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1. Introduction

PRSI RE————

At present we have a simple and appealing picture of nature. At

distances down to 10716

cm, the smallest distances explored, experi-
ments have shown that matter is made of two species of fundamental,
pointlike fermions, quarks and leptons. The weak, electromagnetic

and strong force which act between these constituents is described

by gauge fields and is mediated by the exchange of gauge bosons. These
forces might result from a single force; there is strong indirect
evidence that the weak and the electromagnetic force coalesce into

a single electroweak force at center-of-mass energies above 100 GeV,
this electroweak force may be unified with the strong force at c.m.
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energies on the order of 107" GeV.

Much of the experimental basis for our present understanding of
nature results from deep inelastic lepton-hadron experiments. Examples
are the discovery of quarks as physical entities, the first indirect
evidence of gluons, the carriers of the strong force, and the dis-
covery of the neutral weak current. The lepton-hadron interaction can
be studied at center-of-mass energies well above the electroweak uni-
fication energy of 100 GeY by colliding electrons and protons in a
two ring colliding beam facility.

The possibility of colliding electrons and protons was first con-
sidered by Hereward et al.l) and further investigated by Goldzah? and
Michaelisz) as an option for the ISR. The discovery of pointlike con-
stituents in deep inelastic electron proton scattering promted a
joint LBL-SLAC groups) to investigate a dedicated electron-proton
colliding beam facility in more detail. The study showed that the

center-of-mass energies and expected luminosities for such a faci-
lity would be sufficient to investigate deep inelastic processes in
the kinematic range where the electromagnetic and weak interaction

are expected to be of similar strength. This is well outside the reach
of available and proposed fixed target machines. Since then similar
studies4) have been carried out in nearly all high energy laboratories,
houe#er. they have not led to the construction of an electron-proton
colliding beam facility.

At present several proposals to construct electron-proton facili-
ties are ready for decision.

DESY has proposed to construct HERAs), a dedicated electron-pro-
ton colliding beam facility, on a site joining the present site. HERA
is designed to collide 820 GeV protons with 30 GeV electrons in four
interaction regions yielding 314 GeV in the center of mass which is
equivalent to the kinematical region covered by a 52 TeV fixed target
machine. The maximum momentum transfer squared is 98400 Gevz. The pre-
dicted luminosity at 314 GeV in c.m. is 6-103tem %7, The project has
been submitted to the German Government and recommended for construction
by a review panel. The project can be completed late 1989 if autho-
rized in 1983.

KEK pians to construct Tristans) designed to collide 25 GeV elec-
trons with 300 GeV protons in three interaction regions. The maximum
momentum transfer squared is 3 - 104 Gev2 with an expected luminosity
of 1.8 - 10°! e %", Kex has proposed to first construct an e¥e”
colliding ring capable of reaching 60 GeV in c.m. and this part of
the project has been approved. A decision on the ep part is expected
after first operation of the e’e” ring scheduled for 1985.



In addition to the dedicated facilities, a group of physicists7)

has proposed to collide 5 GeV electrons with the proton beam from

FNAL Tevatron. A decision on this proposal has been postponed and

will be considered at a later date. The same group has also proposed7)
an ep option for ISABELLE.

CERN has the option®) of colliding the electrons in LEP with
the protons in the SPS in one interaction region. This option yields

4 2

a maximum momentum transfer squared of 5.4 - 10° GeV™ and a predicted

luminosity of 4 - 10 o %571 in the parasitic mode and
1.3 + 108! %! when both LEP and SPS are operating only for ep

collisions.
In these lectures I1'}1 first discuss the physics programme which

can be carried out at a large electron - proton colliding beam faci-
lity, and from this discussion we will derive some of the constraints

which physics impose on the machine parameters.

In the main part of my talk I‘11 review the physical principles
of circular accelerators. Since this is perhaps a new topic to most
of you, I have tried to be pedagogical and have borrowed freely from

9,10,11,12

the excellent literatur available. A more in depth treatment

including a complete set of references to the original work can be

found in the literature listed above and in the references 1isted

at the beginning of each chapter.
N.Sandsg) has given a translucent discussion of the physical prin-

ciples of an ete” colliding ring and J.Ledufr3) has very abely re-
viewed the same subject in the previous SLAC summer school. In these
lecture we will therefore put more emphasis on the behaviour of the

protons and the problems associated with colliding electrons and protons,

This part of the lecture begins Wwith an overview of an electron-
proton colliding beam facility using HERA as an example. The physics
of such a facility is then reviewed in more detail starting out with
the transverse and longitudinal motion of a single particle in the
magnetic guide field and the accelerating r.f, field. The influence
of the synchrotron radiation on the single particle motion is dis-
cussed next. How to obtain transversely polarised electron and how
to transform this into a longitudinally polarised electron beam in
the interaction point is described in chapter 8. Limitations on the
stored current caused by various kinds of instabilities are reviewed
in chapter 9. HERA is discussed in more details in the last chapter,
with emphasis on the layout of the interaction region and the opti-
malisation of the luminosity.

2. Electron-proton Interactions at High Energies

2.1 Introduction

It has been shown experimentally that the proton contains point-
1ike quarks confined by the strong interaction and that an electron
incident on a proton interacts directly with one of these guarks in
accordance with Fig. 2.1. The interaction between a lepton and a
quark is mediated by a neutral or charged spacelike current. The va-

riables and the kinematic of the process is defimed in Fig. 2.1.

The physics pr0grmmne14)at an ep collider may be summarized as fol-

Tows:

1. Determine the properties of the spacelike electroweak current at a
mass which is large compared to the characteristic mass of the weak inter-
action. Measurements with electrons and positrons in well defined heli-

city states can be used to determine the properties of both charged and
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neutral currents in detail. For examples measurements with left
handed positrons or right handed electrons are very sensitive probes
for new weak currents.

2. Use the local, well defined electroweak current to explore the

17 m. Measurements of the structure

proton at distances down to 10
functions will pose stringent tests of our present understanding of

strong interaction. Such measurements may also reveal new constitu-

ents of the proton or they may show that quarks are composite ob-

jects.

3. Search for new phenomena. Examples are the search for free quarks,
for supersymmetric particles, and for elementary particies with com-
bined lepton and baryon numbers , the leptoguarks.

This programme demands a large kinematical area. The kinematical
region available with HERA is equivalent to that of a 52 TeV fixed
target machine and is shown in Fig. 2.2. The scale is set by the

black dot in the left hand corner representing the region which can
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be explored using a 1 Te¥ muon or neutrino beam on a fixed target.
Lepton beams with somewhat lower energies will become available at

the Tevatronls)

in 1983. It is clear that HERA opens a new kinematical
region well outside that available with present or planned fixed tar-

get machines.

The Qz-value corresponding to the characteristic mass of the weak
interaction squared is shown as the dotted line. A large kinematical

region is available beyond this Qz-value.

The final state topology in deep inelastic electron-proton inter-
actions is striking and easy to recognize. As indicated in Fig.2.1b
and 2.1c the scattered lepton appears at a large angle with respect to
the beam axis and the corresponding transverse momentum is balanced
by the struck quark which fragments into a jet of hadrons appearing
at Jarge angles on the opposite side of the beam axis. The remains
of the proton give rise to a foreward jet of hadrons focused along the
proton beam axis with no net transverse momentum. Because of the im-
balance between incident electron and protori momenta the particles
will in general emerge in the forward hemisphere along the proton di-
rection. The proton jet, the quark jet and the lepton defines a plane
with small momenta transverse to the plane and large momenta in the

plane.

The kinematic of the final lepton and of the current jet at nomi-
nal HERA energies of 30 GeV electrons on 820 GeV protons is shown in
Figs.2.3a resp.2.3b. For a given Q2 and x, the energy and the angle of

the lepton, respectively, the current jet in the laboratory system is ob-

Ee =30 GeV
300 - E, =820Gev .

0 00 200 300 400 500 600 700 GeV F,
Momentum of Current Jet, Parameters: Q2- X

35269

T v T ¥ T ¥ T T 1 v 1
30000 _qg_ %00 ]
YT 07\ T~ ~—
T s ~~o .

- \\\\ \\\
.03 No4 N N
. \
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Fig. 2.3a,b ~ The laboratory momenta of the final lepton and
the current jet with 02 and x as parameters. The
taboratory angles and energies can be read off directly
by connecting points with a given x and Qz with the

origin,
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tained by joining the relevant points with the origin. Note that the la-
boratory angles of the lepton and the current jet are in general large.
Lowering the incident electron energy will focus the f'i‘nai state partic-
les more strongly along the proton direction until particles belong-

ing to the current jet are lest down the beam pipe. In this case 02

and x cannot be reconstructed from the current jet alone making it

impossible to measure the form factors of the charged current.

Simply on the basis of topology it seems unlikely to confuse a
deep inelastic electron-proton event with a background event such
that the accessible Qz-range appears not to be limited by the back-
ground. Note that particles from the lepton vertex and the quark ver-
tex are kinematically well separated. In the standard mode]ls) only single

neutrinos or electrons are allowed at the lepton vertex, such that

the observation of jets emerging from the lepton vertex is a clear
indication of new physics. It will therefore be possible to observe

very rare exotic processes possessing this signature.

The Qz-range which can be investigated is therefore only depen-
dent on the rate - i.e. on the luminosity and the center-of-mass
energy. In Fig. 2.4 the average luminosity needed to produce 100
charged current events a year with 02 > Qg is plotted versus Qg for
various values of the center-of-mass energy. The year is assumed to

have 5000 hrs and the rate is evaluated in the standard model with

Fig. 2.4
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one charged vector boson. It is possible to explore 02~values up to

say 3000 GevZ with a luminosity as tow as 2 - 102 %572, 10 pro-

duce 100 charged current events with 02 > 10 000 Gevz per year re-

qQuires a luminosity of 1.5 - 1030 cm‘zs'1 - a factor of 40 below the
HERA design Tuminosity. To obtain the same number of events with

0 > 10 000 gey® by colliding 20 GeV electrons with 400 GeV protons re-
m~ 2571

quires an average luminosity of 3 - 1031 C - a factor 20 higher

than the luminosity required at HERA. Note that for a luminosity of

10°2 %! e expect 100 events a year with Q2 % 35 000 GevZ.

2.2 Low Q%-physics

The electron beam at HERA is equivalent to a well collimated
bremsstrahlungsbeam with an endpoint energy of 52 TeV. The untagged
photon-proton Tuminosity is typically on the order of a few percent
of the electron-proton luminosity yielding some 107 hadronic events

per day.

The photon has a dual character, it may convert into a vector me-
son and interact 1ike a hadron. However, it has also a pointlike part
and may induce hard processes like deep inelastic Compton scattering
and the QCD analogues of Compton scattering and Bethe-Heitler pro-
cesses as indicated in Fig. 2.5. Note that the QCD Bethe-Heitler pro-
cess can be used to measure the gluon structure function (q = u,d,s)
and to search for heavy quarks. A total of 105 cc pairs are expected
to be produced per day at HERA via the QCD Bethe-Heitler process and
some 20 tt pairs if m, = 50 GeV.

- 14 -
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Fig. 2.5 - Hard processes induced by the pointlike part of the
photon a) QCD Compton b) QCD Bethe-Heitler.

2.3 Properties of the currents

2.3.1 Charged currents

Present data are all consistent with a left handed current which
is medijated by a singIe charged‘vector boson with a mass around
80 GeV. The observed simplicity of the charged current might well
only reflect the static limit studied so far and a rich structure

with many vector bosons, some perhaps giving rise to right handed
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currents, might appear at high energies. From a purely experimen-
tal point HERA has some unique features compared to present fixed
target experiments.
- Very high energy.

The beam is equivalent to a monoenergetic neutrino beam with an

energy up to 52 TeV.

Choice of helicity.
It will presumably be possible to change the helicity of the inci-
dent lepton - i.e. the cross section for left and right handed

electrons (or positrons) can be measured directly.

Visibility.

The target is massless and can be surrounded by fire grained de-
tectors including particle identification.

- Favourable kinematics.

The lepton, the current jet and the target fragmentation jet are
presumably well separated in space and the event is easily recog-

nized.

The x, y distribution of charged current events in bins of
dxdy = (0.2)2 expected after one month of data taking with an un-
polarised 30 GeV electron beam colliding with protons of 820 GeV
is shown in Fig. 2.6. The rates were estimated in the standard modells)
with m, = 78 GeV and formfactors parametrized according to Buras and

16) 32 -2

and assuming a luminosity of 107 cm . Given the dis-

Gaemers
tinct signature of charged current events it seems possible to explore

nearly the entire kinematic region.
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Fig. 2.6 - Mumber of charged current events in bins of dxdy = (0.2)°
produced per month of data taking assuming the standard
model and a Tuminosity of 1032an7%5™L. To obtain the number
of events expected per year of data taking at the nominal
HERA luminosity using left handed electrons multiply the
left plot with a factor 8 and the right hand plot with a
factor 5.

The expected number of events per year for the reaction
e[ +p-+v+x, evaluated with the assumptions listed above, is
plotted in Fig. 2.7 versus Qz for various propagator masses. It is
clear that the mass of the propagator can be measured as long as it
is below 500 GeY. The data can also be used to determine whether the
charged current is damped by a single vector boson as presently be-

lieved or by several.
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Fig. 2.7
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Right handed currents do not occur in the standard model. Sensi-
tive searches for these currents may be carried out using right handed
electrons and left handed positrons. Such measurements will reveal the
existence of right handed currents if the mass of the right handed
propagator is less than 600 GeV and the longitudinal beam polari-
sation is at least 80% known to an accuracy of 1%. This mass limit
is valid even if the electron is partnered with a massive neutrino

in a right handed doublet.
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At x > 0.4 only valence quarks contribute to the cross section
-j.e. e +u+d+xandet +d+u+ xare the dominant processes.
This makes it possible to study the fragmentation of a well defined
flavour. However, in principle it also opens the possibility of
measuring the Kobayashi-Maskawa mixing anglesn) directly:

e +u~+s+x and e +u->b+x
+
e"+drc+x and et +d+t+x.

2.3.2 Neutral currents

One photon exchange and yad exchange contribute coherently to
e + p+e'+x and both contributions are of similar strength at HERA
energies. Measurements of this process can therefore decide if in-
deed the electromagnetic and weak interactions are manifestations
of a single force and if this unification occurs as conjectured in
the standard mode116) or if a more complicated mechanism involving ma-
ny 2%'s is realized in nature. The number of neutral current events
produced per day in a bin dxdy = (0.2)2 is plotted in Fig. 2.8,
Again due to the characteristic topology of deep inelastic events
HERA can extend the Q2 range from the present few hundred Ge\f2 out
to some 40 000 - 50 000 GevZ.

The presence of a weak current in the amplitude has clear signa-
tures:
1} Parity violation

o(e£+p+e" +xX) £ a(ei+p—»e" + x)

a(et+p*e"" +x) £ c(e;+p»e+' + X)

This effect can only be caused by a neutral weak current.
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Q2 (10 Gev?) 3. The presence of a 1 - (l-y)2 term which is not allowed in the one
0k photon exchange approximation. This effect cannot be caused by two

—x=1 photon exchange.

The size of these effects in the standard model is shown in

~-0.8 Fig. 2.9 where the ratio

0
[+ + Z

oLy
06 evaluated for left and right handed electrons and positrons is plot-

ted as a solid line versus y for x = 0.25.
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Fig. 2.8 - Number of events per day for e” + p> e + x diff
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Two-photon exchange will also give rise to a charge asymmetry. This
effect, however, is expected to be of order o/m In (Qzlmz) with e;
m v 300 MeV. At large values of 02 this effect is small compared to
et
the charge asymmetry caused by 2° exchange and it has furthermore L o

a different Qz dependence. 30103
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The neutral current measurements at HERA are complementary to
measurements at SLC and at LEP. For example it is easy to construct
a senario in which the z° peak is not observed in e*e' annihilation

but propagator effects are seen in deep inelastic e + p +» &' + x.

The most trivial explanation would be to assume that the 7° peak
is washed out by a2 large number of vv decays.A perhaps more exciting

possibility has been put forward by Abbott and Fahriw).

Usually

g§/41r << 1, where 9, is the SU(2) coupiing constant and hence SU(2) does
not confine. Abbott and Fahri suggest that perhaps g§/41r is of order
one and that SU(2) indeed does confine leading to composite fermions and

bosons. Since

¥ %
/2 &m
w
this would imply that the vector bosons in such a model are much

heavier than the vector bosons in the standard model.

Flavour changing neutral currents like e” + d » 1~ + b may appear.
In the example above the 1 decay products will emerge on the lepton
side instead of a single lepton. Such events would be spectacular

and easy to observe.

2.4 Exploring the Proton

Measurements of the total electroweak cross section at values of

20) that

02 between a few Ge‘l2 and a few hundred Ge\l2 have revealed
the proton is made of pointlike fermions, the quarks. At short dis-
tances the quarks behave 1ike free particles, yet the proton cannot
be "ionized". The measurements further show that the quarks account

for about a half of the proton momentum, the other half being car-

- 22 -

ried by particles with only strong charge.

Measurementsn) at increasing values of 02 showed that the form
factors are enhanced at low and depleted at high values of x. This
observation is naturally explained in any field theory of strong
jnteractions as shown schematically in Fig. 2.10. The resolving
power of a spacelike electroweak current increases with Q such that
the broton may be probed at shorter and shorter distances. Thus we
may "see" the quark content of the gluon, or the quark after the
emission of a gluon.
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Fig. 2.10 - a) A virtual photon with 00 striking a quark.

b) A virtual photon of higher Q° resolving the quark into
a quark and a gluon,

¢) A virtual photon with Qg traversing a gluon without
interaction.

d) A virtual photon of higher 02 resolving the gluon
into a guark-antiguark pair.
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The experimental observations led to the formulation of Quantum

Chromodynamicszz)

. In this theory the strong interaction is mediated
by eight coloured massless vector bosons, the gluons. The strong
coupling constant ag decreases with increasing values of QZ as

a (02) - 127
(33 ~ an) tn

Q%/0°

where ne is the number of flavours and A the characteristic mass of

the strong interaction.

