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Abstract

This thesis presents investigations of particle production in electron positron annihilation,
based on data taken with the CELLO detector at the PETRA storage ring at 35 GeV centre
of mass energy.

The analysis comprises general aspects of ¢ " ¢~ annihilation, such as global event shapes
and inclusive cross sections, and extends to fluctuations and correlations in the multihadronic
final state. Various topics are covered in this analysis, among these are multiplicity distribu-
tions. intermittency, Bose-Einstein correlations and two-particle correlations. These studies
give access to the perturbative and non-perturbative phase of multiparticle production, and
thereby not ouly assist tests of Monte Carlo models, but also provide information necessary
for future improvements. The data strongly support the concept of a local transition from
the parton to the hadron phase, as is realized in cluster fragmentation models.

In addition to the well-known Bose-Einstein effect, an apparent shift of the p® meson
mass is observed. It is shown that the two effects have a common origin in the interference
of identical pions in p°7* X7 final states.
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Theory and Experiment






Chapter 1

Introduction

In 1964 quarks made their appearance in particle physics: Gell-Mann and Zweig developed
a group theoretical scheme to order mesons and baryons into supermultiplets of SU(3) in
which the u, d and s quarks are the basic flavour triplet units. The name quarks originates
from the novel >Finnegans Wake< by James Joyce, where on page 383 the following poem
is found:

— Three quarks for Muster Mark!
Sure he hasn’t got much of a bark
And sure any he has it's all beside the mark.

At that time the general belief was that of quarks as fictitious mathematical objects rather
than as real physical states — this changed during the sixties when experimenters working
with bubble chambers were discovering new particles which fitted into the predicted SU(3)
supermultiplets. Since about 1968 the structure of the nucleon has been studied by observing
deep inelastic lepton-nucleon scattering. Such investigations have provided a large body of in-
formation on the dynamics of quark-quark interaction; in particular the results suggested the
existence of point-like constituents inside the nucleon. Based on these observations Feynman
developed the parton model — later on it was recognized that the static quarks of Gell-Mann
and Zweig and the dynamic partons of Feynman are in fact the same objects. Since then
many experiments have been devoted to the analysis of quarks and the strong forces acting
between them. In particular, experiments at e™ e~ colliding beam machines gave deep insight
into this area of physics.

The present thesis attempts to investigate the transition from colour triplet quarks to
colour singlet hadrons — a process governed by the strong interaction, which is described by
a field theory called Quantum Chromo Dynamics (QCD).

The strength of the interaction implies that already 10~?* seconds after the annihilation of
electron and positron has created a coloured quark-antiquark pair, these transforminto colour
singlet metastable objects, which themselves undergo various transitions until finally stable
particles emerge and are eventually observed in the CELLO detector — the extrapolation to
the early stage of the event is thus difficult. A similar problem is encountered in astrophysics,
where extrapolations are made from the present state of the universe to the initial big-bang:
and, to a certain extent the same methods are used in the two areas of physics, e.g. quantum
interferometry, factorial moment analyses etc. A great advantage of e*e™ physics is, of course,
its larger event rate.

This thesis is divided into two main sections: the present section (chapters 1-4) contains
general aspects of e’ e~ annihilation, while the second section (chapters 5-10) is devoted to

3



4 Chapter 1. Introduction

multiparticle production. Chapter 2 gives a theoretical introduction to the physics relevant
for the subsequent analyses; in particular it covers commonly used hadronization models.
This is followed in chapter 3 by a description of the experiment, which has been adapted
from [16]. Global properties of annihilation events and inclusive cross sections are treated in
chapter 4. Chapter 5 contains basic information for the subsequent analyses of multiparticle
production. In chapter 6 multiplicity distributions are analysed in great detail, including
investigations of Monte Carlo models. Chapters 7 and 8 are dedicated to intermittency, the
former covering more general aspects and the latter describing some experimental analyses.
Bose-Einstein and two-particle correlations are analysed in chapter 9 and finally the results
are summarized in chapter 10. The more extensive numerical results are presented in tabular
form in the appendices A-C.




Chapter 2

Theory

The main concern of this thesis is to investigate the mechanism of particle production in
¢t ¢~ annihilation; in particular those aspects related to the very early stage of the event.
Experimental and theoretical limitations are encountered in this attempt: firstly, information
on the primary event is only indirectly available through the observed final state particles;
and then, the application of the basic theory (QCD) is limited by theoretical difficulties. For
these reasons phenomenological models are of vital importance for the present investigations,
and therefore we shall discuss them here in some detail, a more complete survey is given in
148,49].

AP\
| NS
e \

Figure 2.1: The four phases of e*e™ annihilation: 1. electro-weak phase with initial state radiation, II.
perturbative QCD phase with gluon radiation off the leading quarks, IIl. confinement phase where colour
singlet hadrons emerge and IV. decay into final state particles.

Various models of this kind exist, and can all be divided into four steps as depicted
in figure 2.1. e*e” annihilation into gg pairs proceeds via virtual v/Z° exchange, with

5



6 Chapter 2.

Theory

possible photon radiation off the initial state. This first step is purely electro-weak and
therefore calculable to high precision. In the second phase the leading quarks emit gluons,
which eventually split into pairs of quarks or gluons. The simulation of this process relies
on approximations to QCD, of which different types are used in the corresponding models.
In the third step the parton state is transformed into a system of colour-singlet hadrons.
This process is governed by low momentum transfer. implying large values of as, which
makes a perturbative description impossible, and therefore requires the use of fragmentation
models. Among these the string and cluster models are most successful. In the final step
matrix elements or simple phase space decays are used to transform primary hadrons into
stable particles. These decays proceed through measured decay channels with their respective
branching ratios.

2.1 Perturbative QCD

Two different approaches are commonly used to approximate the perturbative hadronization
phase: these are the matrix element (ME) approach in O(a%) (available in the Jetset program
19]), and the parton shower (PS) approach in leading log approximation. The latter comes
in three different versions: the original one due to Marchesini and Webber implemented into
the Herwig program 5, the Lund version due to Sjostrand and Bengtsson in Jetset [9] and a

fairly new one from the Lund group — the colour dipole (CD) approach available in Ariadne
4],

2.1.1 Matrix elements

The Born term annihilation process et e~ — ¢g is modified through possible gluon radiation
of the coloured quarks: in O(ags) this yields ete~ — g¢gg events. The cross section for the
latter process can be expressed in terms of the scaled energies z; = 2E;/E.., 1 = ¢,7,9,
satisfying ¥, 2, = 2. For massless partons the matrix element is:

1 do a r? + a2 ,
- == F : 2 ) 0<z;<1,:=1,2,3 (2.1)
Uod.l’]d.'l‘g 27 (1—1‘1)(1—.1‘2)

where o is the lowest order Born term cross section and Cr = 4/3 is the colour factor

corresponding to the transition ¢ — gg.

Energy-momentum conservation implies y;; = m? /E?, = 1 — x), and this relation is used
to classify a three-parton system: if min(y,;) < Y. for any of the three possible combinations,
the corresponding three-parton system is called a two-jet event. Of course, the cross sections
for two- and three-jet production are then functions of y .

The cross section (2.1) is divergent for r; — 1 or r; — 1; however, this is compensated by
a corresponding singularity in the ¢g cross section, provided propagator and vertex corrections
are included. The total cross section is therefore finite and amounts to o,y = 0o(1 + ag/m).
In Monte Carlo models it is necessary to apply a non-zero y.,, in the three-jet phase space,
since these models are based on probabilistic rules and therefore could not handle a negative
total two-jet cross section.

In O(a%) two further parton states can occur: ¢* ¢~ — g¢ggg and ete™ — ¢gq'q, the
latter is relatively uncommon and contributes only =~ 5 % to the total four-jet rate. As in the
previous case the Monte Carlo simulation requires the specification of a ¥y, such that only
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positive total cross sections occur. Several schemes exist, which regulate the classification of
an n-parton system as either two-jet, three-jet or four-jet (see [49] for a discussion).

2.1.2 Parton showers

Owing to the vast number of Feynman diagrams contributing to multi-parton cross sections
these have not been calculated yet. An alternative to these excessive calculations is available
in terms of the leading logarithm approximation (LLA). In this approach only the leading
terms of the perturbative expansion are kept. thus neglecting non-leading corrections. This
provides the basis for parton shower programs. since it is possible to give a probabilistic
interpretation to the LLA if certain kinematical simplifications are made. In parton showers
the essential features of coherence are retained [7|. Furthermore, parton showers contain
the correct Sudakov damping, which is missing in lowest orders matrix elements; and, they
generate multi-parton final states with “jets within jets”. It is therefore expected that parton
showers provide a superior description of the internal jet structure, but are inferior to the
O(a%) matrix element calculation, with respect to wide-angle hard parton emission.

Parton shower models are based on the iterative use of the Altarelli-Parisi equations which
determine the probability P that a branching a — be occurs during a small change dt of the
evolution parameter ¢ = In(Q?,,/A?):

dpa—-bc (
= d..— ] .
Cdt / o be(2) (

o
o

ol

q
Figure 2.2: Parton shower in e* ¢~ annihilation [6].
Theoretical considerations suggest that the Q* scale of as is p?, i.e. approximately the

transverse momentum of the branching, and this is the scale actually used in programs such
as Herwig and Jetset. The P, ;. in (2.2) are the Altarelli-Parisi splitting kernels:

'Sy 22
], —*e

Py_yo(z) = CF ; (2.3)
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ox sy 0 = 21— Z]F
Pogals) =N T, ! (2.4)

Py_gg(z) = Ta(*+1(-2z)

). (2.5)

which determine the distribution in energy-momentum in the transition a — be, such that b
takes a fraction - and ¢ a fraction 1 — = of the energy-momentum carried by parton a. The
Cr=4/3, No =3 and Ty = ns/2 (n; = 5 is the number of active quark flavours) are colour
factors determined by the gauge structure of QCD.

The evolution process starts at the maximum allowed virtuality 1,,,. for a parton (depend-
ing on the available phase space) and stops whenever it is below the threshold %,,,,. Partons
emerging in this process may themselves branch, so that eventually a tree-like structure
develops (cf. figure 2.2).

2

evol

Shower algorithms: Different interpretations of the quantities Q Q? and = are possible,
insofar as the resulting physical differences are of non-leading character and are thus not
accessible by leading log calculations. The shower algorithms in Herwig and Jetset differ in
the choice of @2 ,,, but both use the p* of the branching for the scale in as(Q?).

In the Herwig model angular ordering is accomplished by the choice of an angular variable
for the evolution process: Q?,, = E*C with ( = 1 cosf. Since the energy E of the branching
parton is constant, a decrease in Q? , automatically leads to decreasing opening angles in
successive branchings.

The Jetset parton shower develops in the centre of mass frame, with = defined as the energy
fraction in this frame. The evolution variable ¢ is chosen to be ¢ = In(m?/A?), implying that
angular ordering must be imposed as an additional constraint on the m and = values of each
branching. A special feature of this approach is that it matches the first branching, which
is not constrained by the angular ordering requirement, onto the first order matrix element
(2.1) for ggg production.

The colour dipole approach [3,4], realized in the Ariadne program, starts from (2.1), which

can be rewritten as:
3ag dki

dn = 4—7I_dedgo , (2.6)
where b, , y and o are the transverse momentum, rapidity and azimuth of the radiated gluon.
The physical picture is that of a colour dipole formed by the ¢gg pair: this dipole radiates
gluons according to (2.6). Once the first gluon has been emitted the system consists of two
dipoles; one between the quark and the gluon and the other between the antiquark and the
gluon. Subsequent gluon radiation is assumed to occur independently from the two dipoles;
in this way the procedure is generalized to multi-gluon radiation. Because the gluon with the
largest p, is radiated first the angular ordering condition, arising from soft gluon interference,
is automatically taken into account.

