indr +ln— ,
o(a’) 1272 € Tk p* | +1n E;k - 32— inf(q?) for |g*| > m]
1

(2.9)
Here ~g is the Euler constant and 6 is the Heaviside function. The expression for IIo(g?)
diverges for € — 0, and depends on the arbitrary parameter .

Renormalization Prescriptions

All renormalization prescriptions interprete € in the Lagrange density as a bare charge ¢o.
This bare charge is defined such that in the sum of all diagrams up to a given loop level the
divergencies are cancelled through an (infinite) counterterm de, 1.e.

€ = € + b¢c. (2.10)

E.g. the divergence of Eq. (2.9) is cancelled in a 1-loop renormalization of the photon propa-
gator by those terms in the tree level amplitude, which contain the counterterm be. It is the
definition of this counterterm, where the various renormalization prescriptions differ.

Minimal Subtraction The Minimal Subtraction (MS) prescription [33] defines the coun-
terterm e such that only the 2/¢ pole in Eq. (2.9) is removed after renormalization.

Modified Minimal Subtraction In principle, any other finite terms can be subtracted
in addition to the 2/e pole. Thus, there are an infinite number of modified minimal
subtraction prescriptions. The most widely used, the so called MS-prescription [34],
subtracts in addition the quantity 7 — In4m, which is an artefact of dimensional regu-
larization. This term arises from the analytic continuation of the 4-dimensional integral
to 4 — ¢ dimensions with the help of I'-functions. The MS prescription generally leads
to perturbation expansions which behave better for physical processes than the MS-
prescription.

Momentum Subtraction Momentum-space subtraction (MOM prescription) [35] absorbs
a complete set of radiative corrections to a given vertex at a typical 4-momentum q;
into the definition of the counterterms. The choice of the type of vertex and of the
4-momentum depends on the process under study.
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The standard renormalization prescription applied in QED is the MOM mass-shell sub-
traction. Here, the radiative corrections to the electron-photon vertex are required to vanish
for particles on their mass shell. In this prescription, the low-energy limit of Thomson scat-
tering is equal to the Born term through all orders of perturbation theory, and its coupling
constant is given by? a = €?/4m = (137.035990(6))™". .

In the following we denote a RS by the superscript “RC,scale”, e.g. the MOM-subtraction
as “MOM,¢2”. The 1-loop counterterm for the renormalization of the photon vacuum polar-
ization reads in the MOM mass-shell subtraction (g} = 0)

1
§eMOMO — —éeHO(O). (2.11)

This can, for example, be verified for the renormalized amplitude for the annihilation process
of two charged leptons

M = + (O
zi(D‘.)

t(p3)
= Tp(p2) i€y u-(p1) Dw(qz)ﬁz;(l’a) ie07” ve (P4), (2.12)

where ¢ = p; + p; = ps + ps and u,v and @,v are the fermion spinors and their adjoints,
respectively. Inserting Eq. (2.9) for the photon propagator yields a factor €2(1 + Ho(q?)) in
the resulting amplitude. The recipe is, to formally perform a perturbative expansion also in
e or equivalently in IIo, yielding with Eqgs. (2.10) and (2.11)

Mo (1 +T0(e") = 1= 3T(0)(1 + To(g"))

e*(1 + Mo(q?) — To(0) + ...) (2.13)
62(1 4 HMOM’O(QZ)).

1

The quantity
MOMi(g?) = Ta(g”) — Tol(gs) (2.14)

is called renormalized photon vacuum polarization. As can be seen from Eq. (2.9) it 1s now
finite and for ¢2 = 0 given by’

9 2 < ,2
HMOM,O(QQ) _ Qz_“_ ) ( i"_";[) for |g°| <<my . (2.15)
! 3x In L—i—-rl — 3 —nf(g®) for g% > mj

2
Y

By construction, IIMOM9(Q) = 0, i.e. it vanishes for real photons. For light fermions (mj <
lg?|) inside the loop it logarithmicly increases with ¢°. Heavy fermions are suppressed by
g*/mj. At a given ¢*, the complete vacuum polarization contribution at the 1-Joop level is

to a good approximation obtained by summing over all fermions with m?3 < lg* 1.

2 r
MOMO(2y = Y Q?i LA im8(q?) ] . (2.16)
K mrg? 3T mj 3
A 1

2Throughout the theory chapter we use the natural units g¢ = h=c=1
3The complete formula for all values of ¢° can e.g. be found in Ref. 136,
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Usually, the leading logarithmic terms to all orders of « are included in the renormaliza-
tion, corresponding to the summation

D, =

+ ~—~O + ~O—0O— +~O0~-O~-O~+ ...
= D) - 1 +  O(¢%) + ID¥¢*) + TM(¢*) +...) (217)
=D /( 1~ 1L,(q").

The vacuum polarization can either be considered as a correction to the photon propagator
(Eq. (2.17)) or to the electric charge. The latter point of view involves the concept of a
“running coupling constant”

MOM
MOM(q2) — Xem (O)
- (1~ Rell*"(¢?))

(83
_ , (2.18)

(1-Tejam )

H

i.e. the charge, respectively the coupling constant, increases with rising ¢*. The running cou-

pling constant aMOM(g?) is related by this formula to aMOM at the renormalization scale
g2 = 0. This reference value aMOM(0) is used as the expansion parameter, although a

given process may involve vertices of large ¢*. The Thomson limit mentioned above infers
aMOM(0) = a.

The behaviour of a.m(¢?) can be understood from the idea of a cloud of virtual fermion
pairs surrounding a charged particle. These pairs are polarized in the electric field and thus
screen its bare charge (Fig. 2.4). If the test charge is far away (¢*= 0, Thomson limit), we
will measure a,,,= a. At closer distances, i.e. higher ¢*, the test charge penetrates a part of

the cloud and feels a larger charge. The infinite bare charge is not measurable at finite q°.

Figure 2.4: The screening of the bare charge.

Renormalization Scale

Equation (2.9) for the unrenormalized vacuum polarization IIo(g?) contains the arbitrary
scale parameter p. which was introduced to keep the coupling dimensionless. The “art of
choosing 1 is another delicate task in the renormalization procedure. Since the number of
higher order processes rapidly increases, theoretical calculations of Feynman amplitudes can
cover merely a few low orders completely. However, only if the renormalization procedure is
carried out to all orders, the answer of different RS’s to a given problem will be identical. At
any finite order of perturbation theory different RS’s will vield different results. The “art of
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choosing p” is, to keep the (unknown) higher order corrections small, so that the finite order
result only weakly depends on the RS.

In the MOM prescription the ambiguity of u is transferred to the freedom of choosing a
physical g2, where the higher order corrections (calculated up to a finite order) are absorbed
e.g. into a reference value of the coupling constant. In QED there is a salient 4-momentum
transfer ¢ = 0, the Thomson limit, which is used as a reference scale, and where the coupling
constant is finite and precisely measurable. We will see, however, that this i1s not the case
in QCD. In the MS and MS prescriptions the scale parameter p is basicly arbitrary, but
generally chosen to be equal to a typical (large) momentum in the process under study. The
MS and MS conventions can thus be more easily transferred to QCD.

Process independent arguments in favor or against various RS’s have been extensively dis-
cussed in literature [37). A disadvantage of the MS prescriptions is e.g., that they are bound to
dimensional regularization, which is not fully consistent®. Also, there is no physical meaning
of the scale parameter y, in contrast to gj being the square of a physical 4-momentum.
On the other hand, the MOM prescription can be used with any regularization procedure,
but is generally more difficult to handle. Not only g2 but also the vertex, for which the
higher order corrections are removed by renormalization, is not fixed. Frequent choices in
QCD are e.g. the quark-gluon vertex or alternatively the triple-gluon vertex. MOM off-shell
subtraction in addition does not preserve the Ward identities and leads to gauge dependent
coupling constants. We will not discuss all these subtleties, but simply summarize, that there
is nothing like a correct RS. There may be, however, a RS best suited for a given process.
This question will be further addressed in the case of QCD renormalization.

As we will see below, the scales u? for RC=MS,MS and ¢j for RC=MOM enter the running
of afC(¢?) exactly in the same way. We thus use in the following u? for both scale variables
u? and g2, keeping in mind, however, the difference in their physical meaning. Having chosen
a scale u? (or ¢2), the coupling constant afq(u?) serves as expansion parameter and thus as
a reference value for the running coupling constant afg(g?) according to

RC, 21 agn(1®) 2.19

Ceml®) = TR g2y IR () >
_ _Cm(#’) (2.20)
Co1-1E(¢?)

(Setting in Eq. (2.19) RC=MOM and p*=¢3=0 recovers Eq. (2.18) for the case of MOM
mass-shell subtraction, since Eq. (2.14) implies [IMOM.g(g2) = 0.)
The 1-loop scaling function for the running coupling constant

% (%) = I (¢%) ~ IS (%) (2.21)

does, in leading order of a.m, not depend on the RC. For the simple case, where only elec-
tron loops contribute to the photon propagator, the identity TIMOM5(g?) — [IMOM.gg(g2) =
IMS#? (g%} — TIMS#*(4?) for ¢¢ = p? can be verified with the help of Egs. (2.14), (2.9), and
Eq. (2.22) below. It illustrates the above mentioned equivalence of p? and ¢ for the definition
of the running coupling constant.

Another interesting equivalence is the coincidence of next-to-leading-order expansion coef-
ficients of aRC(u?) for different RC’s at a suitable choice of scale. For the process of Eq. (2.12),

the expansion coefficients of the Feynman amplitude M (Eq.( 2.13)) in terms of oR(u?) are

4Since s cannot be analytically continued into 4 — ¢ dimensions, problems with chirality arise in dimensional
regularization.
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determined by ITR¢#*(¢%). Comparing the electron-loop contribution to the photon vacuum
polarization renormalized in the MS scheme

TAC 2
ate(#?)

I e {

p? sz

2
3 l*| _ 5 _ 2 2 ; (2.22)

™ ln#—z—g—u‘rﬁ(q) for |¢*| >» m!?
to the corresponding expressions for MOM mass-shell renormalization {(Eq. (2.15)), and to

the analog MS expression (not listed explicitely), we find the identity
HMOM,O(q'.’) — Hm,mf(qZ) — HMS,mS cxp(‘yz)/ll*n(q"’)‘ (223)

This shows, that the next-to-leading-order coeficients are identical in different RC’s for all
values of ¢?, if the respective renormalization is performed at a suitable scale. Having the
same coeficients for an expansion in the parameter ahg(u?) leads to the same results for the
coupling constant, i.e.

aMOM(0) = al¥(m?) = a3 (m? exp(yE)/4r), (2.24)
however, at different scales ¢?= p*. In spite of different values of af¢(4?) in different RC’s
(cf. Eq. (2.20)) we thus obtain identical predictions for a given process, if we chose the
renormalization scale according to Eq. (2.23). All the above mentioned facts will become
more transparent with the explicit QCD examples in the next section.

In the MOM mass-shell renormalization, generally applied in QED, all expansions are
MOM((), i.e. at the same scale y?=0 for all processes. The running
of a is hidden in the expansion coefficients, and the same coupling constant o is measured in
all processes, regardless of their g°. If each process on the other hand is renormalized at 1ts
own p?, as in QCD, the running of the coupling constant a,(p?) can be explicitely measured.

performed in terms of ¢ = a

2.2.2 Renormalization in QCD

The 1-loop renormalization of the gluon propagator in QCD works similar to the 1-loop
renormalization of the photon propagator in QED. The only difference are additional gluon

loops.

q
Mﬁ@nm: 290000088 +a.mou_u_g+ mai::ﬁ%_n.n_q+ (2.25)
q

The renormalization of the gluon vacuum polarization leads to a 1-loop scaling function for
the running of a, (cf. Eq. (2.21))
Ig”|

In —

2 afut), e’ el (k)
2 2’

H:2(q2) = gnp—-iﬂ—lll P 11 an 4
where the first term comes from the quark loops and the second one arises from the gluon
loops, nr denotes the number of quark flavors with m, < ¢ (by convention not 2m, < p ), and
4 is the arbitrary renormalization scale. The quark loop term leads to a color charge screening
just like the fermion loops in QED leads to a screening of the electromagnetic charge. The
gluon loop contribution, however, has the opposite sign, indicating. that a given color charge
is increased by the color field of the virtual gluon loops. Analogously to QED (Eq. (2.20))
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the strong coupling constant of®(g?) can now be expressed in 1-loop renormalization with
respect to a reference scale p?
afC(u?)
1 -1 (¢7)
oRC(?)

- , (2.26)
1+ ﬂog}—;('& In lZ#

ai(q") =

s

where Gy = 11 — %np. Equation (2.26) only holds, if no flavor threshold is opened between
p? and ¢?, that means for constant nr. If Bp > 0, i.e. np < 16.5, the gluon loops dominate
over the quark loops. Assuming the number of quark generations to be three (as indicated
by the number of light neutrino generations), we have np < 6 for all ¢°>. Thus, in contrast to
QED, the QCD coupling constant increases with decreasing ¢?, i.e. increasing distances. For
small ¢° approaching a value A? given by

RC? 2 4 -
0 = e (- ai ) >
Eq. (2.26) even leads to a infinite value of a,. On the other hand, a, decreases logarithmically
at small distances, i.e. a,(¢g*— oo) = 0. Thus, quarks and gluons can move essentially freely
within a bound state of small enough radius (assymptotic freedom), but they cannot be
separated from each other and observed as single free particles (confinement). At very low q’
a perturbative approach to QCD is not possible, since the coupling constant diverges. This
renders the choice of the renormalization scale ¢ much more ambiguous than in QED, since
a mass-shell renormalization for gluons is not applicable. The MOM renormalization has to
be performed at some arbitrary off-shell 4-momentum u? = g2, which must be chosen such,
that (again unknown) higher order contributions are kept small. Likewise, there is no natural
scale u? = p2, which can act as a reference scale in Eq. (2.26), and which may be used as
renormalization scale in the MS and MS prescriptions.

Due to this ambiguity, any RC and any scale p? = p? can be used to define the one
fundamental parameter of QCD. This parameter af€(ul) can then be used in Eq. (2.26) to
calculate the running of af¢(¢?). Instead of relating a®C(¢?) to an arbitrary reference point
p2, the running of a, can alternatively expressed by rewriting Eq. (2.27) as

o (p?) = i“?_' (2.28)
o ln Txc?
ARC then acts as the one fundamental parameter of QCD, replacing afC(u?). Again, ARC
depends on the RC, but not on the renormalization scale.

Additional complications arise from the dependence of §o on the number np of quark
flavors with g > m,, (i=1,...,nF), where m; is the mass of the quark with the ** flavor. To
retain a,(u®) as a smooth function, threshold terms [38] must be added in Eq. (2.26), which
again depend on u®. Alternatively, distinct parameters Aﬁg for each nf can be introduced in
Eq. (2.28), so that at a flavor threshold

.om? , _ m?
Bo(np=1}ln A;:; = Jo(np=1+1)In }:;12, (2.29)
: 141

holds. Thus, there is also no unique QCD scale parameter ARC even for a given RC. Since all
A,}fg‘ are related to each other, only one of them has to be given. The standard one is AMS
because it is currently best determined.
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Both 1-loop parametrizations of the running coupling constant aft€, that from Eq. (2.26)
extended by additional threshold terms, and that from Eq. (2.28) with distinct parameters
Aff, are equivalent. However, the consistency of measurements of aR¢ at different ¢*=p?
can be more conveniently checked by comparing their corresponding A parameters. Thus,
the determination of this QCD scale parameter has become a standard, although A has no
physical meaning and could be completely omitted in QCD.

The running of a, is still perceptibly modified by corrections beyond 1-loop order, e.g. by
graphs like

m@-ﬂm& 5 n.u@_w_ﬁ_l , or % n (2_30)

In order to compare results on A obtained from a, measurements at different p?, the functional
dependence a,(u?) must be evaluated at least at the 2-loop level.