The Qz~ev01ution of the form factors can be unambigously com-
puted in QCD. The result of such an computation is shown schemati-
cally in Fig. 2.11. Careful measurements of the cross section over
wide range in QZ are needed to distinguish the logarithmic scaling
violations inherent in QCD from a power series aé would occur in a

fixed point theory.

The correction factors needed to extract the cross section from
the raw data must be small in order to determine the form factors
with the required relative precision of a few percent. The results
of a Monte Carlo calculations for charged current events are shown

in Fig. 2.12.Plotted is the ratio between the extracted formfactor

and the input form factor for values of 02 between 6 and 40 000 GeVz.

Note that for the HERA parameters the ratio approaches one - i.e.
only small corrections mﬁst be applied to the raw data. This is no
longer true if the electron energy is lowered say to 5 or 10 GeV
keeping the proton energy fixed at 800 GeV. In this case hadrons
from the current jet are lost down the beam pipe causing large cor-

rections.

- 74 -
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The slow variation of the form factors with 02 as predicted in
field theories makes it easy to search for new phenomena which may
show up as scaling violations. Some possible sources of non QCD sca-

ling violations are:
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Fig. 2.12 - The correction factor which must be applied to be raw

charged current data to extract the form factor
Fz(Qz,x). Shown are the results of a Monte Carlo calcu-~
lation of the ratio Fz(out)/Fz(in) for various values
of x plotted versus 02.
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New constitutents in the proton. For example in supersymmetric
mode1523) the protons must contain, besides the normal quarks and
gluons, scalar quarks and fermion gluinos. Thus the fraction of the
momentum carried by the normal quarks will decrease at large values
of 02 since the total proton momentum is now shared amongst more con-
stituents. Scalar quarks will also contribute to the longitudinal
form factor F, (x, 0%) = Fz(x,Qz) - 2xF;(x,0%). Again precision
measurements over a wide range in Q2 are needed to extract information

on new constituents.

Quarks and leptons may have finite size. Faced with the large num-

ber of leptons and quarks many physicists find it natural that these

24) made of new building blocks. With HERA |

17

particles are composite

we can probe the fermion structure down to 10™*" cm. If the leptons

have a size we would expect to observe a leptonic form factor and

ultimately the production of excited leptons. The cross section would
1

(1+ qzlﬁz)

scaling violation which is very different from that expected in QCD.

4 2

be modified by a form factor F(Qz) = giving rise of a

A 10% measurement at 4 - 10 GeV” would be sensitive to a mass of

the order of 1 TeV.

- +
An excited lepton could decay into e + y, e + 2° and et + W- leading
to peaks in the invariant spectrum. Note that the topology of such a
final state with several particles emerging from the lepton vertex

makes it easy to find.

The cross section would be modified in a similar manner, if the
quark has a structure - i.e. again one might probe down to distances

of {1 TeV)'l. In this case the formfactors may increase or de-
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crease depending on the charges and the weak coupling constants
of the new constituents.

The colour degree of freedom of quarks may also be excited
at small distances, and fractionally charged gquarks resolved into
integrally charged quarks of different colours:

1y, uy (e = 1), ug (e=0)

d=- dr (e-=0), dy (e = 0), ug (e = -1}
Thus above the threshold for colour thaw:

25)

U U (e

(320 » 3 (12 1%+ 0% u(x) = Fu(x)
(312 6(x) + 3 (0% + 0% + 19 4(x) = J d(x)

In the valence quark approximation the electroproduction cross section

would rise by a factor of 1.7. This model also contains charged gluons.

The photon may interact with these gluons and this would contribute
to the longitudinal cross section.

2.5 New Physics
The combination of high luminosity and the opening of a large ki-

nematical region makes HERA well suited to search for new phenome-
na. Three obvious examples are discussed below:
2.5.1 New Fermions

Electron-proton collisions are ideally suited to produce electron-
like charged or nsutral leptons and new heavy quarks which couple
to the u or d quarks in the proton. Such couplings are known to be
rather weak in the standard model, however, new currents may exist.
Indeed if the basic fermions are not pointlike they must have ex-
cited states which couple to the ground state. The rate for producing
a heavy quark from a Tight quark is plotted in Fig. 2.13 with the
mass of the outgoing leptdn as a parameter. The rates were evaluated
with the assumptions listed above plus the assumption that the new
current couples with the same strength as the old one.
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Events per day

1 i 1 ! | -M (GEV)
100 150 200 a
30101

Fig. 2.13 - Number of events per day for e” + p+ L™ + Q + x
at s = 9.6 x 10" Gev? assuming Teft handed coupling,
unpolarised electrons, My = 78 Ge¥, Buras-Gaemers
paremetrization with 1 A = 0.5 GeV and a luminosity
of 1032 em 2571,

Leptons and quarks with masses to 150 - 200 GeV can be found in this
way. The deay of these particles leads to rather spectacular sig-
natures on the lepton side: L% e ¢ q', i.e. the single Tepton
emerging from the lepton vertex in the standard model will be

replaced by a2 high mltiplicity jet containing leptons.
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2.5.2 Leptoquarks
It is generally accepted that the gauge symmetry must be sponta-

nously broken to give mass to the intermediate vector bosons and

to make the theory renormalizable. It has been proposed, as an al-
ternative to the standard Higgs mechanism, that the symmetry breaking
arises dynamically from the gauge interactions themselves. In this
model a new set of unbroken non-Abelian gauge interactionszs) with

a mass scale on the order of 1 TeV is introduced. This interaction
gives rise to a complicated spectrum of technicolourless bound sta-
tes with masses starting around 1 TeV. In addition, the technicolour

interaction will result in leptoquarks, fundamental particles with

combined lepton and baryon numbers and a mass predicted around 160 GeV.

The cross section resulting from the Feynman graphs in Fig.2.14a
has been evaluated by Rudaz and Vermaserenzn and 'is plotted in
Fig. 2.14 versus the mass of the leptoquark. Roughly one event per
day is expected for a leptoquark mass of 160 GeV and a suppression
factor sinzﬂetg 0.05. The topology of such an event is remarkable
with a broad jet, resulting from the decay of the leptoquark

{LQ) > e t, emerging at the lepton side.

2.5.3 Leptoproduction of supersymmetric particles

Gauging the isospin led to the successful unification of electro-
magnetic and weak interactions. In supersymmetric23) theories the
same story is repeated for the spin and this leads to a connection
between fermions and bosons. Indeed the fundamental feature of
supersymmetry is that it can generate fermions from bosons and vice

versa. Thus for every particle with spin J there will in principle
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Fig. 2.14 - a) The Feynman graph for producing a leptoguark
in deep inelastic ep reactions and the resulting
tonology.

b) The cross section for ep + (LQ) + x evaluated
according to a).
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be two new particles with spin J + 1/2.

28)

A partial list of such new particles is given in Table 2.1.

Table 2.1 - Possible supersymmetric particles

Types of conventional Spin
particles 1 1/2 0
N\
Matter quark q scalar quarks q
lepton % scalar lepton ¥
4
. W supersymmetric Higgs scalar
Massive Gauge hegvy ¥zgton 9
Bosons

z° ¥, 2, H H

_Massless photino Y
Gauge Boson a
ninos v
. s

g gluino g

Electron-proton collisions at high energies are well suited to
search for supersymmetric particles:
Above threshold scalar quark and scalar leptons can be directly

producedzg)

o

e+q + £+ 4§
e+q ~» M a .
The observable mass rénge for supersymmetric particles depends
on the signature. If the scalar leptons decay into a jet of scalar

particles then cross sections as low as 10'38 cm'z corresponding to
10 events a year may be observable. If the dominant decay modes are

of the type ¥ » 2 + G and § » q + G where G is the undetectable
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Goldstino, then the background will be more severe. In standard
neutral current events, however, the direction and energies of the
scattered lepton and the current jet are strongly correlated. Since
in a supersymmetric neutral current event the electron and current

jet results from decay processes this correlation is destroyed and

the background can to a large extent be eliminated by suitable cuts.

26)

Estimates show that one may probe the mass range up to

100 - 150 GeY for the existance of supersymmetric quarks and leptons.

Scalar leptons éan also be searched for in the process
e+p- e’ +p- G° te+pse + p’+ missing energy and neutrino.
The signature is very clear with only an electron and a proton in a
final state. One should be able to observe this process if the mass

of the produced supersymmetric particles are below 100 GeV.

2.6 Summary
To explore the Qz region above 104 Ge\'2 requires center-of-mass
energies on the order of 300 GeV or above. In principle the relativ

electron and proton energies do not matter. However, the Qz and v
values of a charged current event must be determined from a measure-
ment of the current jet and such a measurement can only be carrieq
out if the electron energy is not too small. 30 GeY electrons col-
liding with 800 GeV protons is acceptable ; lowering the electron
energy to 5 GeV keeping the proton energy constant is not.

032 cm'zs'l

The luminosity must approach 1 in order to be able to
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explore the main fraction of the available kinematic region. Note
from Fig. 2.4 that the event rate depends on both luminosity
and center-of-mass energy - i.e. one may trade luminosity and versus

center-of-mass energy.

The ability of using electrons and positrons in well defined he-
licity states is crucial for the determination of neutral current

coupling constants and in the search for right handed currents.

3. Description of an Electron-Proton Colliding Beam Facility

In this part we give an overview of an electron-proton colliding
beam facility using HERA 5) as an example. Some of the most important
parameters are listed in Table 3.1. HERA consists of two circular
accelerators, one for electrons (positrons) and one for protons
arranged such that the counterrotating electron and proton beams
collide in four points along the circumference. The accelerator has
a fourfold symmetry; four 360 m long straight sections are joined by
four arcs with a geometric radius of 779.2 m yielding a total cir-
cumference of 6336 m. The electrons and the protons collide in the
middle of the four long straight sections. The layout of the machine

is shown in Fig. 3.1.

Each of the circular accelerators is made of the following ele-
ments:
A guide field which bends the charged particles on a circular path
and provides the necessary focusing to keep the particles trans-

10

versely bunched over a distance of 10"~ km. Nowadays most machines

are of the separate function type - i.e. the bending by dipole fields,

1. Zunéchst wurde die Drahtebene senkrecht zur Strahlachse (z-Achse)
gestellt (Abbildung 21 auf Seite 34 a ). Das Maf} der Jystierung ergab
der Vergleich der Absténde Bolzen - Magnetjoch.

y Y
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Abbildung 21. Drehachsen

2. Es folgte das Ausrichten der horizontalen Drihie in x-Richtung. Dazu
wurde eine Prézisionsmetallschiene auf jeweils gwei Bolzen gelegt und
mit Hilfe einer Wasserwaage justiert(Abbildung 21 b ).

3. Alsdann wurden Drahtebenenmitielpunkt (= Kammermittelpunkt) und

Strahlkoordinatensystem Nullpunkt {x=0, y=0) mit einem Theodolitep
méglichst genau zur Ubereinstimmung gebracht (Abbildung 21 ¢ ).
Der Theodolit war dabei auf das Strahlkoordinatensystem justiert und
es wurden die x- bzw. y-Abweichungen bzgl. des Nullpunktes zunéchst
zur Korrektur benutzt (Verschieben in x- bzw. y-Richtung), zuletzt
vermessen.

Die Vermessung der. z-Koordinaten der einzelnen Kammern erfolgte wie-

derum bzgl. der genau vermessenen PLUTO-Joch-Kanten (Abbildung 22 auf
Seite 35)

Driftkammerkonstruktion
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Table 3.1 - Basic parameters

poring e-ring units
Nominal energy 820 30 GeY
s = Gy 98400 cev? -
Luminosity 0.6 x 10%2 sl
Polarization time 20 min
Number of interaction points 4
Length of straight sections 360 [
Free space for experiments 15 L]
Circumference 6336
Bending radius 603.8 540.9
Magnetic field 4.53 0.184% T
Total rumber of particles 6.3 x 1013 0.76 x 10'3
Circulating current 480 58 mA
Energy range 200 +~ 820 10 ~ 35 GeY
Exittance (¢ fe,) 0.47/0.24 1.6/0.16 1078
Bets function  8,/6) 3/0.3 3/0.15 »
Dispersion function D:ID: 0/0 0/0 n
Beam-bean tune shift JQ‘IAQI 0.0006/0.0009 0.008/0.014
Bean size at crossing oy 0.12(0.91)** 0.22 =
Seam size at crossing a: 0.027 0.013 L]
Mumber of bunches 210
Bunch length 9.5 0.93 c
RF frequency 208,189 499.667 iz
Maximm circumferential voltage 100%** 290 L
Total RF power 4-6 13.2 L]
Filling time 20 15 ain
Injection energy 40.0 14,0 Ge¥
Energy loss / turn 1.361 10710 142.3 Me¥ ; Pro[unen
Critical energy 10 m ke p
Heat ltoss at 4.3 X 13.2 i3 ]
Lead cooling gas rate 42.5 9/s
Design refrigeration power at 4.3k 20 k¥
Design lead gas rate 64 9/s

2 At the interaction point
s Iacluding the dunch length
s 25 MV is foreseen initially corresponding to 1 - 1.5 Wi, Fig. 3.1 - The layout of HERA.
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the focusing by quadrupole fields and the corrections by higher mul-
tipole fields are provided by separate elements arranged in a re-

petitive pattern (cells).

An accelerating system made of a power source (klystron, tetrode)
and resonating cavities. Energy is transferred to the particles by
the longitudinal electric field oscillating in the cavities at a
frequency which is an integer muitiple of the particle revolution
frequency. The r.f. system is used to accelerate particles from the
injection energy to the final energy and - in the case of electrons -
to compensate the average energy loss caused by synchrotron radiation.

The r.f. system also provides longitudinal focusing of the beam.

A high vacuum system. A particle covers a distance of 1010 km
during a typical storage time of 10 hrs such that a high vacuum sys-
tem is mandatory to minimize the losses due to beam gas interactions.
A pressure on the order of 10'11 torr is needed for the protons. The
synchrotron radiation of the electron beam strikes the walls of the
vacuum chamber leading to gas desorption which makes it difficult to

maintain a pressure below 10'9 torr in the electron ring. However,

this pressure is sufficient since the oscillation of electrons,

excited by beam-gas interactions is damped by synchrotron radiation.

A monitor system to observe the behaviour of the particles and a
sophisticated control system to supervise the operation of the

accelerator and to take corrective action if needed.

Anmkaanﬂmcwwhofhdhgmeﬁwsﬂmekmmm
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and protons in a time which is very short compared to the anticipated
storage time of several hours. Not only the peak energy but also the
minimum usuable energy of an accelerator is limited. For a machine
made of superconducting magnets this 1imit is probably determined

by the constant field errors caused by persistent currents in the
superconductor. The strength of these higher multipole fields relativ
to the dipole field increases with decreasing energy and they may
well 1imit the injection energy of the protons to some 5% of the

peak energy. The electron beam is rather stable due to the damping
caused by the synchrotron radiation. The damping time is pro-
portional to 1/E3. Thus the operating range of an electron ring,
limited by instabilities at the Tower end and by the available r.f.
power at the higher end, is rather small compared to the range
available for a proton ring. In the case of HERA, a chain consisting
of Tinear accelerators, the DESY synchrotron and PETRA are used to
boost the energy of the protons and the electrons to 40 GeV respec-

tively 14 GeV before injecting into HERA.

An extraction system designed to eject the stored proton beam in
a single turn. This is necessary since a localized loss of 10'4 of

0 protons, in a magnet at 4.5 T wil)

the design current, or some 101
destroy the superconducting state and lead to a quench. Thus the
proton beam must be ejected without a loss at the onset of an in-

stability or at the end of a run.

The interaction region is presumably the most complex part of an
electron proton collider. The two beams with rather different pro-

perties must be brought into a small angle, Tow beta {i.e. small



- 3G -

beam spot)collision geometry. The electron spin, which is perpendi-
cular to the orbit in the arcs, must be turned to be either parallel
or antiparallel to the beam direction in the interaction point and
then be restored to its vertical direction upon entering the arcs.
Furthermore the dispersion in the lattice mist be made to disappear
in the interaction point, and sufficient space for r.f. cavities,

injection and ejection systems must be found.

The layout favoured for HERA is shown in Fig. 3.2. The beams
cross in the horizontal plane of the electron ring at an angle of
+ 10 mrad in middle of the 360 m long straight section. A horizon-
tal crossing is advantagous since the radial size of the electron
beam is much larger than its vertical size. The choice of a rela-
tively large crossing angle makes it possible to design the machines
without common elements such that the electron and proton energies
can be chosen and varied independently. The resulting increase in
the effective horizontal beam size can be compensated by bringing
the proton quadrupoles closer to the interaction point with a re-
sulting reduction in vertical beam size. A free distance of + 7.5 m
around the interaction point is available for experiments. In this
design the spin is turned into the longitudinal direction by an
80 m long rotator installed at the end of the arcs and restored to
the transverse direction by a similar rotator positioned at the en-
trance to the next arc. The large distance between the interaction
point and the last bend in the rotator minimizes the amount of syn-
chrotron radiation which reaches the detector. In each section

roughly 200 m is available for the r.f. system and the injection and

L

4
+
;

||

S

Fig. 3.2 - Layout of the interaction region.
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ejection system.

Energy and luminosity are obviously two factors which determine
the quality of an ep facility. The physics discussed in chapter 2
emphasized the importance of investigating the region of Q2 greater
than 104 GeVz and showed that luminosities of the order of
1087 %! 10 102 cn™%s™! are needed to obtain a useful event

rate at such large values of 02

The maximum momentum transfer squared Qﬁax which can be obtained
in an ep colliding ring is given by

¢, -4 EGE, - (3.1)

The maximum energy of the proton beam is determined by the product

of the bending radius p and magnetic induction B

_ B (T.m.
E, (GeV) = i) (3.2)

Thus, for a given radius, the energy is limited by the strength
of the magnetic field. Due to the pioneering work at FNAL and BNL
superconducting accelerator magnets can be massproduced with repro-
ducible properties for an induction up to 5 T. The nominal induction
of the superconducting dipolemagnets in HERA is 4.53 T yielding a
proton energy of 820 GeV.