2.2 Fragmentation

2.2.1 Independent fragmentation

In this section the fragmentation model of Field and Feynman [2] is discussed. This model
is actually not used in the present analysis; however, it contains a number of basic features
which still can be found in more recent models.
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The intention of the authors was to give a parameterization of the properties of quark
jets. as a reference standard for the experiments.
The model involves the following assumptions:

o The probability that the hadron containing the original quark leaves the remaining jet
a fraction n of its momentum is given by an arbitrary function f(n). This ultimately
determines the momentum distribution of hadrons, and hence f(7) is constrained by
experimental data.

e New quark-antiquark pairs are produced according to the degree that flavour SU(3) is
broken, such that s5 is half as probable as uu. This particular choice was suggested by
experimental data, rather than as a theoretical prediction.

e The spin of primary mesous corresponds to vector and pseudoscalar states with equal
probability. This was inferred from p°/7° ~ 1 at large p, in pp collisions.

e The transverse momentum of primary quarks is Gaussian distributed, according to

2 2\ .12 .. . 2 o 2 s e < - 111141V

exp(—p? /207 )d*p,. This implies (p7]) = 4o, for primary mesons, for firstly primary

mesons receive contributions from two quarks, and secondly p, is a two-dimensional

vector. The quark-antiquark pair ¢;¢; has zero transverse momentum; i.e. transverse
momentum is conserved locally in a pairwise fashion.

A severe shortcoming of this approach is that the fragmentation of jets proceeds independently
for each primary quark, such that total flavour, energy and momentum are not exactly
conserved in this process. Special procedures were developed which adjust these quantities at
the end of the fragmentation process and thereby enforce conservation. The model does not
include baryon production, and the character of the model does not make a clear suggestion
of what baryons to expect. Similarly, the treatment of transverse momentum is arbitrary
to some extent (see the discussion below). The separation of longitudinal and transverse
fragmentation is, of course, an idealization. The particular simple ansatz for the transverse
part reflects the dominance of longitudinal degrees of freedom in colour confinement.

The underlying physical picture is as follows: a quark ¢, produced at some light-cone
energy-momentum W = E + p| in the = direction creates a colour field in which new quark-
antiquark pairs are formed to discharge this field. In this process the production of particles
with mass m is suppressed by a factor exp(—mm?*/F), where F is the field force acting on the
colour charges. Thus it is more difficult to create s5 pairs, for s quarks may have a larger mass
than u and d quarks. The quark ¢ then combines with the antiquark ¢; to form the rank-1
meson ¢oq, carrying a fraction z; of the original W* and leaving a fraction of 1 — z; = 7, to
the remaining jet. In the next step a ¢,¢; pair may emerge from the field to give the rank-2
meson q;q; with a fraction z5(1 — z;) of W etc. This process is iterated until finally the
energy is used up (see figure 2.3).

Longitudinal fragmentation: It should be noted that the order in rank reflects the flavour
relationship and does not necessarily coincide with the order in momentum; i.e. the rank-2
primary meson may have a larger momentum than the rank-1 meson. The degree of agreement
between ordering in rank and momentum depends on the function f(7); e.g. if f(n) is a delta-
function (f(n) = 8(n — a)), such that every hadron would leave the same fraction a of its
energy to the remaining jet, the hadrons later in rank have to have smaller momenta than
those earlier in rank, corresponding to strict ordering.
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remainder

Figure 2.3: Iterative jet production: indicated are flavour, transverse momentum and light-cone en-
ergy-momentum relationship.

In determining the splitting of the original W+ the function f(7) is assumed to be the
same at each step independent of the remaining energy: i.e. the remainder ¢, jet fragments
exactly like the original g jet, only scaled down by a factor 1 — z; in energy. The choice of
the function f(7) is constrained by the fact that the resulting particle distributions fit the
experimental data. Usually a parabola is chosen:

f(z) =1 - a+3a(1 — z)?, (2.7)

where a = 0.77 is the recommended default value. The identification of = with the fraction of
the jet’s W yields a flat central rapidity plateau for mesons produced deep in the cascade.
For small = values the mean loss of rapidity per primary meson is then given by:

by =~ [ a(n)fm)dn , (28)

and amounts to 0.56 units per primary meson, for f(n) according to (2.7) with a = 0.77.

Transverse fragmentation: The assumption that ¢g pairs emerge with zero transverse
momentum from the colour field leads to strong anti-correlations between mesons neighbour-
ing in rank. As indicated in figure 2.3 the rank-: meson ¢; ;g has p, (i) = p.;_y — p.i. From
this it is immediately seen that mesons adjacent in rank have a strong tendency to appear at
opposite azimuthal angles with respect to the jet axis. The correlation coefficient;

Ci; = (Pui-Puj)/ /(1] (pLd) s (2.9)

has the value — % for j = 7+ 1, i.e. for mesons adjacent in rank and is zero otherwise. This is
certainly a very particular choice and is considered as a pure guess by Feynman and Field [2].
In general it is also possible to give the centre of mass of the emerging ¢g pairs a Gaussian
distribution. This would change the correlation coefficient (2.9) from the value —-% to any
value between —% and +%. Furthermore, it is not unreasonable to expect p, correlations
between different ¢g pairs. Usually, not much attention is given to transverse fragmentation
properties. It will become clear in the course of this thesis that the models are indeed too
simple in this respect, and do not provide an adequate description of nature.
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2.2.2 String fragmentation

In this section string fragmentation according to the Lund model is discussed; a detailed
description of this model is given in [8].

The concept underlying string fragmentation is that of linear QCD confinement at large
distances. The process of hadron production in ¢ ¢~ annihilation is assumed to occur in a
colour flux tube which evolves in a volume of approximately 1 x 1 x 30 fm”, at the energy of
this experiment. The transverse extension of this string is of a typical hadronic size (1 fm)
and the longitudinal extension is determined by the energy density x =~ 1 GeV/fm on the
string, as inferred from hadron spectroscopy.

A Lorentz covariant and causal description of particle production off this flux tube is
possible in terms of the massless relativistic string, with its particular kinematics. In the
model it is assumed that the flux tube may break into two colour singlet pieces via spontaneous
formation of ¢g pairs in the colour field. On average, these breaks occur when the quark and
antiquark are 1 — 5 fn apart in their rest frame. This pair production is considered as a
quantum mechanical tunneling process, such that quarks with transverse mass m? = m?*+ p?
are produced in one space-time point and then tunnel out to the classical allowed region.
Classically, quarks with transverse mass cannot be produced in one point, but must be
produced at a certain distance to provide the field energy which is necessary to generate
the transverse mass. The probability for the tunneling of a quark is proportional to:

exp(—mm?® /k) = exp(—mm?®/x)exp(—mp’ /K) . (2.10)
This formula has two important implications:

e The factorization of transverse momentum and mass implies a Gaussian p; spectrum
for the emerging quarks, independent of the quark flavour.

e Heavy quark production is suppressed in the fragmentation (v : d : s : ¢~ 1 :1 :
0.3 : 107 '), thus charm and bottom quarks are not expected to be produced during
fragmentation.

Hadrons are then formed from a quark from one break and an antiquark from an adja-
cent break; this is very similar to the independent fragmentation scheme, and therefore the
concept of rank applies also here. However, while the iterative structure of the independent
fragmentation model was just an ad hoc assumption, the string model is based on a particular
space-time structure.

Space-time structure: In an iterative process the original string, stretched between the
go quark and the g, antiquark, may break into two colour singlet pieces via the formation
of a q;¢ pair at (z;,%;) in space-time. Further breaks may then occur at later times (z;,1;)
(see figure 2.4). Quarks and antiquarks from adjacent breaks combine to form subsystems,
which are either hadrons or fragment further. Energy and momentum of the g¢;;; hadron
are given by x(z;41 — z;) and k(#;4, — 1;) respectively. The mass m of the hadron gj¢;4, thus
constrains the production points to lie on the hyperbola:

2

m
(1‘1+1—1‘i)2_(f|+1_1i)2: 2 (211)
K

which can be parameterized as:

m
(2i41 — @iy tiz1 — t;) = —(cosh y,sinhy) , (2.12)
I
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Figure 2.4: Hadron formation in the string model.

where y is the rapidity of the hadron in the gogo rest frame.
The splitting of the original W+ is done according to the left-right symmetric fragmenta-

tion function:
1-2)° —bm?
f(z) = ( = ) exp( fnl> " (2.13)

~

-~

where a and b are free parameters. Equation 2.13 is the most general fragmentation function
(with some simplifications) obeying left-right symmetry. This property refers to the fact that,
in principle, it should be impossible to distinguish whether a fragmentation process started
from the quark or the antiquark end of the string. This requirement is not fulfilled in the
independent fragmentation model, described in section 2.2.1.

As an alternative to (2.13) the so-called Peterson function [10] may be used for heavy
charm and bottom quarks:

1

T 1_1_ fg )2
~(1 = 1-:z

f(=2) (2.14)

where ¢, = (mo/mq)2 and my is a mass scale related to light hadrons.

As in independent fragmentation, string models separate the fragmentation process into
longitudinal and transverse parts, although these do not decouple completely since the trans-
verse mass enters in (2.13). Transverse fragmentation is handled the same way as in the
independent fragmentation model; i.e. it is locally compensated and Gaussian distributed,
implying strong correlation effects as discussed above.

The probability distribution of ¢g production vertices in invariant time 77 = t* — 2% is
given by:

P(T)dT o I' exp(—bI')dT", (2.15)
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where I' = (x7)? and a and b are the parameters of the symmetric fragmentation function
(2.13). Thus, the ¢;g production vertices are not randomly distributed in space-time, but
kinematical boundary conditions require:

m

P
I",:(l—:i)(l",14—i) , (2.16)

o |

for adjacent breaks, with Iy = 0 for the initial values at the quark and antiquark ends
respectively. For large i, i.e. for particles produced in the central plateau away from the ends
of the jet system the production points will, on average, lie on the hyperbola I' = (1 + a)/b.

In the Monte Carlo model the string breaks alternate between the quark and the antiquark
end of the string system. A special procedure is adopted to handle the production of the
last two hadrons: when the remaining energy falls below a threshold (=~ 2 GeV) the iterative
process is stopped and a final ¢gg pair is formed to join the quark and antiquark ends of the
string via the formation of two final hadrons.

Gluon radiation: The Lund string model can cope with both collinear and soft gluon
radiation and this is why the model is said to be “infrared safe”. Basically, this is because

(c) Pq

Figure 2.5: Strings with attached gluons [48]: a) an ordinary three-jet event, b) a three-jet event with a soft
gluon and c) a three-jet event with a collinear gluon. The dashed lines indicate the trajectories of the partons
and the solid lines show the evolving string at different times.

every emitted gluon just adds a kink to the string and thereby only changes the direction
of energy-momentum flow, figure 2.5 shows the time evolution of the string for three typical
cases. For this reason the model can be used in connection with both parton showers and
matrix elements.
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2.2.3 Cluster fragmentation

The central idea of cluster fragmentation is that of preconfinement [1|. which means those
properties of QCD, which are responsible for the local formation of colour singlet clusters,
once the perturbative jet development has come to its end.

In this section we shall briefly discuss the cluster model implemented into the Herwig
program |5 : a complete description of this model can be found in [5,6].

A basic requirement for any cluster model, in order to conform with the idea of precon-
finement is that it does not disrupt too much the connection between colour and momentum
flow. This is realized as follows: when the perturbative branching process approaches the
scale Q¢ = 2m, = 2my the fictitious gluon mass my, = Q, prevents further branchings of the
type ¢ — gg, such that all outgoing gluons eventually decay into light (v or d) (di)quark-
anti(di)quark pairs. The latter process is relatively uncommon in the perturbative phase and
is enforced by a suitable modification of the ¢ — ¢g form factor. The relative abundances
of different quark flavours are regulated by the quark mass assignments. In addition, the
production of diquark pairs is controlled by two parameters: the scale Q; below which di-
quark pair production may occur, and a probability P, (constant per unit log Q) that it will
occur. This diquark scheme was introduced to account for baryon-antibaryon correlations
[11], which require a relative diquark production rate of approximately 5 %; by default it is
switched off.

—~_A
&<

Figure 2.6: Colour structure in cluster fragmentation [6]: the blobs represent colour singlet clusters which
subsequently decay.

At this stage the event consists solely of (di)quark-anti(di)quark pairs, and the dominant
colour structure may be presented in a planar form as shown in figure 2.6. Neighbouring
quarks and antiquarks are then combined to give colour neutral clusters. It is to note that
these clusters have a distribution in mass and spatial size concentrated at low values which
is approximately independent of the scale of the hard scattering process, reflecting the basic
properties of preconfinement. The average mass of these clusters is actually about 3m, (cf.
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figure 6.17 on page 7).