This is done by exploiting the fact, that the value of an observable P(q*, a,(p?), u?) must
not depend on the arbitrary renormalization scale u?,ie.

dP _ 0P  8a, 0P _
du?  op? | 0u?da,

0. (2.31)

The partial derivative da,/du® defines the renormalization -function via the Renormaliza-
tion Group Equation

da,

ou?
B(a,) can be expanded in a power series of o}, where i + 1 corresponds to the loop-level of
renormalization, according to

= —g—;ﬂ(a.). (2:32)

Oy = a,\’
J=225"n(25Y, 2.33
Ales) 4r Z:‘)ﬂ (411') ( )
The coefficients f3; are obtained by renormalization group techniques [39] as
2
Bo = 11— gnF
38
Ao = 102— —nr (2.34)
NS 2857 5033 325
MS _ - = n?
2 = T3 T 18 T e

Bo and f3; are independent of the RC, whereas [3; was calculated in the MS prescription.
a,(p?) is evaluated from integrating the Renormalization Group Equation (2.32)

F2 d“2 o.(‘_‘?) da'
- / — = / . (2.35)
ui M auu?) a,Blay)

The freedom in choosing the lower integration limit represents the freedom in defining the one
fundamental QCD parameter. Selecting a certain uj on the left-hand side of Eq. (2.35) would
cause a,(p2) to become this fundamental parameter. Again, the role of a,(ud) is generally
transferred to A by choosing u? such that a,(u} = A?) = oo (cf. the discussion above). Solving
the integral with the latter choice leads at the 1-loop level (B(a,) = Boa,/4m) to Eq. (2.28).
The result of the 2-loop level is

2 v
L £ /ﬁ4_1r 2
In iy s — Ba? In (1 . 3, O’) L (2.36)
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For a, = 0.2 and np = 4 the 2-loop correction to In(x?/A?) due to the second term on the right-
hand side of Eq. (2.36) is 24%, and thus A itself changes by a factor of exp(0.24 - 27 /foa,) =
2.5

Rewriting Eq. (2.36) as

__4r [, _Bies Po 4w (2.3
a’_ﬂolnﬁ—i[l ﬂo4nn(1+ﬁ1a,)] (2.37)

and expanding in terms of In(In(x?/A?%))/In(p?/A?) for p® > A? leads to a functional form
for o, (22,40

(2.38)

a,(p?) el [1 ﬂM] .

_ﬂolnx—z _ﬂoz ln%
Results for a, and A obtained from this formula deviate from those of Eq. (2.36) typically

by only 1-2% and 3-6%, respectively. A formula for a, on the 3-loop level can be found in
Ref. [38].

2.2.3 Renormalization Scheme Dependence of QCD Predictions

In the following we discuss, how the perturbative calculation of an observable P in QCD
depends on the RS. Perturbative corrections to processes of leading order p are expressed in
a power series of the form

2
P= (‘i)p [1+319—’+Bz (%) +} (2.39)
™ 7 s

As already discussed in Section 2.2.1, various ultraviolet divergencies in calculating B;
have to be removed with the help of a RS, i.e. the choice of 2 RC and a scale p. The
application of the renormalization procedure changes the infinite bare coupling constant to a
renormalized value of¢(y), which is then taken as expansion parameter®

(52

T

RC(,, 2
1+B?C(u)c—y§%“—)+3?c(;x)(i‘7(‘—)) +} (2.40)

Thus, the expansion coefficients as well as the expansion parameter, the coupling constant,
depend on the choice of RS. The renormalizability of QCD [12] eusures that the prediction
for P does not depend on the RS chosen, if the calculation is carried out to all orders in the
perturbation series. As all calculations, however, have to stop at finite order 7, the quantity

PR = (“—5@) [1 + 3B () (“—C("—))] . (2.41)

™

will explicitely depend on the RS.

In practical calculations it is obvious to chose that RS, in which the calculations can be
most easily performed, which is in QCD the MS prescription together with an appropriate
choice of scale. However, as soon as theoretical calculations PRS are to be compared to

experimental results P™**, which intrinsically contain all higher order corrections, one would
like to find a best renormalization scheme RS, where

PRSepr o proces (2.42)

5In the following we write all equations in terms of u rather than of ;1% in order to keep them readable.
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i.e. where the sum of all corrections of order larger than r vanishes, or is at least smaller than
the experimental error on P. Since the higher order corrections are not known, any strategy
to find RS, involves some guesswork.

In order to discuss some of these “guessworks”, we first study, how P, changes, if we change
the RS. Since most of the available QCD predictions are calculated at the 1-loop level, and
the following can be generalized easily to higher orders [32], we will restrict ourselves to
r = 1. We start from a quantity P of leading order p in a,, which has been calculated in a

PFC.u _ (aﬁlC(y_))P

™

prescription RC as
ayC(n)
T

1+ Bi(u) : (2.43)

If we change the RS by keeping RC, but changing the scale to y', we find from the running
of a, according to Eq. (2.26)

-1

aRC(y) _ aRC(u') [1 N a?c(#:)%glnﬁl (2.44)
T T m M
::aFwwb*a?ww%n#+C{(§ﬂﬂgW], (2.45)
s ™ K T

Inserting Eq. (2.45) into Eq. (2.43) yields in next-to-leading order

PROW (afw(,w))f’ {1 . (ch(ﬂ) B ??Inﬁ) M] , (2.46)

ks 2 Iy T

and thus 3
BW@W—Bthfﬁfmﬁ- (2.47)
Note, that BRC(n') = BRY(u) for p = 0. This is a special case of the rule, that all RS’s
have the same coefficient in leading order of a,. (Comparing leading-order predictions with
experimental results thus yields a value for o, which does not run with the chosen scale y.)
If the RS is changed by going from one RC to another convention RC’, while keeping the
scale g unchanged, a relation between afC(u) and af¢ (1) has to be determined. It can be

written as

] ! " :
afC(p)  oF(p) RC—RC' Q5 (#) + o CoRE (M) + .. } , (2.48)

= 14 v
™ ™ ™ ™

where the v; do not depend on . The first order coefficients v; read [41]

v{ﬁ-.ms — %(111471- — 1) = 5.373 — 0.3256np

QMS—MOMlaar) _ 18_;_J - % _ %go — —4.179 + 0.2778nF (2.49)
v:TS—-MOM(Bg) — %1;] - (% + %J}ﬁo = —6.623 + 0.8542nF

pRC—~RC’ A

where J 1s defined as
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and MOM(qqg) and MOM(3g) denotes MOM subtraction for the quark-gluon vertex and the
3-gluon vertex®, respectively, both performed in Landau gauge. (The expressions for other

gauges can be found in Ref. [41].)
By inserting Eq. (2.48) into Eq. (2.43) we obtain

BR'(n) = BY%(w) 4 po} <" (2.50)

Combining both Egs. (2.47) and (2.50) the relation between the first order coeflicients becomes
for a change of RC as well as a change of scale

BIY(v) = BYC(p) + pvf‘c"‘RC' - pTﬁoln ;I;i' (2.51)
This transformation has still the form of Eq. (2.47). Thus, a change of RS from (RC,u) to
any (RC',u') is equivalent to keeping RC and changing only the scale from y to g, given by
mE = -"z-vi*cﬂﬂc‘. (2.52)
© o Bo
“Equivalent” means in this context that all numbersin the perturbative expansion of Eq. (2.43)
are equal, namely

BRC(4) = B°(m)  and (2.53)
o) = o(m) (2.54)

Since p' # 7, the latter equality again shows, that different RC’s lead to different running
coupling constants af¢, i.e. to different QCD scale parameters ARC. As can be seen from
Eqgs. (2.28) and (2.52), the latter are related to each other by the Celmaster-Gonsalves relation

. : 2 e R

AES = A?; exp (k——vRC RC ) . (2.55)
Note, that this 1-loop relation is exact to all orders of perturbation theory [41], i.e. it has no
higher order corrections depending on v, 2 > 1. Special cases of Eq. (2.55) are

AMOMB) 9 16 AMS (2.56)
AMOM(e) 5 g6 AMS, (2.57)

We now return to our problem, of how to compare a measured quantity P™** to its
perturbative QCD prediction P19 The usual way is to calculate values for af¢(u) and/or
ARC from setting

press _L_ PIRC.u

If QCD is the correct theory of strong interactions, all measurements, whose predictions

are calculable by perturbative QCD, have to lead to consistent values of a®C(y) and ARC,

respectively. For each process, an optimal RS has to be found in order to limit the higher
d ions ~ [aRC L4 ' i 3

order corrections ~ [a,; (u)(ln % + )]’, where g is the typical 4-momentum transfer of the

process under study. As discussed above, the RS ambiguity can be reduced to the ambiguity

of the scale g for any given RC (cf. also the discussion in Section 2.2.1). An optimuin scale

$To be precise, the symmetric point 3-gluon vertex, where all gluons have the same ¢°.
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Hopt limits the higher order corrections and thus has to limit afC(p) as well as In(q?/p?).
This leads to the conditions

pope > ARC  and (2.58)
Hopt  ~ |gl- ) (2.59)
However, the choice of u= |g|/5 may be as appropriate as, say, p= 2|g|. Many refined

procedures have been invented in order to shed more light on the question, how to “guess”
fopt- We will outline below the basic ideas of some procedures, which are most widely applied.

1) Natural scale (NAT) Choosing the “natural scale” means choosing u?=gq* for the renor-
malization scale, where ¢ is the typical 4-momentum of the process under study. This
choice is widely used in the MOM prescriptions, where higher order corrections to a
basic vertex are absorbed in the renormalization at g3 = pu*. Choosing ¢ = ¢* should
lower the higher order corrections to the calculations [42]. In the MS prescriptions the
renormalization scale is less directly related to physical momenta.

2) Grunberg’s method of Fastest Apparent Convergence (FAC) Formally, the value
of @, can cover the full range from a,(c0) = 0 to a,(A) = co. Thus, it is possible to
find a scale p.q for any observable P, so that

RC(, RC\\ P
P:C.u?f = (a_‘_(ﬂ“"_ﬁl) ; (2.60)

i.e. the sum of all higher order corrections vanishes (“effective charge”). Again, the
value for peg can only be obtained from calculating to 7 = co. If P is calculated to
finite order r, the Grunberg’s method of Fastest Apparent Convergence [43] uses the

equalit
1 v - aRC(#RC P
PRCwric = (——— FAC ) , ie. (2.61)
™
- aRC(uRC i
> B (krac (—— (,’:“C) =0, (2.62)
=1

to calculate pR{. as an r'" order approximation to p. Equation (2.62) does not
necessarily imply that the corrections of orders larger than r are small, and that pRS.
is a good approximation of pef.

3) Stevenson’s Principle of Minimal Sensitivity (PMS) The calculation of a quantity
P to all orders does not depend on the RS. Stevenson’s Principle of Minimal Sensitiv-
ity [44] imposes this condition on the calculation to finite order

aPRS
2 - 0,
ORS
i.e., it mimics a feature of the full result already at finite order 7. For r = 1 it yields
approximately (for a, < 4nfo/f = 2, which is always fulfilled in perturbative QCD)

reare.  (aFC(upus)\ ([, P B a(upwus)
P = St e : (2.64)
™ 0 ™

(2.63)

The first order coefficient BRC(ubfs) varies between —0.5 and -2 depending on np and
p. Thus, the PMS choice of scale is not too different from the FAC choice, where
BRC(uRS.) = 0. This is true also at higher orders [32]. Note, that in the PMS method
the coefficient B, is independent from the RC, and moreover identical for all processes
of given np and p.
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4) Brodsky, Lepage, and Mackenzie’s Absorption of Vacuum Polarization (AVP)

Brodsky, Lepage, and Mackenzie {45] have proposed to absorb all vacuum polariza-
tion corrections into the running coupling constant, as it is done in the case of QED. In
QCD, the fermion vacuum polarization corrections manifest themselves as a dependence
of the perturbation expansion coeflicients on nf. For the 1-loop coefhicient

BI(p) = b7 + o (1)Bo (2.65)

the nr dependence is contained in fo, which also includes the gluon loops. The vacuum
polarization corrections are absorbed on the 1-loop level by defining the scale uhep such,
that

aRO(uBS,) = 0. (2.66)

In the AVP method the difference between the 1-loop coefficients in different RC’s is
the same for all processes of identical lowest order p, and is given by the (3, independent
part of ppRC—RC" (cf. Eqgs. (2.49) and (2.50)). An especially large difference is obtained
between the AVP method applied in the MS and in the MOM(3g) prescription

= TE 51
MOM(3 MOM(3
B, ( g)(#AVP ( g)) = Brs(#rép) +Pi§~7,

yielding e.g. for p = 3 a difference of 22.4 ! The 3-gluon vertex, however, has a dif-
ferent structure of fermion loop corrections, which are partially process-dependent and
should thus not be completely absorbed. The applicability of the AVP method 1is
thus restricted to those perturbation expansions, which do not contain higher order
corrections to gluon-gluon vertices. This excludes 1-loop AVP renormalization for the
MOM(3g) convention, and for processes with gluon-gluon vertices in lowest order. Since
gluon-gluon vertices appear on 1-loop level at the latest, the AVP method cannot be
applied beyond the 1-loop level.

The above considerations will be illustrated in the following with the help of the ratio of
leptonic and gluonic width of the YT resonance. The leptonic width I'¢ of the T states is
given by the Van-Royen-Weisskopf formula [46], corrected to first order QCD [47] as

(0)|? 16 a,
Ty = lﬁergafm(mr)—wW( 2)| (1 - —9—(“)) : (2.67)
my 3 =«
where Q, = —1/3 is the charge of the b-quark in units of e, ¥(0) is its wave function at the

origin, and a.,, is the electromagnetic coupling constant, which has to be evaluated at my
to absorb the QED vacuum polarization corrections’. The first order QCD correction to the
lowest order diagram in Figure 2.5(a) corresponds to the 1-gluon exchange diagram, shown
in Figure 2.5(b).

The calculation of the 3-gluon width T'gee(T) has been performed in the MS renormaliza-
tion prescription at gy=my and yields the result [48]

160

_ | a.aﬁ§ my
Leee = 'glﬁ(ﬂ'z - 9)[0]:15(7"TH3 ( )

$(0)|°

m?

1+ (2.783, — 19.4{+0.5}){ .  (2.68)

7We chose this form in order to disentangle the QED from the QCD corrections. If other QED corrections,
such as final state Bremsstrahlung, are to be included, we would have to return to the standard QED expansion
in terms of a=a,m(0).
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Figure 2.5: a) lowest order diagram for T — £f. b) first order QCD correction.

This first order QCD correction sums the contribution of 315 Feynman diagrams in 14 different
classes. The error given corresponds to the 2-sigma error of the numerical integration.

As can be seen, both partial widths (2.67) and (2.68) can be factorized into a (non-
perturbative and non-relativistic) wave function and a perturbation series in «,. This factor-
jzation is feasible, because the annihilation of the heavy quarks is only possible at distances
of O(1/my) = 0.04 fm, much less than the radius of the Y, which is ~ 0.2 fm for the Y(1S),
and ~ 0.5 fm for the Y(2S) [49]). Thus, the non-perturbative long-distance structure of the T
enters only in the wave function 1(0). Forming the ratio of T'gee/Tu the wave function drops
out, and the quantity

gafm(mr) rggg -6 x 10—6 Fggg (').69)

P(YT — £6) =
(T = €0 = J572(x? —0) Tar T

has the standard form of a perturbative expansion, namely

PYSH(Y s f7) = (ai“S(#)) [1 n ;™ (u) ((2,78 - gln %)ﬂo — 14.1)} . (2.70)

™ Kis

We will now study the scheme dependence of the above expansion by keeping {for sum-
plicity) the MS prescription as a basis and varying the scale u. The appropriate scales y,
as recommended by the methods discussed above, and the resulting expansion paraineters
BMS(4) are collected in Table 2.5.