An electron of energy E (GeV) transversing a circle of radius

p {m) radiates an average of e Ue(keV) per turn:

E4
e Uo(keV) = 88.5 e (3.3)
This energy loss must be restored by the r.f. system and to this

end the cavities must be fed the power Po. This power is the sum of
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the losses in the cavity and the energy radiated by the beam.

The cavity losses are given by U2/2R where U is the peak voltage
in the cavity and R the total shunt impedance of the r.f. cavity
system, In principle this term can be made negligible small by
using superconducting cavities, however, the second term still re-
mains. The radiation losses are given by i-UO. High luminosities
require a large circulating current such that the radiation term
tends to dominate. The peak electron energy is therefore not limited
by the magnetic field strength but rather by the available r.f.
power. To reach the nominal energy of 30 GeV in HERA with a stored
current of 56 mA requires 13.2 MeV of r.f. power with 4 M4 needed

to establish the circumferential voltage and 8 MW to compensate
for the synchrotron radiation, 1.2 MA are lost in the waveguides.

The dipole field is only 0.18 T.

It is important to push the electron energy for two reasons.
Firstly the electron energy must be on the order of several percent
of the proton energy to avoid that particles from the current jet
are lost down the beampipe making it difficult to reconstruct the
fina) state. This point was illustrated in Fig.2.12 which shows
the corrections which must be applied to the experimental data in
order to determine the formfactor Fz(xl,oz) from charged current
interactions. Whereas the corrections in the case of 30 GeV electrons
colliding with 820 GeV protons (200 GeV) are small and presumably
managable they become very large and probably unreliable in the case

of 5 GeV electrons collding with 1000 GeV protons.
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The synchrotron radiation in the arcs will polarise the circu-
lating electrons transversely to the beam plane. The maximum pola-

risation Po = 92.4% is approached as:
P(t) = P (1-e T (3.4)

with a build-up-time % in seconds given by:

98.7 3

o= B0 (3.5

ol

The beam energy E is in GeV and the bending radius p, respectively

the geometric radius R in meter.

The electron energy should therefore be so large that L is very
short compared to the anticipated beam 1ife time. At 30 GeV Tp is

of the order of 20 min.

The Tuminosity, assuming Ny, bunches of protons and electrons is
given by:

|

N
L= .E;_E ) fon (3.6)

b
Here Ne and Np are the number of electrons respectively protons per
bunch, fo the resolution frequency and A the effective beam cross

section.

The ultimate limit on the number of electrons and protons is
given by the tune shift - i.e. the effect of the electron beam on
the proton beam and opposite. However, the real limit may well be
given by the available r.f. power for the electrons or by instabili-
ties for the protons, - In HERA we expect a luminosity of

6107 n%L at a com. energy of 314 GeV.
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4. The Transverse Motion1°’30)

The magnet system of an circular accelerator is made of deflecting
and focusing elements arranged in a repetitiv pattern around the ring.
The reference particle sees only dipole fields and retraces its orbit
on every turn. The other particles traverses the magnetic elements
off axis and experiences a linear restoring force in addition to the
deflecting force. An arbitrary particle executes quasi-harmonic os-
cillation {betatron oscillation) with respect to the closed orbit
of the reference particle. In this chapter we discuss the properties

of the betatron oscillation in the linear approximation.

4.1 The Equation of Motion

We will first derive the equations of motion for a charged par-
ticle travelling in a guide field made of a deflecting dipole field
and a focusing quadrupole field. The particle motion is described
using the coordinate system defined in Fig. 4.1. The position of
the reference particle is given by the radius p and the distance
5o measured along the orbit from an arbitrary origin. The position
of an arbitrary particle is given by the vector

t=rh +27, {4.1)
where Fr and ﬁz are unit vectors. Usually relative coordinates are
used:

X = r-p and 2z, (4.2)

We consider the motion in a time independent field. Along the re-
ference orbit the induction B is normal to the horizontal plane

i.e.
8 = B, = 0. (4.3)
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Fig. 4.1 - The coordinate system.

The magnetic induction is furthermore assumed to be symmetric

with respect to the horizontal plane.

We consider particles ascillating with small amplitudes around
the reference orbit. The induction can be expanded in a power series
in x and z. Keeping only the first order terms yields:

9B

= 2z
B, (s, x, 2) = BO(S) + o Jo Xt e
(4.4)
B,
By (sax,2) = (?;)oz+ .....
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In the median plane ;IJ-Vx B=3=0-i.e
o

ST T (4-5)
1t is convenient to normalize the dipole field and the gradient

field to the momentum of the reference particle:

e B
6s) = L - 0 (4.6)
Py 0
3B 3B
_ e d_ 1 Tz 1 %
Ks) = v %" B 3% - B 52 (4.7}

Note that both G(s) and K{s) are periodic functions with period L

G{s + L)

G(s)
K{s})

(4.8)

K(s + L)
where L is the length of one turn,

The equation of motion of a charged particle in a magnetic field

is given by the Lorentz force
d hd >
M = e(@xB (4.9)

We will first evaluate the left hand side. The time derivative of
the position vector 1 is given by:

1 ., S e, pd 4.10
= TR, + YA+ 20 4 2R {4.10)

The differentials of the unit vectors can be obtained from

Fig. 4.1 by inspection.
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L J
-+ > -+ +
dnr = ngde > N nge
> > !> ~> ®
dig = R, d8 > By = B8 (8.11)
[ ]
d'ﬁz = 0 - ?:‘z =0

With the results of eqs. 4.10 and 4.11 the left hand side of eq. 4.9

yields:
L ]
g5 () = {g-f(rﬁr)-mr'ez]ir e g?(mrzﬁ) Tig + Epn2)d 1 (4.12)

The right hand side of equation 4.9 in cylindrical coordinates is

given by:
Er ﬁ9 ﬁz
e(VvxB) = {7 rd 2 (4.13)
Br BG Bz
The three components of the equation of motion can thus be
written as:
o0 *2 _ e L3 _ .
(r -re%} = (5) (rGBZ zBe) (4.14a)
o -
1 (%) = (&) (m, -8 (4.14b)
.
2. (2) (8, - reB) (4.140)
Equation 4.14a can be written as:
(4.15)
zx N I 1 eBO 1 aBZ
sxlepe—(1+pg 5 x)
as? P 0
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with the magnetic induction as defined above in eqs. 4.3 and 4.4 and
the substitution:

L]
- - vE (4.16)

~1-%, _=____~=_(1-AE) (4.17)

Neglecting second order terms and using the definitions given in
eqs. 4.6 and 4.7 yields the equation of motion in the horizontal
plane:

X'+ (6H(s) + K(s)) x = G(s) 3 (4.18)
Note that in general G2(s) + K(s) = K(s).
The equation for the motion in the vertical plane follows from
eq. 4.14c. With the approximations used above

' - K(s)z = O . {4.19)
Evaluation of eq. 4.14b yields:
Ap = const,

The transverse particle motion is described by two independent li-
near equations. The equations are of the harmonic oscillator form
except that the restoring force K(s) is a function of the

azimuthal coordinate.
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4.2 The Magnetic Elements

The first strong focusing machines were made of combined function

elements - i.e. the bending and the focusing field were produced

by a single magnet.

This has several drawbacks:

- The average induction Bo must be low to avoid saturation of the
pole tips.

- The ratio of the bending and the focusing strength is fixed by
the shape of the polefaces and the machine tune can only be
changed by additional independent guadrupoles.

- The emission of synchrotron radiation will cause the radial beam

size to grow exponentially.

For these reasons most modern machines are designed as separate 0 L2 L

function machines. The bending and the focusing properties of the 35226

guide field are provided by independent elements arranged in a
repetitive pattern of identical units - the cells. A standard FODO
cell is shown in Fig. 4.2. The cell consists of a horizontal fo-
cusing gquadrupol, bending magnets, a horizontal defocusing quadru-

Fig. 4.2 - ing i i
pol and bending magnets. In general sextupol and octupol magnets 3) The magnet ordering in a simple FODO cell.

. . : s b) Variation of th i i ion
for higher order corrections and dipole magnets to minimize closed } Variation of the betafunction and the dispersio

orbit deviations are incorporated into the cell. b

In a standard dipole the field shape is determined by the iron,

and the induction is limited to 27 to avoid saturation. The next
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generation of circular proton machines seeks to use superconducting
coils to produce higher inductions. In this case the induction is

determined by the current distribution and effects like persistent
currents and production tolerances make the magnets rich in higher

order multipoles. No accelerator expioiting this technology is

operating although the FNAL Tevatron is nearly completed and Tong term

tests involving strings of more than 100 magnets have been very en-
couraging. Indeed it seems possibie to construct 5T superconducting
dipole magnets of high and reproducible quality. The coils are wound
using a Rutherford type helium transparent NbTi wire and magnets
with an induction of 8 - 10 T seem feasible using this technology.
Bending fields above 10 T require presumably a new conductor like

NbSns.

The distribution of magnetic induction in a quadrupole lens is
shown schematically in Fig. 4.3. The induction disappear on the
axis and increases linearly with the distance from the beam axis
in both the horizontal and vertical plane.

B = gz

X (4.20)

Bz = gx

B 9B
with g = —2 = X

n az
A stream of parallel particles traversing a quadrupole of length
1 will be focused in one plane and defocused in the orthogonal plane

with the same focal length f. In the focusing plane:
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Fig. 4.3 - The magnetic induction pattern of a quadrupole lens.

B, 1 gl
=-(—)x = -klx =-%

BD o Bop

f, the focal length is given by:

_o_ 1
f= -

(4.21)

(4.22)
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A charged particle beam traversing a gquadrupole magnet is focused
in one plane and defocused in the orthogonal plane. However, a pair
of quadrupole lenses spaced at a distance L will focuse the beam
in both plans provided f > L. To see this consider the trans-

fer matrix for a quadrupole doublett in the thin lens approximation

(see 4.5):
1 0 1 L\ /1 0 1-L/f L
Moo= = 2
Uf 1 0 1/ \-1/f 1 -L/f L/f+1
(4.23)
1 o\/1 L\/1 0 ! 141/f L
Mz = = 2
f 1/\e 1 /\yf o -L/f -L/f41

Comparing the element oy for both matrices yields:

2
fe = fz = - L/f".

The focal length of a lens decreases with increasing momentum as:

f ~ 1/p .

Thus a machine made of only dipole and quadrupole magnets will have
a strong chromatic abberation. This can be corrected with sextupole

elements as discussed in chapter 5.3.

A sextupole lens is shown schematically in Fig. 4.4. The field

distribution in carthesian coordinates x and z can be written as:

B, (x, z) B'' x 2

B, (x, 2}

(4.24)
%)

S

)
N
o
N

with B'' =

~>
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Fig. 4.4 - The magnetic induction pattern of a sextupole.

4.3 The Matrix Solution

The transverse motion in x and z for particles with ap = 0 is
described by the solutions to the Tinear homogenous equation
u''(s) + K(s) u(s) = 0 {4.25)
The position u(s) and the siope u'(s) of a particle with azimuthal

coordinate s can be written as a vector:

i(s) = (3)5 (4.26)
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The value of u{s) at an arbitrary azimuth s = $ is related to its

value at the origin So by a linear transformation

>

u(sy) = M(s; | s.) U(s,) (4.27)
M(sy 1 Sg) is a2 2 x 2 matrix and the value of the maxtrix elements

can be determined from the two particular solutions C(s) and S{s)

of eq. 4.25.

The particular solutions are defined by their values and deri-

vatives at the origin s = So

C(s,) = 1 C'(sy) = O

(4.28)
5(sg) = O S'(sg) = 1

The general solution of eq. 4.25 is then the sum of the particular

solutions:

u(s)

u'(s}

u(sg) C(s) .+ u'(s,) S(9)
u(so) C'(s) + u'(so) S'{s)

This expression be verified for s = So using the boundary conditions

(4.29)

for C(s) and S(s) defined above.

The value at an arbitrary point s = S is then given by eq. 4.27,

Written in matrix form we find:

u =(C(s1) 5(s,) (“) (4.30)
u' ) C'{sy)  S'(sy) u'/

o]

The transfer matrix M(s1 | so) for a particle between the azi-
muthal positions Sg and 1 is determined by the values of the parti-

cular solution at s = sy-
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4.3,1 Transfer matrices for Ap = 0

A separate function machine is made of dipole magnets, quadru-
pole magnets and drift distances. We will now evaluate the trans-
fermatrices for these elements, each of length L = s - 5. The trans-
fermatrix for a string of elements is simply the product of the

transfer matrices for individual elements:
Mis, | sg) = M(sp s, q) --- Ms, | s)) Msy | sg)  (4.31)

a) Field free region

K{s) = 0 in a field free region and particles drift with constant

slope. - The particular functions are now solutions of u''(s) = O.

These solutions are

C(s) =1 S{s) = s-s,=1L
C'(s) = 0 Si(sy= 1 {4.32)
Thus the transfer matrix is given by
1 Lt
M(syl sy} = (0 1] (4.33)
b) Focusing element
The particle motion in a focusing element is given by
u''(s) + K(s) u{s) = 0 (4.34)
with K{(s) > 0.
The resulting particular solutions are:
C = acosKL and S = bsinKL {4.35)

with the values of a and b determined by the boundary conditions

above, i.e.

=l
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The transfermatrix for a focusing element of length L is thus

given by:
1.
cos/K L :i§1"/2 L (4.36)
M(s,| s.) = .
LY -K-sinK L cos/K L

c) Defocusing element

The particle motion in a defocusing element is given by:
u''(s) - K(s) u(s) = 0 (4.37)
The resulting particular solutions are:
¢ = acoshX1L and S = b sinh/KL (4.38)

The boundary conditions yields:

a = 1 and b:..l....

/K

The transfermatrix for a defocusing element of length L is thus

given by:

1
cosh/K L ( — Ysin/K L

Msy | s,) = XK (4.39)

0 VK-sinh/K L costwk L

4.3.2 The Twiss matrix

The transfer matrix for a single cell or for a complete turn can
be written in its most general form as:

cosy + asinu Bsinu
~ysinp cosu - asinp

1 0 a B8 .
- osp + sinp = [ cosy + asinu
- 0 1 =Y -

T(s+L]s)
(4.40)
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This matrix is called the Twiss matrix and the coefficients a, 8
and y are periodic functions with the period L. The Twiss matrix must
have unit determinand since it is the product of unit determinand
matrices. This condition yields:

sy-af = 1. (4.41)

A particle executes stable betatron oscillation if the particular
so]utipns C and S are bounded. The general stability condition can

be conveniently expressed using the Twiss matrix.
The transfer matrix for two turns MlM2 is simply the product
MMy = (I cosy + J simy)(I cosu, + I simy,) (4.42)
Miltiplying and inserting the relation JZ = -] yields:
MMy = T cos(uy + 1) + J sin(uy + ) (4.43)
Eq. 4.43 can be easily generalized to n turns:
Tn“_1 = I(Cosul... cosun) + J(sinul ...sinpn) (4.44)

The betatron oscillations are bounded if the phase advance

p per turn is real:

Tr |T| = 2cosp < 2 {4.45)

4.4 The Betatron Function

The transverse motion of a charged particle (ap = 0) in both
planes with respect to the reference orbit is given by the solution
to the equation

u'‘(s) +K(s)u(s) = 0 . (4.25)

This equation is rather famous, it was first investigated by the
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astronomer Hill in conjunction with the orbitals of the moon.

Below we sketch the so]utionm) to this equation.

According to the theorem of Floquet, Hills equation has two

independent particular solutions of the form

(s} = pils) etin-s/L {4.47)
where p1,2(5) are periodic functions with period L:

by p(s) = By (s ¢ L) (4.48)
The solution after one complete turn can be written as:

u (s +L) = pls +1) etH(sH)/L uy(s) ¢t (4.49)

and it can be related to the Twiss matrix for one complete turn:
uk(s)(cosu + isinu) =(cosu + asimu) u (s) + Bsinu yy(s) (4.50)
This equation must be valid for all values of the phase advance

u. Equating the cosp terms yield a trivial identidy whereas equating

the siny terms yield:

Uk E3 B (4.51)
uk [
Logarithmic differentiation leads to the expression:
ul' u! -a' g’
Ufﬁf s T (4.52)

An alternative expression for the right hand side of eq. 4.52 can
be obtained by combining eq. 4.51 and Hill's equation.

"
Multiply eq. 4.51 with K{s) and substitute U = -Kuk yields
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ull K B
B S (4.53)
ul'( i -a
Subtract eq. 4.51 from the equation above yield:
up! uy i - KB
B S S - (4.54)
ui( Uy B i ~a
_Equating the right hand sides of eq. 4.52 and eq. 4.54 yields:
2 2 ] ' g} [
(0° + KB +ap' -a'B~-1)+1 (B +2) = 0 (4.55)

The real and the imaginary part must disappear independently and

this yields the relations:
g = -2 (4.56)
at = KB-y.

Substitute a = - %B' in eq. 4.51 results in a relationship between

upB and their derivatives

\ 2 1 ]
u i+xB
K, 27 (4.57)
U B8
£q. 4.57 can be logarithmically integrated:
u sy = a /B et
(8.58)
u (s) = avBcos(u(s) +up)
with uis) =f %-5- (4.59)

B(s) is called the betatron function and u(s) the betatron phase.

The solution of Hills equation is a quasiharmonic oscillation

with an instantaneous amplitude proportional to /B and a reduced
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wave length A = g(s). Q, the number of transverse oscillations per

turn is given by eq. 4.59 integrated over one complete turn

Q = %;é d—; (4.60)

The Twiss matrix can be expressed using eqs. 4.41 and 4.56 as:

cosy -~ %B' sinu g sinu
T =
1+ %6'2 1
- ——sim cosy + ’ZB' sinp (4.61)
B

The linear optic of an accelerator is completely determined by the
knowledge of 8(s) and its derivative. liote that the complete magnet
system contribute to the value of the betatron function at a given

position s.