Clusters. on the average, are supposed to represent the spectrum of primordial resonances
occuring in the early stages of confinement. With this in mind, it appears reasonable that
their decay should be a kind of averaged resonance decay. In the model it is thus assumed
that most clusters disintegrate into two hadrons. This decay is isotropic in the rest frame
of the pair and proceeds via the production of (di)quark-anti(di)quark pairs with one of the

following flavours: uu, dd, ss. cc, uuuu, dddd, ssss udud, usus or dsds. such that a cluster
decays either into two mesous or into two baryons. The decay products are selected from the
following multiplets: 07,1% or 2* for mesons and j or 3 for baryons. Each decay with the
appropriate flavour is welghted according to the spm deg.,eneracv (25 + 1) and the available
phase space.

An appealing property of this approach is that it does not distinguish between longitudinal
and transverse fragmentation in contrast to independent-jet and string models. It is further
noted that the (di)quark-anti(di)quark pairs, produced to split the clusters. are not associated
with any dynamical properties, such as energy-momentum or spin, but carry flavour only.
This is certainly an idealization; however, it gives definite predictions for the suppression of
strange and charm particles and baryons, which in this case is completely determined by the
phase space available in cluster decays.

Three exceptions from the above scheme may occur:

1. Clusters containing heavy flavours (b or 1) undergo weak V" — A decays, giving a lighter
quark and a colour singlet fermion-antifermion pair from the decay of a virtual W
boson.

SV

. Low mass clusters, too light to decay into two hadrons, collapse into the lightest hadron
of their flavour. Energy-momentum conservation is accomplished by an exchange of
energy with a neighbouring cluster.

3. For very massive clusters the two body decay is considered to be too poor an approx-
imation. An iterative fission model is used instead to split those heavy clusters until
their mass falls below the fission threshold M; = 3.5 GeV. Only the light uu, dd
and ss flavours are produced during cluster fission. Energy-momentum is distributed
symmetrically among the two decay products: i.e. a cluster of mass M¢ formed from
a (di)quark of momentum p} and an anti(di)quark of momentum pj decays into two
clusters X and Y with

QO 0 QO
2 = 1 = _) ; S .
Px ( M Pt M(P
QoY ., , Qo
}" = 1 o )I» # 3
Py ( Mc ) LA TR

Thus cluster fission is similar to string fragmentation.
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CELLO experiment

The data studied in this thesis were taken in the year 1986 with the CELLO detector at the
e* e storage ring PETRA at DESY in Hamburg. Since 1978 five collaborations conducted
experiments with centre of mass energies up to 46.8 GeV in the four interaction regions at
PETRA [12] (see figure 3.1). After 1986 data taking was stopped and PETRA was modified
for its present role as an injector for the HERA storage ring. In 1986 measurements were
performed at a centre of mass energy of 35 GeV. For CELLO this last year yielded data
corresponding to a time integrated luminosity of 86 pb~'.

HF-Halls N

JADE
¥ Hall NW

PETRA

Hall W 22

. Hall S
MARK J

Figure 3.1: Storage ring PETRA with injection scheme.

The first section of this chapter describes the main features of the CELLO detector which
are relevant for the analyses presented in this thesis. A description of the storage ring PETRA
and the other experiments can for instance be found in [12]. The subsequent sections describe
the data flow through the chain trigger - data acquisition - filter — event reconstruction —
data reduction.

16
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3.1 CELLO detector

Due to the relatively low event rate most detectors at ¢* ¢~ machines are designed as general
purpose detectors. In contrast to detectors at fixed target machines, which select one or more
particular processes to be studied, these are built to record all types of events of interest.

CELLO was constructed as such a general purpose detector in 1978 by a group of French
and German institutes [13]. The main requirements are a full coverage of the solid angle to
measure and possibly identify charged and neutral particles. A special technical feature of
the CELLO detector is the superconducting coil. of an novel design at that time, with an
overall thickness of only 0.5 radiation lengths including the cryostat and insulating material.
This design allows an undistorted energy measurement of photons and electrons in the lead
liquid argon calorimeter surrounding the coil. Due to the fine segmentation of the calorimeter,
shower topologies are easily reconstructed and photons and electrons can be identified and
separated from hadrons [14]. The above components surround the cylindrically symmetric
central tracking chamber which has a length of 2.2 m and thus allows us to measure charged
particles over a large solid angle (97 % of 47). With good hermeticity of the calorimeters
(coverage down to an angle of 45 mrad with respect to the beam axis), CELLO has a large
efficiency for reconstructing truly exclusive events, i.e. events where all final state particles
are detected.

3.1.1 Survey

Figure 3.2 shows a schematic view of the detector at the time of construction. Various
components have later been added or modified. The following list gives a survey of the
detector parts at the time of the last run period in 1986. Those parts which are relevant for
the analysis will be described below. A detailed description of the other components can be
found in [13]. Going from the inner parts to the outer parts of the detector, one finds the
following components:

e Beam pipe: the aluminium vacuum pipe surrounds the beam axis at a distance r = 7.8
cm. The wall thickness is 0.03 radiation lengths (X,) (before 1982 0.07 Xj).

e Beam pipe chambers: since 1982 two staggered layers of drift tubes with a length
of 1 m surround the beam pipe. Their thickness amounts to 0.01 X,. These chambers
were added in order to improve the vertex reconstruction and momentum resolution
[17].

e Central detector: the central detector cousists of a system of cylindrical drift and
proportional chambers that measure track coordinates of charged particles between
r =17 ecm and 7 = 70 cm. The amount of matter in these components sums up to 0.02

Xo.

e Superconducting solenoid: the aluminium coil with a wall thickness of 0.5 X creates
a solenoidal field of 1.32 T.

e Barrel calorimeter: the central barrel shaped lead liquid argon calorimeter consists
of 16 identical modules with a depth of 20 X;,. Their distance from the beam axis is
r = 106.7 cm.
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e Return yoke: the 80 cim thick iron construction serves not only as a return yoke for
the magnetic flux but also as a hadron filter of 5-8 absorption lengths.

¢ Muon chambers: muons with momenta p - 1.2 GeV traverse the hadron filter and
are subsequently detected in the muon chambers. These large area chambers with a
drift cell structure are read out as proportional chambers and cover approximately 90 %
of the solid angle.

In the forward region the detector is completed by:

e End cap calorimeter: this lead liquid argon calorimeter consists of four modules of
21 X, complementing the barrel calorimeter in the forward region.

e Hole tagger: a set of scintillation counters with 4 X; material in between was added
in 1982 to close the acceptance hole for neutral particles between the barrel and end
cap calorimeters.

e End cap proportional chambers: two crossed layers of proportional chambers in
front of the end cap calorimeter improve the reconstruction of forward going tracks.

e Forward calorimeter: due to the installation of mini beta quadrupoles in 1982, the
forward detector was totally remodeled and now consists of a set of scintillator strips
and lead glass blocks to measure the position and energy of scattered electrons and
positrons.

rd

1.5 m
..cos?¥ =0.87
Barrel calorimeter
Hole tagger
1.0 m + Eindoop . | ..cosY =0.93
prop. chamber "
s Endcap
BB —— Inner defecioﬁr — calorimeter
2 cos¥ =0.99 Forward
i R RPETOT calorimeter
B e g — 19 =45 mrad
T e e £ i ' 4 o
1 m 2 m 3 m Z

Figure 3.3: Geometrical acceptance of the CELLO detector.

A schematic view of the geometrical acceptance of the detector components is given in
figure 3.3. Here, only the innermost components of the detector are shown. The CELLO co-
ordinate system is defined with the z-axis along the flight direction of the incoming electrons.
The r-axis lies in the plane of the storage ring pointing outwards, the y-axis is defined by
y = = x r. In the plane perpendicular to the beam axis the polar coordinates r and ¢ are
used; the angle 9 is determined with respect to the z-axis.
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3.1.2 Central track detector

The central detector consists of a system of cylindrical drift and proportional chambers, as
depicted in figure 3.4. They are mounted concentrically to the beam axis and have an outer
radius of 0.7 m and an overall length of 2.2 m. Altogether there are 7 drift and 5 proportional
chambers. Their position and other parameters can be taken from table 3.1.

Cathode strips
90°  30°

Proportional chambers
Drift chambers

Beam pipe chambers

Figure 3.4: Central tracking device.

The two inner chambers were added in 1982 to improve the vertex reconstruction in the
rp-plane. They consist of two layers of drift tubes which are arranged parallel to the beam
axis with a length of 1 m. Each of the drift tubes contains a single anode wire in a gas mixture
of 50 % argon and 50 % ethane at atmospheric pressure. The coordinates perpendicular to
the beam axis are determined by a measurement of the time difference between the passage
of a particle through the drift tube and the arrival of the ionization pulse on the anode wire.
The resolution achieved in this chamber is 180 ym [17].

The drift chambers are constructed from entirely open drift cells. Each drift cell consists
of one anode wire separated from adjacent ones by a set of three cathode wires. The lateral
distance between adjacent anode wires is on the average 15 mm. The drift chambers are
grouped in sets of two or three chambers with a common gas volume enclosed by two mylar
cylinders. As in the case of the drift tubes a gas mixture of argon and ethane in a ratio of
1:1 at atmospheric pressure is used. The resolution of the ry-coordinates reconstructed from
the space-drift-time-relation is 170 ym [18].

The proportional chambers are used to determine the z-coordinate of track points. This
is accomplished by two cylindrical cathodes finely segmented in strips oriented at 90° and 30°
with respect to the cylinder axis. The two cathode cylinders enclose a large number of axial
anode wires with mutual spacings of the order of 2.5 mm. The precision of the r¢-coordinate
measurement is given to first order by the geometrical resolution (spacing/+/12 =~ 770 pm).
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chamber | chamber | radius number of | distance of | # cathode strips |
number type lem| | signal wires | wires [mm| | 90° | 30° :

1 drift tube | 10.90 | 128 5.35 — —

2 drift tube | 11.37 128 5.54 —

3 prop. ch. | 17.0 512 2.09 252 256

4 prop. ch. | 21.0 512 2.58 228 256

5 drift ch. 25.5 104 15.41 — —

6 drift ch. 30.4 128 14.92 — | —

7 prop. ch. | 351 | 1024 2.19 366 512

8 drift ch. 40.2 | 168 15.03 — —

9 drift ch. 45.1 ‘ 192 14.76 — —

10 drift ch. 50.0 208 15.10 — —

11 prop. ch. | 55.3 1536 2.26 420 768

12 drift ch. 59.8 256 14.68 — —

13 drift ch. 64.7 256 15.88 — —_

14 prop. ch. | 70.0 1536 2.86 494 768

Table 3.1: Geometrical and electrical parameters of the central tracking detector.

The charge induced on the cathode strips at the point of incidence next to the anode wire is
measured by an analog readout of each strip. The resolution of the z-position achieved this
way is 0 ~ 440 pm. The proportional chambers are run with a gas mixture of 80 % argon
and 20 % isobutane with an admixture of 0.2 % freon. Besides determining the :-position of
track points the proportional chambers are used in the fast track trigger. The information
from both projections is already available after 2 us.

The tracking detector is completed by two crossed layers of proportional chambers which
are mounted onto the front end of the end cap calorimeter. The anode wires measure the
z- and y-coordinates while the cathode planes are divided into sectors of Ay and concentric
rings, respectively. The resolution is of the order of 5 mm. The end cap proportional chambers
cover the acceptance region of 0.910 < |cos | < 0.988 [13].

The geometrical acceptance of the central tracking detector is 84 % of 4 if a track is
required to hit all 14 chambers. Using in addition the information of the end cap propor-
tional chambers and requiring only five chambers of the inner detector to determine all track
parameters, the acceptance is increased to 97 % of the full solid angle.