Table 2.5: The 1-loop expansion parameter Blﬁg for P(T — f?Las function of different RS’s.
The RS ambiguity has been converted to the choice of scale #MS in the MS prescription.

RC MS MS MOM(3g) MS MS MS MOM(3g)
MS MS 3 MS 3
H #ﬁ,u" Nyfc f"ﬁAT #?)An?ts FLNGAT u'f\,sp F‘NEAT
MS /my 1 0.48 0.46 0.44 0.333 0.157 0.154
BMS(pMS) | 491 0.0 -0.6 1.2 47 -1441 143 |

In fact, there are two “natural scales ” involved in this ratio. The appropriate scale for
the 3-gluon decay is probably something like the average gluon energy, & = my/3. On
the other side. the perturbative correction of the leptonic width (Fig. 2.5(b)) arises from
hard gluon momenta, suggesting pe . = my. (The effect of soft gluons is a Coulomb-
like attraction, which is already contained in the potential and thus in the wave function
¥(0).) Since the 1-loop a, correction for I'x is the leading order in a,, i.e. p=0, its first
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order coefficient does not depend on u (cf. Eq. (2.47)). Nevertheless we list both choices of
pnat for the MS prescription and for the MOM(3g) prescription, which was again calc%t.ed
in the Landau gauge. The corresponding MOM-scale pMOMGs) {5 converted to a ™5 by
™5 = pMOM(3e) /2 16 as inferred from Eq. (2.52). The scales of FAC, PMS, and AVP are
calculated following Eqs. (2.62), (2.64). and (2.66). respectively. It may be interesting to
note, that different RS’s can lead to similar results, e.g. (MS,FAC) = (MOM(3g),NAT({())
~ (MS,PMS), and (MS,AVP) =~ (MOM(3g),NAT(3g)). Not all of these coincidences occur
by mere accident, as already indicated above in the discussion of the PMS and FAC scales.

0.30¢ :
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0.20f
0.15}

0.10 ; F 1 l 1 I 1 1 | 2 1 N 1 2 )

0o 2 & 6 8 10 o 2 4L 6 8 10
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Figuref: a) a, vs. the scale u at which it is evaluated. b) The same for A%)—s. The solid curves
are from an evaluation of the T(15) leptonic branching ratio, the dashed curves are from B,, the
decay of the T(1S) into a photon plus hadrons. Also indicated are the specific scales discussed

in the text.

The main point of Table 2.5, however, 1s that the first order coefficient depends very
strongly on g, i.e. on the RS. The variation of Bj(g) is in fact not consistent with the
running of a,(p). This can be seen from Figs. 9.6(a) and (b) [50], where the solutions for
aMSand A:‘TS are plotted versus the scale /_l.-NTS. The solid curves were derived from

PRS(T(1S) — £T) £ P™*(T(1S) — () = (1.87 + 0.12) x 107 (2.71)

by inserting Eqs. (2.70) and (2.38). There is no solution for A':"_s (and for afﬁ) if the scale y is

chosen to u = 0.16my, as recommended by the schemes (MS,AVP) and (MOM(3g),NAT(3g))-
The reason for this divergence is, that for a typical value of aM5(0.16my) = 0.25 the term
(1—14aMS(u)/7) becomes negative. Since the RS’s (MS,AVP) and (MOM(3g),NAT(3g)) both
have some physical motivation (at least, there are no physical arguments against them), this
failure and the (too) strong scale dependence has cast doubt on the reliability of extracting a,
from Tgge/Tee in the Y system, and has even called in question the possibility of a perturbative
analysis for this ratio {45,32].

We postpone the discussion. whether such a conclusion can really be drawn, to Sec-
tion 7.4.1. First we want to present our measurement of By, which will update the value of
Pr<s(Y — (). We therefore continue with a discussion of the theoretical fundamentals for

this measurement.
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2.3. THE PROCESS ete” —p*u~ AT /s =~ 10 GEV

2.3 The Process efe —utp™ at /s = 10 GeV
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Figure 2.7: Lowest order elektroweak diagrams for ete” — putp.

The lowest order electroweak Feynman diagrams describe the process ete™ — ptp™ by

annihilation in a virtual photon or a Z° (Fig. 2.7). At c.m. energes /s around 10 GeV the
phase space suppression of muons is negligible, and the differential continuum cross-section
(i.e. without Y-production) is given to lowest order by [51,52]

do Born

N

- 4—2 (1 + Za(s))(1 + cos? ) + Za(s) cos 6), (2.72)

where cos 8 is the angle of the outgoing u* with respect to the incoming e* direction (= +2-
direction). The influence of the Z-propagator is included by the terms Z1(s) and Z(s), which
both are composed from a v—Z2° interference term and a Z° resonance term. They read for
s € m}

Z(s) = i+ (el +el)iy
2.2 .42 : (2.73)
Zy(s) = —4a,m—yz+80(1, i

The axial and vector couplings of the Z to charged leptons are a, = —(2sin 26y )" = —0.598+
0.004 and v, = a,(4sin’ 8y — 1) = 0.058 £ 0.012, where the errors come from the uncertainty
of sin®fy. At /s ~ 10 GeV the v—7Z interference terms o s/mj dominate. At these
c.m. energies the Z-contribution to the #- symmetric part of the cross-section is negligible,
since Z; = (0.7 + 0.4) x 107%, whereas Z; = -2 x 10-2 is the source of a small forward-
backward asymmetry in cosf#. This asymmetry, however, does not contribute to the total
cross-section. If one does not discriminate between p* and pu~ in the final state, it will
not even alter the differential cross-section. Thus, we will neglect both, Z, and Z;, in the
following discussion and regard the Born cross-section as coming exclusively from one-photon
annihilation yielding a total cross-section of

doBom 47 o? 86.85 nb
dl= —— = ————. 2.74
dQ 3 s S/fo\f"2 ( )

OBorn(S) =

2.3.1 First Order Corrections

In the following we will discuss corrections to the process ete”™ — p*p~ from resonance pro-
duction and from a? terms, which arise from the interference of the Born diagram with 1-loop
diagrams of identical initial and final state. Other O(a®) corrections are the Bremsstrahlung
diagrams, which have one additional photon in the final state. The contributing diagrams can
be grouped in G classes as shown in Figure 2.8. We will assume standard QED on-shell MOM
renormalization of the lepton-photon vertex for on-shell leptons and g*=0. The corrections
to the photon propagator, i.e. Diagrams (a)—(c) in Fig. 2.8 will be treated first.
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a) Box Diagrams )

b) Vacuum Polarization 7—-—Q-~f~<
Fy

c) Resonance Production >~—-[___—‘-o~<

d) Self-Energy

o<
e) Vertex Correction Ml H
\5““4 ; Z"“<J

f) Bremsstrahlung >.,.,V<<”,>——~—~¢
Figure 2.8: Diagrams (a), (b), (d), and (e) lead to first order corrections for ete™ — ptpu”
through their interference with the Born diagram, Diagram (c) shows resonance production
in lowest order, whereas Diagrams (f) are the lowest order radiative processesete” — ptu"y.

The Box Diagrams

The contribution of the box diagrams with two photons (Fig. 2.8(a)) to the total cross-section
is zero [52]. They merely cause an additional forward-backward asymmetry, which suppresses
the asymmetry effect of the weak interactions. We neglect them in the following.

Vacuum Polarization

As already deduced in Section 2.2.1, the amplitude Mpom for the lowest order diagram 1s
changed by adding the chain sum over the vacuum polarizations to

MyF = >-~< + >~fO~—< + >—0-O~< + ...
1 + I,(¢%) + M2(4%) +..)
= MBom- (———1—-—) . (2.75)

I, contains all fermion loop contributions far away from hadronic resonances and can be
obtained from Eq. (2.16) for s = ¢° > m? as

o,(s) = I + 11, + 1, +r1,md+;% 3 QL (2.76)
m}(:a
where II, { = e, u,7 is the real part of the lepton vacuum polarization, given by

o, = — (In - 5’) . (2.77)

3n my 3
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The real part II;,4 of the hadronic vacuum polarization could in principle be obtained anal-
ogously from
« s 5
Oyot = — In— —-. 2.78
had 31r_Zd(m2 3) (2.78)
gq=u,d,s,¢ q
However, due to the uncertainty in the quark masses and the presence of hadronic resonances,
the hadronic contribution can be more accurately determined from the visible hadronic cross-
section. The imaginary part of II., is connected with the total cross-section o ~4S for the
production of fermion-antifermion pairs via

3 [s4
Smll,(s) = — Y o« () =2 ¥ QL (2.79)
dra <= 3 4
fr m!<<a

From this follows a dispersion relation for the real part of Il [53], which reads for neq

s e oo a.ec—de(Sl)

47la am2 5§ — 8’ — 1€

Mjqa(s) ds'. (2.80)

Table 2.6: Vacuum polarization corrections in the energy region of the T resonances. All
numbers for Il are given in percent.

Js/GeV || I, 1, I,° M, 54 | Rell, Sml, ] o,i(s)

9.46 || 1.39 0.57 0.11 1.52+0.07 | 3.59+0.07 1.54 132.1+0.1
10.58 || 1.41 0.58 0.13 1.58+0.07 { 3.70£0.07 1.62 131.940.1

From Egs. (2.76), (2.77), and (2.80) we find at s ~ (10 GeV)? the values listed in Table 2.6.
Replacing in the Born cross-section (Eq. (2.74)) @ = aem(0) = 1/137 by aem(10 GeV) = 1/132
(cf. Eq. (2.20)) would be the simplest way to account for the photon vacuum polarization.
However, since other corrections, like Bremsstrahlung, couple due to on-shell renormalization
with a..(0)=a exactly, it is more convenient to write

VP OBorn
oy = T (2.81)
in order to avoid the use of a.n at different ¢® in one and the same formula. From Ta-
ble 2.6 we find corrections to the Born cross-section ranging from 1/(1-Rell,)? = 1/0.929 at
V/5=9.46 GeV to 1/0.927 at /5=10.58 GeV. The influence of SmlIl, is negligible.

Note, that I, only contains the effects of hadronic resonances with mass M? « s, but
no contributions from the YT resonances. These are discussed in the following.

Resonance Production

A special case of vacuum polarization occurs, when the c.m. energy is near the mass of
a narrow hadronic resonance. Since the photon is a vector particle, only resonances with
JPC = 17~ can be produced in e*e” annihilation to one virtual photon. At s = (10 GeV)?,
resonances with M? « s, i.e. narrow resonances below and including the 1-family, are already
contained in the hadronic vacuum polarization I;.4. The effect of the T-family has to be
treated separately, since it may alter the cross-section 0°*~##(s) by orders of magnitude. The

5These values have been obtained from the exact formula of Ref. [36). The application of Eq. (2.77), valid
in the limit m2 < s, would enlarge the results only by 0.02.
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Feynman diagrams for the production of a resonance with mass M and total width I" lead to

the amplitude

- MBorn * ( 1 + B )1

Res _
Mg =

(2.82)

where the resonance amplitude B(s) is given in umits of the Born amplitude Mg, by the
relativistic Breit-Wigner {55

s — M?+iMT’ (2.83)
Note that, in this case, a chain sum B + B? + B3... must not be formed. The “coupling
constant” (/9T ,,['.c/aM in front of the Breit-Wigner, which replaces the electromagnetic
coupling a, already includes implicitely all chain terms, since Ty (£=e,u) 1s a measured
quantity and thus contains all higher order corrections.

The cross-section of e*e~ — p*p~ including a resonance is thus given by oRes = MBes BT,
yielding

Res

OB = Opom(l + 2ReB(s) + |B(s)|*) (2.84)
_ 4ma? 1 2\/9Puuree s(s — M?) 9T, Tee s? 2.85)
= 3, \1T2T oM G- MR s M ofM? (s — MP)E+ MAE)T
= ¢ +ol + o8, (2.86)
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Figure 2.9: Resonance term ot (solid line) and interference term o' (dashed line) for the
Y(1S) (a) and the Y(2S) (b) in units of the Born cross-section for ete” — utpu.

The first term in the parentheses denotes the continuum cross-section (C), the last termn
the resonant pu-pair production (R), and the second term is the interference (I) between
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both. The energy dependence of |B(s)* = o®/opom and 2ReB(s) = 0! /oBom is plotted in
Figs. 2.9(a) and (b) for the T(1S) and the T (25) resonance, respectively. The PDG values [22]
for the T resonance parameters were used for these plots. The interference term has maximum

values of
7 4o . o
Iy=o!(M(M £ T)) = + 55/ BuBee, (2.87)
whereas the peak value of the resonance term is
Ry a2 127
Ry=0"(M*) = WBWB“. (2.88)

The ratio of these two maxima is thus |Io/Ro| = a/,/9B,,B.., yielding about 1/10 for the
Y(1S) and about 1/5 for the T(2S), as can be seen from Figs. 2.9(a) and (b). The values of
both maxima are much larger than the Born cross-section.

Plotting in Fig. 2.10 the complete cross-section of Eq. (2.85), we find a modification of the
Born cross-section by up to a factor ~ 100 due to the presence of the narrow T resonances and
their interference with the continuum. However, this large effect will be considerably reduced
by corrections due to initial state photon radiation and due to the c.m. energy spread at e¥e”
colliders (see Section 2.3.5).

ohtes
OBorn
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1 OOO _§? ............................................................................ ._.E 1000
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0.100 ¢ E3 < 0.100
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Vs | GeV Vs [/ GeV
Figure 2.10: The Born cross-section for ete” — u*u~ (dotted line) is strongly modified
(solid line) by including the resonance terms of the Y(1S) (a) and the Y(25) (b) and their
interference with the continuum.

For broad resonances, like the Y(4S), the situation changes. Since I'(4S) = 23.8 MeV
> T'(4S) = 0.24 keV, the leptonic branching ratio Be(4S5)= 10~% and thus the ratio of
the maxima of interference and resonance is about 250. Hence, the interference term is the
dominant term, but its maximum amounts to only 0.4% of the Born cross-section (Fig. 2.11).
Being smaller than the width of the Y(4S), the c.m. energy spread does not strongly alter its
resonance and interference terms.
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Figure 2.11: Resonance term (solid line) and interference term (dashed line) for the T (4S)
resonance in units of the Born cross-section for e*e~ — p*u~. The resonance has been blown
up by a factor of 100. The dotted line shows the result of a convolution of the interference
term with a c.m. energy spread of 8.5 MeV.

The Total Correction to the Photon Propagator

The amplitude for ete™ — p*pu~ including the summed corrections of the vacuum polarization
and all T resonances to the photon propagator is derived from combining Egs. (2.75) and
(2.82) to

1 6
MO = MBom — + Z Bn L] (289)

1- H'V n=1
where B, denotes the Breit-Wigner amplitudes from Eq. (2.83) for the T(nS) resonances.