The betatron function resulting from a given magnet arrangement
is readily determined using the matrix formalism discussed above.
Let us assume that the machine is made of n elements. The transfer
matrix for a complete turn is given by the product of n individual

transfermatrices.

cosp + asing  Bsinp cC S n c s
= m M (4.62)
-ysiny cosy - asinu c' s Jj=0 c s j

Equating the elements My, ON both sides of the equation yields:
S(s + L, s)
B(s+L,s) = ———m—n (4.63)
sin 27 Q
The value of the betatron function at the position s is proportional

to the value of the sine like function after one revolution. The
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value of sin 2r Q is given by the trace of the transfermatrix for

one turn:

cos 2r Q = %Tr (C(s + L, s) +5'(s + L, 5)). (4.64)

4.5 Off Energy Particles

The particle energy will in general differ from the design energy.
A finite energy deviation will to first order only affect the radial

motion which is now described by the solution to eq. 4.18

x''(s) + K (s) x(s) = G(s) ég
) (4.18)
K(s) = 6(s) +K(s)

The solution to eq. 4.18 can be written as the sum of two functions
= S .
x(s) xp( )+ Xg(s) {4.65)

XB(S) is the solution to the homogeneous equation and describe the
betatron oscillations eround the closed orbit given by
Xp(s) = D(s) é% , where D(s) is the unique particular solution to
the inhamogeneous equation

D''(s) + K (s) D{s) = G(s) (4.66)
satisfying the boundary condition

p(L) = D(0) (4.67)
D'(L) = D'(0)

"

The solution can be written as (see chapter 5.2.2 with the

substitution X~ D and 6G + G):
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VBI )
oSy ¢ § o(s") VAT cos(uls) - u(s')) - wds”  (4.69)

2sinmy

Thus with the knowledge of the betatron function one can compute
the off energy function. The variation of D(s) over a FODO cell is

plotted in Fig. 4.2.
We can also write the solution in matrix form for the various

elements which make up an accelerator.

D(s) must satisfy eq. 4.18 with constant values of K(s) and G(s).

The solution shall satisfy the boundary condition

D(0) = D'(0) = O (4.69)
Inspection of equation 4.62 suggest the following Ansatz
D{(s) = {a+bcosyKL) {4.70)
Inserting this Ansatz into eq. 4.62 yields
1
a = ¥ (4.71)

and the boundary condition in eq. 4.65 yields
b= - (4.72)

The particular solution of the inhomogenous equation for a

focusing element is thus given by:

bs) = (1 - cos/R L) K 0 (4.73)

Ko
Correspondingly the particular solution of eq. 4.62 for a de-
focusing element is given by

o(s) = Cg"‘ (4.78)
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The matrix formalism discussed in chapter 4.3 can be extended to

include off momentum particles

X X
x* X'
s =M ap (4.75)
p p
5 So
with
/¢ S D
M(slso) = c' S! D'

The values for C, S and D are given above. The values of D and D'
can be computed from eq. 4.73 for a focusing element and from

eq. 4.74 for a defocusing element.

4.5 The FODO Cell

The commonly used FODO cell, shown in Fig. 4.2 is made of a ho-
rizontally focusing and defocusing quadrupole doublet spaced by
dipole magnets. In this chapter we will evaluate the optical pro-
perties of such a cell in the thin lens approximation. In this

approximation the length of a lens 1 approaches zero with
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K1 -»%= constant i.e. /K 1 + 0. The transfer matrix for the
FODO cell shown in Fig. 4.2 is given by the product of matrices for the
individual elements. The transfer matrix at the entrance of a focusing

quadrupole is given by

Moo= oM Myt M
L L
(1 % 1 o 1% 1 o
) 1 1 Y
0 ] 0 1 =
2 2
I‘L'L—Z L+L—
: of  of of (4.7
-L L
14+=
262 of

f is the focal length of the lens and L the cell Tength. This matrix

must equal the Twiss matrix T - i.e. M\'h = Tih
T = cosp + asiny gsinu (4.78)
=ysiny cosy - asinu

The Twiss parameters can then easily be expressed in terms of
the focusing strength f and the cell length L using the relationship
above.

The phase advance u across the cell is obtained from:

TrT = TrM
2
ZCOS]J = 2- —4?2 (4.79)
u L
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The value of the B-function at a position of a focusing quadrupole
is given by:

T2 =

B simy

L
-
-
+

-
e

1
1+
_ AT (4.80)

t
N
-+

—~

- L U
BF '?ﬁﬁ(l + S'in‘z)

The B8 function at the position of a defocusing quadrupole is obtained

by interchanging the position of MD and MF in eq. 4.77. This yields:

- L _ einH
BD T sinp 1 sm?)

1L (4.81)
By = gf(___ﬂ)z

1 1L

ty

The values of the 8-functions normalized to the cell Tength L is
plotted in Fig. 4.6a versus the phase advance u. Note that the dif-
ference:

Br - 8y = 4f toh (4.82)

increases monotonically with the phase advance.
The value of ac s extracted from the relation
M= Tz = My - My
L Lesing (4.83)

a- =
F u

COS—Z
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Fig. 4.6 - The extreme values of the p-function and
the off energy function as a function of the 35223
phase advance u per cell.
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The value of Y¢ is determined from:

T = My
oy sim = 2 (4.84)
YF ;? .

¥ IS S

F f cos?z

The values of ap and Yp at the position of a defocusing quadrupole

are given by interchanging MD and M. in eq. 4.77. This yields:

1- sin(k‘z)
o = — (4.85)
57
1
Yp T (4.86)
f cos}zl-

To determine the dispersion function D(s) we must make use of the
3 x 3 matrices defined in eq. 4.76. The computational effort can be
reduced by making use of the fact that the slopes of the dispersion

functions disappear in the middle of the quadrupoles:

D, o
0 |=M {0 (4.87)
1 1

1 L
1 0 0 R 1 0 O
1 1
F 10 o 1§ > ! 0 (4.88)
o o0 1 o o 1 o 0 1
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1L L L
1-77 7 2

L L L, ¢
. ! (1+Ly (4.89)
82 i 8f 2
0 0 1

L and ¢ are respectively the length and the bending angle of the cell.

This yields the equations:

g = (L-F Dp+L$
(4.90)
0 - -(?) D+ (1+5p)
Solving eq. 4.90 for the dispersion functions yield:
o= —5 4—(1+gsm‘;‘)
sin '2'
(4.91)
2
_ ., af L
= { -Er') (1 + 37)
1 Lo 1.1
D, = —(1-5siny) (4.92
D sin?) e 7°"2
2
Af L
{5 ) Q-
The normalized dispersions %$ are plotted in Fig. 4.6b versus
phase advance.
The average value of the dispersion function is given by:
2
o = (4.93)
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4.6 The Courant-Snyder Invariant

The transverse motion of a charged particle in a magnetic field
including synchrotron radiation (see chapter 7) is described by the
solutions to the eguation

Ut o+ J(s) ut +K(S)u = O . (4.94)

At present energies the synchrotron radiation from a proton can be
neglected, i.e. J(s) = 0 and eq. 4.94 is reduced to the familiar
HiT1's equation.

The Wronskian determimant is defined as:

u u
M) = | ! 2 {4.95)
1 1
1 Y2
uy and u, are solutions of the differential equation, i.e. they

satisfy:

1t J ) K 0
up' + (s) up + (s) Uy (4.96)

0

ué‘ + J(s} ué + K(s) uy

Miltiplying the first equation with Uss the second with uy and sub-
tract the two equations yield:

Horow =0 (4.97)

with W = ulué - uiuz.

The solution of this equation is given by
s
W(s) = W e I 2 5ds . (8.98)
51
Thus in the case of an electron the Wronskian depends on s where-

as for a proton W(s) = “o is a constant of motion.
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To determine the invariant HO we take Uy = VB ei“(s) and set

Uy = Us i.e. u, is an arbitrary real solution of Hill's equation,

Yy

W, = CRUSRA ul) =y (U UE- -u'}
(4.99)
= uy (u L = g .u)
where eq. 4.51 has been used to substitute
up i-a
e
% i- 1 -i - '
WS = i 152 - un(u -[—%-—El u') (4.100)
With ulu: = § the equation above simplifies to:
2 “W2
wh - Ut (cu+pgu')” _ e (4.101)
B L

We consider the value of WW® at a fixed azimuth o0 1.8. ay and By
are constants. On each succesive turn the particles will arrive at
s =5, with different values of u and u* however the values must
satisfy eq. 4.101. Thus on successive turns the particles traces an
ellipse in u u' space as indicated in Fig. 4.7. The area of the
ellipse is given by

A = '
T Unax Yo (4.102)

with Una and ug defined in Fig. 4.7.

X
It follows from eq. 4.101:

1/ €B
Uy -]/:— and u°=|/§—8 (4.103)

Substitute these values into eq. 4.102 yields:
A= ¢g.
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Fig. 4.7
The phase ellipse.
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The quantity uu' is by definition the beam emittance - i.e.

the product of beam size and angular divergence. The Wronskian can
thus be identified with the beam emittance and it follows that the
beam emittance is a constant of motion for a proton beam, but not

for an electron beam because of the synchrotron radiation.

The betatron motion is thus completely defined

u=/ve /B cos(u(s) - u}) {4.104)

Note that for a proton beam the emittance e and hence the betatron

amplitude decreases with increasing energy as:

: P P
e = m{uu') = u-—L=u-t (4.105)
P By

where 8 is the normalized particle velocity g = E and

Y="—"7p- Usually the invariant emittance (e B y) is quoted.

moc
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5. Magnet Imperfections and Resonanceslo’30’31)

5.1 Introduction

In the previous discussion we assumed that the guide field is made
of ideal dipole and quadrupole magnets. However, a real magnet has
imperfections, magnets are not exactly reproducible and they can only
be installed with a certain precision. The resulting deviations from

the ideal guide field are grouped into linear and nonlinear errors.

The linear errors are caused by imperfections in the dipole and
the quadrupole components of the field and these errors cause closed
orbit deviations and tune changes. The magnitude of the linear effects

are independent of the particle amplitude.

The nonlinear errors are caused by higher multipole fields and
their effects depend on the particle amplitude. Nonlinear effects are
particular important in machines made of superconducting magnets.
Superconducting magnets are rich in higher muitipoles since the field

is produced directly by the current distribution and not shaped by

the iron yoke. An ideal cos® current distribution would produce a perfect

dipole field. However, the cos@ distribution in a real magnet is

only approximate and it is only possible to position the wires with a
certain precision. The relative strength of these errors are inde-
pendent of the induction. The persistent currents, caused by flux
trapped in the conductor, leads to higher multipole fields. The
strength of these multipoles are independent of excitation and they

are therefore particularly important at low fields ~ i.e. at injection.
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5.2 Linear Field Errors

Dipole and quadrupole field errors raises the obvious question
whether a closed orbit still exists, and if so, how is the betatron
function and the tune changed in their presence. We will address
these questions in this section.

5.2.1 Dipole Errors

The ideal equilibrium orbit is no longer a possible trajectory,
however, in the case of small field errors we expect to find a neigh-
bouring trajectory which will close on itself. This new orbit, de-

picted in Fig. 5.1 is called the disturbed closed orbit and the par-

ticles now make betatron oscillations around this orbit.

Ax =0
Ax'=AG-As

—-==—= ideal closed orbit
disturbed closed orbit

Fig. 5.1 - The change in closed orbit due to an dipole error AGas.
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The amplitude x(s} of an arbitrary particle with respect to the
jdeal equilibrium orbit is the sum of the disturbed closed orbit

amplitude xc(s) and the betatron amplitude xB(s).

x(s) = xc(s) + xB(s) (5.1}
Assume that there is a disturbance ABAs located at s = 0. This dis-

turbance will change the slope of the trajectory at this point but

not its displacement.

« _ ABAs
ax' = W
{5.2)
Ve o M_ _ AB -
or I ol Bp &
Thus the equation for the disturbed closed orbit is given by
xé' + Kxxc = M (5.3)
The general solution of eq. 5.3 can be written as:
x (s} = @ /B(s) cos(u{s) - u,) (5.4)

The constants a and B, are determined from the condition that the

orbit must close on itself after one turn:

xC(L) = xc(O) (5.5a)
xL(L) + 86 &5 = x2(0) (5.5b)
By substituting the solution eq. 5.4 into egs. 5.5a and 5.5b we find:
by = O (5.6)
AGAS
a = {5.7)
ZSianX

The disturbed closed orbit is thus given by:
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_  AGas /B _
xc(s) = ynm VB{sY cos{u an) (5.8)
Assuming that the dipole errors are distributed according to

8G(s') around the ring eq. 5.8 can be generalized:
x (s) = LZEGL § 86(s') VBT cos(u(s) - u(s') - 1Q,) ds’

2sin mQ
X (5.9)

The salient features of eq. 5.9 can be summarized as follows:

- The displacement of the closed orbit is everywhere proportional to
the strength of the disturbance ABAs and to the square root of the
beta function at the position of the disturbance. It is also pro-
portional to the square root of the beta function at the point of ob-

servation.

- In order for the closed orbit distortion to remain finite Qx(Qy)
must not be an integer. For integer Q values the particles will cross

the disturbance with the same phase on every turn - i.e. the partic-

les will receive a kick in the same direction on every turn leading

to an divergent amplitude.

Correction dipole magnets are installed in all machines to mini-
mize the closed orbit deviations. This is done by observing the beam
position with monitors at say 4 positions per betatron wavelengfh
and adjusting the correction dipoles to minimize the closed orbit am-
plitude. Typically disturbed closed orbit amplitudes on the order of

1 mm rms are obtained after corrections.
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5.2.2 Gradient Errors

A gradient error located at s = 0 can be represented by a thin
Tens of focal strength § = 1/f. Such an error will obviously modify
the betatron function of the undisturbed lattice and shift the tune
from its undisturbed value. These effects can be evaluated using the
Twiss matrix T. The Twiss matrix for a complete turn is given by
the product of a gquadrupole matrix Q - representing the disturbance -
and the undisturbed Twiss matrix To

T =0T, (5.10)

cosutasing  Bsiny ) (1 0) (cosuomosinuo B Simu,
T_ =

-ysinu cosy-asinu -5 1 -yosinuo °°s“o-305i"”o

The index refers to the undisturbed orbit. Multiplying the matrices

on the right hand side and taking the trace yields:

1 8By .
i Tr(T) = cosy = cosu, - —— siny, {5.11)

This expression can be simplified for small tune changes - i.e.

M=y 4 A
§ Bo
L\Ll = - —2—-- (5.12)
or since AQ = 2mAp:-
58
A = - —2 (5.13)
4%

Thus the tune change 8¢ is directly proportional to the strength of
the disturbance and to the value of the betatron function at the

position of the disturbance.

Next we evaluate the change in the betatron function at s = Sy

caused by a gradient error at s = 51
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Fig. 5.2 - Change in the betatron function due to a gradient
error at s = sl.

The unperturbed Twiss matrix for a single turn can be written

as:

a a b b
T = A(s; »5,) B(sp» 5)) =( Nz ( 1 2 (5.14)
322 22/ \Pa1 by

Including the disturbance at s = sy yields a Twiss matrix T:
a a 1 0\/b b
T = ( 11 12) ( 11 "12 (5.15)
321 %22/ \8 1/\by by

_ o _ . R
8T = Typ - Typ = 82)5 byy = Ssin(u, - u, + uy) sin(uy - by)ByB,
: (5.16)

Hence
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The change in le can also be expressed as a total differential:

Tip = A(stinu) = Aazsinu0 + Byducosu, (5.17)

88
Equating eq. 5.16 and eq. 5.17 with the substitution Ay = - f_l

yields the change in betatron ampiitude at s = S, due to a gradient-
error § at s = 5t
88yBy cos{2m qQ - 2(112 - ul)]

AB,(s5) = 5.18
A 2sin 2x Qx ( )

The change in the betatron function is directly proportional to the

strength of the disturbance and the product of the betatron function at

the position of the disturbance and the position of the observation.

The beam becomes unstable if the tune approaches a half integer -

ie g ¢80t 1)

The beat frequency introduced by an gradient error is twice the

beat frequency caused by an dipole error.

With a gradient error k(s) distributed around the ring the tune

shift and the change in betatron function can be written as:

AQ = - .lﬁ§ k(s) 8(s) ds (5.19)

b8(s) = 75?%%;{1§ k(s') B(s') cos2[mQ + u(s') - u(s)lds’ (5.20)
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5.3 Non Linear Errors

We have seen above that the betatron oscillations became unstable
for integer and half integer tune values in the presence of dipole
and quadrupole errors. Higher order muitipole errors will drive
higher order resonances31) - i.e. the particie motion will now become
unstable for fractional tune values 1/n = 1/3, 1/4, ... . In general
Q values satisfying the relation

lox +m QZ =5 (5.21)
with |2} + |m] = n, and £, m, s and n integers will be unstable.
The ensuing resonance pattern is shown in Fig. 5.3 and the
corresponding driving terms for the lowest order multipoles are

listed in Table 5.1.

Table 5.1 - Resonance driving terms

Multipole  Order n regular skew
Quadrupole 2 x2 - y2 2xy
Sextupole 3 x3 - 3xy2 y3 - 3x2y
Octupole 4 x4 - zeyz + y4 4xy3 - 4x3y
Decapole 5 x5 - 10x3y2 + Sxy4 10x2y3-5x4y-y5

For example a third order resonance will yield four forbidden lines
in the resonance diagram shown above, namely 30x = s, 3Qy = s and
the coupling resonances Qx + ZQy = s and ZQX + Qy = 5.

Indeed the order of a resonance is identical to the order of the
driving term for an ideal closed orbit. However, in the presence of

closed orbit errors a muitipole of order n may excite lower orders.
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Fig. 5.3 - The pattern of forbidden tune values caused by low order

resonances.
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The width of resonance lines depends not only on the strength and
the azimuthal distribution of the driving terms but also on the
betatron amplitude in the case of non linear errors - i.e. sex-

tupole and higher.

Miltipole errors may therefore limit the usuable aperture to
values which are smaller than the geometric aperture given by the

vacuum chamber.

5.3.1 The Resonance Mechanism

The phase space coordinates p and x of a particle can be repre-

sented in the circle diagram (Fig. 4} as:

a sinQ@

a cosQe

"

= B x!
P (5.22)
X = X

a= /(Bx')z + x2 is the amplitude and 8 the azimuthal angle of
the particle in the machine - i.e. the particle makes Q turns in
the phase space diagram per revolution. This representation is well

suited to demonstrate the basic resonance mechanism,.