The deflection of charged particles in the magnetic field of the CELLO superconducting
coil forces the particles onto circular tracks in the ro-plane with a curvature inversely propor-
tional to their transverse momentum. The precision of momentum reconstruction depends
on the number of track points measured, the resolution of the chambers and on multiple scat-
tering in the detector material traversed. The momentum resolution of the CELLO central
detector was determined to be [17]:

Op,

y 2

where p, is measured in GeV. The vertex of a track can be determined with a precision of
~ 330 pm.
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Figure 3.5: Structure of the lead liquid argon calorimeter.

The CELLO calorimeter has a sampling structure of lead layers alternating with layers of
the active material argon. Electrons and photons create a secondary particle cascade by
means of bremsstrahlung and pair creation. The ionization loss of these secondary particles
is recorded in the argon. Electromagnetic showers at the maximum PETRA energies are
fully absorbed in the 20 X structure of the calorimeter. A good detection efficiency, energy
resolution and spatial resolution of photons is achieved over the entire solid angle. Cascades
induced by hadronic particles, however, are not completely contained in the calorimeter due
to its depth of only 0.9 absorption lengths. This feature, on the other hand, allows a good
electron-hadron separation. This is accomplished by the three-dimensional reconstruction of
shower topologies in the highly segmented calorimeter structure [14].

barrel end cap

calorimeter | calorimeter
material in front of calorimeter 1.1 X, 1.2 X,
depth of calorimeter 20 X, 21 X,
thickness of lead layers 1.2 mm 1.2 min
distance between lead layers 3.6 mm 3.6 mm
number of layers 41 42
number of electronic channels 9248 1472
angular resolution 4 mrad 6 mrad
acceptance in | cos V| < 0.86 0.92 — 0.99

Table 3.2: Technical data of the liquid argon calorimeters.

The barrel calorimeter is composed of 16 modules with trapezoidal cross section corre-
sponding to a sector of an octagon. The two octagons are mirror images arranged symmetric
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to = = 0 inside one large crvostat with an overall length of 4 m. The end cap calorimeter
consists of four half-cylindrical stacks: two at each end of the detector enclose the beam pipe
(cf. figure 3.5).

The modules in each of the calorimeters are identical. Layers of 1.2 mm lead plates
(cathodes) and 1.2 mm lead strips (anodes) alternate (see figure 3.6 a)). The gap width
between the lead layers is 3.6 mm (4 mm in the end cap calorimeter) and is filled with liquid
argon. The lead strips and plates are at a relative voltage of 2.5-5 kV. The orientation of
the strips in the barrel part alternates between an alignment parallel to the beam axis (-

measuring), with an angle of 90° (J-measuring) and at 45° (to resolve ambiguities). The
strips in the end cap calorimeter are alternately vertical, horizontal and circular. The width
of the strips is of the order of 2-3 cm. In front of the calorimeter there are two additional
copper liquid argon layers (three in the end cap) which serve as dE/d X -gaps.
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Figure 3.6: Geometric (a) and electronic (b) structure of the lead liquid argon calorimeter

There are more than 3000 strips in each of the modules. In order to decrease the number
of electronic channels, neighbouring strips have been grouped to block layers (see figure 3.6
b)) with a scheme that yields a uniform angular resolution. For the azimuthal angle ¢ this
uniform resolution is given by the octagonal structure of the calorimeter, for the polar angle
¥ (measured from the beam axis) it is achieved by a coarser read out structure towards the
forward region. A detailed description of this read out block structure is given in [14]. The
number of channels to be read out is thus reduced to 576 in a barrel module and 368 in
an end cap module. To reduce the amount of data written to tape, channels with a signal
below 2 ¢ above the electronic noise pedestal are suppressed. The electronic noise in a double
layer corresponds to == 1 fC. This has to be compared with the charge deposit of 5 {C for a
minimum ionizing particle [14].

The energy resolution of the calorimeter is given by the sampling fluctuations. A further
degradation results from material in front of the calorimeter, miscalibration, dead channels
etc. The resolution for electromagnetic showers in the CELLO calorimeter achieved in the
running experiment is:

%:5%@10%/\/15

with E being measured in GeV (@ = quadratic addition of the terms).
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3.1.4 Forward calorimeter

The forward calorimeters measure electrons that are scattered at small angles not accessible
to the end cap calorimeter. They serve as a monitor for the luminosity measurement based
on Bhabha events and are used to trigger. and to measure the Q* of two-photon reactions.

The calorimeters are located at a distance of 2.65 m from the interaction point and cover
the acceptance region from 45-110 mrad. Lead glass blocks are used as shower counters; 20
blocks are found on each side of the detector. Each half-circular quarter containing 10 blocks
is mounted directly onto the beam pipe. The lead glass blocks have lateral dimensions of
typically 5 cm (= 2 Xj) and a length of 13 X,. The Cherenkov light emitted by the charged
particles in the shower cascade is detected by photomultipliers. The positional measurement
of the tagged electrons is improved by means of a scintillator hodoscope. Half circular scin-
tillator strips of 1 em width are read out by photomultipliers at each end. A thin layer of
lead (0.5 Xg) gives an early start to the shower cascade and hence an increased signal in the
scintillators. Comparing the light output at each end allows a determination of the position
along the scintillator (p-coordinate), the radial position of the scintillator hit determining
the angle with respect to the beam axis. This information is combined with the centre of
gravity position from the lead glass blocks.

Due to the location of the forward counters a large amount of material is positioned in
front of the calorimeter. This fact degrades the energy resolution over a large range; in some
angle regions the energy measurement cannot be used at all. On average the material in
front of the calorimeter amounts to 2 X, up to an angle of 90 mrad; above this the end cap
cryostat shields the forward calorimeter with 10 X, of material.

3.2 Data acquisition and event reconstruction

Every 3.8 us the electron and positron bunches cross each other in the interaction region of
the CELLO detector. Most of the bunch crossings do not result in any physically interesting
interaction. Owing to the small cross section, annihilation events occur at a rate of 1 per
10 minutes at the typical luminosity of 5 - 10%° em™?s'. Background reactions such as
interactions of beam particles with the residual gas in the beam pipe (beam gas events),
interactions with the material of the beam pipe wall (bearn wall events), cosmic ray events
(cosmics) and synchrotron radiation are by far more abundant. In order to suppress this
background and still accept the majority of physically interesting events a fast trigger logic
is essential. The time needed to read out fully all the detector components limits the data
acquisition rate to about 5 Hz. In order not to lose too many interesting events the trigger
conditions cannot be too strict, and hence a second filter is needed to reduce the amount
of background accepted by the loose trigger conditions and to minimize the expenditure of
computer time needed for the full reconstruction of the data.

The forthcoming sections describe the sequence of data acquisition and reconstruction
through the chain trigger, filter, event reconstruction and data reduction.

3.2.1 Trigger system

The trigger uses information from all components of the detector. A number of basic condi-
tions are combined to give the trigger conditions selected. Basic conditions are for example
the energy sums in the calorimeter modules, the energy in the forward calorimeter and the
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number of tracks in the central and end cap track detector. Altogether there are 16 trigger
conditions defined for the CELLO detector. at least one of which has to be fulfilled for an
event to be recorded. The different conditions cover the various signatures of e* ¢~ collisions.
Here we describe only those conditions that are relevant for triggering annihilation events.
The fundamental ingredient for the charged particle trigger is a software programmable
hardware track finding processor [19. This processor employs the information of the five
proportional chambers and of two of the drift chambers for the identification of tracks in the
rp-projection and of the 90° cathodes for the rz-projection. The chamber signals are divided
into 64 azimuthal (as shown in figure 3.7) and 37 polar sectors. Each track creates a certain

Sector number
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Figure 3.7: rp-sectors for the trigger logic: Shown are the seven chambers used in the trigger, their segmen-
tation in the rg-projection and a track that ends in sector 0.

signal pattern in the sectors of the seven chambers. All possible patterns of tracks above a
certain transverse momentum can be determined. These patterns are then stored in random
access memories (RAM) - one set for transverse momenta above 650 MeV (ryy masks) and
one set for p; > 250 MeV (ryp; masks). To take into account chamber inefficiencies, additional
masks are stored with only 5 or 6 points per track. These precomputed masks are compared
with the signals from the central detector. If the pattern coincides with any of the masks the
corresponding condition is transfered to the master trigger unit. A similar identification is
done in the rz-projection where at least three out of five hits in the proportional chambers
are required. The location of masks is done in less than 1 us.

The neutral particle trigger makes use of the information from the liquid argon calorimeter.
Here the energy of a stack is computed by means of a hardware sum of all channels. Using
discriminators, several trigger conditions can be defined corresponding to the energy deposited
in the calorimeter. This system of discriminator triggers (LA1 to LA4) has been supplemented
with and partly replaced by a system of flash ADCs [20]. For every module two trigger sums
are formed by summing up all channels or those channels that lie in the region of the maximum
of electromagnetic showers (4-7 Xy). The second sum is taken at a different time to exploit
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the shape of the FADC signal. Thus showers can be rejected that do not coincide with the
beam crossing (e.g. cosmics, electronic noise). All the above information is combined to four
trigger conditions LA1FL to LA4FL. Inside the master trigger unit the number of masks
re(n) and rz(m) satisfied is combined with further basic conditions to give the final trigger
criteria.

3.2.2 Data acquisition

The CELLO data acquisition system is steered and controlled by an online computer of the
type DEC PDP-11. The detector is read out by a CAMAC® system which is organized in a
tree like structure: each detector component is assigned to a branch, and the online computer
is the root. Each branch is controlled by a minicomputer. These minicomputers are used to
calibrate and test the assigned detector components without interfering with the rest of the
system. During data acquisition they monitor the performance of their detector component.
Zero suppression of channels without information is already accomplished at this level; block
addresses are added to the remaining data words for identification.

Once the master trigger unit sends its interrupt signal to the online computer, the PDP-
11 stops all other operations, disables further triggers and starts with the data acquisition.
The information from all branches is transfered to the main memory where it is formated
into a data structure with variable length (typically several hundred to several thousand
16-bit words). During this process the data structure is checked, and in the case of severe
readout errors the event is rejected. Already at this stage a fast track reconstruction is done
which is used to verify the track triggers, and on the basis of the number of tracks found the
event is classified. Candidates for multihadronic and Bhabha events are marked for separate
reconstruction. All events are then passed on and the readout system 1is again enabled for
further data acquisition. This whole process takes about 50 ms. The events are stored on a
disk file which is organized as a ring buffer. Once the space on this buffer is almost exhausted
the data are transmitted via a permanent link to the IBM in the DESY computer centre and
are copied to magnetic tape (DUMP tapes).

Events marked by the online computer are immediately reconstructed and then written
to a special disk file. These events are scanned by the shift crew using an interactive display
program to monitor detector performance and reconstruction chain.

The Bhabha events are furthermore used to determine the position of the interaction point
of each filling of the PETRA storage ring. The knowledge of this position is crucial for the
further reconstruction of the data, since all track parameters are determined relative to the
primary vertex.

3.2.3 Filter

Soft trigger conditions are essential for the data acquisition at general purpose detectors. This,
of course, increases the amount of background reactions acquired, and hence a preselection
of events is necessary before the time-consuming full reconstruction of the data is done. Such
a filter offers the possibility to conduct a more refined analysis of the events than that done
at the trigger level.

The CELLO filter program 21| analyses the events without refering to the trigger explic-
itly. The basic input informations used in this program are:

*Computer Automated Measurement And Control
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e the inner detector wire chamber coordinates
e the hardware energy sums in the calorimeters
o the energy of single channels in the liquid argon calorimeter

In a first step charged tracks coming from the interaction point (assumed at r=0 with an
uncertainty of 3 cm) are reconstructed in the re-plane requiring a minimum of 9 points per
track. In a second stage the recounstruction of tracks in the rz-projections is performed with
no assumptions about the interaction point. Instead. there must be at least one track with a
z-vertex not more than 5 cm apart from the z-vertices of 60 % of all other tracks. For those
events a common z-vertex is computed that has to be within =15 cm around the origin (= =
0). Otherwise all reconstructed tracks are ignored.

The energy sums of the calorimeters are classified according to their energy levels. For
each stack the signal time relative to the time of the interaction is computed from the FADC
sums taken at two different times. Signals in a stack within + 300 ns around the expected
time are classified as in time. In a second stage showers are reconstructed from the signals
of the single channels in the liquid argon calorimeters.