Evaluating 0o = MoM; and neglecting the interference terms 2Re{B;B;} between different
Y states, since their mass differences are much larger than their widths, we find

14 2(1 — Rell,) X ReB,, + 28mll, 3- SmB, "
= orn + Bn . 2.90
Jo OB ( 1— 2%6]1..1 + |H-Y|2 Z} ‘ ( )
Neglecting (Smll,)? in the denominator of the above equation, we find the form
1 2% ReB, 28mll, Y SmB, 2 )
== = 2.91
Oy TBorn ((1 _‘ Renﬂ)z + 1— geen‘) + (1 _%en-’P +Z|Bn! ( )

with somewhat simpler terms for continuum, interference and resonance. By comparing
Eq. (2.91) to Eq. (2.84) we see, that the continuum term acquires its usual vacuum polar-
ization correction 1/(1-Rell,)?, the interference terms are corrected by 1/{1-Rell,), and the
resonance terms are increased by an additive correction ~ Smll,8mB. The latter two cor-
rections arise from the interference between vacuum polarization and resonance production.
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Compared to |Bf? the term SmlIl,SmB is suppressed by ~ a’/By. Thus, for the T(1S)
through Y(3S) resonances having By= O(107?) it only introduces a marginal correction to
| B|?, even though its maximum value is ©(0.1). For the Y(4S) and higher Y states with By =
O(107%) on the other hand, it exceeds the resonance proper |Bi? by a factor of more than 10,
but its maximum value is only O(107%). ;
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Figure 2.12: Modification of the vacuum polarization correction 0o/ 0Born by the Y resonances.
The dashed line shows the logarithmic increase of (1 — I1,(s))"%. The solid line contains in
addition the Y Breit-Wigners and their interference terms. The dots are explained in the
text.
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The dependence of 6g/0Born ON Vs is plotted in Fig. 2.12. The maxima of the interference
and resonance terms in the vicinity of the narrow Y resonances are far outside this plot, as
can be seen from Figs. 2.9 and 2.10. However, even between the Y-resonances a distinct
modification of the smooth increase of (1 — I1,)~? (dashed line) is observed. It is mainly
caused by their interference terms with the continuum, since the purely resonant terms are
negligibly small between the Y-resonances.

A precise knowledge of 0¢/0pom is important, when data taken at different beam energies
are subtracted from each other. If we e.g. want to subtract the continuum contribution
measured off-resonance from data taken on-resonance, we have to know the ratio of the
respective continuum cross-sections. The continuum cross-section under a given resonance
T (nS) including the modifications of oo induced by all other T resonances, can be obtained
by omitting the B, term of this resonance in Eq. (2.90). In Fig. 2.12 we have indicated
these continuum cross-sections by dots. The variation of the dots with the radial quantum
number n describes the deviation of the continuum cross-section at V8 = mMiy(ns) from an
1/s behaviour. From the Y(1S) at 9.46 GeV to the T(4S) at 10.58 GeV this deviation 1s
0.5%. It has about equal contributions from the photon vacuum polarization (1 — I,) % and
from the summed effect of the interference terms of all Y-resonances other than T{nS), i.e.
Sii23562ReB,(10.58 GeV) — ¥, 53456 2ReB,(9.40 GeV).

IR RS
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The cross-section oo from Eq. (2.90) contains all next-to-leading order corrections to the
photon propagator as well as the leading logarithms of higher order corrections, and the T
resonance terms. By adding corrections to the external lepton lines, the photon propagator is
generally not influenced. We thus adopt g¢ as the new basic cross-section to which corrections
from the lepton lines are applied. As we will see, the only exception 1s Bremsstrahlung down
to a resonance, i.e. diagrams like

Y

where the value of o strongly depends on the emitted photon energy. Thus, the formulae in
the next paragraphs are not valid at c.m. energies close to a resonance. QOur final result in
Section 2.3.2, however, will not have such a restriction on its validity.

Electron and Muon Self-Energy

Due to on-shell renormalization the contributions of the diagrams in Fig. 2.8(d) vanish, since
the initial and final state particles are on their mass shell.

Vertex Correction

For a vertex with ¢?=0 the diagrams in Fig. 2.8(e) would vanish, likewise, after on-shell
renormalization. For g% # 0 their UV divergencies still cancel with those of the electron and
muon self-energy due to the Ward identities. However, an infrared divergence remains. The
interference of the Born diagram with each of the vertex correction diagrams results in an
O(a) correction §'¢ which modifies our reference cross-section gg to o' ¢ given by

oV = oo(1 + 6YC +6.°), (2.92)

where 6YC refers to the left-hand diagram, and 6XC to the right-hand diagram in Fig. 2.8(e).
The infrared divergence of §V¢ is regularized with the help of a fictitious small photon mass A.
The result reads [51]
. 2a m* 3 s 1 s s ™my
6:’C:?[—1+?+Zln—2——ln2ﬂ—(In—;—l)lnf], (2.93)

2
m: 4 my m; A

where { = e, p. In the limit A — 0 the terms §VC make the cross-section o'C negative® and
divergent to —oo. This divergence is a standard phenomenon in QED and can in principle
be remedied by calculating to all orders of a.

However, if this were possible, one would find that the cross-section

T B W
+ }>-< + + >-O-~<
+ + M+ M+>—-()—«<+>[:|>—<+...V

identically vanishes. This — on the first view — surprising result comes from the Bloch-
Nordsieck Theorem discussed below.

9This is possible, since we truncated the expansion of the cross-section at (a®), i.e. at the leve] of interference
between vertex correction and Born diagram. This truncation differs from taking an absolute square of the sum
of the corresponding Feynman amplitudes, which would guarantee for positiveness.



2.3. THE PROCESS ete  —utp~ AT Vs ~ 10 GEV 35

The Bloch-Nordsieck and the Kinoshita-Lee-Nauenberg theorems

The essential work for the understanding of the infrared divergence problem was done in 1937
by Bloch and Nordsieck [56]. The Bloch-Nordsieck Theorem says, that the probability to
emit zero or any finite number of photons from the scattering of charged particles is precisely
zero. Each process involving charged particles is accompanied by the emission of an infinite
number of photons with arbitrary small energies. In the language of Feynman diagrams,
their theorem relates the process efe™ — p*pu~ without photon emission (Fig. 2.8(a)) to
the process ete” — p*pu~+m~y (Fig. 2.8(f) for m=1), which has a different final state. The
Bloch-Nordsieck Theorem claims, that not only o*~* =0, but also g*<~##*™ = 0 for any
finite number m. The only process occuring in nature is ete™ — ptp +o007.

Figure 2.13: The process ete” — ptp~ is always accompanied by an infinite number of
radiated photons.

Thus, we would have to calculate the type of Feynman diagrams in Fig. 2.13, which cannot
even be drawn in a finite amount of time. However, Bloch and Nordsieck already showed,
that generally the observed cross-section measured in a given detector is very close to the
cross-section that would have been obtained, if all radiative corrections are ignored.

The basic proof for this, which restores the ability to calculate ete” — pu*u~ and any
other QED process in a perturbation series in a", is the theorem of Kinoshita, Lee, and
Nauenberg [57). They showed, that a cancellation of mass singularities occurs in all orders of
the perturbation expansion, if one sums over all states of the same energy. Mass singularities
are logarithmic terms containing the photon mass A or any other particle mass m, which
diverge for A\,m — 0. In our case the infrared (IR) divergences from the virtual photons in
the vertex correction are cancelled in each order of o by the infrared divergences from the
real photons emitted in the Bremsstrahlung diagrams, if we sum over the degenerate states
with T E,+ T E, = /s.

The usual illustration of this principle stresses the fact that any experiment can detect
photons only up to a minimum energy E, = Eo. The IR divergencies from the emission of
virtual (vertex correction) and real (Bremsstrahlung) photons, which occur in any calculation
to finite order in a, are restricted to the range E, < E, for any finite E. Thus. any experi-
ment observes a finite cross-section with zero photons, i.e. with E, < E, for all photons ;.
In addition, it finds a finite cross-section of events, where photons from Bremsstrahlung with
E, > E, are detected. Hence, the infrared divergence is absent in experimental measure-
ments.

This argument, however, neglects the fact that events with Bremsstrahlung below E, and
events without Bremsstrahlung could in principle be distinguished. If the threshold E, for
an experiment is low enough, the calculations to any finite order of perturbation theory can
no longer describe the observed cross-sections, as we will show below (Section 2.3.2). Thus
physically there is no escape from calculating to all orders in a. The cancellation of IR diver-
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gencies to finite order in a does not occur in a quantum mechanical sense by the cancellation
of amplitudes. It emerges from a mathematical relation such that in a perturbation expan-
sion for processes with different final states the respective IR divergencies of cross-sections
“happen to” cancel in each order of perturbation theory. Without the knowledge of this can-
cellation, expressed in the Kinoshita-Lee-Nauenberg Theorem, the summation of divergent
cross-sections for processes with different final states would be physically not meaningful.
When the Kinoshita-Lee-Nauenberg Theorem is fully applicable, all terms o In(s/m?)
or « In(y/s/)) vanish in the (unrenormalized)® total cross-section. Then the higher order
corrections of a perturbative series are really O((a/x)") and do not contain large logarithms.
In those cases the Born cross-section (corrected for vacuum polarization) is a very good
approximation to the exact cross-section, even if the Born process itself does not at all occur
in nature. As we will see below, the final state radiation in the process ete”™ — ptp is
an example for the Kinoshita-Lee-Nauenberg Theorem, whereas in the initial state radiative
corrections only the In A terms cancel, leaving large corrections ~ aln(s/m?)In(s/m2).

Bremsstrahlung

The differential cross-section for initial or final state photon radiation is given to order a, le.
for the emission of one photon according to Diagrams 2.8(f) by [51,52]

d 1 - 2
o 00(51)5% [55(—12#)] , (2.94)

where ¢ = e,u again denotes initial and final state radiation, respectively. The radiation
spectrum, valid for any electromagnetic scattering process, is expressed in terms of the photon
energy fraction z = k°/E, where k° is the photon energy and E denotes the electron beam
energy. The difference between the initial and final state radiation comes from the values of
s; and B¢. The effective c.m. energy s, is the squared 4-momentum transfer ¢ of the virtual
annihilation photon, which is given for one-photon Bremsstrahlung diagrams as'’

(]

S, = 8 (2.95)
6)

9
se = s(1—x). (2.9

(O]

The final state radiation does not change the squared c.m. energy s, whereas initial photon
radiation reduces s by a factor (1 - 7).
The factors B¢ are the “effective radiator thicknesses”

3¢ = 2o (ln —55 - 1) (2.97)

' m,

and act as an effective coupling constant for Bremsstrahlung. Around /s = 10 GeV this effec-
tive coupling constants are much larger than a due to the large logarithms In((10 GeV )2 /m?) =
19.8 and In((10 GeV)?/m?) = 9.1. We find 3. = 0.087 and 3, = 0.038 at s = (10 GeV )2,

10The renormalization of the charge re-introduces large, but not divergent terms o In(s/m?) for the vacuum
polarization, as we have seen in Section 2.2,

1 For multi-photon radiation s, would read s. = s(1—x)+ mi = s{l-x+4 Sr)j z;7,(1 — costy;)/2), where
now # = 3_ x;/E is the sum of all radiated photon energy fractions and m? is the invariant mass of the radiated

photons.
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To get a qualitative impression of the initial and final state photon spectra we approximate
0o & Thom in Eq. (2.94) and use the relation opom(s(1 — z)) = OBorm(s)/(1 — =) yielding

doy. 1 1 1 o
< = -t 2.98
dz 7Born()e [1‘ 2" 2(1 — z)] ( )
dal‘“ — l — E] ) 9

dz - UBorn(s)/Bu [I 1+ 2 . (_99)

Both differential cross-sections are divergent for r — 0. For z <1 their ratio 1s given
by B./B.. E.g., for /s =~ 10 GeV the probability for emission of low-energy photons from
the initial state is (only) 0.087/0.038 = 2.3 times larger than for final state radiation (see
Fig. 2.14). For high-energy photons, however, the initial state radiation largely dominates.
doy/dz
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Figure 2.14: First order radiation spectra from initial (dashed) and final (dashed-dotted)
state radiation and their sum (solid line).

This is due to the additional factor 1/{1 — x), introduced by the scaling of the Born cross-
section. In fact, there would be a divergence for # — 1, if the energy of the initial state
radiation were not limited by Tper =1 — 4mi/s, SINCe Semin = $(1 — Tz ) = 4mi.

In order to regularize the divergence for z — 0, again a small photon mass A 1s introduced.
The soft photon spectrum is then integrated up to an arbitrary hard-soft limit z,, yielding
the total cross-section for the diagrams with one-photon Bremsstrahlung as

zo {do do Tmer [ do do
BS 1. 1u 1,e 1.
- + e g 4+ e
’ /o ( dr dr ) o w/:.-o ( dx dr )dz

tmer (doy.  d
= ools)(1 + &+ 55+ [ ( The ——”"“)dx,

9
dr dz (2.100)

where with { = e,y {51!
2

2a ™ 1 s 1 s s 210F
Soft _ “~% | ol -t 2 7 o 0 9
60 = - [ 5 + > In m? 2 In ? + (ln 2 1) In 3 J . (2.101)
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It is important to note, that this value of 55°f has been calculated under the assumption, that
the cross-section oy does not vary much in the range from s to s(1 — xo). It is thus only valid
far from resonances, which introduce large fluctuations for small changes of s {cf. Fig. 2.12).

Just like the O(a3) cross-section ¢V for ete” — p*p~ without real photon radiation
(Eq. (2.92)), the total O(a®) cross-section a¥C for ete™ — ptp~« is divergent. Comparing
63°" (Eq. (2.101)) and §V°(Eq. (2.93)) it is evident, that both divergencies cancel, resulting
in a finite summed cross-section o, to order o®

oy = O'VC+0’BS

= oo(s)(1 + b1e + Belnzo + b1, + Bulnzo) + /

To

—_ Soft Hard
= 0, -+ g4 y

where the residual correction 6, ¢ is given from Egs. (2.93) and (2.101) as

bre = 6}’°+6?°“—/311nz0
3 2o (7 1
= ] ——-]. 2.103
i (6 4) ( )

The philosophy of the summation of divergent cross-sections V¢ and ¢P%, belonging to
different final states, has already been discussed in the previous paragraph.

To estimate, how much the cross-section is changed through the inclusion of vertex cor-
rection and Bremsstrahlung, we rewrite Eq. (2.102) as

01 = OBorn + AC1e + ACy . (2.104)

If we again use for a moment the approximation o X GBorn, We find the respective corrections

Adie ! /m...., 1y (= e (2.105)

= b1+ Belnzo +
o dx

OBorn OBorn
Inserting the approximated final state spectrum from Eq. (2.99) and evaluating the integral
yields

AO’]W

Zmar=<1 1 T
= S+ Bdnzo+ B, [ (——1+,—)>dr

TBorn zo=x0

I

3
81, + Bulnze — Bulnzo — Zﬁ“ (2.106)

ﬁ20¢7r21
T ax\e 4]

This is a very small correction of O(a/7), as expected from the Kinoshita-Lee-Nauenberg
Theorem. All logarithmic mass terms contained in 3, have cancelled*?. On the other hand,
the initial state correction is given from Eqs. (2.98) and (2.105) approximately as

Aoy, Tmer=1-4mifs (1 ] 1
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-

1 1
;B, (lu A ~) = 0.36 for s=(10 GeV)?.

12The exact result of this correction is the famous value 3a /47 = 0.0017.
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This large correction arises from the product of large logarithmic mass terms ~ In(s/m?) x
In(s/m?), which are not cancelled here, since the initial state radiation spectrum acquires
a singularity o< 1/(1 — z) in contrast to the final state spectrum. The correction comes
from events with initial state photons of high energy, which change the invariant mass of
the virtual annihilation photon to s, = (1 — z)s. Thereby the annihilation cross-section is
increased o 1/s.. In the language of the Kinoshita-Lee-Nauenberg Theorem we do not expect
a cancellation of the lepton mass terms, because we are not summing over all degenerate initial
states. The machine preselects the electron and the positron to have energy E each and no
other degenerate states participate in the interaction. In contrast to the lepton mass terms,
the photon mass terms cancel for both, the initial and the final state radiation. This ensures
the total cross-section to O(a®) to be finite.