A field error ABAs change the momentum of a particle by:

ap = B %ﬁi (5.23)

The momentum kick, shown in Fig. 5.4 advance the phase by
o= op S8 (5.24)

and increase the amplitude by:
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Fig. 5.4 - The circle diagram in normalized phase space.
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Aa _ sinQe
3 - b = (5.25)

As an example we wil) consider the particle motion in the plane in
the presence of a sextupole of strength B'' and length 1. The magne-
tic induction resulting from this sextupole is given by:
"t
B = Ez_xz (5.26)

The sextupole produces a momentum kick:

" 2 t
b= x e s By g BT o2 ooslne (5.27)

The resulting change in phase {eq. 5.24) and amplitude (eq. 5.25) is

given by
o= 8Ep Tl acos?e = g Bl (3coste + cos30e)  (5.28)
o] 8Bp
L ég.;.'_pl a cos2Q8 singd (5.29)

We are now in a position to evaluate the width of the third integer

stopband.

Let us assume that the radial tune Qx is close to an 1/3 integer.
In this case cos(Q8 averages to zero and we are left with the term
proportional to cos3Q8. This term varies slowly from turn to turn
modulating the unperturbed tune Qg with an amplitude AQx given by:

Ay g B'' 1 cos3Qe

AQx = = R (5.30)
During the lifetime of the beam the tune will take all values within
the limits:

o_BB'"'1a o,88'"'13a

% - rm <% <&t e (5.31)
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If 3 Qx = s = integer is inside this band, the perturbed value of Qx
will become equal to the integer s after several turns. From then on the
particie will lock on to the resonance and advance in phase by 2ms

per turn. The resonance thus appears to have a finite width given

by the strength of the disturbance B''1, the amplitude a and the

value of the betatron function g at the position of the disturbance.
The change in amplitude is given by:

aa _ BB''la .

el —B—B-D—S1H3Q9 (5.32)

Thus on every turn the particle receives a kick in the same di-

rection resulting in a monotinically growing amplitude.

It is clear from the discussion above that the motion of a

particle will be stable if the amplituae a satisfies the condition:
l6m (Bp) 8Q,
3 < ———— (5.33)
] BBII
where AQX is the distance between the working point and the third
integer resonance. Similar relationships can be obtained for higher
resonance. Thus non linear fields may limit the machine acceptance

to values less than the geometric acceptance.

Such fields may be caused by the magnets or they may be due to
higher order correcting fields. For example the sextupoles needed

to correct the chromaticity introduce strong non linearities.
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5.4 The Chromaticity

The focal length of a lens is inversely proportional to the
partic]e‘momentum causing particles of different momenta to have
different tune values. A single lens of length As leads to tune
spread AQ of:

M = 3= B(s) Ak(s) As (5.34)

The total tunme spread is obtained by substituting Ak = -k{s} Ap/p
and integrating over one revolution. This results in an expression
for the natural chromaticity

- (3= - g5 § 8(5) K(s) as (5.35)

p

The natural chromaticity is negativ and Targe. For example the natural
chromaticity of the HERA proton ring in £ = -62 and gy = -88 with
roughly equal contributions from the arcs and the straight section.
This corresponds to a tune spread of Qx = + 0.07 and Qy = + 0.09 for
a typical momentum spread of + 107, Thus - if left uncorrected - the

beam will cross low order resonances and be lost.

However, the chromaticity can be corrected by sextupoles located
adjacent to the focusing quadrupoles. At least two families of sextu-
poles are needed to correct for the chromaticity in both planes. Let
us consider the motion in the horizontal plane. The sextupole field

is given by 2
1 2

3
sz=,12(;;z£)x2=,zs"x (5.36)

The sextupole field can be written as an amplitude dependent gra-
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dient field with R is the total shunt impedance of the cavities. As an example the
‘ k = { 257;; yx o= omx . (5.37) PETRA cavities operating at a fixed frequency of 500 Mhz have a shunt
impedance of 12mm. Ferrite loaded cavities designed to work over a
The resulting tune change is given by: large range in frequencies have much lower shunt impedances.
A = -lﬁ § m B(s) x(s) ds The average energy gain per turn for the reference particle is given
i %-1? § - (5] (xB(x) . 0(8) AJ‘;) (5.38) by: el = eVsin (uT  + 4>0) (6.2)
For the reference particle to remain in phase on sucessive turns w
= '14’1? § m B(s) D(s) 9‘% must be an integral multiple h of the revolution frequency
% = 12'11
The total chromaticity £ of the ring is the sum of the natural 0
chromaticity caused by the momentum spread of the particles and o = h Q° ' (6-3)

. The harmonic number h is the maximum number of bunches which can be
chromaticity produced by the correcting sextupole magnets.

accelerated simultanously. Particles with energies and r.f. phases

A
£= (E? ) = - 111;§ B(s) (k(s) - m D(s)) ds (5.39) different from those of the synchronous particles will execute

P oscillations in energy and phase with respect to the synchronous

€. The Synchrotron Motion 10,32) particle.

The relative change in revolution time n(p) for a particle with
6.1 Introduction . o .
I — momentum different from that of the synchronous particle is given by:

Energy is transferred to the particles by means of an accelerating (p) dT dn ( dL _dg ) (6.4)
n p = _T = e —— = - —— .
system made of a power source and resonating cavities. The r.f. ? T b

: . . L . h L denotes the machine circumference and Rc the particle velo-
power P is fed to the cavity and excites an longitudinally electric where enote chine v 8 P

. . ” R ity. The fi 1ts from the change in orbit length with
field with a peak voltage V oscillating at a frequency w. The re- caty @ FIrst tern resyls e change 9

: . . momentum and the second term from the change in velocity.
quired power is given by:

P = .‘L?; (6.1) The time dilatation function n{p) is in general written as:
2R
d
R s (G - LR (6.5)
Yoo Y
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with:
@ . 1 dp
8 ;'2 P
(6.6)
e e®)y?
Yer

Note that for particles with the transition energy y = Yep the re-

volution time is independent of momentum.

The transition energy Yep €3N be expressed using the optical para-
meters. The incremental change in orbit length for a particle travel-

ling a distance ds with a radial amplitude x, is given by:

dl = (1 +G(s) x(s)) ds (€.7)
L = § dL = ﬁ (1 + 6(s) x(s)) ds (6.8)
a - L-L0=ﬁe(s) D(s)dl;ds

The first term in eq. 6.5 is given by:
-1 _1
lz_zuqﬂ%)(ﬂ;) =t§6(s)0(5)d5 (6.9)
Yer

The quantity o is usually called the mamentum compaction. In the
case of a separate function machine only the bending magnets contri-

bute to a:

(2}

a = 2 f D(s) ds (6.10)
L
As a rough approximation

(6.11)

Q
"
DPJ L nd

For electrons usually y >> Yer and an electron with a positive Ap
has longer revolution time than the synchronous particle. This is
also true for protons above the transition energy. However, below
the transition energy a particle with positive AE has a shorter re-
volution time. At y = Yip the revelution time is independent of mo-
mentum and there is no phase focusing.

The synchrotron motion is illustrated in Fig. 6.1 for a particle
above the transition energy. Plotted is the energy deviation AE versus
the phase deviation Ap both counted with respect to the synchronous
particle. Consider a particle with positive AE which traverses the
r.f. cavity at the synchronous phase ¢0. After one revolution the
particle will traverse the r.f. cavity with the phase b *+ 80, Thus
it will gain less energy than the synchronous particle. The particle
will continue to move away in phase until AE = 0. It will then start
to move towards ¢o and arrive at ¢° with an energy less than that of
the synchronous particle. From then on it will gain more energy than
the synchronous particle but continue to move away in phase until
its energy equals that of the synchronous particle. As soon as the
energy is higher than that of the synchronous particle it will start
to move towards ¢ and arrive at 9 with an energy higher than that
of the synchronous particle. This completes one period. The aim of
this chapter is to derive and solve the equations for the synchro-
tron osciltlations and to determine the stable boundaries in a¢ and
AE in terms of the r.f. parameters. The effects of the synchrotron
radiation on the synchrotron motion will be discussed in chapter 7.

6.2 The Equation of Motion

The synchronous particle is accelerated at a constant radius R0
and the magnetic induction must therefore be increased proportional

to the gain in momentum:
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Fig. 6.1 - Longitudinal trajectories in

W= A—gaﬁ space for a stationary bucket ¢, = 180°
0

and a moving bucket ¢ = 150°.
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dp = R FT (6.12)
. . . G
TD is the revolution time To *FT

The relationship between energy gain and ramping speed is given by:

_ 2 dB _ Ves
dl»:o = 2me Ro JF = e Vsing, (6.13)

We will now consider the synchrotron motion of particles with small
energy and phase deviations with respect to the synchronous particle.
8 = ¢ - ¢y » dE = E - E0 and dp = Q - 2 (6.14)

The change in revolution frequency for a particle with an energy

deviation AE was derived above.

_g_ﬂ =n1% =np——-d59p (6.15)

The corresponding change in phase angle is given by:
dp = -hdd = -hQdt (6.16)

Combining eqs. 6.15 and 6.16 yields:

%E = | E‘%‘ﬁ ) %% (6.17)

The energy gain of a particle arriving at a different phase will

differ from that of the synchronous particle

Y cing (6.18)
T R

Ap = }ATSE_Z =ﬁ-¥-sin¢=;

-

o= 5 sing [6.19)

The energy gain relative to that of the synchronousparticle is given

by:
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RD - RPy = v (i - simp) (6.20)

Exparding R and p to first order yield:

4 (R, tp) = 5 (sim - sing) (6.21)

Substituting p =% in the equation above and consider only small

amplitude phase oscillation yields:

g‘f( %-E- ) = %1'! {sinp - simo) = -gn—v cosp A {6.22)
[+]
Combining eqs. 6.17 and 6.21 yield the equations for small amplitude

phase oscillations:
5—;; (86) +uZ = O (6.23a)

-n. heV¥ cos¢

0 oo )1/2 (6.23b)
2n Po Ro
The solution for NeCose, < 0 is a sinusoidal oscillation with fre-
quency w:

Ap = A sin (wgt + ¢°) (6.24)

We may now distinguish two cases:
Below transition energy n, < 0 and the phase % mist be choosen bet-
ween 0 and ©/2 for stable acceleration and between 3/2m and 21 for
stable deacceleration. Above transition energy by > 0,and ¢, Must be

between m/2 and 7 for stable acceleration and between 7 and 3/2m for

stable deacceleration.

6.3 Phase Space Boundary and small Amplitude Oscillations
The limiting values in phase and energy for an assembly of par-
ticles traversing a given r.f. system can be determined using the

Hamiltonian formalism.
The phase angle ¢ and the normalized energy

E
W o= 6.25
a, {6.25)

are used as conjugate variables. The Hamiltonian equations expressed

in terms of these variables:

hnQ

d 3H oo
. M W (6.26)

@* - 3 Do
%% . - %2. = %"_V (sing - sing,) (6.27)

The equations above were obtained by inserting €gs. 6.17 and 6.22

into the Hamiltonian equations of motion.

The synchrotron motion is thus described by the following

Hamiltonian:

'Z_ORB W s -2-— (cosq» - cos, + ($-9,) sine,) {6.28)

The longitudinal motion of the particles are represented in the
W-¢ plane by trajectories of constant H. Note that the synchrotron
motion repeat itself every 2r in phase, i.e. h times around fhe ring.
Within each period of 2n the motion has two fix points given by

¢=¥W=20. Fromeqgs., 6.26 and 6.27 these fix points occur at:

W=0 , ¢=¢, oOr ¢=1-08 (6.29)
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The fix point W = 0 and ¢ = ¢ are inside the stable region
and correspond to the synchronous particle. The separatrix - i.e.
the limiting curve which separates the stable and the unstable re-
gion passes through the second fix point at W=0and ¢ = 7 - L
Note that the particle motion in ¢ and W becomes slow as particles
approaches the fix point - i.e. the synchrotron frequency W slows

down as the particles approach the limit of stability.

The separatrix can be evaluated by inserting the coordinates of
the unstable fix point into the Hamiltonian eq. 6.28. The maximum

energy deviation is given by

2 ¢ ok i 6.30
(“)sep = m-on—o( (m-20) sine, - 2cos¢o) {6.30}

To obtain the extreme in phase we equate:

h nQ - h nQ -
- 00 2 _ 00,2 , eV _ _ .
H= 7_—% R, Hsep = TTpo - W+ (cos¢ - cosp, + (¢-0,)sing )

(6.31)

Substituting agep according to eq. 6.30 on the left hand side

and introducing the coordinates Pmax

side of eq. 6.31 yield the following transcendental equation for the

and W = 0 on the right hand

maximum phase:
(m - 24;0) sin¢° - 2c°s¢o = °°s¢max - cos¢_ + (¢max - oo)simo
(6.32)

The phase space trajectories for ¢° = 180° and ¢° = 150° are shown

in Fig. 6.1. These trajectories correspond respectively to a stored
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and an accelerated beam above the transition energy.

The amplitude of the longitudinal
oscillation is determined by the initial conditions of ‘the injected
particie. Let us consider a particle which is injected at the cor-
rect r.f. phase ¢ = 4 butwith a normalized energy deviation
iz QAE . Bf ﬁ, LR is within the separatrix then the particle will
trave? on a closed trajectory in ¢.W spaceb with a maximum energy de-
viation l} The maximum excursion in phase can be evaluated from the
Hamiltonian:
hn - h nf I _ .

H(.H) = _2p_090ro W - poooo w2 + %TF! (cosd cos¢0+(¢ o) 51n¢0)(6.33)

Let us consider three special cases:

a) Storage of particles with energies below the transition energy.

In this case ¢0 = 0 and the resulting value of ‘t’max is obtained from

eq. 6.33 for W =10
(Moo f2 | ey

2p0 RO

th(-n)Q -
o’ *o )1/2 W
Zpo Ro eV

= + 2 arc sin ( (6.34)

"max

b) Storage of particles with energies above the transiton energy.

In this case b= T and ¢

- is again obtained from eq. 6.32 with

W=0.

Th n & -
=+ arc cos ( —22 /2y (6.35)

¢
max 2p, Ry eV
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c) A particle with v > Yir is accelerated and we consider small
amplitude oscillations & = ¢ - L The Hamiltonian in eq. 6.33 can
then be simplified to:

eV
20w (8)% cos, (6.36)

The extreme amplitudes in phase for a particle withW,,, = W is given

by
-2th n -
g = +[———2 M2y (6.37)
eV pORDcosq)o

6.4 Adiabatic Damping

The equation for the synchrotron oscillation was derived assuming
time independent parameters for the synchronous particle. This is
permitted since the timescale for an accelerating cycle is very long
compared to the synchrotron oscillation period Ts‘ The change in W
and ¢ during the accelerating cycle can be evaluated using the Bolz-
mann-Ehrenfest theorem., If a non-dissipative oscillatory system is
described by the cannonical variables p and q, then, according to the
Bolzmann-Ehrenfest theorem, these parameters will change during the
cycle such that

I = § p dqg = constant, {6.38)

where the integral extends over one period of oscillation.

We now use this theorem to investigate the time behaviour of W

and ¢ for small amplitude oscillations.
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1=§ud¢=fﬂ§%=(u§%)ﬁ—: (6.39)

Replacing g% according to eq. 6.26 and Wy according to eq. 6.23b
yields:

2
2 -(2m)" b ngf, 1172

PoRo & V cose,

I = N (6.40)

The normalized energy makes sinusoidal oscillations. Averaged

over one turn Hz = -12 HZ where W is the peak amplitude. Then adia-

baticanyﬁ will change as:

- —pR'\‘Icos:b
W o~ 00 o]1/4

(6.41)
Ty %

1/4

i.e. W will grow proportional to Po

We can write down a similar equation for the phase oscillations:

1 = §A¢dw - (Mg-‘%)%:- (6.42)

Replacing g—‘é according to eq. 6.27 and g according to eq. 6.28b

lead to

Q
B o~ 1 Ny *o 1174 (6.43)

poR oC0S0,

Thus the maximum value of the pase amplitude 7.\\¢ decreases with mo-

mentum as:
-~ -
no ~p/t (6.44)

Note that W A¢p is an invariant.
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7. Effects of the Synchrotron Radiation on the Single Particle
9)

Motion

7.1 Introduction
The instantaneous power PY radiated by a relativistic particle of
energy E deflected in a magnetic field of induction B is given by:

23 22

P, = 5= ¢EB (7.1)

where 2
(S N S
Y Tmcz(m_cz;?
The instantaneous radiated power is proportional to the product
of beam energy and magnetic induction squared and ihversely propor-
tional to the fourth power of particle mass. For given values of E
and B an electron will loose 1013 times more energy than a proton per
turn. The motion of the protons is thus not influenced by synchro-
tron radiation at present energies and the equations discussed above
remain valid. On the other hand the design of an electron machine is
governed by synchrotron radiation and the single particle motion is

strongly influenced by the emission of photons.

The average energy loss (er) of an electron of energy E, moving on

the design orbit is obtained by integrating Py over one turn.

(eu) = 3 f P, ds (7.2)

4

C_E
(euy) = X2 § 6%(s) ds
2n
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For a seperate function machine with G = %~ in the dipoles and zero
()
elsewhere: 4
88.5 ke¥ E0 (Gev) .
(el) = —_— {7.3)
[
p,(m)

The synchrotron radiation is focused within a cone of opening angle
%7 along the direction of particle motion. The electrons do not ra-
diate continously but emit discrete quanta with an energy distribu-
tion shown schematically in Fig. 7.1. A half of the total radiated

power is

S(Ey/Ec)
04

() 1 1 | 1 i -

05 10 15 20 E/E.

Fig. 7.1 - The energy distribution of the synchrotron radiation

measured in units of the critical energy.
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carried by photons with energies above the critical energy EC:

2.23 kev EJ (GeV)

p,{m)
The mean photon energy is proportional to the critical energy

8
<f > =
Y 15/3

E, (7.5)

The average energy loss suffered by the electrons per turn must be
replenished by the r.f. system. However, both the number and the
energy of the emitted photons fluctuate from turn to turn and this

represents a source of noise which excites oscillations.