Finally, at least one of the fired triggers has to be verified on the basis of the analysis
described above. Less than 1 % of all reconstructable events for most of the reactions are
affected this way.

During data acquisition the filter program runs on an IBM 370/E emulator. The events
are read in from the online disk and marked accepted or rejected according to the criteria
selected. An identical program executes on the central DESY IBM computer. This program
reads in all events, analyses all events accepted by the emulator and those not analysed by
the emulator due to time limitations, and writes all accepted events onto magnetic tapes
(FILTER tapes). As an additional check 5 % of the events marked rejected are reconstructed
once more.

In the run period 1986 out of 61.5 million triggered events 7.5 million (12.2 %) were
accepted by the filter. The FILTER tapes for that year are used as an input for the full event
reconstruction described in the following section.

3.2.4 Event reconstruction

The raw event data are processed by several independent programs, called processors. The
main program OFFRAM constitutes a frame around these processors, steers the sequence
of reconstruction and delivers the required information about the conditions of the detector
components (calibration constants, defect channels, resolutions, etc.) to these processors.
The results of the reconstruction, e.g. track and shower parameters, are stored in banks and
are written together with the raw data onto data summary tapes (DST tapes). Because of
the huge amount of computing time needed, the production of the DST tapes is split up
between several of the institutes participating in the CELLO collaboration.
The program OFFRAM embodies the following processors:

CELPAT: The programm CELPAT reconstructs tracks of charged particles in the inner
detector by an iterative procedure described below. First, the signal of the anodes and the
30° and 90° cathodes of the proportional chambers are correlated to form three dimensional
space points; tracks in the rz-plane are formed by a fit to a straight line pointing to the
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interaction region. Then, three points in the re-projection are searched for, that can be
connected by a segment of a circle passing within 15 cm of the interaction point. The points
used have to lie within one of the predefined sectors in the inner detector which corresponds
to a cut in the transverse momentum of the particle. In the vicinity of the segment, further
points are sought for. A collection of at least 7 points (6 points for low momentum tracks)
is called a track candidate. After a successful fit of these track candidates the points used
are excluded from the search for further candidates. This procedure is repeated with larger
sectors corresponding to smaller transverse momenta until, finally, low energy tracks with
transverse momenta down to 100 MeV are reconstructed. At last, complete tracks are formed
by combining the ry and rz-parts with the help of the spatial information of the proportional
chambers.

CLGEOM: For the tracks found by CELPAT, a further fit is performed including the
interaction point and taking into account the inhomogeneities of the magnetic field. The use
of the primary vertex position determined from the Bhabha events improves the momentum
resolution of tracks coming from the interaction point. For the case of particles created at
secondary vertices this result cannot be used.

ECCPAT: Particles traversing the detector in the very forward region (0.91 < |cosd| <
0.99) hit few chambers of the inner detector. Using in addition the hits in the end cap
chambers and including the primary vertex as a measured point, ECCPAT reconstructs these
forward going tracks.

LATRAK: The processor LATRAK reconstructs showers in the liquid argon calorimeters.
At first, two-dimensional shower energy clusters are formed in each layer of the calorime-
ter employing the different directional orientation of the lead strips (cf. section 3.1.3). For
all tracks in the inner detector pointing to the two-dimensional clusters, three-dimensional
clusters are constructed along the flight direction of the particle. A straight line fit is ap-
plied including the intersection point of the track with the magnetic coil to determine the
orientation of the shower inside the liquid argon. All other three-dimensional showers are
constructed under the assumption that they are created by photons coming from the primary
vertex.

LNKJOB: This program links showers to tracks in the inner detector. This assignment of
showers initiated by charged particles prevents them from being treated as photons later on.

MUCH: This last processor extrapolates tracks through the calorimeter and the hadron
filter and combines them with the hits in the muon chambers. The distance between the
extrapolated position and the actual hit is a measure for the quality of the identification as
a muon.

For the purpose of this and several other analyses substantial improvements have been
implemented in the reconstruction chain, e.g. identification of secondary vertices [22,23], par-
ticle identification below 1 GeV in the liquid argon calorimeter [14], shower reconstruction in
the forward calorimeter and an improvement of photon identification and their discrimination
from electronic noise [16,15].
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Multihadronic events

4.1 Multihadronic event selection

Following the data reconstruction there are two more selection steps. The first one consists
of soft cuts to obtain all annihilation and two-photon events [24]. This selection is the basis
for next to all physical analyses conducted in the CELLO collaboration. The second selection
yields events resulting from multihadronic ¢ ¢~ annihilation processes.

On average. multihadronic events produced at 35 GeV centre of mass energy consist
of 14 charged and 16 neutral particles, about 70 % of which are recorded by the CELLO
detector. The remainder escape detection due to limited geometrical acceptance and detection
thresholds. Owing to the high energy release in the detector, multihadronic events have a
distinct signature which allows us to select them very efficiently from the far more abundant
background. Nevertheless, several physical processes remain that may fake multihadronic
annihilation events:

1. The creation of 7 pairs (¢*e¢~ — 7777 ) may result in two-jet like events of low multi-
plicity. Most of the events contain between two and six charged particles, which carry
a large fraction of the total centre of mass energy. Events with more than four charged
particles are rare and occur only in about 2 % of all cases.

2. Higher order QED processes with leptons and photons in the final state [25], e.g. ra-
diative Bhabha events e*¢™ — ¢* e 4. Events with more than two charged particles in
the final state are suppressed at order a? .

3. The two-photon process, as depicted in figure 4.1, generates events with mainly low
invariant mass and often with a large boost in direction of the incoming electrons.

4. The interaction of the electron (positron) bunches with the residual gas in the vacuum
chamber® creates events with a large boost along the beam pipe. These so-called beam
gas events are uniformly distributed along the z-axis. It should however be remembered
that trigger biases may lead to a non-uniform acceptance. Beam gas events are due to
interactions with atomic nuclei and therefore have a positive net charge.

*The gas pressure in the PETRA vacuum chamber is about 10~® mbar and is mainly due to Hydrogen,
Oxygen and Water.

29
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5. Electrons or positrons leaving their nominal orbit may interact with the heam pipe. The
beam wall events originating in this way also have a positive net charge. and occasionally
cause a high activity in the beam pipe chambers.

Figure 4.1: Schematic view of the two-photon process.

On the basis of the above listed characteristics it is possible to select multihadronic events
with a high efficiency at a very low background rate. This is achieved by the following cuts:

e Charged particles are accepted if:

1. Their polar angle is in the range from 25° to 155°.

2. Their momentum component perpendicular to the beam axis is greater than 150

MeV.
3. Their distance of closest approach to the beam axis is less than 15 mm.

4. Their z position lies within three standard deviations of the mean event = position,
as determined from all charged particles in the event.

They have no sequence of more than three successive missing chambers.

o o

They register in more than 50 % of the chambers available to them.

~

In addition, for each pair of particle candidates it is checked whether their hit
patterns in the central detector are identical within the chamber resolution. From
such particle pairs only the track with the better primary vertex compatibility is
kept.

e Calorimeter showers are identified as neutral particles if:

1. They are not linked to extrapolations of charged particle tracks.
2. Their polar angle is in the range from 32° to 148°.

3. Their measured energy exceeds 250 MeV.
e Multihadronic events are selected for analysis if:

1. They contain at least five charged particles.




1.2. Global event shapes 31

07

The visible energy in charged particles is at least 22 % of the total centre of mass

19

energy.

3. The total energy recorded in the calorimeters is at least 16 % of the total CM
energy.

4. To an alternative to points 2 and 3 it is sufficient that the visible energy in charged
and neutral particles is at least 33 % of the total CM energy.

(W]

. The net charge sum is less than six.

6. The magnitude of a longitudinal momentum imbalance in the event is less then
57 % of the bea energy.

-3

_ The event axis. taken to be the sphericity axis as determined from all charged and
neutral particles, has |cos#| = 0.865.

8. The number of hits recorded in the beam pipe chambers is less than 70.

18,543 events passed the above selection and are the basis for the subsequent analysis. The
remaining background rate was estimated from visual scanning to be below 3 % and consists
mainly of 7 pair, two-photon and beam gas events.

The efficiency of the multihadronic event selection (including the complete data acquisi-
tion chain) can be computed from the measured luminosity £ = 86 pb~! [26] and the total
hadronic cross section o(ete” — hadrons) = 377 pb and amounts to 57 %. This figure is well
reproduced by Monte Carlo simulations.

4.1.1 Two-jet selection

In part II of this thesis two-jet events will be used for analyses of particle correlations. For
this purpose two-jet events are defined by the following criteria:

1. The number of clusters, as determined by the LUCLUS algorithm (9] using charged and
neutral particles in an event, must be equal to two. The resolution scale d,,,,, above
which two clusters may not be joined has been set to 7 % of the total visible mass.

2. The two cluster axes must be parallel within a margin of 25°.

The first requirement selects events that consist entirely of two particle clusters, while the
second requirement effectively rejects events with hard initial state radiation. The latter
process can occur as a high energy photon escaping detection through the beam pipe, leaving
behind a boosted jet system at reduced energy, which appears V-shaped in the laboratory
system. In this case the definition of an event axis by the final state particles is meaningless.

The above selection yields 6,831 events, i.e. 36.8 % of the total event sample. This number
may be compared to the corresponding Monte Carlo results: from the Jetset 7.2 PS simulation
26,645 out of 76,899 events are classified as two-jet events, i.e. 34.6 %. The Jetset 7.2 PS+BE
simulation yields 9,401 out of 25,588 events, i.e. a fraction of 36.7 %.

4.2 Global event shapes

The topic of this section is those global properties, related to the shape of the annihilation
event, which can be expressed as a single number. Various quantities of this kind have been
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constructed that are sensitive measures for certain aspects of " e~ annihilation. It is obvious
that the information obtainable from these measurements cannot be very detailed . However.
1t is a minimal requirement that the Monte Carlo must reproduce these global quantities if it
1s to serve as a reference standard in more detailed analyses. It is the purpose of the following
paragraphs to investigate this for the Jetset model.

Thrust observables: Thrust T is defined by the expression:

DD I}T:ﬁl)
i Pl

— 1

T = max( (4.1)

where the sum includes charged and neutral particles. The iterative solution of this equation
1s done with the routine LUTHRU 9]. The so-called thrust axis 7,y for which (4.1) is satis-
fied, is used to define the corresponding 7,40 axis, which fulfills the relation Nimajor Ntheust =0
and obeys (4.1) for T — Trajor and 17 — Tmajor- The 7miner axis and the corresponding 7T, ;0r
value simply follow from (4.1), with the direction being defined by orthogonality instead of
maximization.

Two-jet events, in the ideal one-dimensional case without any transverse degree of free-
dom, are characterized by T = 1 and Tnajor = Tminor = 0, while isotropic events have T = 0.5.
The projected quantities Tnajor and Tiner are a measure for the transverse extension of the
event with respect to the thrust axis. The imbalance between both transverse directions is
called oblateness O; O = T,,4j0r — Tininer, thus events which are symmetric around 7., have

re= )

Sphericity observables: Sphericity is based on the momentum tensor:

B
gas _ LiP{Pi

5 0 B'=1.2.3" (4.2)
24 Pi

Due to its symmetry this tensor has only six independent components. Diagonalizing this
tensor removes three further components; the remaining three eigenvalues ); satisfy the con-
ditions A; > Xy > A3 and T; \; = 1. Sphericity S and aplanarity A are then expressed in
terms of these eigenvalues:

3
S = (Ag “+ A3) N A = —Ag . (43)

oW

Ideal two-jet events have § = 0 and A = 0, while spherical events are characterized by S = 1.
Deviations from a planar shape are indicated by 4 > 0.

4.2.1 Unfolded distributions

The measured event shape distributions are influenced by three effects which have to be
accounted for in a comparison of the data to the model.