Altogether, we find from the non-resonant Diagrams 2.8(a), (b), and (d-f) corrections to
the Born cross-section, which are at /s=10 GeV about 7.8% from the vacuum polarization
(Eq. (2.81)), about 36% from the initial state radiation (Eq. (2.107)), and about 0.2% from
the final state radiation (Eq. (2.106)). The total non-resonant O(a®) correction is thus 44%.
From these numbers one may conclude, that corrections due to initial state radiation are
large, whereas that of final state radiation are small. However, this is only true, if the total
cross-section for ete~ — p*pu~ is calculated. Performing a measurement of this process, the
prediction for the observed cross-section obtained with a given detector and set of selection
cuts is relevant. The effect of Bremsstrahlung is twofold. First, there are additional photons
in the event, and second, the acollinearity of the final state muons differs from 180°. Thus,
typical selection cuts will reject most of the events containing high-energy photons. This will
reduce the large correction from initial state radiation. In the low-energy photon region initial
state radiation at 1/s=10 GeV is only a factor of 2.3 more frequent than final state radiation.
Moreover, it is very much peaked in beam direction where the photons remain unobserved.
The final state radiation, on the contrary, prefers the direction of the outgoing muons. When
both muons are observed, then also the final state photons enter the detector. If a detector
is sensitive to low-energetic photons, this may further enhance the the influence of final
state radiation. Compared to the pure Born prediction, the inclusion of final state radiation
will always lower the observed p-pair cross-section. The sign of the initial state correction
depends on the selection cuts applied. Typically, both initial and final state corrections
to the predictions for the observed cross-section amount up to ~ 10%, in contrast to the
corresponding corrections on the total cross-section derived above.

How a realistic simulation of Bremsstrahlung can be achieved with the help of Monte
Carlo event generators will be discussed in Section 2.3.3. It is already clear from the above
discussion, that both, initial and final state radiation, have to be implemented as completely
as possible to supply a precise prediction for the observed cross-section for the process ete™ —
p* . We will thus first discuss the effects of higher order Bremsstrahlung corrections.

2.3.2 Higher Order Bremsstrahlung and Exponentiation

The separation of the total cross-section o, for ete~ — ptu (v) into a soft and a hard
photon part (see Eq. (2.102)) leads to the introduction of an arbitrary hard-soft limit z,.
The corrections Aoy ¢/0Borm (Eq. (2.105)), and thus the analytic calculation of the total cross-
section o;, do not depend on zo, as long as 7o < 1072, Then the approximations in the
derivation of Eqs. (2.106) and (2.107) are justified.

Any Monte Carlo (MC) simulation, based on Eq. (2.102), on the other hand, follows the
differential cross-section do;/dx (Eq. (2.94)) to generate radiative events e"e™ — utpy
in the hard photon region. In the soft photon region a MC produces non-radiative Born-
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like events. However, the soft photon cross-section o3°" in Eq. (2.102) is positive only for'?
zo > 107* at {/sx10 GeV, and for zo > 1072 at /s~100 GeV. A MC simulation down to
arbitrary low photon energies is thus not possible with Eq. (2.102), since the hard photon
cross-section above z, is obviously too large. Precision measurements, however, require a
correct simulation of the photon spectra at least down to zo = 107°. It is therefore neeessary
to incorporate higher order Bremsstrahlung corrections.

To investigate the behaviour of those higher order corrections, it is sufficient to restrict
ourselves to initial state radiation. Calculating the real Bremsstrahlung and virtual vertex
corrections up to O(a?) yields for zo < 1 [52,58]

Tmax do‘z‘c

0 dr

1
72 = oo(s) (1 T bue+bre + (14 81.0)BInzo + 562 10" :co) + / dz,  (2.108)

where

do,. 14 (1-—2)?
Zz =0'o(3c) [ﬁc% (+_(')__.i

and ;. = 0.0035 at /s=10 GeV emerges analogously to &, as residual term from the
cancellation of the infrared divergencies for real and virtual photons. Its value is slightly
dependent on the treatment of real and virtual pair production (cf. footnote 12 in Ref. [52]).
The photon energy variable r is now denoting the total energy radiated by both photons.

)(1+51,e+ﬁ,1nz)+o (j_:)] (2.109)

-

We see, however, that the zo problem has not vanished. Only its sign has changed. For
2o — 0 the soft photon cross-section now diverges to +oo, whereas the hard photon cross-
section, given by the integral in Eq. (2.108), diverges to —oc. The sum of both, i.e. g4, 15
again finite. If we add the corresponding terms for final state radiation (e — p), we even
notice, that unphysical negative cross-sections occur below precisely the same lower limit of
zq as they did in the first order radiative cross-section of Eq. (2.102). The zo problem actually
cannot be overcome by going to any finite higher order. The ounly way out is the so-called
exponentiation procedure going to fully infinite order in o. For that Eq. (2.108) is rewritten

as
dO’g_c

1 2 2 Tmar
= - dz, 2.110
o7 = 0o(s)(1 + b1c + 82,)(1 + Belnzo + 25, In :co)+j;o il ( )
with
a2 2
doze _ o) [’gcl (ﬂl_i) (1+ 6.1 4 BInz) + O (9—2)] , (2.111)
dr T 2 T

which is identical to Egs. (2.108) and (2.109) up to second order radiative corrections. We
recognize the expansion of an exponential

o =)

% = exp(Bclnz) = Z %(ﬁelnx)"‘ (2.112)

m=0

in the soft photon cross-section as well as in the hard photon spectrum. That all terms of
this expansion are realized as leading logarithms in the perturbation series has been proven
in the classic paper by Yennie, Frautschi, and Suura [59].

13 Actually, through the interference between initial and final state radiation, which we have neglected, the
soft photon cross-section depends on the muon angle 6. Requiring da°™(8)/d? > 0 for all 6 further increases
the lower bounds of the allowed region for the hard-soft limit by a factor of 10.
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The exponentiated cross-section, exact to second order, then reads

Tmax d exp
057 = ao(s)(1 + bre + br0)The + / ‘;; dz, (2.113)
with!4
doj? 1 14{(1—z)? o’
di = Uo(se) [ﬂcmlfﬁe ( 2 (1 + 61.c + 62,:) + O ; ’ (2114)

exp

where the &, term is usually added in doy; /dz to ensure

2o do®*P 0 1
o / T2 gp JO(S)L ﬂcﬁ(l + 83.c + 62.0)dz for zo < 1
A .
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Figure 2.15: Initial state radiation spectra. The dashed line is the first order Eq. (2.98), the
dashed-dotted line the second order Eq. (2.109), and the solid line describes the exponentiated
spectrum of Eq. (2.114). Note, that the dashed line in this figure (do,./dlnz) describes the
same spectrum as the dashed line (doy./dz) in Fig. 2.14.

The soft photon cross-section in Eq. (2.115) is now positive for arbitrary low values of xo.
Moreover, comparing Egs. (2.115) and (2.113) it is obvious, that the hard-soft limit z¢ has
become unnecessary, and the differential cross-section of Eq. (2.114) is valid over the full

energy range, 1.e.
cop _ [Tmer dO5Y
oy = / —dx. (2.116)
0 dr

14 Gince exponentiation is only rigorous in the limit # — 0, often only the soft photon part is exponentiated.
The term 1/x'~#< then appears not as a factor, but rather as the first term in a sum (cf. Egs. (2.98) and (2.99)).
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The main effect of exponentiation is the modification of the low-energy photon spectrum
from 1/z to 1/2'7#. Thereby the cross-section without photon emission is made to vanish
exactly (Eq. (2.116)), as required by the Bloch-Nordsieck Theorem.

We have plotted the initial state spectra do./dlnz = =z - do./dz for the first order
(Eq. (2.98)), the second order (Eq. (2.109)), and the second order exponentiated spectrum
(Eq. (2.114)) in Fig. 2.15 for Vs~ 10 GeV. In the latter two spectra, the small terms de-
noted by O(a?/7?) have been omitted. The approximation oo(s.) X Borm(s)/(1 — z) has
been applied for all spectra. For small z these spectra exhibit considerable differences. In
applications, where a proper simulation of photons below z = 0.1 is needed, the use of the
exponentiated spectrum is mandatory (cf. Section 2.3.5).

Eq. (2.113) holds only far from resonances, where the cross-section og(s.) is approximately
constant for s. in the range between s and s(1 — zo). In contrast to that, Eq. (2.116) is even
valid near narrow resonances. It does no longer contain a term, derived from integrating
the soft photon cross section under the assumption of a constant oo(s.). The differential
spectrum of Eq. (2.114) properly accounts for resonances in oo(s.), accessible by photon
radiation. Combining Eqgs. (2.116), (2.114), and (2.90) we have a complete treatment of the
process ete” — ptp~ in the 10 GeV range. It covers exponentiated initial state radiation
exact to second order, and includes all diagrams depicted in Fig. 2.8(a-e). The final state
Bremsstrahlung can be exponentiated and included analogously.

2.3.3 MC Methods for Generating Radiative py-Pair Events

As already discussed in Section 2.3.1, the prediction for the observed cross-section of the
process ete” — u*tu~ for a given detector and data selection is the essential quantity for
experimental measurements. These predictions can only be obtained by means of MC event
generation and simulation of the detector response. There are basically three methods of
generating radiative u-pair events, which can be distinguished e.g. by the number of generated
photons. A more detailed discussion of methods and generators can be found in Ref. [60].

The classic one-photon approach is applied in the generators BEMUON [61], MMG1 [51]
and MUSTRAAL [62] written by Berends, Kleiss, and Jadach. It creates events with
zero or one photon, basically following the cross-section o; from Eq. (2.102). In the
soft photon region, non-radiative Born-like events are produced, whereas events with
one photon are generated for photon energy fractions above the hard-soft limnit zo. The
photon is attributed to initial or final state Bremsstrahlung according to their respec-
tive differential cross-sections. These differential cross-sections may be exponentiated
(as in BKMUON) or not (as in MMG1 and MUSTRAAL). Even if the spectra are
exponentiated, the hard-soft limit can not be pushed to arbitrary low values. Since
only one photon is emitted, the initial state radiation would fill for zo = 0 the complete
cross-section, leaving no room for final state radiation (and vice versa).

The exclusive exponentiation is the rigorous exponentiation procedure for the multibody
Lorentz-invariant phase space, as derived in the classic work of Yennie, Frautschi, and
Suura [59]. It is utilized in the YFS2 Monte Carlo [63] by Jadach and Ward. In the
usual inclusive (“ad hoc”) exponentiation, discussed in Section 2.3.2, the continuation
of the soft photon exponentiation into the hard photon region is somewhat ambiguous
(see footnote 14 on page 41). The deeper reason for that is, that the higher order
corrections correspond to the emission of many photons, but are exponentiated mto
a energy spectrum of a single photon. In the cxclusive exponentiation, on the other
hand, there is no need for inventing an interpolation between a soft and a hard photon

-
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region [64]. Instead, an arbitrary large number of photons is explicitely generated over
the entire phase space. An energy cutoff zo limits this number in practical applications,
but can in principle be set arbitrarily low.

The explicit generation of many photons has two additional advantages. First, the
prediction for the observed cross-section improves, since the photons may be seen in the
detector. Second, the initial state photons may require a non-zero invariant mass (see
footnote 11 on page 36), and can thus model muon kinematics, which are not accessible
by one photon, only.

The YFS2 generator is based on the exclusive exponentiation of the initial state radi-
ation spectrum, exact to O(a?). Alas, it generates no final state radiation. This weak
point is overcome in the KORALZ generator [65], based on the YFS2 program. A
disadvantage of both programs is the length and complexity of their codes, rendering
extensions or modifications very difficult for the user.

structure function approach is a sort of compromise between the one-photon ap-
proach and the exclusive Yennie-Frautschi-Suura (YFS) exponentiation. Based on a
resummation technique of Gribov and Lipatov [66], Kuraiev and Fadin [67] have calcu-
lated the probability distribution (structure function) D.(z4/-,s) for the electron (-) or
positron (+) to emit an arbitrary number of photons with an energy sumz,,_ = S k/E
in an interaction with c.m. energy /s = 2E. The electron and the positron are then
left at the interaction vertex with a fraction z,,. = 1 — z,,_ of their initial energy.
(An analogous structure function, the evolution of the quark distribution in the pro-
ton with Ing® [68], has been used already for a long time to describe QCD Drell-Yan
processes [69].)

The structure functions D, (and D,) for initial (and final) state radiation are normally
exploited to generate one photon per particle, i.e. at most 4 photons for the process
ete” — ptp~. Then, however, the information about the emission angle is lost, since
each generated photon carries the summed energy of all photons emitted from the
respective lepton line. Without a reinstallation of a photon angular distribution, a
structure function MC is little useful for experiments with photon detection. However,
as soon as an angular distribution for photon radiation is attached, it clearly improves
over the one-photon approach by two reasons. First, including exponentiation and
generating more than one photon in a single event opens the possibility to set the zo
parameter arbitrarily low. Second, the two initial state photons acquire an invariant
mass-distribution which is very close to that from the rigorous YFS exponentiation.

In fact, the structure function approach has even one advantage compared to the YFS
exponentiation. The radiative corrections are explicitly decoupled from the annihilation
process, so that the functional dependences of the annihilation cross-section og(s.) can
be easily modified. An introduction of a finite c.m. energy spread w creates no severe
problems, likewise. For this reasons we have chosen the structure function generator
DYMU2 [70] as the basis for our simulation of ete — pu*pu~ events. This generator,
our changes, and the application of our modified generator are described below.



44 CHAPTER 2. THEORETICAL FUNDAMENTALS

2.3.4 The DYMU2 Generator

In their DYMU?2 generator, Campagne and Zitoun apply the structure function approach
to generate two initial state photons and one final state photon according to a differential
cross-section of

d
Ty = (1 Kt E)D(1 - 2, 90Dl = 2oy s)on(se)Dull — w,00), - (2117)
where y = 2k°/,/s. denotes the final state photon energy fraction in the yup c.m. system.
Initial state radiation is described by the exponentiated structure functions D,, which are
exact to order o?. Final state radiation is given by the exponentiated structure function D,,
which is exact only to order a and thus attached to only one of the outgoing muons. The
most important terms of D, can be motivated from the squared bracket in Eq. (2.114) as
follows.

First, the effective Bremsstrahlung coupling constant B. has to be replaced by B./2 to
distribute the photons over two electrons. Second, only the terms o (7 are kept in §;. =
d;3! + K;, where d; = 3/4 and K, = 2a/n(n*/6 — 1/4) can be directly read off Eq. (2.103).
(The terms K; explicitely appear in a so-called K-factor in Eq. (2.117) to guarantee for the
normalization of D.). Finally, the exponentiation is performed for the soft photon part o< 1 [z
only, yielding

D.(1—-z,s) = % [;_16—/5 (1 + dl% +d2(%)2) 14 g] 40 (g—z) . (2.118)

The proper derivation of this expression for D., including the O(a?/7?) terms, has been
performed in Ref. [67]. Campagne and Zitoun refined this structure function [71] such, that
its double appearance in Eq. (2.117) leads to a total cross-section, which is precisely equal to
the exact O(a?) result of Ref. [72].

The final state structure function is given to O(«) as

1
D15 = By |5 (14 diBu+ Ka) =1+ 2|, (2.119)
y o <

which has to be compared to Eq. (2.99). The emission of photons under finite angles to the
radiating particles has to be attached “by hand” to a structure function MC. In DYMU2
the first order distribution from Ref. [51] is used for emission of both, initial and final state
photons.

All radiative corrections are decoupled from the annihilation cross-section ao, which has
to be evaluated after initial state radiation at the c.m. energy s. of the electrons, which 1s
given by

se = s{(l—x, —2_ +x4z_[1—cosb, |/2) (2.120)
= s(1-v), (2.121)

where 0, _ is the angle between the two initial state photons. As the DYMU2 generator —
like most of the other generators discussed above — was written for the Z° peak, it uses the

identity [73]
« \/é

Qem(mz) = —FF—— = ——Gpm.% sin? @y cos? Oy (2.122)
i1 - 1II,(mz)! T
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to include the vacuum polarization via [71]

so(s) = ‘-11’“°—;"3%~’(1 +2(s)

s

= é;;Gpmz sin' Oy cos* Ow (1 + Z(s)), . (2.123)
where Z(s) denotes the v—Z interference and pure Z terms in the cross-section (cf. Eq. (2.72)).