Both the betatron oscillations and the synchrotron oscillation
are damped by the average effects of the synchrotron radiation and
excited by its quantum fluctuations. The final beam dimensions result

from the equilibrium between the two effects.

The synchrotron radiation also governs the design of the technical

components for HERA's electron ring.

The total power radiated by the beam is given by Pb = (e Uo) ng-
At 30 GeV the nominal current of 56 mA radiates a total power of
7.5 WM. This radiation will strike the outer walls of the vacuum

chamber with a linear power density of max. 2.1 kk/m.
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Furthermore a certain percentage of the photons will Compton scatter
and to avoid radiation damage to equipment in the tunel the majority
of these photons must be confined within the vacuum chamber , res-
pectively with the magnet system. A photon striking the wall of the
vacuum chamber will lead to gas desorption. In order to achieve the
vacuum needed one must use either a distributed pumping system or

closely spaced discrete pumps.

Below we will discuss the effects of the synchrotron radiation on
the single particle motion. This discussion will follow the excellent

account given by M.Sands in reference 9.

7.2 Radiative Damping

7.2.1 The longitudinal motion

The instantaneous power radiated by an off energy electron differs
from that radiated by the synchronous electron since the particles
have different energies and travel through different regions of the
quide field. The average energy loss per turn (eU) for an off energy
particle is given by:

el = el +024E {7.6)

where 0 = e(du) The equation of synchrotron motion (eq. 6.20} must
dE

x
o
be modified to include the energy loss due to synchrotron radiation:

g.f(g_i) = $Y coso, 2 - 0 8€ (7.7)

Combining eq. 7.7 with eq. 6.15 yields the phase oscillation equation

in the presence of synchrotron radiation.
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2
d A
Sz el - 0 7.9)

. 0
with a, = ?T; .
For damping times LA %— which are long compared to the revelution
time eq. 7.8 has the solution,
a = Ae %t cos(ugt) (7.9)
Thus, neglecting quantum fluctuations, the amplitude of the Tongitu-

dinal oscillation decreases expeonentially with a time constant Te-

a. can be expressed in terms of the lattice parameters. To this end

we integrate the energy loss over one turn:

(e ) = § P, dt =%§ P, (1+%) as (7.10)

Since we are interested in the energy loss of an off energy
electron x = D %E .
0

Differentiation of eq. 7.10 yields:

e du dP. D P
("“) ,%§(_1+*.1 és (7.11)
dE E<E, € ok

The first term evaluated according to eq. 7.1 and with the substi-

tution:
d8 _ d8 dx _ D dB o
FHE - f; x yields:
dp p 0P, dB
Y . X, Y (7.12)
dE E EB dx

0 oo
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£q. 7.11 is written as:
edu e Uo
= (2 + ad) (7.13)
dE
0
with
.1 1,2 d8
A = :rzr—é (DPy( 5t E; Fl ) ds {7.14)
0

The expression for AJ can be simplified using eq. 7.2 and the definition

1 ,dB
KI(S) = 'B‘; (a;)

§ 0(s)6(s) (6%(s) + 2Ky(s)) 8s

_ (7.15)
ad = § Gz(s) ds
Eq. 7.15 evaluated for a separate function machine yields
1 .2 _ oR
Ad = 5= Go Jmagnets D(s) ds = 3; . (7.16)

where R is the average machine radius. Note that for a separate
function machine AJ is small whereas it is large for a combined

function machine,i.e. an accelerator satisfying G(s) K(s) # 0.

The inverse damping time a, - evaluated for a separate function
machine - is given by:

el el
o = —2 (2+%B®y o _° (7.17)

€ 4
ZEOTo 0 EOTo

The characteristic damping time for longitudinal oscillations s
simply the time it takes the electron to radiate away all its energy.
Evaluated for the electron ring of HERA gives %— = 4.5 msec at 30 GeV.

Note that the damping time is inversely proportional to Ei.



- 105 -

7.2.2 The vertical betatron oscillations

The radiative damping mechanism for the vertical betatron motion is
illustrated in Fig. 7.2. The electron emitts a photon along its di-
rection of motion - i.e. the electron suffers only a loss of energy
without a change of position or slope. However, in traversing the r.f.
cavities the electron receives a longitudinal kick compensating the
average energy loss - i.e. AL = e Uo’ Thus the slope of the particle

is slightly reduced after traversing the cavity:

(a)

35233

Fig. 7.2 - The vertical motion of a particle in the arcs (a) and

in the r.f. cavities (b).
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2 +d2' = =z2' (1 - 3B (7.18)
Py *+ P Po
dE el
dz' ~ -2’ R 0
Bo=2 ()

The position z and the slope 2' of the electron is given by

z = A cosp respectively 2' = %sinu. (7.19)
The amplitude A can be written as:
22 - 24 (g2)? (7.20)

The change in amplitude caused by the energy loss due to synchrotron

radiation and its replenishment by the r.f. cavities is given by:

el
A = - 882z = - (82 (2) (7.21)
[e]

The electron emits photons with equal probability along the orbit.

Averaging 8z' over all phase angles y yields:
2
wz>? = & (7.22)

Inserting eq. 7.22 into eq. 7.21 and integrating over t yields

A= oa et (7.23)

: _ 0
with e, = ——

ZEOT o
The amplitude of the transverse motion is thus exponentially damped

with a damping time twice the longitudinal damping time.

7.2.3 Damping of the radial betatron motion

The damping mechanism outlined above is also effective for the ra-

dial betatron motion. However, the photon is radiated in a region
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with radial dispersion and this yields a term which is antidamping. The
basic mechanism is outlined in Fig. 7.3. The total radial diplacement
js a sum of the closed orbit displacement X and the betatron displace-

ment with respect to this closed orbit

X = kg tx (7.28)
X=Xg+Xg
dxe N
Ve N\,
_.‘-// N\
Xe | Xg ——————

36227

Fig. 7.3 - Radial amplitude growth due to the emission of synchro-

tron radiation at a position with dispersion.
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When the electron radiates a photon the closed orbit will suddenly
Jjump by dxe =D gg However, the spatial position of the electron
remains unchanged guch that a change in the closed orbit must be com-
pensated by a change in betatron amplitude:

. dE
dx, = O (7.25)

The change in sTope due to D' is neglected.

The radial position and slope of the electron can be written as:

! A
Xg = Acosy, Xg = gsime . (7.26)
This yields:
= - - dE
AdA = Xg de =-D Xa T (7.27)

The energy loss in a path length d¢ is given by:

P X
) -—7-d9.=-(1+-l)£1ds (7.28)
[3 Py €
The resulting change in amplitude
X P ds
- By X
AdA = D Xg (1+ DD) : E-O- (7.29)

The expectation value of dA is obtained by averaging eq. 7.29 over
all phase angles
<dA> ds

D Py
RodR (7.30)

For a separate function machine, e Uys the total energy loss per turn,
is equal to PY g—é sumned over all the dipole magnets. The resulting
change in the amplitude is dA

r -

[

<D> EUO

7.31
|3 (7.31)

S
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Thus the finite dispersion leads to an exponentially growing radial

amplitude with a time constant given by:

A
<

>

(7.32)

l

=

e U0
0 ZEolo
The total change in amplitude is simply the sum of the dispersion

effect and the r.f. acceleration effect derived in chapter 7.2.2.

1 D>, &Y
o m - (1m0 (7.33)
LI Po oo

Substituting <D> = oR and comparing with eq. 7.16 yields:
U
o, = - {1-49) 0 (7.34)
€T,

For a separate function machine AJ is less than one and the radial motion

is damped.

7.2.4 Robinson's Theorem

We have evaluated the damping times for all three degrees of free-

dom. The damping coefficients can be written as:

<P > e Uo
0 00

withJ =1-4J, J =1and J_ =2+ Ad.
X z €
Note that the sum of the damping partition number is a constant:
rd; = 4 (7.36)

This has been shown by Robinscn33) to be true on general grounds as
long as effects of the fields induced by the circulating electron

beams can be neglected. AJ is a property of the detailed layout of the
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ring. Note that for a separate function machine AJ << 1 leading to
damping in all three degrees of freedom. In a combined function
machine AJ will be larger than one causing the radial beam size to

grow exponentially,

7.3 Radiation excitation and beam dimensions

In the preceeding section we have shown that the single particle
motion is damped by the interplay between the average energy loss due
to synchrotron radiation and its replenishment by the r.f. system.
However, the emission of synchrotron radiation is a quantum process
- the radiation is emitted in discrete quanta and both the energy and
the number of the photons fluctuate. These fluctuations are a source
of noise and excite single particle oscillations. The final beam di-
mensions result from the equilibrium between the damping caused by

the average energy loss and the noise introduced by its fluctuations.

The electrons in a r.f. bucket of width AE have a GauBian energy

distribution with a rms value of

o = (‘%E Y2 ii:z (7.37)
with ¢, =-2-52-—%-—mc= 3.88 10713 cm. ’
This results in a rms bunch length:

o = { R:sn") ;5- (7.38)

Thus the bunch length of the electron beam is rather short, the
rms bunch length in HERA is of the order of a cm at 30 GeV and
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scales with energy and tune as oy v E/Q.

The final emittance is the equilibrium between the damping caused
by the r.f. system, compensating the average radiation loss and the

growth caused by the quantum fluctuations.

3
2 (2 Rarc ) ___________2____ (7.39)

B S P s g
T 13 (B> 'J; 13 sarc tg(wz)sm( )

Rarc is the average radius in the arcs and Qarc is the contribution to

the tune from the arcs. Note that the factor

3
u

tg (§) sin® (})

is 8 at M, = 0 and varies little with the phase advance y for u less

than 90° per cell.

The emittance of an electron beam is not a constant of motion but
varies with the tune. Strong focusing, i.e. short cell length and

large phase advance per cell will lead to a small radial emittance.

Since the vertical dispersion is rather small the vertical emittance
is mainly due to the coupling of vertical and radial motion. In general
the coupling may be as small as a few percent for a well aligned

machine.

This results in a ribbon type beam for the electrons as compared to
a round proton beam. However, it is of course in principle possible to
deliberately increase the coupling between the radial and the verti-
cal motion by installing skewed quadrupoles.
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8. Polarisation 34)

The importance of colliding electrons or positrons. of well defined

helicity with protons is discussed in section 2.

Beams with a high degree of polarisation has been observed35} at PETRA
and the beams have been collided without destroying the initial po-
larisation. Scaling from these results it seems reasonable to expect

+
transversely polarized e~ beams in HERA.

8.1 Transverse polarisation

The spin of electrons {positrons) injected into an accelerator will
align along the direction of its vertical guide field. The spin sum
along the vertical direction is zero for an unpolarized beam, i.e.
there is the same number of electrons with spin pointing upwards as
downwards. As the electrons are deflected in the magnetic guide field
they emit synchrotron radiation which in part is due to a spin flip
transition. The probability of magnetic dipole emission depends on

the orientation of the initial spin. These probabilities are given by:

W(t+)

2.5
58 e v, 8
1 m- ¢ p 5

2.5 (8-1)
W)= 3B e vy h o 8,

w3

where the arrows (44) indicate the initial and the final spin direc-
tions either parallel or antiparallel to the direction of the magnetic

induction. The circulating beam will gradually become pelarized with
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the spins aligned antiparallel to direction of the guide field. The
beam polarisation builds up exponentially:
P(t) = P (1-e Ty (8.2)
In the absence of populations effects Po, the maximum degree of
polarisation, is given by:
(8.3)

where the final polarisation n{+) and n{t)} are determined by detailed

balance:
n(+) W(4¢) = nf{¢) W) (8.4)

Combining eqs. 8.3 and 8.4 yields:
W(ty) - W(4t) 8

Pp = ———— =— =10.92 (8.5)

W(te) + W(¥4) 5/3

Tp. the build up time of polarisation is given by
T o= (N() o+ WGt (8.6a)

P

Using eq. 8.1 and inserting the numerical values yields:

2
T - 98(s} p°(m)R(m) (8.86b)

E°(GeV)

where p is the bending and R the average radius of the machine.

The requirement that Tp must be short compared to the storage time

of several hrs determines the minimum electron energy. The polarisation

time for a 30 GeV electron beam in HERA is of about 20 min.

Bargman, Michel and Telegdi36) have written down the general equation
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for spin motion in electric and magnetic fields. For the spin motion
in a circular accelerator this expression can be simplified to:
B H
dn €% 1 >
= -(—z)(@a+r)2xn

& mc ¥
The coordinate system, moves with the beam. A is
the direction of the spin in space and Bo is pointing along the ver-

tical direction  and a = {9:2) - 0.0011597.

It follows immediately from eq. 8.7 that the spin component along
the % direction is conserved whereas the radial spin component S5, or
the spin component directed along the direction of particle motion

S¢ precesses an angle

———% a2rp = 2myaper turn (8.8)
mc

= (2%) 75085

The electrons in a bunch have different energies corresponding to
different precision frequencies ya. This destroys the polarisation

along the X and the $ direction.

The radiative polarisation generates a vertical spin aligmment in
the arcs while the experiments require a longitudinal polarisation at
the interaction point, preferable with the option to change from one
helicity to the other. A possible spin rotator is be discussed

in chapter 10.
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34,37)

8.2 Depolarisation Mechanisms

The discussion above is valid for an ideal machine. The guide

field of a real machine, however, is not perfect and these imperfections

may depolarize the beam.

If the beams are polarized along the vertical direction then errors
in the vertical field will not affect the spin. The particles must

sti11 turn 2r and their spin precess by 2may.

A non vanishing radial field, however, will cause the electron spin
to precess around the % axis leading to depolarisation. Let us assume
that a quadrupole is misaligned by 1 mm in the vertical direction.

Using HERA parameters this corresponds to a vertical deflection:

(88,2) 12.5 T/m (107 m) In

A8 = = 0.125 mrad

Bp 3.33 - 30
equivalent to a precision angle ¢X:

by = (ay) A8 = 8.6 mrad at 30 GeV.
This is a rather small angle, however, if ay = n = integer then the
effect add on successive turns leading to complete depolarization.
The depolarizing resonances ya = n are spaced 440 Mev‘apart and the
beam energy must be choosen such that the spin tune does not equal

an integer number. However, the electrons have a finite energy spread
2

with a rms width O growing proportional to E°. At 27.5 GeV at HERA the com-

puted energy spread is 28 MeV - i.e. the spacing between adjacent
resonance is 16 9, and this should be sufficient. Note that this
effect may make it difficult to achieve transverse polarisation in

larger machines like LEP.
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The spin motion is also modulated by the synchrotron and beta-

tron motion such that the general resonance condition can be written

T as:

ya + kax + szz + kSQs = n. (8.9)

where k and n are integers and Qx 2.5 the tune shifts.
k] 3

The importance of these side band resonances will be enhanced by
the synchrotron radiation. To illustrate the effect let us consider
a planar machine. The electron emits a photon at a position of non-
vanishing vertical dispersion. The vertical closed orbit will jump
and the particle starts to make vertical oscillations which takes
it through regions of space with non vanishing radial field compo-
nents. The spin will thus precess around the radial axis away from
the vertical spin direction. The vertical oscillations damps out
after a few msec but the spin is now pointing in a different direction.
The polarising mechanism will restore the original spin direction
with a time constant Tp However, since the electron radiates some
1011 times during one damping time rp the spin will gradually diffuse

away from the vertical axis leading to an unpolarized beam.

The crucial quantity which determins the spin diffusion is the
so called spin diffusion coefficient or spin chromaticity:

3=Y(%§,)§{, (8.10)

The spin rotators, unless very carefully designed and matched into

the lattice, will be strong sources of beam depolarisation.
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In the linear approximation, prescriptions38) exist how to design a 9. Current Limitations 3°)

machine, including spin rotators, such that the spin dispersion is

The motion of a single particle is determined by the guide fi
zero. The beam-beam interaction will also cause depolarisation and gte p v guide field,

this effect is now being evaluated using spin tracking® programs. but particles moving within an assembley of particles will ex-
perience additional forces resulting from:

- The repulsion of Tike sign particles moving together. In this case
the electric and magnetic force subtract resulting in a space charge
force which decreases inversely proportional to the energy of the
particle squared. For particles moving in opposite directions the

forces add and the resulting beam-beam instability is the ultimate

performance 1imit of a colliding beam machine.

- Electric and magnetic fields associated with longitudinal and
transverse oscillations of the particles interact with the surroundings
{beam pipe, cavities) and induce electro-magnetic fields which in

turn may act back on the beam. The resulting force can drive the

beam unstable if the phase of the induced force is ahead of the
oscillation and its strength is large enough to overcome the natural
damping caused by the incoherence of the particle motion. If the
induced fields decay rapidly then only the bunch itself is affected

and we have a single bunch instability. However adjacent bunches

may communicate by means of slowly decaying wake fields causing

collective bunch instabilities.

In this chapter we will discuss some of the instabilities which
can affect a bunched proton beam. The electron motion is in general

more stable due to the strong radiative damping.
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9.1. Longitudinal Instabilities

g.1.1 Introduction

As discussed below, it seems advantageous to cross the electron
ard the proton beam at a finite angle. The electron bunch, due to
its radiative damping, is much shorter than the proton bunch and the
Tuminosity is therefore directly proportional to the linear charge
density of the protons er(s) - i.e. short, intense proton bunches
are needed to reach high luminosity. The Tongitudinal electron
distribution can be approximated by a GauBian whereas the proton
line density is well represented by a parabolic function
® 2

o3

A(s) = - %) (9.1)

where £ is the bunch length measured at the base.

The luminosity is also directly proportional to the rumber of
proton bunches - i.e. we would like to store a larger number of

bunches in HERA.

The combination of a high line density and a large number of

bunches make HERA prone to instabilities.