¢ Limited detector acceptance implies that only a certain fraction of events is accepted
for analysis.

e Finite detector resolution and loss of particles cause a smearing of the measured quan-
tities.
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Figure 4.2: Differential thrust cross section in comparison with the Jetset 7.2 PS model. The data are shown
with statistical errors and the Monte Carlo result is represented by the solid line; the upper plot shows the data
normalized to the Monte Carlo.
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Figure 4.3: Differential T;,4j,r cross section in comparison with the Jetset 7.2 PS model. The data are shown

with statistical errors and the Monte Carlo result is represented by the solid line; the upper plot shows the data
normalized to the Monte Carlo.
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Figure 4.4: Differential T,pinor cross section in comparison with the Jetset 7.2 PS model. The data are shown
with statistical errors and the Monte Carlo result is represented by the solid line; the upper plot shows the data

normalized to the Monte Carlo.
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Figure 4.5: Differential oblateness cross section in comparison with the Jetset 7.2 PS model. The data are
shown with statistical errors and the Monte Carlo result is represented by the solid line; the upper plot shows

the data normalized to the Monte Carlo.
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Figure 4.7: Differential aplanarity cross section in comparison with the Jetset 7.2 PS model. The data are
shown with statistical errors and the Monte Carlo result is represented by the solid line; the upper plot shows
the data normalized to the Monte Carlo.
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e Radiative corrections imply a certain transformation of the observed quantities.

A statistically correct way to account for the above effects, i.e. to measure the “true” dis-
tributions with correct statistical errors, is provided by the method of regularized unfolding
127]. Of course, the unfolding requires the complete knowledge of the above effects: this
information is available through Monte Carlo simulations. For this analysis the program
RUN (Regularized UNfolding) (28] is used, which is especially designed for usage in high
energy experiments. The program requires as input the correlations of generated and mea-
sured quantities from Monte Carlo events and, of course, the experimental distributions. To
account for radiative effects the event shape variables of generated Monte Carlo events were
computed in the centre of mass system of the virtual photon:

Pem = Pet ‘l‘Pt- — P~ (44)

where p,+ is the 4-vector of the incoming electron (positron) and p, is the radiative photon.
For non-radiative events the centre of mass system coincides with the laboratory system.

The unfolded thrust-based distributions are presented in figures 4.2 — 4.5, where they are
compared to the Jetset 7.2 PS model. The general agreement between data and Monte Carlo
is very good: only the tails of the distributions show systematic deviations at the ten per cent
level. This is due to a slight mismatch between the longitudinal and transverse extension of
the events in the model, since there appear too many events at large thrust values and too
few at large Tinajor and Tinor values. The transverse properties itself are particularly well
reproduced, as can be judged from the oblateness distribution. From this it is concluded
that the model behaviour could easily be rectified if simultaneously a harder longitudinal
momentum spectrum and less transverse momentum were used in the fragmentation.

In addition an excess of ~ 130 events is observed at very high thrust, well compatible
with the rate expected from residual 7 pair events.

The sphericity and aplanarity distributions are displayed in figures 4.6 and 4.7. Of course,
these quantities are related to the thrust variables; there is e.g. a 85 % anti-correlation between
thrust and sphericity and a 85 % correlation between T',ino and aplanarity and, perhaps less
obviously, a 85 % correlation between sphericity and Trnajor. However, the tensor (4.2) is
quadratic in momentum, while thrust depends only linearly on momentum. Therefore the
sphericity-based measures have a larger sensitivity to high momentum particles. This means
that sphericity is not infrared stable. Besides giving theoretical problems, this also implies
that sphericity-based observables are more sensitive to detector effects. There is only a 70 %
correlation between the generated and reconstructed sphericity observables, while the thrust
observables show correlations between 75 and 80 %.

Interestingly, the same systematic deviations from the Jetset 7.2 PS model as seen in this
experiment are also observed in the OPAL experiment [29|.

4.3 Inclusive charged particle cross section
The momentum distribution of charged particles reflects properties of the underlying

hadronization process. Therefore it is worthwhile to study, and it furthermore assists tests of
the Monte Carlo model.

4.3.1 Unfolding procedure

The measurement of the z, = p/Epeam distribution is complicated by four effects:
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 The probability to observe a charged particle is less than one. i.e. a certain fraction of
particles escapes detection.

e Initial state radiation implies that not the true z, 1s measured, but a related quantity
¢, which is given by some transformation.

e The measured .7';, is smeared out due to the finite detector resolution.

® Spurious tracks may be generated by the track finding algorithm, not corresponding
to a real particle. In addition, photon conversion in detector material produces low
energetic particle pairs.

The program RUN for regularized unfolding 28| allows a proper treatment of this case. For
the unfolding procedure the above effects have to be known precisely. This requires us to
identify reconstructed particles (after detector simulation) with the generated particles. For
this purpose the following procedure has been adopted: the parameters of all reconstructed
particles are compared with the parameters of all generated particles. Using the covariance
matrix from the track fit, a \? table is constructed on the basis of which the associations gen-
erated — measured particle are made. In practice there are almost every time fewer particles
reconstructed than generated, and therefore all reconstructed particles can be associated with
generated particles. In the few other cases the additional reconstructed tracks are classified
as background.

If there were no background in the events, the probability distribution of the associations
would be constant between zero and one, otherwise a peak at zero probability is expected.
Particles below a certain minimum probability are thus identified as background and it is
assumed that they occur at the same rate in the experimental data. The background rate
determined in this way corresponds to approximately one particle per event. This background
is subtracted from the data before unfolding.

4.3.2 Radiative corrections

The effect of radiative corrections is twofold: firstly initial state radiation reduces the effective
centre of mass energy and secondly virtual corrections lead to an increased cross section. If
these electro-weak corrections are applied to the cross section, it is possible to compare data
at different energies, which eventually reveals the scaling violations caused by the running of
the strong coupling constant.

The radiative corrections are calculated within the Jetset 7.3 program [9]. The total cross
section in order a?  reads [30]:

em

(4.5)

2a /km, k k*\ ao(4E(E — k)) dk
Fonin E  2E

atot(s)=00(s) 1+6(kmin)+ 7 1= 0o(4E?) k y

here E is the beam energy and k is the energy of the radiated photon. The upper and lower
bounds for k have been set to ki, = 0.01 - F and kpae = 0.99 . E respectively. At 35
GeV centre of mass energy the total cross section amounts to 377 pb. The cross section o
corresponds to single photon annihilation and is given by the following formula:

4ma’
ao(s) = 3s

R
R = 86.8— nbGeV? | (4.6)
S
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where R (=3.91 at 35 GeV) is the ratio of the continuum cross section to the lowest order
muon pair production cross section. At 35 GeV centre of mass energy o, takes the value 277
pb. The cross section (4.5) consists of two terms: the 1 + é term is a function of the cutoff
Kmin, such that singular terms cancel between the real and virtual emission probabilities.
This term corresponds to events without a detectable photon in the final state. while the
integral represents events that did radiate a photon. The corresponding Feynman diagrams
are depicted in figure 4.8. For the purpose of unfolding the z, is calculated after the particles

Figure 4.8: Feynman diagrams for e* ¢~ annihilation.

are boosted in the centre of mass of the virtual photon (4.4). If no initial state radiation
occurs this system coincides with the laboratory frame. This procedure is only applicable for
generated particles, since finite detector acceptance and resolution do not allow to determine
the 4-vector of a radiated photon with the required precision. With this definition of z, the
unfolding program implicitly determines the transformation caused by initial state photon
radiation. The remaining correction ¢,,4 takes care of the increased cross section due to
virtual emission and accounts for the lower average multiplicity in radiative events:

(n>lot E

(n)g oo

(4.7)

Erad =

this factor is 1.257 at 35 GeV. The differential cross section 1/0., do/dz, is presented in
figure 4.9 and listed in table 4.1. The comparison with data from TASSO [31] and TPC (32]
shows consistent agreement among the different experiments. The Jetset 7.2 PS simulation
1s seen to give too few particles at large z, and too many at small z,, although the general
agreement is satisfactory. The observed deviations from the Jetset model are largest for the
CELLO experiment, however, this is not surprising since Jetset is tuned to TPC and TASSO
data. The differences observed among the experiments reveal systematic uncertainties. In
this experiment, the systematic uncertainty is estimated to vary between 2 and 10 %, and is
largest for very small and very large z,, where detector effects are more important.
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The underestimation of the production rate of high energetic particles in the Jetset model
has already been discussed in the analysis of global event shapes in the previous section.

The mean multiplicity (n) and the mean fractional momentum (x,) can be obtained from
the cross section by integration:

| | d(rd (4.8)
n} = o s 2 .
1 do
= —— [ z,—dxz, . 4.9
(2p) Oiot (M) / lpd.r,, i (4.9)

The following values are obtained in the z, range from 0.019 to 0.955: (n) = 11.4, (z,) = 0.11
for the data and (n) = 11.9, (z,) = 0.10 for the Jetset 7.2 PS simulation.

|
2y 1/ondo /d, |
range CELLO i Jetset 7.2 PS
|
' J
0.02-0.03 1434 + 1.1 |179.1 £+ 0.5
0.03 - 0.05|119.4 £+ 0.7 |137.1 + 0.3
0.05—-0.07| 75.6 + 0.6 83.3 £ 0.2
0.07 - 0.10| 50.5 + 0.5 b2.1 4 0.2
0.10-0.13| 374 + 04 | 36.4 + 0.1
0.13-0.15| 26.6 + 0.4 i 26.1 + 0.1
0.15—-0.18| 204 + 04 18.5 &+ 0.1
0.18—-0.20| 155 + 04 | 14.6 + 0.1
020-0.23| 123 + 04 11.2 = 04
0.23 - 0.26 9.9 £+ 0.3 8.6 =£:i0.1
0.26 — 0.29 7.5 + 0.3 6.6 £ 0.05
0.29 — 0.32 6.1 + 0.3 5.2 + 0.04
0.32 - 0.36 5.0 £ 0.3 3.8 £ 0.03
0.36 — 0.40 3.3 £ 0.2 2.6 + 0.03
0.40 — 0.45 24 £+ 0.2 1.7 + 0.02
0.45 — 0.52 1.6 + 0.2 1.1 + 0.01
0.52 — 0.59 0.8 £+ 0.1 0.55 £+ 0.01
0.59-0.70 | 0.46 + 0.07 0.24 + 0.005
0.70-0.95| 0.16 + 0.02| 0.04 + 0.001

Table 4.1: Inclusive charged particle z, cross section.

4.4 Cross sections for various particle species

In this section we present the cross sections of identified particles measured by CELLO and
compare them to the predictions from Monte Carlo models.

In the scope of this thesis a method has been developed which allows a measurement
of the differential v = Ep./E}jcum cross section for charged D* meson production from
the so-called slow pion (7s). Compared to the usual method of explicit D* reconstruction
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Figure 4.9: Differential charged particle cross section: CELLO data are shown with statistical errors, the
horizontal bars indicate the range over which the measured values are supposed to represent the average. The
data are compared to the Jetset 7.2 PS model and to the TASSO (open squares) and TPC (open dots) results
(errors omitted for clarity). The inset shows the cross section at small z, on a linear scale. The upper plot
shows the data normalized to the Monte Carlo.
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Figure 4.10: D** cross section: the squares are from reconstructed D** mesons and the circles show the
unfolded result from the p; distribution of slow pions. The solid line shows the fit result for the Peterson
fragmentation function.

this method has the advantage to use the full statistics of the decay D** — D°r{, and
furthermore it is independent of any D° branching ratios. The advantage of high statistics is
partially compensated by a larger background rate such that the overall statistical accuracy
is about the same in the two methods. The analysis has been described in detail in [35]
and is repeated here only briefly: due to the low energy release in the decay D** — D°r(,
the 7¢ is restricted to very low p, relative to the D* flight direction. The latter is almost
parallel to the event axis (determined e.g. by the linearized sphericity tensor (5.3)) since the
inertia carried by the charm quark is retained in the D** meson. Therefore, slow pions from
D** decays show up as an enhanced production of particles with very low p, relative to the
event axis. Finally, the longitudinal momentum of the slow pion is highly correlated with the
D** energy, which makes it possible to unfold the D** energy spectrum from the measured
longitudinal momentum spectrum of slow pions. In figure 4.10 the two methods are seen to
give consistent results of the charged D* meson cross section.