In this work we utilize the DYMU2 generator as a very efficient and flexible tool for
generating ete” — ptu~ events in the c.m. energy region of the T resonances, as well as for
obtaining predictions for cross-sections separately for resonance production, continuum, and
for their interference. For this purpose we have introduced two modifications.

First, the scheme of Eq. (2.122) for covering the vacuum polarization at the Z° resonance
is not valid at \/s= 10 GeV. We replace the annihilation cross-section g¢ of Eq. (2.123) by
Eq. (2.90), which covers explicitely the vacuum polarization II,(s) as well as all Y resonances
and their interference terms with the continuum'®. The calculation of the leptonic part of
the vacuum polarization is performed according to Eq. (2.77), whereas for the hadronic part
we use the routine PIHINT {61,51,62], which interpolates the results of Ref. [74].

Second, to generate a correct prediction for shape and magnitude of the resonance cross-
sections, we include the spread of the DORIS c.m. energy. It is Gaussian distributed around
a mean energy W according to

G(Vs— W)= ﬁexp[—(\/gz%],

At DORIS 1I, the width of this distribution 1s w = 7.9 MeV and w = 8.2 MeV for W in the
region of the Y(1S) and Y(2S) resonances, respectively. (These values will be determined
in Section 6.2.1.) We select a new c.m. energy for each event following the probability
distribution of Eq. (2.124).

The total generated cross-section is thus simulated by the double convolution

(2.124)

o TH (W) = (1+ K, + I{Q)/oo G(vs — W) x (2.125)
Ymar(v)
L[ Dt~ )DL = 2 ool s(1 = 2)D(1 = 9,5(1 =~ v))dude(zs 2 ),

where v is defined in Eq. (2.121). Photons are explicitely generated above x,,z_,y > ro. The
limit 2o was chosen to £o = 107>, which is much less than w/E = 1.6 x 1073, to obtain a precise
prediction for the resonance shape (see below). The final state photons were generated up to
their kinematic limit of ypn.. = 1 — 4mi/s(1 —v). The kinematic limit of v, = 1~ 4mi/s for
initial state radiation, which ranges from 0.9995 at {/5=9.46 GeV to 0.9996 at \/s=10.58 GeV,
cannot be reached with a reasonable amount of CPU time consumption. This restriction does
not harm, since the acceptance of standard u-pair selections is negligibly small for v — 1. We
run the DYMU?2 generator with an upper limit of v; = 0.99, i.e. with a minimum c.m. energy
after initial state radiation of /8¢ un = /8(1 — 1) = 0. 1/s.

To give an impression about the abundance of radiated photons, we list in Table 2.7 the
percentage of generated events with 0, 1, 2, or 3 photons above o = 107° for c.m. energies
in the continuum below the Y(1S). We also give the corresponding numbers for subsequently
imposing the conditions, that the photons are not collinear to the beams and not collinear

15Since for the Y resonances I'/E = 10-% is very small, it is essential to perform the computer calculations
of 5. and op(s.} in double precision.
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to the outgoing muons. (The cuts on the collinearity are chosen typical for the detection
capabilities of the Crystal Ball detector, which is in principle sensitive to energy depositions
down to = 7 x 1075.) From the decrease of the event fractions with increasing number
of photons we deduce, that the restriction to at most three explicitely generated photons is
well justified. Note, that also those photons, which are emitted collinear to the leptomns, may
perceptibly influence the event signature via the muon acollinearity (initial state photons) or
the ateral spread of the muonic energy deposition in the detector (final state photons).

Table 2.7: The percentage of ete™ — u*u~ events from the DYMU2 generator with 0, 1, 2,
or 3 photons fulfilling the listed conditions.

number of photons | 0 1 2 3 | sum
r>10"°1284 444 232 4.0 100

and not col. to beams within 21° | 60.9 352 3.8 0.1 100
and not col. to muons within 14° { 74.6 234 1.9 0.03 | 100

The modified DYMU2 generator is extensively used throughout this work for calculations
of cross-sections and simulation of the detector acceptance for various “components” of the
total cross-section o“—##. The following components are modeled by optionally selecting or
dropping certain terms in oo from Eq. (2.90).

a) Continuum Under a Given Resonance: For simulating continuum events in the c.m.
region of the Y(1S) and Y(2S) resonances, the corresponding resonance term and its
interference with the continuum are removed from the cross-section. This is achieved
by setting B, = 0 for n = 1 and n = 2 in Eq. (2.90), respectively. The resulting event
sample models the continuum cross-section below the given Y resonance. It includes
all effects induced by the other Y resonances, e.g. their summed interference effects
(cf. Fig. 2.12) and their radiative tails (not included in Fig. 2.12). Accounting for
these effects is important, because they modify the 1/s dependence of the continuum
cross-section.

b) Pure Resonance Excitation: By setting oo = OBorn|Bnl|? for n = 1,2 we simulate the
pure resonance excitation etfe” — (yy)T — (v9)et e~ (7). The generator then auto-
matically creates initial state photon energies, which lead to a c.m. energy s. =~ mr.
Event samples generated in this mode at different mean c.m. energies W in the re-
gion of the T resonances are the basis for calculating the u-pair selection efficiency for
T — ptp~ as a function of W.

c¢) Cross-section for Y — u*u~ as a function of W: In addition to creating event sam-
ples for acceptance and efficiency calculations, as in (a) and (b), we use the DYMU2
generator as a tool to perform the convolution of non-radiative cross-section oo, radia-
tion spectrum, and c.m. energy spread. In this mode of application we are not interested
in the generated events, but only in the total cross-section. We run DYMU2 with the
full expression for oo at different mean c.m. energies W, and subtract point by point
the predicted continuum cross-section, obtained according to (a). The result, displayed
as dots in Fig. 2.16, is the sum of the T resonance excitation curve and its interference
with the continuum, since both terms have been dropped in (a). Analogously we can
obtain the Y excitation curve without interference (solid lines in Fig. 2.16) by starting
with an expression for oy, where the interference terms are omitted. Finally, by sub-
tracting the two curves from each other, we extract the interference contribution as a
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function of W (dashed lines in Fig. 2.16). In our data analysis the latter curve is used
to correct the measured p-pair cross-section for the interference effect (see Section 6.2).
The W-dependence of the measured cross-section is fitted with the help of the former
two curves (see Section 6.3).
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Figure 2.16: The resonance excitation curve o® (solid line) its interference with the continuum
o (dashed line), and the sum of both (dots) for the Y(1S5) (a) and the Y(2S) (b) as predicted
by the DYMU2 generator for the DORIS c.m. energy spread. All curves are plotted in units

of the Born cross-section for the continuum process ete™ — u*u~. We used the Y parameters
from Ref. [22].

2.3.5 Effects of Bremsstrahlung and C.M. Energy Spread on Res-
onance Production

The double convolution with the DORIS c.m. energy spread and the spectrum for initial
state radiation drastically changes the shape and magnitude of the T resonance peaks. The
peak cross-sections at /s=mr, originally amounting to Ry(1S)=1110g,m and Ro(25)=320Borm
(cf. Fig. 2.9), are now reduced to ft’(lS):O.2803,,m and f?(ZS):O.06403°". and slightly shifted
t0 Wyeax = my + (1.0 £ 0.1) MeV (solid lines in Fig. 2.16). This means, that only a relatively
small excess of p-pairs from T resonance decays can be observed above the continuum cross-
section, in contrast to what might be expected from Fig. 2.9. In addition, the width of
the peak is now of the order of the c.m. energy spread, exhibiting a distinct tail to higher
c.m. energies.

An approximate analytical expression for the magnitude of the peak reduction can be
obtained from estimating the effects of successively convoluting the non-radiative cross-section
oo with G(\/s — W) and the Bremsstrahlung spectrum. Convoluting first with the Gaussian
distribution G(y/s — W) of Eq. (2.124), the area A under the non-radiative Breit-Wigner will
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not change. This area is given as

6r’ L.l
M2 T

A=

— %I‘Ro, (2.126)

where we have inserted the peak cross-section Ry from Eq. (2.88). Since I' <0 w we can assume
that the resonance shape is a Gaussian of width w after this convolution. This corresponds
to an approximation of the resonance Breit-Wigner by a é-function. We then have

A = V2nwR,, (2.127)

where R, denotes the peak cross-section after the convolution. From Egs. (2.126) and (2.127)

follows that r
~ T
= 4/ ——Rp. 2.12
o= /2o R (2128)
Inserting w(1S)=7.9 MeV, w(25)=8.2 MeV, and T from Ref. [22], we find a reduction by
factors of 240 and 300 for the T(1S) and the Y(2S), respectively.
The radiative corrections now modify the Gaussian resonance shape and further reduce

the peak cross-section to a value R. The amount of this reduction can be estimated as {75]

- 2w\ P - -~
R=(57) Ro=057Rs. (2.129)
M

Thus, even after folding with the relatively large c.m. energy spread’®, the initial state ra-
diation reduces the peak cross-section by about 43%. This reduction is due to initial state
photons of energy fractions = 2 w/ E, which reduce the c.m. energy to s = s(1 —r)s (Ve—w)i.
To obtain a precise prediction for shape and magnitude of the resonance curves, a correct
modeling of the photon spectrum well below z = 1073 is thus mandatory. Photon spectra to
first or second order in a, which are not exponentiated, do not meet this requirement, as can
be concluded from Fig. 2.15.

The decrease of the peak cross-section from combining c.m. energy spread and Brems-
strahlung is given approximately from Egs. (2.129) and (2.128) by

~ 7 [ /2w\?
G e

The values ﬁ(lS)zO.ZGJBO,n and R(?S):0.0GOagmn, obtained by this analytical estimation,
deviate by less than 10% from those of Fig. 2.16. Note, that Fig. 2.16 describes the total

resonant cross-section oF normalized to the Born cross-section 0gom,. 1he observed resonance
enhancement normalized to the observed continuum cross-section, however, depends on the
applied selection cuts, and may thus differ from the curves in Fig. 2.16 by some 10%.

The ratio II_/f?I of the maxima of the interference and resonance cross-sections, which
is ~ 1/10 for the Y(1S) and ~ 1/5 for the T(2S), is not affected by the selection cuts,
because it refers to the same event topologies, and has thus identical selection efficiencies.
We note, that this ratio has not changed much compared to the corresponding ratio |Io/ Ro|
(Eqs. (2.87) and (2.88)), which does not include corrections from Bremsstrahlung and beam
energy spread. Since R/Ry o T (Eq. (2.130)), this approximate invariance can only hold, if
I/I, x T, likewise.

161 the correction from initial state radiation is applied before including the c.m. energy spread we would
have to replace 2w by the total width T in Eq. (2.129). The reduction of the peak cross-section would then
be 65%.
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The latter relation is not obvious, but can be illustrated by the following arguments. For
any X >» /2 we can write the tails of the interference term o in Eq. (2.86) as

4ma’ \/gBecBuu r T
3

oo — / '2: - o= —
(s = (M+ X)) oif XM X

(2.131)

where we have used |s — M?| =~ 2XM > T'M and inserted Ip from Eq. (2.87). After convo-

luting ¢! with the c.m. energy spread we find the extrema I of the resulting cross-section o

in Fig. 2.16 to be located at about W ~ M = 1.5w. At this value of W, the resulting cross-
section o emerges from sampling the original cross-section ¢! along the tail and over the
resonance region weighting with a Gaussian of width w centered at W. Since the interference
term o! is asymmetric with respect to M, and the Gaussian weight does not change much
across the narrow resonance region (I' < w), the net contribution from the resonance region
will be negligible. The main contributions to T will arise from the tail region, where o is
proportional to T, as shown in Eq. (2.131). We thus find from these qualitative arguments the
extreme value of the convoluted interference cross-section I I'l, acquiring the same I' de-
pendence as R (Eq. (2.130)). The additional convolution with the Bremsstrahlung spectrum
has no influence on this reasoning. We conclude, that the ratio \I/R|, and thus the shape
of the summed cross-section from resonance and interference, does not depend on I' as long
as [ < w. A more quantitative analytic discussion of the interference term, similar to our
discussion of the resonance term, is not possible, because here a zero-width approximation 1s
not possible.

2.4 The Process ete”™ —e’e”

At the end of the theory chapter we deal with the Bhabha scattering process ete”™ — ete™,
which is the basis of the luminosity measurement of most experiments at e*e” colliders. It
is well suited for this purpose, since energetic electron pairs are easily to detect without
prominent background, and since its cross-section is large. The large cross-section arises
from the existence of a t-channel scattering graph (Fig. 2.17(b)) in addition to the s-channel
annihilation diagram analogously to ete” — p*p~ (Fig. 2.17(a)).

a) o e b) e e

Figure 2.17: Diagrams for the Bhabha scattering process. a) s-channel annihilation b)
t-channel scattering.

The Born-term differential cross-section is very much peaked in beam direction and
reads |76]

s s\ 1-c
do, N do,, da,
" aa Taa

do,ee—aec 02 3+ ('2 2
= — (2.132)




50 CHAPTER 2. THEORETICAL FUNDAMENTALS
45 dae(’—Oe?
a2 | dn
1 03 E T T T T I T T T A ] T T T T I T T ¥ T g
102 .'_:
]
10! | §
109 S :','.‘;-.u..—.'.f.' ........................................................ E
1 O_ l A t 1',.’. L | 1 1 1 I | 1 1 A I | 1 1 ] L
-1.0 -0.5 0.0 0.5 1.0
cos @
Figure 2.18: Contributions to the differential Bhabha cross-section (solid line). The dotted

line describes the s-channel, the dashed line is the t-channel, and the dashed-dotted line
shows their (negative) interference term.

where ¢ = cos @ is the cosine of the angle of the outgoing e’ with respect to the e* beam
direction. The differential cross-section can be split up in the contributions of the #-channel,
the s-channel, and their interference according to

do, _ a?10 + 4c + 2¢2
a0 4s (1-—c)?
29 2
doe _ o221 +c)f (2.133)
as 4s 1-—c¢
do, a? 2
= —(1 .
dfl 45( + )

These angular distributions are plotted in Fig. 2.18.

In the energy region of the Y resonances, the cross-section for ete™ — ete™ is modified
by resonance contributions from the process ete — YT — ete”. Before the observed number
of ete~ events can be used for luminosity determination, these contributions have to be
subtracted.

Adding the resonance amplitude of Fig. 2.19 to the two lowest order amplitudes of Fig. 2.1%
yields {55]

do®cc do;, doin do,

-—“'”—dQ :(—iﬁ-Fm—(l-f‘g}eBc)'F an
where the resonance Breit-Wigner B, is given by Eq. (2.83),if T, 1s replaced by T, (which
makes no difference if lepton universality is assumed).

In contrast to the process e*e™ — u*u~, we have in this case three different angular distri-
butions, namely do,/dQ, doin /dS2, and do,/dQ. To each of these distributions the resonance
term |B.|?, and the interference term ReB. are attached with different coefficients. Their

(1 + 2ReB. + | B.|*), (2.134)
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e
e Y
e
e
Figure 2.19: Resonance contribution to the process ete™ — e¥e™.

respective contribution to the total cross-section depends on the selection cut for Bhabha
events at |¢| < ¢o. E.g., the s-channel contribution [ (do,/dQ)dQ [ [2 (do® e /d1)dS
ranges from 2.1% for ¢¢ = 0.90 to 8.7% for co = 0.50. At ¢o = 0.75, which is applied in
the Crystal Ball Bhabha selection, we find the lowest order cross-section to be composed of
5% s-channel, ~19% s-t interference, and 114% t-channel contributions. As estimated from
Eq. (2.130), the resonance decays T — ¢¢ amount after corrections for initial state radiation
and the DORIS c.m. energy spread to a fraction of about 0.26 and 0.06 of the s-channel Born
term for the Y(1S) and the Y(2S), respectively. The total observed Bhabha cross-section 1s
thus increased by about 0.26x5% = 1.3% and 0.06x5% = 0.3% due to Y(1S)—e¥e” and
T(2S)—e*e™, respectively. The fractional error on this estimate is roughly (10-20)%. It
uncertainties arise from the precision of Eq. (2.130), from the errors on the T resonance
parameters, and from neglecting radiative corrections to the ¢#-channel cross-section.