Let us first consider the situation shown in Fig. 9.1. A con-
tinous particle beam of radius a moves along the $ direction with
velocity Bc in the center of circular beam pipe of radius b. A
varying longitudinal particle density gives rise to a longitudinal
space charge force and to longitudinal wake fields produced by

currents induced in the walls of the beam pipe. The sum of both
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Fig. 9.1 - A uniform beam of radius a moving with 8%c along the
2 direction in the center of a circular beam pipe of

radius b.
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effects produces a longitudinal voltage which acts on the beam. eyg
p g 9 = —R-gy R g (9.5)

3
We will now evaluate these effects. 4“0

. . b . .
The constant is defined as =(1+21n3) and E_ is the elect
The electric and the magnetic fieids produced by moving charges % % = { a w erectric

field on the axis resulting from induced wall currents.
can easily be obtained by solving Maxwell's equations. g fro

>
€, divE = os) (9.2a) In general the particle density fluctuates over distances which
” are large compared to the diameter of the beam pipe. In this case
%%—rot B = ofs) (Bc) (9.2b) ge compa pipe
° the beam sees an inductive resistance:
. A(s +2 2
with p = & . L dI epg - c"L
‘ﬁ'z)‘ Eu=-....__!=__...—___ (9.6)
2R dt 27 R 3s
The line density A(s) is assumed to vary slowly as a function of s. L is the total inductance seen by the beam per turn.

Maxwell’'s equations have then the solutions: : s ops
The total axial electric field resulting from space charge

_ex r _ My & A BC ; - .
Er o i 39 = —— r<a (9.3a) and inductance is given by:
o a 2% a
9 2 2
er 1 Ho & A BC L (ﬁ 7 B2 cR L) §A- (2:7)
Erg?ﬁr_; Bg:T ¥ r>a (9.3b) T EG Y ’T s
The total voltage seen by the particle per turn
The longitudinal field at the center of the beam can then be de- 9, zo 2
: u = - — QL |- 9.8
termined from the relationship: s 2BY 0 3s @8
> - > > ]JO
,# Edp = - a_;r):_ J B dt (9.4) Z,= -E—o = 377 Ohms and Q. is the angular revolution frequency. Note
, . > - t i ti i lues of y.
The integration path & and the enclosed area f are defined in Fig. 9.1. that only the inductive term remains at large values Y
The fluctuations must be of the form:
. . ) A o= A+ A el(N8 - ut)
Inserting the fields from egs. 9.3a, b into eq. 9.4 and eva- [} 1° (9.9)
. : . : R . or I = I +1 el(nB-wt)
luating the integrals gives the following relation for the longi- o 1

tudinal field l»:S at the center of the beam:
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for an instability to occur. Furthermore the angular frequency of the dis-

turbance w must be an integer multiple of the angular revolution
frequency 90, ie. w= nno. A density fluctuation of this form leads
to an effective voltage per turn:

s i(n8 - wt}
Us R I # I1 e (9.10}
In the case considered above the resistance is purely imaginary with
ng, °
Zi = R( —_— - wL) (9.11)

28y
In general Z,i will have both a real and an imaginary part:

Z = 7,411, (9.12)

The interaction between the beam and the environment shifts the
frequency of the disturbance by Aw. Note that instabilities can only
occur for certain values of w = n Q, + b The frequency shift for

a general impedance Z is complex;
Aw = M, + Aw, (9.13)
Substitute eq. 9.13 into eq. 9.9 yields:

S A L R (9.14)
An imaginary frequency shift leads to exponentially growing or
decaying oscillations with a time constant E%T . Depending on initial

i
conditions (noise etc) one or both of these solutions may be realized

- i.e. the beam is unstable.

The reactive impedance Z = i Zi considered above yields:

2
2 enpynl; gy

(8w)” = 5;-EZ"E—————- (9.15)
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with Zi given by eq. 9.11.

An inspection of eq. 9.7 shows that an inductive impedance drives
the beam unstable at energies below the transition energy, however,
the beam is stable above the transition energy. The situation is re-
versed for a capacitive resistance, stable particles motion below
and unstable particles motion above the transition energy. A re-

sistive impedance always drives the beam unstable.

If all the particles in the beam have the same energy, as in the
case considered above, then they remain in phase and even a minute
disturbance is sufficient to cause an exponentially growing amplitude.
This is no longer true if the particles in the beam have a finite
energy spread. In this case the particles have different revolution
frequencies and only act coherently over a time interval which is
inversely proportional to the spread in revolution frequencies.

As long as the frequency shift of the disturbance is smaller than
the spread in revolution frequencies energy can be transferred from
the instability and converted into incoherent motion. Thus the un-
stable motion is damped and the disturbance must exceed a certain
threshold before the particle motion becomes unstable. This general

mechanism is called Landau damping.

In the case of a bunched beam the damping is caused by the spread
in phase oscillation frequencies S resulting from non linearities
in the r.f. potential. For a bunch which is somewhat smalier than

the r.f. bucket:



- 125 -

S s
o S (9.16
16 TR )

brF is the bunch length measured in RF phase angle.
The particle motion will be stable as long as:
S > 4Aw1. (9.17)

We will discuss some of the instabilities which may occur for a

bunched beam in more detail.

9.1.2 The microwave instability (turbulence)

This instability involves high frequencies corresponding to wave
lengths which are short compared to the bunch tength and in this
case the theory developed for a continous beam may be applied. Above
threshold the momentum spread and the bunch length are blown up to
values which are large compared to the equilibrium values determined

by the r.f. parameters and the injected bucket area.

To avoid this instability the longitudinal impedance Z divided

by the mode number n = ‘5’—- must satisfy the condition
)
g 3FmA vl o,
rﬁl 3 p (4p (9.18)
e Io P

For a parabolic current distribution F ~ 0.65. It is clear that the
beampipe must be designed to minimize Z. At the SPS % is around
30Q and we should be able to do better at HERA. Note that Io is the

peak current i.e. about 60 amp in HERA at 820 GeV and a parabolic
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current distribution, The HERA parameters demand I%I < 600 at
the peak energy of 820 GeY and l%] < 10Q at injection energy of
40 GeV to avoid this instability.

9.1.3 The inductive wall impedance

The reactive impedance seen by a bunched beam will in general be
inductiv for low and medium frequencies. As shown in Fig. 9.1,
the induced voltage Us’ will distort the circumferential r.f. voitage
seen by the particle and hence affect the particle motion within
the bunch. In particular, the induced voltage Ug will shift the in-
coherent phase oscillation frequency and change the bunch length.
The incoherent frequency shift, for a parabolic line density dis-
tribution is given by:

31, (8,L) R 4

Ams
- { ) {9.19)
S 2 h MV cos¢0 £

Io is the total current, L the inductance integrated around the ring,

“o the revolution frequency i.e.
Z

(% Vind

h is the harmonic number, M is the number of bunches and R is the

QOL

geometric radius.

The frequency shift will reduce the Landau damping - indeed the
Landau damping disappears completely if the incoherent frequency
distribution is shifted so far that this is outside the frequency
of the disturbance. Note that the frequency shift is inversely

proportional to the third power of the bunch length - i.e. the beam
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can be stabilized by an increase in bunch length and a corresponding

reduction in luminosity.

The bunch Tength is increased above the transition energy and

decreased below. For protons

AL
)

w

w

w

The inductive impedance |%1 depends strongly on the detailed

ind
layout of the vacuum chamber and the cavities. At the ISR
I%*ind ~ 20 ohms was measured, at the SPS !%‘ind ~ 10 ohms. At the
peak energy of 820 GeV the estimated frequency shift in HERA is

Aw
—;5 = -0.04 with an accelerating peak voltage of 100 MV and
3

|%iind = 10 ohms.

Coupled bunch mode instabilities

A single bunch may execute different types of oscillations
characterized by a mode number m - i.e. a dipole mode with fre-
quency w, a quadrupole mode with frequency 2ws, a sextupole mode
with frequency 3ms and so on. These modes are in general excited
by narrow band, high Q resonators like the cavities. However,
if several equidistant bunches are stored along the circumference
of the machine, then these bunches may be coupled together by
broad band, low Q resonators and execute additional coupled mode
oscillations. The number of independent oscillation modes are

equal to the numbers of bunches.

T (9.20)
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The strength of these instabilities are difficult to estimate,
however, several methods are available to stabilize the beam.

a) Identify and damp the resonator which couples the bunches.
b) Increase the Landau damping either by a blow up of the
2

w,
bunch area (S = —{Erfh or by operating a cavity at a harmonic
of the r.f. frequency.
c) Decouple the bunch by using a cavity which operates on a sub-
harmonic of the r.f. frequency. In this case different bunches

have different synchrotron frequencies.

d) Use a feed back system.

9.2 RF Noise

The r.f. system contains a white noise spectrum. The part of the

noise spectrum with frequencies around n wg = where n is an integer -

will lead to a slow build up the rms phase oscillation ampli-
tudes - i.e. to a dilution of longitudinal phase space density.
This effect has been sucessfully compensated at the SPS collider

using a very low noise feed back system.

9.3 Transverse instabilities

9.3.1 Transverse space charge effects

As discussed in chapter 4 the transverse motion of a single
particle in the guide field of a circular accelerator is described

by the solution to Hill's euqation:
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ut'(s) +K (s} u(s) = 0 (4.25)

This equation is valid for both the radial (x) and the vertical (z)

motion provided Ap = 0.

The space charge force acting between non relativistic particles

moving together will modify the focusing strength

K(s) = K(s) + oK. (9.21)

From eq. 5.34 a gradient change &K will lead to a spread in tune

a - - KR (5.34)

To avoid beam losses resulting from crossing a half integer reso-

values:

nances:

8 g 0.25.

We will now estimate the 1imit on the current imposed by the space
charge force. To this purpose we assume a uniform beam of radius a
moving along the positive s direction with a uniform velocity 52

as considered above.

The electric and the magnetic fields for r < a produced by the
moving charges are given by eq. 9.3a.
The resulting force on a particle travelling a distance x from
the center of the beam is given by

F

e (E + : X E)
. (9.22)
r %E% ) E?

Y

-
J
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i.e. the space charge force has only a radial component which

disappears at relativistic energies.

The force is equivalent to an acceleration:

2 2
d°x 2 d°x ep X
(my) (=g ) =(my) (Bc)" = = — = (9.23
0 dt 0 ) ds 280 ¥ )

The particle density %—can be expressed by the total number of

particles stored along the circumference 2nR of the ring:

g . N (9.28)
€ (2mR) ma
This leads to the equation:
2
dx N 1
&( ) = rg—7 g X (9.25)
;;2 O Rma® g%

From a comparison with eq. 4.25 we see that the total change is

focusing power per turn is given by

o N

K = - —5g— (9,26}
maBy R

The corresponding tune shift is obtained by combining eq. 9.26 with

eq. 5.34: ro N ro N
& = - B = - (9.27)
waley® gy Q

Thus the beam jis stable if:
20180 (ra?) 8%y

% R

(9.28)

The space charge 1imits the amount of current which can be stored
in a machine with a aperture (waz). This is the basic limitation

at low energies.
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9,3.2 Transverse head tail instability

This instability, first observed at ADONE, was explained by
Pellegrini and Sands as due to the following mechanism: The
particles moving in the head of a bunch makes betatron oscillations
which induce strong, rapidly decaying transverse electromagnetic
fields. These fields will interact with the particles in the tail
of the bunch and will increase their betatron oscillations. After
half a synchrotron oscillation period the particles in the head and
the particles in the tail have changed place and the feed back
loop is now closed if the betatron phase of the particles in the new
head is ahead of the betatron phase of the particles in the new

tail. This will occur if the chromaticity is negative.

To see this let us evaluate the difference in betatron phase
between particles in the head and the tail of a bunch. This phase

shift is obtained by integrating AmB over half a synchrotron period:

o = tw, dt (8.29)

A
8 . (é%+£‘9§) (9.30)
Y
B8
The change in tune AQ is given by the chromaticity:
_ . 8p _ & dE
S R A 1 (5.35)

B
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The change A2 in revolution frequency is given by the time di-
lation factor n{p). We consider a proton with an energy well

above the transition energy

8. 585 .58 -
Combining both terms yield:
hog = %g(%-u)ﬂg (9.31)
v 3%

wos Lg% (9:32)

Since the uncorrected natural chromaticity is negative the beta-
tron phase advance Ay will be positive. Thus the fundamental head-

tail mode is unstable.

Note that sextupoles can be used to cancel the natural chroma-
ticity - i.e. £ = 0. In this case no phase relation exists between
particles in the head and in the tail of the bunch and the funda-
mental head-tail instability does not occur. However, it is dif-
ficult to cancel the chromaticity exactly. Furthermore higher order
single bunch head tail modes can occur for positive values of the

chromaticity.
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If the transverse impedance has a sufficiently long memory

it may also couple head tail oscillations of adjacent bunches.

Both the single and coupled head tail modes may be corrected
by using an octupole magnet to induce a tune spread. However, re-
member that an octupole is a non linear element which driyes re-

sonance lines and may by itself limit the acceptance.

9.3.4 The beam-beam tune shift

The electric and magnetic force between interacting bunches
moving in opposite direction add resulting in a strong direct
space charge force which persists at higher energies. For bunches of
opposite charge the forces are attractive - i.e. one bunch acts

as a focusing lens in both planes. For like sign bunches the force

is repulsive and equivalent to a defocusing lens. For particles
travelling close to the axis the lens will be nearly linear while it

is strongly non linear for particles with a large displacement.

This interaction affects the particle motion in several ways:
- it excites coherent transverse oscillations

- it introduces a non linear coupling of vertical and horizontal

motion

- it excites higher order resonances.

Although the beam-beam interaction is strongly non-linear it

js commonly parametrized by the tune shift AQ induced by its linear
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part. We will here estimate the tune shift suffered by a proton
of normalized energy y traversing a bunch containing Ne electrons
GauBian distributed transversely to the beam axes with rms size

oy and o,

The focal length of such a "space charge* lens can be written as:

2N r

= (k)P =+ & _ P (9.33)
(0! + 0. ) G‘ Y

ex ¥ %2 %y P

The stars indicate that beam sizes are evaluated at the crossing

point, u = x or y.

The tune shift caused by a lens of focal strength f = %I lo-
cated at a position where the amplitude function has the value B

is given by:

o = B (5.13)

Introduce the strength of the lens from eq. 9.27 yields:

N r
) R

2 X, %
2M(0ex * %ez)%u P

To find the effect of the electron beam on the proton beam one may

to first order simply replace p by e in the formulae above.

It is clear that the ultimate tune shift limit must depend on
the details of the machine and the tune advance between crossings.
However, it has been found experimentally at the high energy

electron machines that a tune shift of AQe < 0.025 is acceptable
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for electrons. At the CERN SPS pp collider a tune shift of 0.003
has been obtained for bunched proton beams. The factor ten dif-
ference between the electron and the proton tune shift limits is

presumably due to the radiative damping of the electron beam.
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10. Layout and Performance of HERA

In this last chapter we briefly discuss the choice of the main

parameters for HERAS) and evaluate the luminosity.

10.1 The Lattice
The present choice of lattice for the electron and the proton ring

are shown in Fig. 10.1. Both machines have a periodic FODO cell
structure consisting of equidistant focusing and defocusing qua-
drupoles with as much as possible of the intervening space filled
with bending magnets. The main lattice parameters are listed in
Table 10.1. They can be derived to a good approximation using the

formulas listed in chapter 4.5.
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Fig.* HERA normal cell lattice

Fig, 10.1 - Llattice for the electron and the proton ring HERA.
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Fig. 10.2 shows a cross section through the tunnel in the arcs

with the proton machine installed above the electron ring.

In the e'e” mode of HERA the cell length is a free parameter which,
for a given emittance and hence luminosity, may be chosen for mini-
mum cost. In the ep case, the proton cell length should be an inte-
gral multiple of the electron cell length. The electron emittance
and hence the focal length should be chosen such that it is possible
to match the electron and the proton beam sizes at the interaction
point for a given horizontal/vertical coupling of the electron beam.
It can be shown that the optimum cell length is around 10 m for an
aperture limited e'e” design Tuminosity of 4 - 1031 w271 at
2 + 25 GeY. Since the minimum is rather flat we have chosen a cell
length of 15.692 m for mechanical reasons. In an octant of the elec-
tron ring there are 34 1/2 periodic cells and 2 dispersion sup-
pressing cells in the arcs and 2 1/2 cells are incorporated into the

spin rotator.

The large number of electron cells per octant reflects the need
to have a dense focusing structure for the electrons. In the electron
ring the beam emittance is determined by the equilibrium of synchro-
tron radiation and focusing strength (eq. 7.39). A dense focusing
structure leads to a small beam emittance, low synchrotron freguency
and a lower r.f, voltage. It is also possible to match the vertical
electron beam size to that of the proton in the interaction point

by varying the emittance.
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Table 10.1 - HERA lattice parameters

Circumference (m)

Number of superperiods
Lattice

Straight section length
Normal cells /octant
Dispersion suppressing cells/
octant

Number of dipoles / cell
Magnetic length of dipole (m)
Aperture of bending magnet (mm)
Bending radius {(m)

Bending angle (mrad)

Magnetic length of
quadrupole (m)

Aperture of quadrupole (mm)
Betatron phase advance/cell
Momentum compaction
Transition energy (GeV}
working point Q,/Q,

Cell quadrupcle focal
tength (m)

Cell quadrupole gradient (T/m)

faplitude functioni:: E:;

ax
Dispersion (m)
Opin(™)

-r1i

9

4

6

6.08
60.0 p
603.8

'1.90

60.0 $
90°

-3
1.315-10
25.9
32.15/35.19

16.6
91.2
80.4
13.8

.9
9

1
0.92

6336

FODO
360 m

10.07

e-ring

34,5%

2

2

5.446
70 x 40
540.9

1.00

50.0 ¢
60°

0.495.107

48.3/48.2

7.8

12.7

27.
9

Ll N}

0.39
0.24

% The horizontal bend of each spinrotator is equivalent to that

of 2.5 normal cells.
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The chromaticity is compensated using two families of sextupoles

located adjacent to the focusing quadrupoles.

The useful aperture of the proton ring is presumably limited by

non linearities rather than the geometric aperture:

These non linearities result from:

- The sextupoles needed to compensate the natural chromaticity. At

*a twrn e ewmrets

HERA

cross section in the ore

Fig. 10.2 - A cross section through the beam tunnel in the arcs.
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least two families are needed and their strength can be written as

4v (£:p)
1 1 IR
M. = Sl = (7 + ————o (10.1)
F~ °FF b ' ¥
F NC (SF = BD)
D
F
My = m
D BD F

1R is the chromaticity resulting from the straight sections and

Nc is the number of cells.