Particle CELLO Jetset | Ariadne | Herwig
5, 13.6+ 0.3 + 0.8 [34] | 14.54 | 14.56 14.63
70 6.4+ 0.6 + 0.9 [34] 6.64 6.64 6.84
- 0.63+£0.12+0.15[34] | 0.79 | 0.80 | 0.79

K°+EK [1424009+0.18[33]| 1.38 | 1.38 | 1.40
KT +K*- [0.77+£0.17+0.14 [33] | 0.74 | 0.14 | 0.59
D*% 4 D*- 0.27 + 0.03 [35] 0.273 | 0.279 | 0.248

A+A [0.21+0.03+0.03 [33] | 0.225 | 0.224 | 0.271

Table 4.2: Cross sections of identified particles: the results from Jetset 7.3 PS, Ariadne 3.1 CD and Herwig 5.0
PS are based on 70,000 events for each model. All programs are run with the default parameter values provided
by the authors [9,4,5]. Herwig has been modified to call the Jetset routines for particle decays.

In table 4.2 the measured cross sections of various particle species can be seen to be in
good agreement with the results from different Monte Carlo simulations.
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Chapter 5

Preliminaries

5.1 Introduction

In this section of the thesis a comprehensive analysis of multiparticle production is presented.
The analysis is based on data taken with the CELLO detector at the PETRA e*¢™ collider.
The general framework of ' ¢ annihilation is discussed in the previous section.

The present study consists of an analysis of particle fluctuations and correlations up to
the finest resolution scales accessible by the experiment. Owing to the clean initial state,
e*te~ experiments are very well suited for this type of analysis.

The main interest in these studies is focussed on the experimentally observable properties
of hadron distributions and their relation to QCD, the gauge theory of the strong interactions.
This relation is not straightforward since the theory is solved only perturbatively, restricting
its application to high @Q* processes and thus leaving the description of hadron formation to
phenomenological Monte Carlo models. These models are therefore of vital importance to
relate the experimentally accessible information to the fundamental theory.

Various methods. of a similar kind and complementing each other, are applied to unravel
the complex structure of the hadronization process. In the present chapter general aspects,
relevant to all subsequent analyses, are described. Chapter 6 presents an analysis of multi-
plicity distributions in rapidity space via a novel method. This procedure gives access to the
different patterns of particle production in cluster and string models, which are compared
and discussed in detail. Chapters 7 and 8 are dedicated to intermittency analyses, i.e. to
analyses of multiplicity fluctuations in phase space domains of variable size and dimension.
Several aspects of multiparticle production are isolated in this complex analysis and studied
in some detail: this comprises an interpretation of the results in terms of fractal dimensions.
Some of the applied methods and techniques have been developed in the course of this thesis.
Chapter 9 contains an analysis of two-particle correlations, including the analysis of Bose-
Einstein correlations. Finally the summary and conclusions are presented in chapter 10. Part
of the work presented here is already published [53-55,60-63|, and these references should be
consulted for further details.

5.2 Variable definition

It is the aim of this study to investigate the correlation structure of particle production in
three-dimensional phase space and in its lower-dimensional projections. For this purpose the

47
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Lorentz invariant phase space element dLips of a single particle is decomposed as follows:

1 d]),dpydp:

dLips = 5(2m )’ i3 (5.1)
| 1 : i
szps - FTENE dydq')dpl . (5.2)

The symmetric decomposition (5.1) has the advantage of being independent of the choice
of a reference axis. This parameterization of dLips will be used in chapter 8 for a three-
dimensional intermittency analysis. In contrast, the decomposition (5.2) breaks rotational
invariance. In this case the three variables rapidity (y = 0.5In[(E + p,)/(E — py)]), azimuth
(¢) and transverse momentum squared (p? ) must be evaluated with respect to a suitably
chosen reference axis. A graphical representation of the used variables is given in figure 5.1
with a three-jet event as example.

~ A

5

P
/e
X

Figure 5.1: Definition of variables and event axes; the depicted three-jet event is generated by Jetset 7.3 PS.
The coordinate system is defined by the eigenvectors S; of the linearized sphericity tensor.

Since the main concern in the study of multiparticle production is the soft hadronization
process, it is natural to take the event axis as reference axis, and thereby eliminate distortions
due to the 1 + cos?? angular distribution of the hard scattering process e*e~ — ¢g. This
axis is obtained as the first eigenvector S; of the linearized sphericity tensor (5.3), which is
determined by the three-momenta of charged and neutral particles in an event. Note that
throughout this analysis charged particles are identified as pions and neutral particles as
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photons, if not explicitly stated otherwise.

Sto = —32—’@”—‘ (5.3)
2 |\Pi

In the above definition of S, one power of p has been removed compared to the usual

definition of sphericity ((4.2) on page 32). Therefore S;,, is much closer to thrust, which is

also linear in momenta.

In general the orientation of the sphericity axis is arbitrary, implying that there is no
principal difference between positive and negative rapidity values. However, individual ¢*e”
annihilation events are not symmetric in rapidity since density fluctuations due to limited
statistics. finite detector resolution and acceptance or gluon radiation occur. To account for
these effects the sphericity axis is oriented in direction of the most energetic jet. For this
purpose the jet configuration and jet energies are determined by the LUCLUS clustering
algorithm [9]. By means of the above definition positive rapidity values indicate particles
belonging to the most energetic jet (which is likely to be a quark jet that did not radiate hard
gluons) and negative values signify particles from the less energetic jets (preferentially quark
jets and their radiated gluon jets). In an analogous way the origin of the azimuthal coordi-
nate. i.e. ¢ = 0, is taken to be the second eigenvector S, of the linearized sphericity tensor.
With these definitions the corresponding inclusive (averaged over many events) distributions
contain information about “trivial” fluctuations, which are present in every event.

In figures 5.2 — 5.4 the inclusive distributions corresponding to the decompositions (5.1)
and (5.2) are shown and compared to the Jetset 7.2 PS+BE Monte Carlo simulation. The
perfect reproduction of these distributions by the Monte Carlo is a necessary precondition
for the subsequent analyses. In this context it is noteworthy that the Jetset 7.2 Monte Carlo
is run with default parameters [9], except for the inclusion of Bose-Einstein correlations as
will be discussed in section 9.1.

5.3 Detector resolution

Detector resolution

o(éy) = 0.10 o(6p./E3) = 0.054 GeV3
o(8¢) = 10° o(6p,/E3) = 0.060 GeV'
o(6p% ) = 0.025 GeV? | o(6p./E3) = 0.050 GeVs

Table 5.1: Average two-particle resolution from the Monte Carlo simulation.

In an analysis of particle correlations the detector resolution must be known to allow an
interpretation of the data. The two-particle resolution has been estimated by comparing
the differences (&) in the studied variables of particle pairs prior to the detector simulation
with the corresponding values after detector simulation. In doing this, effects due to particle
misidentification and uncertainties in determining the event axis are taken into account.
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Figure 5.2: Inclusive p,/E*3, p,,/Ei and p./E3 distributions: CELLO data (statistical errors indicated) are
compared to the Jetset 7.2 PS+BE simulation (histograms). The dips at p, = 0 and p, = 0 are caused by the
acceptance threshold at p; ~ 150 MeV.
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The average two-particle resolution for the decompositions (5.1) and (5.2) can be found in
table 5.1. It should be noted that the detector resolution function is truely three-dimensional
and therefore the quoted values can be cousidered as upper limits: that is to say the detector
can easily resolve two particles with e.g. a éy of 0.01 provided their azimuthal coordinates
differ sufficiently.

It is obvious that a very accurate simulation of the detector performance is required to
allow the analysis of particle production in small regious of phase space. In this context the
experience CELLO has gained through many two-photon analyses (see e.g. (14.15,51]) turned
out to be very helpful. These analyses typically deal with detection efficiencies of a few per
mill, which assisted tests and improvements of the detector simulation.

5.4 CELLO “toy” model

Complementary to the standard ¢* ¢~ annihilation Monte Carlo models such as Jetset, Her-
wig, and Ariadne, which are described in chapter 2, a CELLO “toy” model is used for refer-
ence. This model serves as a null model for correlation studies, insofar as it does not contain
any genuine particle correlations but reproduces the inclusive distributions. The model has
been designed as follows:

e The same number of events as in the CELLO data are generated.

The charged particle multiplicity distribution is exactly reproduced.

e Particles are randomly distributed in individual events.

No correlations between y, ¢ and p* exist.

The inclusive y, ¢ and p? distributions are reproduced on average, but not event by
event.

This is realized as follows: in a first step the charged particle multiplicity, rapidity, azimuth
and transverse momentum squared distributions of the CELLO data are recorded and stored.
In the second step events with particle multiplicities according to the stored values are gener-
ated. A random number generator assigns y, ¢ and p? values independently to the particles,
such that the inclusive distributions are reproduced. This is achieved with the routine HIS-
RAN [72], which makes use of the cumulative distribution, obtained from CELLO data. to
transform a uniform random number distribution into the desired inclusive distribution.
The same procedure can, of course, be used for the variable decomposition (5.1).
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Multiplicity distributions

In this chapter multiparticle production in ¢ "¢~ annihilation processes is studied via the mul-
tiplicity distribution of charged particles. This study reveals properties of both the perturba-
tive and the non-perturbative hadronization phase, thus providing access to the fundamental
structure of the strong interactions.

In the following section the general features of multiplicity distributions are discussed.
This is followed in section 6.2 by the standard analysis of multiplicity distributions in central
rapidity intervals of different width. In this context Monte Carlo simulations are used to
relate the experimental findings to physical processes.

In section 6.3 multiplicity distributions are analysed in rapidity intervals of constant width
but different central values. This scan covers the entire rapidity range, a procedure which
shows the underlying physical processes in a very transparent way. The observed features
motivate a discussion of particle production in string and cluster models, which is presented in
section 6.4. An outlook for LEP is given in section 6.5 and finally the results are summarized
in section 6.6.

6.1 General features

The basis for the present investigation is a sample of 18,543 multihadronic events which passed
the selection described in section 4.1. The measured charged particle multiplicity distribution
is presented in figure 6.1, where it is seen to be accurately reproduced by the Jetset 7.2 PS
model including a detailed detector simulation. Two-jet events, selected according to the
prescription given in section 4.1, are compared in figure 6.1 to the total event sample. An
astounding similarity of both distributions is observed, evidently reproduced by the Jetset
parton shower Monte Carlo. This reveals an adequate treatment of gluon radiation in the
model. ;

The invariance of the ¥ function (6.1) under a two-jet selection suggests that it is of
fundamental meaning. In this context the so-called KNO scaling [42] is of some interest. For
asymptotically high energies it means that the multiplicity distribution P, can be expressed
in the universal form: ;

n
(—"—:)\I/(-) . il (6.1)
where (n) = 37" nP, and ¥(:z) is an energy independent scaling function. Already at lower
energies KNO scaling seems to be approximately fulfilled [45,46], although this is only a
transient phenomenon unrelated to the exact KNO scaling predicted by QCD [6].

P, =

r

54
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Figure 6.1: Multiplicity distributions of charged particles of the total event sample (left) and of two-jet events
(right) compared to the Jetset 7.2 PS simulation (solid lines).

In this connection the asymptotic QCD prediction of a 9/4 times larger multiplicity in
gluon jets compared to quark jets should be mentioned [74]. This is due to the greater colour
charge of the gluon, which leads to increased gluon bremsstrahlung. However, the observable
differences expected at present energies are small [48,6].

It had been realized at an early stage that multiplicity distributions reflect the underlying
dynamical and kinematical structure of multiparticle production processes and therefore pro-
vide information on the production mechanism (see [64] for a recent review). Subsequently,
various statistical distributions were proposed to describe the data; e.g. negative binomial,
gamma and log normal distributions.

The analysis presented here is not aimed at determining which specific distribution pro-
vides the best description of the data. We shall restrict ourselves to the Negative Binomial
Distribution (NBD), which is known to describe multiplicity distributions from a variety of
high energy processes reasonably well, and condenses the entire information contained in the
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multiplicity distribution into two numbers. This is feasible inasmuch as the NBD gives a
precise description of multiplicity spectra. Under this condition it is possible to perform and
present differential analyses of the data.