The interference between continuum and resonance enters the observed cross-section

<o ddocce/dQ) as [ dY(2ReB.[do,/d? + 0.5d0;,,/dSY]). These terms arise from the
product of the resonance diagram with the s-channel and the #-channel diagram, respec-
tively. The corresponding interference term in the muonic final state was simply 2ReoBorm
(cf. Eq. (2.84)). The presence of the t-channel diagram can thus be expressed by an ad-
ditional factor (1 + [ dQ(do,/dQ)/2 [ dQ(do,/d)). The value of this factor ranges from
~1.8 at ¢g = 0.9 to -0.3 for ¢o = 0.5. We see, that the negative sign of the t-channel in-
terference dominates. For ¢, = 0.75, we find by inserting the above numbers a value of
(1 4+ (—19%)/2 x 5%) = —0.9. Relative to the respective s-channel cross-sections, the mag-
nitude of the interference between resonance decays to ete™ and e*e” continuum production
for a cut at ¢o = 0.75 is thus comparable to the effect in the pu final state. Its sign, however,
1s reverse.

Fig. 2.20 shows the behaviour of the Bhabha cross-section in the region of the T(15)
and Y(2S) resonance, which enters our luminosity calculation (Section 4.4). Note, that the
interference contribution is now positive below, and negative above the resonances.
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Figure 2.20: The contribution of (a) the T(15) and (b) the Y (2S) resonance (solid lines) to
the continuum Bhabha cross-section (dashed lines). The cross-sections were normalized to
o(my) = 1. As calculated for a cut at ¢ = 0.75, the resonance enhancements at my are 1.3%
and 0.35% for the Y(1S) and the Y(2S) respectively. The 25 enhancement is slightly larger
than given in the text since it was calculated from an older value of B,,,,.



Chapter 3

The Experimental Setup and its
Simulation

“The thing that is important

»

is the thing that is not seen ...

A. de Saint-Exupéry, “The Little Prince”

3.1 The Crystal Ball Detector

The Crystal Ball detector was operated in the years 1982-1986 at the DORIS 11 ete” storage
ring in Hamburg at center of mass energies in the region of the T resonances. Before that,
it had been successfully employed for charmonium physics at the SPEAR e*e™ storage ring
in Stanford [77]. It is basically designed for precisely measuring the energies and directions
of electromagnetically showering particles over a wide energy range. The energy or momenta
of other particles cannot be measured, since there is no magnetic field in the detector. A
limited particle identification is possible via the recognition of different types of interactions
in the detector.

The experimental setup is shown in Fig. 3.1. It is described elsewhere {78}, and its proper-
ties are only briefly summarized here. Its main part is a nonmagnetic calorimeter consisting
of a spherical shell of 672 Nal(T1) crystals covering 93% of 4n sr. Each crystal is about 16
radiation lengths deep, corresponding to about one nuclear interaction length (Fig. 3.2). The
arrangement is based on an icosahedron, in which each face, called “Major Triangle”, is sub-
divided into four smaller triangles, called “Minor Triangles”, which in turn are formed by the
triangular surfaces of nine individual crystals. A complete sphere would contain 720 crystals.
To allow entry and exit of the beams, 24 crystals are omitted on each side. The layers of
30 crystals nearest to the beam pipe on each side are called “Tunnel Regions”. The “Main
Ball”. used in the trigger and data analysis, excludes the Tunnel Regions and covers 84%
of the solid angle. The overall solid angle coverage is increased to 98% by Nal(T1) “Endcap
Crystals”.

The large number of crystals provides a fine segmentation of the ball with angles of
~ 7° between the centers of adjacent crystals, corresponding to distances of 3 cm at the
inner ball shell, and 8 cm at the outer shell. The minimum energy recorded per crystal is
0.35 MeV. This small threshold together with the fine detector segmentation provides an
ideal basis for recognizing different types of interactions in the calorimeter by their lateral
energy distributions (“patterns”).
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Figure 3.1: View of the Crystal Ball detector as installed at DORIS IL

Pure jonization and excitation can be distinguished from electromagnetic showers or high-
energy nuclear interactions by the fact, that all but few percent of the energy deposition is
contained in one or two crystals. The most probable energy loss in the crystals for minimum
ionizing particles with Sy=4-5 is 195-200 MeV, and increases to 217 MeV at gy=45 (see
Section A.2.2 in the appendix). The width of the energy loss distribution is about 20 MeV.
with some dependence on the particle momenta.

Approximately two thirds of the hadrons are expected to undergo nuclear interactions
while traversing the calorimeter. The rest, if charged, loses energy by pure ionization and
excitation. Nuclear interactions of high-energy hadrons result in very irregular patterns.
Patterns from nuclear interactions of low-energy hadrons, on the other hand, can be less
clearly distinguished from pure Coulomb interactions.

Electromagnetic showering particles, i.e. photons and electrons', are leaving all their
energy in a very symmetric pattern. About 98% of their deposited energy is distributed
among a symmetric group of 13 crystals (cf. Fig. 3.5). The leaking out energy as well as
geometric effects, depending on the position within one crystal where the particle enters, are
taken into account by the application of small corrections [79,80]. Using this definition, the
measured energy resolution for electromagnetically showering particles is og/E = (2.7 =

0.2)%/ E/GeV.

The central cavity of the detector is equipped with a set of tube chambers with charge

1Since the Crystal Ball cannot distinguish between positive and negative particles, we generally refer to both
electrons and positrons as electrons.
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40.6 cm 2” photomultiplier

25.6 cm

Figure 3.2: The size and shape of a single crystal. The interaction point is marked by a cross.

l . 3 1 P 21250987

Figure 3.3: Tube chamber setups for the Y(2S) data (a) and for the T(1S) and Y (4S) data
(b).

division readout. The Y(2S) data used in this analysis were taken with a chamber setup
with a total number of 600 tubes, consisting of two double layers of proportional tubes and
one double layer of streamer tubes (Fig. 3.3(a)). The latter were a remnant of an older
chamber setup exclusively operated in the limited streamer mode. They were filled with a
mixture of ~76% Ar, 20% Isobutane, 4% Methylal, and 0.25% Freon, called “Magic Gas”.
This mixture gives high pulse heights at the anodes, which are almost independent of the
primary ionization. For the Y(1S) and Y(4S) data the streamer tubes have been replaced by
two additional double layers of proportional tubes, resulting in a total number of 800 tubes
grouped in four double layers. (Fig. 3.3(b)). The proportional tubes in both setups (filled
with 79% Ar, 20% CO;. and 1% CHy) record mean pulse heights for minimum ionizing
particles, which are by a factor of ~ 20 lower than those of the streamer tubes.

The reconstruction of the z-position of a hit along the wire has a typical resolution of
about 4% of the wire’s half length L, corresponding to 13 mm for the innermost double layer
and T mm for the outermost double laver. The resolution depends on the particle momentum
and the z-position and is not Gaussianly distributed (see Appendix B). The precision in the
azimuthal angle ¢ for a hit is determined by the tube radius of 3 mm.
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Figure 3.4: The Time of Flight is measured with the help of a “Ball-ToF” and a “Roof-ToF”
systermn.

For proper chamber operation each double layer records at least one hit for a traversing
charged particle with an ‘OR’-efficiency of larger than 95%. The performance of the chambers
was very time dependent, however. E.g., a degradation of the streamer tubes with time
reduced their ‘OR’ efficiencies to less than 50% for some data taking periods. Details of this
time dependence and its simulation are discussed in Appendix B.

The Time of Flight (ToF) system of the Crystal Ball detector has two parts, the “Ball-
ToF” and the “Roof-ToF” system. which are shown in Fig. 3.4.

The Ball-ToF system measures the timing of the calorimeter signals with the help of
20 Constant Fraction Discriminators and 20 TDCs, each processing the summed signals of
one Major Triangle. Note, that these signals arise from energy depositions along a path of
40 cm, which is unusually large for a timing measurement. The 20 Major Triangle timings
are backed up by timing measurements for the summed signals of the upper and the lower
ball hemisphere, respectively, as well as by two timings for the full ball energy sum. The
discriminator thresholds for the Major Triangle and hemisphere timings correspond to energy
depositions of 90 MeV. The energy thresholds for the full ball timing measurements are higher
and depend on the data taking period.

The Roof-ToF system is a set of 94 scintillation counters located on the roof and at the
side walls of the detector hut. It covers 25% of the solid angle but provides timing information
for about 80% of the triggered cosmic ray events. The position of the hit along the counter is
measured in two independent ways from the pulse height ratio and from the timing difference
at both ends with a precision of about 10 cm.

The Ball-ToF and Roof ToF measurements are performed at mean distances to the in-
teraction point of 0.45 m and 3.5 m, respectively. Both measurements have a resolution of
1.0 ns for high energy muons. improving to 0.4 ns for the Ball-ToF measurement of high en-
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ergy showering particles. With the help of the timing difference between the two components,
cosmic ray events can be separated by about 14 standard deviations from e*e” annihilation
events. A more precise timing measurement, which would be feasible with the Roof-ToF, is
thus not needed.

3.2 The Triggers

The Crystal Ball hardware triggers are designed to reduce the trigger rate for events which
are not caused by e*e” interactions. Trigger decisions are commonly based on energy balance
in the ball or on the total amount of deposited energy. The trigger criteria suppress cosmic
ray events, and interactions of beam electrons with rest gas atoms or with the wall of the
beam pipe. A varying set of about 20 different triggers was installed during Crystal Ball data
taking at DORIS. The typical trigger rate was about 4 Hz, which has to be compared to a
bunch crossing frequency of 10° Hz. Still, most of these trigger holds were not created by

+e~ interactions.

genuine e

All triggers used in this analysis are entirely based on the calorimeter information. The
fundamental quantities for the trigger decisions are the analog energy sum over 9 crystals
in a Minor Triangle, the sum over the 36 crystals in a Major Triangle, and the total energy
deposited in the Main Ball. The Tunnel Regions and Endcap Crystals are not included in
any of this analog energy sums. The energy deposits in the Tunnel Regions are instead used
to veto certain triggers. Thresholds, which are cited below for these analog energy sums,
refer to efficiency levels of about 90% for setting a trigger bit, and of about 10% for setting

a veto bit.

The Triangle Triggers

Muon pair events are efficiently recorded by two triggers. One trigger requires two back-
to-back Major Triangles, each having a deposited energy of more than 150 MeV; the other
trigger requires at least 90 MeV in each of two back-to-back Minor Triangles, and a total
energy of at least 220 MeV. Both triggers are vetoed by energy depositions of more than
35 MeV in either Tunnel Region. We will refer to them in the following as “Major Triangle
Trigger” and “Minor Triangle Trigger”, respectively?.

The Total Energy Trigger

The Total Energy Trigger requires at least 1.8 GeV of energy deposited in the Main Ball.
Bhabha events and multi-hadron events, passing the respective Crystal Ball selection pro-
grams, deposit energies well above this threshold.

The DBM Trigger

An important trigger for studying beam related background is the Doris Bunch Marker
(DBM) trigger. It collects “Background Events” with a rate of 0.1 Hz by triggering on
every 107th bunch crossing with no other condition. These Background Events provide a

2]n the Crystal Ball jargon the latter trigger was called “Quark Pair Trigger” and the former was the
“TOPQO 20V" trigger. Actually, the requirements of the TOPO 20V trigger were much more involved. They
are, however, equivalent to the conditions listed, if there are exactly two energy depositions of more than
150 MeV in the Main Ball. An even more efficient trigger for u-pairs, called the “Mu Pair Trigger”, was not
used . because its performance was unreliable.
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valuable information about the distribution and the frequency of beam-related or spurious
energy depositions and tube hits.

3.3 Calibration and Data Reconstruction

The Nal(T1) energy scale is set for each ~5 pb~? of accumulated luminosity using radioactive
sources [81], a van-de-Graaf generator [82], and large-angle Bhabha scattering events {79].

The z-information of the tube chamber hits is calibrated with the help of large-angle
Bhabha events, likewise (83]. The - information of each hit is set equal to the ¢ position of
the tube center. These ¢ values have been “calibrated” by comparing the hits fromm Bhabha
electrons with the ¢ positions of their energy depositions in the calorimeter. The measured
pulse heights of the hits are not subjected to a calibration.

Event samples of electron pairs, muon pairs, and cosmuc rays provide the basis for the ToF
calibration. For the Ball-ToF an optimum resolution is obtained by assigning and fitting delay
constants for each crystal and cable involved in the analog summing of the Major Triangle
energy [84,85]. It is further improved by correcting for time dependent drifts in each constant
and for the overall dependence on the amount of deposited energy. After accomplishing the
Ball-ToF calibration, the Roof-Tof is calibrated with the help of the timing difference of
cosmic ray muons with respect to the Ball [86].

Data reconstruction is performed in several steps. First crystals are grouped into clusters,
where a cluster is defined as a group of geometrically adjacent crystals, each having at least
10 MeV deposited energy. In a second step the local maximums inside the clusters are de-
termined. They are called particle bumps. The next step correlates hits inside the chambers
with the particle bumps in the ball. A straight line fit through the hits found in this proce-
dure is used for the direction definition of charged particles. Finally the ToF information is
evaluated and assigned to the energy depositions in the calorimeter.

3.4 Further Treatment of the Reconstructed Data

The output data format of the reconstruction procedure contains not only the results of
the various assignments of direction, deposited energy, and timing for each particle bump.
In addition, all detector information is kept, which was used in the reconstruction, e.g. the
deposited energy in each crystal, pulse heights for each tube hit, and timing information for
each component of the ToF system. It is thus easily possible to modify the definitions of the
particle assignments with respect to the standard reconstruction procedure. This freedom 1s
exploited in most Crystal Ball analyses in order to adjust the definitions of energy, direction,
and timing to the actual needs. A special sort of Crystal Ball data tapes, the “PACK?” tapes,
even contain the “raw” signals from the chamber and ToF system in a compressed format.
They can be retrieved if the tube hits or the timing are to be reproduced with different
calibration constants.

In this work we have recovered some tube hits from the raw data by reducing the pulse
height cut for about one third of the Y(4S) data®.

The tube chamber information is analyzed by the TAGTRK program [85], written for the
tracking of two particles. An essential feature of this routine is its ability to detect vertices

3The cuts for the four double layers were reduced from (60,30,30.30) mV 10 (40,15,20,20) mV for the runs
16563 - 17667, since it turned out after data reconstruction, that the hit pulse heights were rather low in this
period. The larger cuts, taken from the preceding period of data. would have led to considerable inefficiencies
of the tubes.
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Figure 3.5: Definition of deposited energy Eg4.p. The shaded area is the group of thirteen crys-
tals with the local energy maximum marked by an asterisk. The indicated circles correspond
to one. two and three Moliére radii for electromagnetic showering particles.

off beam axis, which is not possible with the standard Crystal Ball tracking package (cf. also
Ref. [87]). The location of the event vertex is found by maximizing the number of tube hits
traversed by the fitted tracks. An unmistakable assignment of off-axis vertices is achieved
by imposing additional constraints on the number of traversed hits. One of them is a cut
in the “on-axis significance” «, describing the fractional excess of hits for the on-axis vertex
assignment relative to the off-axis assignment.

The decision, whether a particle is called “charged” is based on the number of correlated
tube hits. We set the TAGTRK parameters such, that particles originating from the beam-
axis are called charged, if at least one (two) hit(s) in the chamber setup with 3 (4) double
layers is (are) correlated in v with their bumps in the ball. An additional hit is required,
if the hit(s) is (are) found in the innermost double layer, which usually contains a lot of
background hits. Applying this definition, charged particles originating from the interaction
region are detected with an efficiency of more than 98% for both setups.