- The higher field harmonics caused by the approximation to a cos@
current distribution in the dipole magnets and by positioning errors
of the wires. The field can be written as a sum of the harmonic co-
efficients hn for normal multipole fields and a, for skew multipole
fields. These coefficients are obtained from the Fourier expansion

of the azimuthal field component.

r
r

)"-1 (b,cosnd - a sin ng) {10.2)
o n

By(r.8) =B_ L {
] 0 ne1
B0 is the induction on the axis and L 2.5 ¢m is the reference radius.

The tolerances on the field components were taken to be the same
as those imposed on the FNAL magnets:
Normal and skewed quadrupole: 25, b2 = 2.5-10_4
Sextupole : by = 6107

Skewed sextupole and all higher multipoieg4
including the 18-pole = 2.10
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This distribution was assumed to be a GauBian centered at zero IMM)
with a rms value a third of the tolerances listed above. A cold iron e p=60

20— = tON elliptical
magnet has much higher values of the multipole components and their o e S e

= Sl
= N,
- s >‘:1|
relative strength also changes with current due to iron saturation. - n=60°
u=90°

- Persistent currents. These currents induce mainly a constant se- L <600 rectangular
tupole field with a strength proportional to the filament diameter. ::906

For the 10um filaments used in the HERA cables the relative strength beam size at 40 GeV

of the persistent current sextupole relation to the dipole field 0 '2 : : = 825 == : _l_, ‘2

is -2 - 1072 at the injection energy of 40 GeV. If left uncorrected ¥‘.";5“9

these sextupoles would introduce a chromaticity of &= -181 and

Ev = 143, We assume that the mean value of the persistent current

sextupoles are compensated by a bucking field such that only the Fig. 10.3 -~ The stable amplitude 1imits at the injection energy

+ 10% fluctuations must be included in the computations must be in- of 40 GeV are plotted versus momentum for a phase ad-

0 , _
cluded in the computations. vance of 60 corresponding to Qx/Qz = 33.15/ 35.18
and a phase advance of 90° yielding Qx/Qz = 25.16 / 29.23

] The limits are evaluated for a rectangular and an
The resulting nonlinear aperture was investigated using a fast

. 40) elliptical phase space distribution. The maximum
tracking programme /. The particles, with a given initial amplitude
horizontal beam size (2.20, ) at 40 GeV and 820 GeY
are tracked around the ring and their amplitude checked after each X

are shown for comparison.
sextupole. If at least one particle is found outside the goemetric

aperture then the amplitude is unstable, if all particles (in ge-

. Within the accuracy of the computation the non linear aperture is
neral 16) survived 100 turns then the amplitude was called stable.

the same for 60° and 90° phase advance. For a rectangular beam phase
space and €, =€, the non linear aperture is on the order of 14 mm.

The stable amplitude for the cell depicted in Fig. 10.1 is plotted It might be more realistic to assume an elliptical phase space and

versus momentum in Fig. 10.3. The computation was done at the in- in this case the aperture is around 18 mm. The aperture at 820 GeV

i i ) i ffects can be neglected
Jjection energy of 40 GeY for a phase advance of 60° and 40° per cell. {s slightly larger since persistant current effects ¢ g
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at high energies. The values should be compared to the geometric
aperture of + 28 mm. Measurements at the ISR found a beam lifetime
on the order of 18.5 hours with the vertical collimators set at

2.20. This aperture is indicated at the injection energy of 40 GeY
and at 820 GeV. This aperture, even at 40 GeV, is comfortably smaller
than the non 1inear aperture determined by the tracking programme.
The emittance growth due to beam-gas and intra beam scattering has
been evaluated and found to be negligible for injection times

on the order of half an hour.

At present the computation time is about 5000 times Tonger than
the natural revolution time such that only short storage times may

be investigated. We are now building a dedicated computer which

will enable us to investigate storage times on the order of several

hours.

10.2 The r.f. System

The r.f. system for the electron ring is based on the 500 Mhz
system used in PETRA. Indeed r.f. equipment 1ike kiystrons, cavities,
waveguides and other components will be transferred from PETRA to

HERA.

At the nominal energy of 30 GeV the particle loose 142.3 MeV
per turn in synchrotron radiation. For a phase advance of 60° the
peak voltage must be 166.7 MY per turn to ensure a beam life of
24 hours due to quantum fluctuations. The stable r.f. phase is 58.6°,
The number of synchirotron oscillation per turn is 0.038 and the

r.m.s. bunch length is 9.3 mm.
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The injection system for the protons is designed to fill HERA

011

with 210 bunches of protons with 3 - 1 protons per bunch using

the following sequency of accelerators:
Proton Linac (50 MeV) » DESY (7.6 GeV) » PETRA (40 GeV)} -+ HERA

The bunches with the final number of particles per bunch are formed

Tn DESY such that a complicated stacking procedure, which may lead

to an emittance growth, is avoided. To reach the highest luminosity
the proton r.f. system must be designed not only to accelerate but
aiso to produce a short proton bunch with a high line density.

The stable bunch length shrinks from about 100 m at low energies to

a fraction of 1 m at the peak energy of HERA. Some of the shrinkage is
provided by the natural evolution of the bunch length during ac-
celeration but in addition the frequency is increased twice during

the acceleration sequence.

These frequency changes are done at transfer. The first step is
from 2.8 Mdz in DESY to 10.37 MHz in PETRA as the beam is transferred.
The second step from 10.4 Miz to 208 MHz occurs between PETRA and
HERA. In order for the PETRA bunch to fit into the much shorter HERA

bucket a bunch rotation is applied to the bunch before transfer.

We now give some of the parameters for the r.f. systems as pre-

sently planned. We assume that adiabatic capture works with

an efficiency of 70% and that 10% of the protons are lost during each

011

transfer. To reach the design value of 3 - 1 protons/bunch a total

of 1,6 « 103 protons are injected from the Linac in a single turn



- 185 - - 146 -

into DESY. At DESY the protons are captured into three 100 m long Tong. Clearly the bunches must be compressed to about 1.3 m before
they are transferred to HERA. The simplest way to do this is to per-
form a one quarter bunch rotation in an abruptly increased bucket.
This requires much less voltage than adiabatic compression of the
0.891MHz (h=3) is needed at injection.The protons are accelerated bunch and the voltage is only required during the short time of one
quarter synchrotron oscillation. The bunches must then be trans-
ferred between PETRA and HERA in one go and this is possible since
the ratio of the circumference is 80 to 220. The bunch rotation can
the transition energy (v,,=6.0) in PETRA. The frequency at injection be done by simply pulsing the accelerating cavities to some 500 kv

bunches. The momentum spread is 1.2 - 10'3 corresponding to a bunch

area of 0.005 rad. A peak voltage of 1.43 kV at a frequency of

through transition (Ytr = 5.680} and transferred bunch by bunch into
PETRA. Note that the protons are injected at 7.6 GeV which is above the

is 2.817 Wiz and the peak voltage is 11.22 kV. Such a system can for about a msec.

The PETRA cycle is repeated 12 times until HERA is loaded with
210 bunches spaced uniformly by 96 ns except for a notch 1 us long.
The notch is needed for the risetime of the beam abort kickers.

easily be realized using ferrite loaded cavities. Longitudinal in-

stabilities do not appear to be a problem - the laslet Q shift is

-0.103 at injection and (Z/n) must be less than 400 to avoid the mi-
There are several reasons for choosing a rather low r.f. fre-

crowave instability. quency in HERA

. Firstly we have seen that a low frequency makes the final bunch
PETRA is loaded with 18 out of 20 possible bunches spaced 384 ns compression in PETRA easier

apart. PETRA will then accelerate the protons to 40 GeV, limited by
The inductive wall impedance shift the coherent synchrotron fre-

quency according to eq. 9.19. Landau damping breaks down if this

is 10.33 Mz with a peak voltage of 19.8 kV. At the end of the ac- shift exceeds the incoherent frequency spread of the particles in

the bunch. The voltage required to prevent this (eq. 9.19) is pro-
portional to ”i.f. for a given ratio of bunch length to bucket length.
Even for a (Z/n) as low as 5 Q@ the r.f. peak voltage must be

(Z/n) must be less than 14.4 Ohm at 40 Gev. 100 MV for a r.f. frequency of 208 MHz and a bunch length of 38 cm.
Lower frequency r.f. cavities are difficult to fit into the ring

due to their larger diameter.

the saturation of the dipole magnets. At injection the r.f. frequency

celerating cycle the r.f. frequency is 10.41 M4z and a peak voltage
of 8.35 k¥, The Laslet Q shift is only -0.040 at injection and

Since the required frequency swing is only 0.6% cheap re-

entrant r.f. cavities can be used instead of ferrite loaded cavities. 10.3 Interaction Region
At 40 GeV the bunches can be made short without creating a large The interaction region in an electron-proton collider is compiex.
Q-shift and it is therefore possible to go directly to the final r.f. It must bring the two different beams into a small angie low beta

frequency of 208 MHz in HERA. At 40 GeV in PETRA the bunch is 10 m
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coliision geometry and it must turn the electron spin to be either
parallel or antiparallel to the beam direction at the interaction
point. Furthermore, the dispersion in the lattice must be made to
disappear in the straight section, and sufficient space for r.f.

cayities, injection and ejection system must be found.

In the design we must first decide whether to use a head on col-
lision geometry, or to opt for a crossing angle. Since luminosity
and beam-beam tune shift vary in the same marner with crossing angle,
a larger angle would simply achieve the same conditions as a head
on collisions but requires more protons and electrons. To optimize
the luminosity, the interaction region must be designed to produce a
small value of the betatron function at the interaction point. The
minimum value of the betatron function is presumably limited by the
maximum chromaticity introduced by the vertically focusing quadru-
poles. The vertical chromaticity introduced by the eight vertically

focusing quadrupoies is given by:

5 = - % ﬁi (10.3)
f is the focal length and g* the value of the betatron function at
the interaction point. The quadrupoles must thus be positioned as
close as possible to the interaction point. To set the scale, the
arcs contribute E; = 30 to the vertical chromaticity. The arbitrary
assumption that the interaction region should make a smaller contri-

butfon yield the inequality £ < 458"
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Rather strong quadrupole fields are needed to focus the proton
beam and it therefore seems advisable not to pass the electrons

through the field of the proton quadrupoles.

In the head on collision geometry the electron and the proton
beam must be separated by a dipole magnet. In order not to flood
the interaction region with synchrotron radiation this bend must
be rather gentle and the vertically focusing proton quadrupole will

therefore be located rather far from the interaction point.

In the present layout (Fig. 3.2) we have chosen to cross the
beams at an angle of + 10 mrad in the horizontal plane. A horizontal
crossing is advantagous since the width of the electron beam is much
larger than its height. The large crossing angle makes it possible
to install the proton quadrupoles directly following the electron
quadrupole. In the present layout the front face of the vertically
focusing quadrupoles are positioned at + 7.5 m and at + 10 m with
respect to the IP for electrons and protons respectively. It is pos-
sible to detect particles down to 13 (32) mrad. This is more than
sufficient (Fig., 2.12) to measure the formfactors with high preci-
sion at values of Q2 which overlap with present data. Note that the
two machines are tota]iy independent. It is thus possible to inject
into one ring while leaving the other at high energy. It is also pos-
sible to vary the center of mass energy by changing the proton energy
and keeping the electron fixed at 27.5 GeV where polarisation is ex-

pected to occur,
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The next problem is to incorporate the spin rotators. Several
possible designs exist. The solution presently adoped is shown

schematically in Fig. 10.4.

TN
,o‘ \\
LR Y toarc—
H
v v
v
to |LP —
! 1
‘vﬁll.s’ spin rotation angle
& l. / HERA spin rotator
N {schematic |

spin onentotion

Fig. 10.4 - Principal Tayout of the spin rotators.

The essential part of the rotator is a horizontal bending magnet
which causes the spin to precess by = around the vertical axis
and is surrounded by two vertical bending magnets of opposite sign
that generate a spin rotation of + w/4 about the radial axis. A
pair of vertical bending magnets restores the original beam direction
without changing the spin direction. There is again one such rotator
at each end of the straight section; the first turns the spin lon-

gitudinal and the second restores the transverse polarisation. For
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opposite helicity at the interaction point, all vertical bends are
inverted, while the horizontal bends remain unchanged. Since these
horizontal bends are rather strong, they are designed to be a part
of the normal bending in the arc. In the HERA design each horizontal
rotator magnet replaces exactly 5 of the 78 normal cell bending

magnets per octant.

The horizontal bending magnets must thus deflect the particles
through a well defined angle. o = 50.32 mrad and precess the spin
around the vertical direction by "y = 7. Since ¢y = {ya) a, both
conditions can only be satisfied for a single energy Eo = 7.8 Ge¥

corresponding to a spin tune v = (ya) = 62.4 GeV,

To operate the rotator at a different energy requires two cor-
rection bends to feed the beam band into its nominal position in
the arcs. With such correctors it is possible to properly operate
the rotators in an energy range of, say 0.5 GeV around Eo and ex-

plore the optimum between depolarising resonances.

The final layout of the interaction regions is shown in Fig. 3.2.
The spin rotators are located at the ends of the + 180 m long
straight sections. With the expections of the vertical spin rotator
bends the electron ring stays in the plane. Note that the 1st
bending magnet is located nearly 120 m from the IP. Detailed calcu-

lations show that it is possible to position detector elements
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within a few cm of the beam without being swamped by synchrotron

radiation.

10.4 Luminosity

The luminosity of an electron - proton colliding beam machine with
the beams crossing in the horizontal planme at an angle 2¢ is given

by:

L. fD n, Ne Np
: 7 7172, 2 . 2,1/2
zn(cxp,eff + Uxe) &UZR + oze)

In this formula fo is the revelution frequency, Ry the number of
bunches in the ring, Ne and Np the number of electrons and protons
per bunch respectively, Oyp,eff = (csp + (csp ¢)2)1/2 with csp
denoting the proton bunch length, Tye is the width of the electron
beam and °zp and %0 the heights of the proton and the electron

beam respectively. The beam sizes are all defined in the interaction
point and are calculated from the beam emittances and the values of
the amplitude function at the interaction point. The emittance of

the proton beam is determined by the injectors, whereas the emittance

of the electron beam is given by the electron energy and the phase

advance per cell.

We will now discuss the choice of the various parameters which

enter the luminosity computation.

The ultimate limit to the luminosity is given by the maximum

allowed value of the beam-beam tune shifts. The tune shifts, derived
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in chapter 9, can be expressed for the vertical direction as:

2

N - B2e Te Np
ze 2 (crl + ot ) il
™e\%p,eff * %2p/ Yzp
x
B .Tr N
~ P pe
8, =

. &, %
2myp{oye ¥ 92¢) ze

Here Yo and p are respectively the electron and the proton energy
measured in units of the rest energy and 8: and B; are the values of
the amplitude function at the origin. AQ is quoted per interaction

region.

For head-on collisions a tune shift 1imit of 0.025 has been ob-
served at high energy e'e” colliders compared to approximately 0.003
observed at the CERN pp collider. We will use aQ, = 0.025 and
AQp = 0.0025 as the limiting values also in the case of a finite

crossing angle.

The luminosity was evaluated with B:e = 0.15 m, B:e =3.0m,

g :p = 0.30 m and B:p = 3.0 m. The vertical chromaticities evaluated

according to eq. 10.3 yields:

1P _ IP_ 510
£ ® 31.8 Ezp 2.
The effective horizontal beam size is determined by the crossing
angle and the length of the proton bunch. With the 100 MV r.f. sys-

tem as proposed the bunch is 9.5 m long (os) at 820 GeV.
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The vertical emittance for the electron beam is determined by the e

vertical and horizontal coupling. Couplings as small as 1% have been
observed at PETRA. The spinrotator will increase the vertical coupling
and with the present rotator we find a value of 10%. This can be
reduced and we assume a coupling of 4% for the calculations here. To
maximize the luminosity the phase advance per cell is adjusted in

discrete steps of 309, 45°, 60° and 90°.

The luminosity is also proportional to the number of bunches per

beam. In the case of a crossing geometry the number of bunches is

Luminosity [cm?s)

a free parameter. In the present design we have limited the number.
of bunches to 210 corresponding to a spacing of 28.8 m between ad-

Jacent bunches.

The electron current at high energy is 1imited by the available i b
r.f. power. At HERA we assume that at most 12 M is available at I b
the r.f. cavities. It takes about 4.0 MW to establish the required

ool 1) 1 I 1 !
circumferential voltage of 166.7 MV at 30 GeV. With an average 200 300 400 S00 600 700 800 Ep [Gev]
energy loss of 142.3 MeV per turn the remaining 8 MM is sufficient
to accelerate a current of 56 mA.
imi 11 A bunch

For the protons we assume a limit of 3 . 107" protons per .
As a comparison 101! protons per bunch have been stored at the SPS Fig. 10.5 - Luminosity as a-function of proton energy for various
collider. The hope for increase in protons is based on a very smooth ' electron energies. The luminosity limiting parameters

beam pipe with a low (Z/n), a high r.f. peak voltage to produce a are tndicated.
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high line density and the use of octupoles and feed back systems to

stabilize the beam.

The luminosity is plotted in Fig. 10.5 versus the proton energy
for electron energies of 10, 20, 27.5 and 30 GeV. Listed in the
brackets is the phase advance per cell in the electron beam which
with the parameter in the proton respectively in the electron beam which
limits the Juminosity. Note that at 30 GeV the luminosity is limited
by the available currents - i.e. the luminosity can be increased
by either storing a higher current or by moving the quadrupoles
closer and lower the vertical 8 function. Indeed at 30 GeV and
820 GeV the tune shifts are rather low Qxe/Qze = 0.008/0.014 and
pr/sz 0.0006/0.0009.

At E 20 GeV sufficient electron current can be stored to

e
reach the proton tune shift limit. In this case a peak Tuminosity

H

of 3 - 10°% en%s71 ¢ realistic.

With the luminosity predicted at HERA we should thus be able
to explore the kinematical region QZ > 10000 Gev2 where surprizes
are expected to occur. With some luck this may happen before the

end of the decade.

1)

2)
3)

4)

6

S

7)
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