If at least two hits are found to be correlated with a particle bump in ¢ and z, the track
direction is determined by fitting a straight line through the tube hits and the particle bump.
The resulting accuracy of the direction measurement is about 2-3° in 6, the polar angle with
respect to the beam axis, and better than 1° in ¢. The direction of a particle with less than
two tube hits is determined from the location of its energy cluster in the ball with respect to
the event vertex.

A particle’s deposited energy Eyg., is defined as the sum of the energies over a synumnet-
ric group of 13 neighboring crystals including the particle bump at its center (see Fig. 3.5).
The definition is motivated from the energy depositions of electromagnetic showers (cf. Sec-
tion 3.1). The lateral pattern are described by the pattern fractions F\, F;, and F;. They
represent the probability, that a given fraction of the deposited energy Eg4, was distributed
among 1, 2, or 4 crystals. For the Fy and F; fractions the crystals with the highest energy
deposits are used, whereas the 4 crystals include the one with the maximuin energy deposit
and its three nearest neighbor crystals.

The Ball- ToF measurement for each particle is taken from the corresponding Major Trian-
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Figure 3.6: The organization chart of the Crystal Ball MC.

gle timing. For a few percent of the particles the Major Triangle timing was not available or
unreliable due to bad hardware. In those cases we used the hemisphere and full ball timings
as a backup. Events without any valid timing are encountered with a frequency of less than
107°.

3.5 Monte Carlo Event Simulation

The organization of the Crystal Ball Monte Carlo is shown in Fig. 3.6. The process of the
event generation is subdivided into two steps: generation of particle 4-vectors, and simulation
of the detector response. The output of the detector simulation has the same format as real
data and is reconstructed using the same “universal™ production routines.

Tle detector response to electromagnetically showering particlesis simulated by the EGS 3
code 88" while the interactions of all other particles including muons are simulated with
an upgraded version ‘89, of the GHEISHA 6 program® [90 . Among other modifications,
corrections in the modeling of energy loss and é-electrons have been applied. They have been
proven to be important for a realistic simulation of particle interactions in the Crystal Ball.
which is essential for our analysis. More details about our GHEISHA modifications are given
in Appendix A. It is worthwhile to mention. that a common treatment of the Crystal Ball
geometry was adopted for EGS and GHEISHA. Replacing the GHEISHA geometry handling
by EGS-like geometry routines .91.92;. both precision and speed of particle tracking have
been improved.

The Crystal Ball geometry input does not only contain the positions and dimensions of the
calorimeter crystals. but also those of the inner and outer ball shells. of the crystal wrapping
foils. and of the endcap sheathing material. In this analysis we used a special geometry
version. which also includes the beampipe and the material equivalent of the tube chamber
walls and of their support structure [93..

The pulse height distributions of the tube chamber hits. their efficiency, and the smearing
of the charge division (including their respective run-dependence) are modeled after corre-
sponding data from Bliabha events by a separate tube chamber Monte Carlo program. This
“Erlangen Tube chamber MC” (E.T.AC) is described in detail in Appendix B.

Since there is a very irregular agglomeration of material between the Ball and the Roof-
ToF counters (phototubes. cables. electronics. superstructure. dryhouse). a realistic Roof-

4The version 6 of the GHEISHA package is essentiallv identical 10 the published version 7.
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ToF simulation is not possible. The Ball-ToF has been simulated in this work by a Gaussian
distribution with center and width determined from the data.

Extra energy in the crystals and additional hits in the tube chambers originating from
beam-related background are taken into account by adding special Background Events to the
Monte Carlo events. These Background Events are obtained with the DBM trigger described
in Section 3.2 and reproduce the actual detector behaviour specific for a given period of data
taking.

We have completed the run-dependence of the detector simulation by implementing vari-
ations in the mean position ({x), (y),(z)) and in the length ! of the eTe” intersection region
along the beam axis. (The Crystal Ball coordinate system is defined by the z-axis going in
direction of flight of the positrons, the y-axis pointing upward and the x-axis pointing towards
the middle of the DORIS II ring. The origin is set in the center of the ball calorimeter. In
polar coordinates the azimuthal angle ¢ is measured starting from the x-axis. The polar angle
8 refers to the 4z direction.) These beam spot parameters have been determined in Ref. [83]
as the relative positions of event vertices and calorimeter®. We have averaged these results
over appropriate periods as depicted in Figs. 3.7(a)-(d). Since our analysis is less sensitive
to the beam spot position than to its width (cf. Section 5.3.3}, we could afford not to follow
each change in the (x)-position of the vertex.

We have also modeled the systematic influence of a vertex position ({x), {y}) # (0,0) on
the ¢ calibration of the tubes. This influence is rather involved and could thus be reproduced
only qualitatively.

$Changes in these {{x), {y).(z)) positions of the vertex may either be due to beam shifts or to shifts of the
ball calorimeter. From studies done with the tube chambers, which are mounted on fixed positions around the
beam pipe, we find that the y-position of the beam was constant at about 0.10 cm above the center of the tube
chamber system. The variations in Fig. 3.7(b) do thus reflect a sinking of the calorimeter. This relative shift of
calorimeter and tubes was included in our MC simulation. The x-variations, on the contrary, are also observed
with the tube chambers indicating underlying variations of the beam orbit.
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Figure 3.7: Mean position ({x),{y),(z)) and length | of the e*e” intersection region as a
function of run number [83). The full dots are Y(15) data, the triangles are T(2S) data, and
the crosses are Y(4S) data. The big open circles with horizontal error bars show our average
for the MC input and its range of validity. Not all runs shown in this plot were used in our
analysis.



Chapter 4

Beam Energy, Luminosity, and Data
Selection

“The recitals of explorers are put down first in pencil.
One waits until the explorer has furnished proofs,
before putting them down in ink.”

A. de Saint-Exupéry, “The Little Prince”

One of the aims of our measurement of the YT decay to u-pairs is to extract its branching
ratio B,,,=#(Y — pp)/#(T). The total number of resonant p-pairs #(Y — pp) is propor-
tional to the observed number NY—## of resonance decays to muons, which is obtained from
subtracting the expected continuum yield N*~** from the observed number N** of p-pairs
in on-resonamnce running.

NT-*uu
B,. « N T —had
Nus _ Nee—kuu

= Nhed _ [Nee—had (4.1)

The total number #(Y) of produced T resonances is determined from the observed number
NT—had of multihadronic decays, because they constitute the dominant decay mode with
both, branching ratio and detection efficiency larger than 90%. The number N Esehed 15 an
turn obtained from the number of observed multi-hadron events N**¢ in on-resonance running
subtracting the continuum contribution N oe—vhad,

There are two major problems connected with this measurement, which have to be thor-
oughly studied. First, the resonance peaks of ete™ — T — ut = rise only marginally above
the ete~ — ptpu~ continuum background (see Section 2.3.5). By subtracting the continuum
measured at a different c.m. energy and at a different time under different experimental con-
ditions introduces large errors, unless we correct for all energy and time dependences (see
Section 5.3).

Second, due to the interference between pu-pairs from resonance decays and from con-
tinuum production, the result for B,, depends on the c.m. energy, where the on-resonance
data is taken (see Section 4.2). The data taking at DORIS, however, is not accompanied by a
reliable online measurement of the beam energy. We thus exploit the observed hadronic cross-
section together with measurements of the magnetic field in a storage ring bending magnet
to determine the c.m. energy W a posteriori, as detailed in Appendix C. Besides reducing
considerably the systematic error of the B,, measurement (Section 6.2), the determination
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Figure 4.1: Typical example for a multi-hadron event in the Crystal Ball detector. The
upper part of the event display is a mercator-like projection of the calorimeter where the
Minor Triangles and the boundaries of the energy clusters are indicated. The sizes of the
dots are a measure of the deposited energy in each crystal. The lower part shows three
different views of the chambers (x-y, z-R, 3-D). Hits used for track fitting are displayed as
squares.

of W enables us to fit the muonic cross-section in the region of the resonance as a function
of W. From this fit we derive results on the product of the branching ratio B, to electrons
and the muonic width T, of the T resonances (Section 6.3).

Altogether three types of event samples enter the analysis, namely multihadronic events
to derive the number of produced Y resonances and to determine the c.m. energy W, Bhabha
events for the luminosity determination, and finally u-pair events. We describe the selection
of these event samples and the determination of c.m. energy and luminosity in turn.

4.1 The Selection of Multihadronic Events

For the determination of the c.m. energy and for the calculation of the number of produced
Y resonances we select multihadronic events with the standard Crystal Ball multi-hadron
cuts [94]. The selection critena are suited to suppress background from beam-gas and beam-
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wall reactions, two-photon collisions, and QED processes like electron- and tau-pair produc-
tion. The most important selection cuts exploit the fact, that the latter background has a
small average multiplicity and that the former has a large total momentum along the beam
axis.

The selection efficiencies for hadronic Y decays are high, e.g. about 949, for. the 3-gluon
decay, and about 81% for the qq decay. In terms of the observed continuum cross-section
from ee — qq the remaining background comprises about 3% from tau-pair events, and 0.5%
each from (radiative) Bhabha events, from two-photon induced hadronic events, and from
beam-gas/wall reactions {92].

The resulting samples comprise 447 X 10% and 253 x 10% multi-hadron events from the Y(1S)
and the Y(2S) data, respectively. A typical multihadronic event is shown in Fig. 4.1.

4.2 Center of Mass Energy Determination

If the shape of the resonance excitation curves oo T=# (W) and o~ T~2(W) were identi-
cal, we would find the same value for B, from Eq. (4.1), regardless at which (on-resonance)
c.m. energy W our data is taken. This would be the case if there was no interference be-
tween resonance decays and continuum, or if the hadronic and the muonic decay channel
interfered in the very same way with the continuum. However, only T decays to fermion
pairs, namely T — qq and T — ¢C interfere with their corresponding nonresonant contin-
uwum production according to Eq. (2.84), whereas for all other T decays, like T — ggg or
Y(25)—+X+Y(1S)—X+hadrons, there is no or negligible interference with the continuum.
The maximum interference contribution for T — €€ is 10% and 20% of the resonance peak
height for the YT(15) and the Y(2S), respectively (see Section 2.3.1 on page 31 ). In contrast to
that it is only 1% for Y(1S,2S)—hadrons, since the decay T — qq forms only a small fraction
of the hadronic Y decay modes. We thus find the “true” value for B,,,=#(T — uu)/#(T)
only at W = WY, where the interference contribution vanishes. From Fig. 2.16 we find for a
c.m. energy spread of w ~ 8 MeV

Wo = my + (1.3 1 0.2) MeV, (4.2)
which is very near the (radiatively corrected) peak of the non-interfering T cross-section at
Woeak = my + (1.0 £ 0.1) MeV. (4.3)

Since the interference contribution to the hadronic cross-section is small, W,k equals in good
approximation the c.m. energy, where the maximum of the hadronic cross-section is observed.

Any strategy for on-resonance running tries to find this maximum hadronic cross-section
by scanning over the resonance. All on-resonance data is then taken at W ~ Wi ~ Wy,
if the beam energy remains stable. The stability of the DORIS beam energy is monitored

in two ways. First, the Crystal Ball experiment records the observed hadronic cross-section
had

online

Second, the magnetic field at the beamn position in a storage ring bending maguet is

o during data taking.

measured using the nuclear magnetic resonance (NMR) effect. This bending magnet is located
outside of the storage ring, but connected in series with all storage ring maguets so that is has
exactly the same current!. The magnetic field B of this magnet is thus — for a fixed orbit —
proportional to §, ., B(I)d! around the storage ring, which is directly related to 1" = 2E4um
via a constant Coppit

W = comieB. (4.4)

YFor the first & pb~lof our data sample the NMR reading did not yet exist.
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The combination of both methods does still not guarantee. that W can be kept stable
during data taking. The measurement of ched is uncertain due to statistics, and due to
slightly varying acceptance and beam-gas/wall background for both the hadronic and lu-
minosity events counted online. The varying acceptance is due to the lack of up-to-date
detector calibration constants at the time of data taking. The varying beam-related back-
ground comes in due to a simplified online event selection with larger background than in our
offline selection.

The NMR measurement suffers from changes in the beam orbit with respect to the scan
period, where Bpeax = B(Wicax) was determined. These changes may occur after any break
in the storage ring operation when both beams have been lost completely (e.g. after failures
in the e'e” supply from the LINACs or in the case of power failures). Changes in the orbit
manifest themselves in a modification of ¢orpir, S0 that running at Bpeax will no longer mean
running at W,.,,. Changes of W by, say, w/3 ~ 2.7 MeV. which reduce ched by only 4% on
the Y(1S) and by 3% on the T(2S), may remain unnoticed during on-resonance data taking.
However, such a change would affect the measurement of B,,. From Fig. 2.16 we derive,
that a shift in the c.m. energy away from 7 changes the measured value of B,, (Eq. 4.1)
approximately linearly to

(4.5)

] ] W W,
'Bupl(‘[!I ) = Buy(wo) (1 + a___—g) :

ur

if (W — Wyl<w. We find a(15) = 15% and a(25) = 30% resulting in errors of 5% for B,.(15)
and 10% for B,,(2S) for our example of a shift by w/3. The systematic error on B, from
the uncertainty in W can only be reduced by precisely determining the c.m. energy for our
on-resonance data. For that we have to find data taking periods with a constant beam orbit
and measure their parameters c,.;;. Details of this procedure are given in Appendix C.

In principle we plot the observed hadronic cross-section as a function of the measured
magnetic field B for short enough periods in time, so that the conversion factor corbir between
B and W can be regarded as a constant within each period. In these plots we fit the B-
position of the T resonances above the hadronic continuum. Periods adjacent in time were
combined if they could be consistently described by a common fit. The conversion factors
for the combined periods are then determined by inserting the values of the T masses from
Ref. {22 for the corresponding positions of the T resonances in B. The Y(2S) data can be
consistently fitted with a single conversion factor, whereas we get a set of 5 different conversion
factors for the Y(1S) data. They correspond to shifts ranging from 6.5 MeV to 44.2 MeV
compared to those c.m. energy values, which would have been obtained by utilizing the T(25)
conversion factor. From the errors of the fits and from the variation of the results within the
sets of combined subperiods. we derive an error of ATV = 0.5 MeV on our determination of
.

A subset of 8 pb~! of the T(2S) data was collected before a regular NMR reading ex-
isted at DORIS. Their c.m. energies were determined by exploiting resonance depolarization
measurements [95.96’ with a resulting precision AW ranging from 0.5 MeV" to 2.0 MeV.

A precise determination of W for the T(4S) data is not necessary. since the interference
with muons from Y(4S) decays changes the observed continuum cross-section by at most
0.30% (as obtained from correcting the dotted curve in Fig. 2.11 for initial state radiation).
Compared to this, the interference term in the energy region of the T(2S) and the T(1S5)
is 4 and 9 times larger. respectively (cf. dashed lines in Fig. 2.16). The c.m. energy of the
T (4S) resonance data was instead set equal to the Y(4S) mass from Ref. 22, accounting for
possible offsets by an error of AW = 15 MeV'. The c.m. energies of the continuum data helow
the T(4S) were calculated from their difference in the nominal beam energy to the Y(45)
resonance data. allowing for an error of AT¥" = 20 MeV".
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Figure 4.2: Typical example for a (radiative) Bhabha event in the Crystal Ball detector.

For the analysis we assemble data sets of constant c.m. energy W by collecting data with
nearby values of W from all periods and assigning to each data set a luminosity weighted
average c.m. energy W; = /3. LW?/3 L. We end up with 28 data sets of different c.m. en-

ergies around the Y(1S), 13 data sets around the Y(2S), and 4 data sets on and below the
T(4S).

4.3 The Selection of Bhabha Events

The standard reactions to measure the luminosity in 