6.1.1 Negative binomial distribution

To obtain an effective parameterization of the observed behaviour, the negative binomial
distribution is fitted to the multiplicity distributions:

n+hk—-1 (n)"k¥

P.((n),k) = ( b1 ) () + k) ? (6.2)
E I'(n+ k) (n)"k*

T'(k)T'(n + 1) ((n) + k)ntk ’ \6:8)
m+k—-1)(n+k—=2)---(k) (n)"k*

I n! ((n) + k)ntk (6-4)

Equation 6.4 can be transformed into a very eflicient algorithm, facilitating the application
of a fitting procedure.

For illustration the negative binomial distribution is presented in figure 6.2 and compared
to the Poisson distribution.

The variance Var(n) of the negative binomial distribution is given by the expression:

(n)*
=,

From this it immediately follows for the second normalized moment C'? and the second nor-
malized factorial moment F?:
(n(n — 1))

( 1 =1 2 — - »—1

o 1+<n>+k , F? = ) 14+ k1. (6.6)
In the limit & — oo the NBD goes over in a Poisson distribution. It is therefore evident that
the Poisson distribution has constant factorial moments, the direct measurement of which is
presented in detail in chapters 7 and 8.

Different mechanisms have been suggested which give rise to negative binomial or sim-
ilar distributions: stimulated emission [39,40], cluster or clan production [40] and parton
branching [43,44]. Depending on the assumed mechanism the parameter k acquires different
meaning, as will be discussed further below.

Negative values of the parameter & correspond to a positive binomial distribution, i.e.:

Var(n) = (n?) — (n)? = (n) + (6.5)

\/
—

c*

Pi(n,p) = ( 1; )piq"_’, 1 =0,1,2,...n.. (6.7)

The generalization to non-integer n is conveniently done in terms of I' functions, yielding:

I'(n+1)
'+ 1)'(n—1+1)

i _n—1i

pq, t<n+1. (6.8)

Pi('"-aP) ==

The binomial distribution has mean (i) = np and variance Var(i) = npg. This allows us
to express the parameters of the binomial distribution (n,p) in terms of parameters of the
negative binomial distribution ((n),k): i.e. n = —k and p = —(n)/k.
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Figure 6.2: Negative binomial distributions for different k! and (n) values compared to the Poisson distribu-
tion (crosses): k~! = 1+ solid line, k~' = 10~ - dotted line, k~! = 10~ ?  dashed line and k' = 1072 —
dash-dotted line.

6.2 Central rapidity intervals

In this section the charged particle multiplicity in central symmetric rapidity bins of variable
size is studied. For the particular definition of rapidity used in this analysis the reader should
consult section 5.2.

The resulting multiplicity distributions are presented in figure 6.3 as a function of the scal-
ing variable z: starting at the smallest value of |y| < 0.05 the rapidity window is successively
enlarged until finally the full rapidity range is covered. In doing this the average multiplicity
(n) increases from 0.12 to 9.3 (cf. table 6.1). This implies, by virtue of the definition of z
(6.1), a rapidly changing distribution ¥(z) if (n) is large (see also figure 6.2 for illustration).
The details of this general behaviour, however, will depend on the dynamics of the production
process — and via this relation information on the physics of that process is extracted.

The solid curves in figure 6.3 show the corresponding results from the Jetset 7.2 PS+BE
simulation including detector simulation. Notable agreement is observed between data and
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Figure 6.3: Multiplicity distribution of charged particles in central symmetric rapidity bins: CELLO data
(statistical errors indicated) are compared to the Jetset 7.2 PS+BE simulation (solid lines). The dotted lines
represent fits to the negative binomial distribution. The dashed lines indicate negative k parameters, i.e. the
occurrence of binomial distributions. Starting at |y| < 0.05 each subsequent distribution has been scaled down
by one decade.

Monte Carlo.

The (negative) binomial analysis has been performed on the total event sample and on
selected two-jet events using the routine VALLEY [50]. In table 6.1 the fit results and
statistical errors are presented; a graphical impression of the dependence of k! on the rapidity
bin width is given in figure 6.4 for the total event sample and the two-jet selection respectively.

6.2.1 Total event sample

From figure 6.4 it is seen that the multiplicity in central rapidity bins |y| > 2 is distributed
binomial, indicated by A~ < 0. In smaller rapidity bins negative binomial distributions occur
signified by non-zero values of k~!. For bin sizes smaller than 0.5 units the £~ parameter
appears to be approximately constant within the experimental accuracy, despite the fact that
the mean multiplicity (n) decreases rapidly (cf. table 6.1).

The description provided by Jetset 7.2 PS is unsatisfactory in that the model underesti-
mates the size of the k! parameter. The situation is considerably improved if Bose-Einstein
correlations are included in the simulation. In this way an adequate description of the data
is obtained. Firstly this shows the significance of Bose-Einstein correlations and second it
reveals the meaning of the k! parameter. Since Bose-Einstein correlations effectively pro-
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Central rapidity intervals

Total sample Two-jet sample

|y| range (n) k1 (n) k-1
9.33 +0.020 —0.02 + 0.001 | 8.63 + 0.030 —0.04 £+ 0.001
full 9.87 + 0.018 —0.03 £ 0.001 | 9.04 4+ 0.027 —0.05+ 0.001
19.93 +0.010 —0.03 £+ 0.001 | 9.05 + 0.010 —0.05+ 0.001
9.27 + 0.020 —0.02 + 0.001 | 8.52 + 0.030 —-0.03 &+ 0.001
4 9.82 4+ 0.017 —0.03 + 0.001 | 8.95+ 0.025 —0.05 4 0.001
9.87 + 0.010 —0.03 + 0.001 | 8.94 + 0.015 —0.04 £ 0.001
8.71 +£ 0.021 0.00 + 0.001 | 7.60 = 0.030 —0.01 £ 0.002
3 9.24 + 0.018 —0.01 4+ 0.001 | 8.02 + 0.025 —0.03 £ 0.001
9.33 +0.011 —0.01 +0.001 | 8.01 + 0.015 —0.03 £ 0.001
6.38 + 0.020 0.06 +0.002 | 4.75 + 0.025  0.02 + 0.004
2 6.81 + 0.018  0.05 £ 0.002 | 5.06 + 0.021 —0.01 + 0.003
6.97 + 0.010 0.05 4+ 0.001 | 5.09 + 0.012 —0.01 + 0.002
2.754+0.012 0.17+0.006 | 1.69 + 0.013  0.04 £ 0.010
1 2.97 +0.011 0.17+0.005|1.81 +0.011 —0.03 £ 0.008
3.12 + 0.007 0.16 + 0.003 | 1.87 + 0.007 —0.03 + 0.004
1.26 4+ 0.007 0.27 £ 0.012 | 0.70 + 0.007 0.06 + 0.024
0.5 1.35 4+ 0.006 0.26 + 0.010 | 0.75+ 0.006 —0.04 + 0.017
1.44 + 0.004 0.23 +0.005 | 0.79 + 0.004 —0.04 + 0.010
0.49 + 0.003 0.37+ 0.030 | 0.26 + 0.003  0.08 + 0.068
0.2 0.53 + 0.003 0.28 + 0.022 | 0.29 4+ 0.003 —0.05 4 0.051
0.57 +0.002 0.27 + 0.012 | 0.30 + 0.002 —0.02 £ 0.029
0.24 + 0.002  0.40 + 0.055 | 0.12 + 0.001 —0.04 + 0.133
0.1 0.27 +0.002 0.31 + 0.045 | 0.14 + 0.001 -0.13 £ 0.078
0.28 + 0.001 0.27 +0.021 | 0.15 £ 0.001 0.03 £+ 0.064
0.12+0.001 0.37 + 0.101 | 0.06 + 0.001  0.01 + 0.322
0.05 0.13 +0.001  0.36 + 0.081 | 0.07 = 0.001 —0.01 £ 0.236
0.14 +0.001  0.30 +0.041 | 0.07 + 0.001  0.03 £ 0.131

Table 6.1: Negative binomial parameter for central rapidity bins. The first entry in a block corresponds to the
CELLO data, the second and third entry show the Jetset 7.2 PS+BE and the Jetset 7.2 PS results respectively.
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Figure 6.4: k~! for central rapidity bins: The open symbols show the CELLO data (total event sample
open dots, two-jet sample +— open squares). The solid and dotted curves show the corresponding results from
Jetset 7.2 PS and Jetset 7.2 PS+BE respectively. The dashed curve is the result from the CELLO “toy” model.

duce more particles close by in phase space, it can be concluded that the k~! parameter is
a measure of aggregation. This is also the meaning assigned to k! by Giovannini and Van
Hove [40]. In this context it is noteworthy that nothing of the kind is observed in the CELLO
“toy” model (cf. section 5.4 for a description of the model), which makes it amply clear that
dynamical and kinematical particle correlations and fluctuations inside individual events are
at the basis of the observed behaviour.

6.2.2 Two-jet event sample

From the above discussion it can be conjectured that hard gluon radiation modifies the
multiplicity distribution. In particular it can be expected that gluon fragments, if projected
onto the event axis, will populate certain rapidity regions. And, since hard gluons occur only
in a fraction of the total event sample, strong fluctuations in the multiplicity distribution of
all events will occur as a consequence. For this reason the analysis of the total event sample
mainly tests the perturbative phase of QCD; i.e. properties related to hard gluon radiation.
This is complemented by the analysis of two-jet events, which is mainly sensitive to the
non-perturbative phase of QCD.

From figure 6.4 it is apparent that particle production in two-jet events is less influenced by
correlations and fluctuations than is the total event sample, justifying the above conjecture.
This subject is also discussed by Andersson et al. in [67].
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An observation of great importance is the significant failure of both the Jetset 7.2 PS
and the Jetset 7.2 PS+BE simulations in describing the two-jet data: while the data show
clear evidence for negative binomial distributions for |y| = 2, the Monte Carlo still predicts
binomial multiplicity fluctuations. This is a very interesting observation, in line with the
conjecture of Ochs [68.70] that the notion of local parton hadron duality, which means a
duality between parton and hadron distributions [71]. requires a local hadronization process,
in possible contradiction to the energy dissipating string mechanism.

The explanation for the observed behaviour of the A~ parameter and the failure of the
Lund string model to reproduce the effect is subject of the following sections.

6.3 Rapidity scan

In this section a detailed analysis of the origin of the observed (negative) binomial regularities
is presented. In the previous section an increase of the k~! coefficient with decreasing rapidity
bin size has been observed. Here it will be demonstrated that this behaviour is not originally
related to the decreasing bin size, but is actually due to the absolute position of the rapidity
bin.

For this purpose the rapidity range extending from —4 to +4 is divided into overlapping
bins of 0.5 units each, yielding 31 individual multiplicity distributions. In a second step the
(negative) binomial distribution (6.4, 6.8) is fitted to these multiplicity distributions. In
figures 6.5 and 6.6 the fitted k™' parameter from the rapidity scan is displayed for the total
event sample and for two-jet events separately.

Before discussing the figures let me recall the definition of rapidity used here, since this
1s necessary for a thorough understanding of the results. In this study rapidity is defined
with respect to the linearized sphericity axis (5.3). Furthermore the sphericity axis has been
oriented in direction of the most energetic jet. Due to this definition negative rapidity values
signify phase space regions where gluon radiation preferentially occurs, positive rapidity val-
ues, on the other hand, indicate phase space regions dominated by pure quark fragmentation.
It should however be remembered that this ideal separation is diluted by detector resolution
and acceptance effects.

6.3.1 Total event sample

In figure 6.5 the fitted k™' parameter is displayed for the total data sample and compared
to the Jetset 7.2 PS and Jetset 7.2 PS4+ BE simulations. A strong variation with rapidity is
observed. For large values of |y| binomial multiplicity distributions are indicated by negative
k! values. In the other parts of phase space negative binomial distributions occur, expressed
by positive k~! values. The observed functional dependence is not symmetric in rapidity, as
is expected for the rapidity definition used here. And, as outlined above, the correlations
for negative rapidity are indeed larger than for positive rapidity. Given this behaviour it is
readily understood that the ™! parameter will also depend on the size of the rapidity bin,
although this is not the genuine cause.

The comparison with model simulations in figure 6.5 demonstrates that Jetset 7.2 PS gives
an adequate description of the data, provided Bose-Eiustein correlations are included. In fact,
the difference in the k™' distribution due to Bose-Einstein correlations is remarkably large
and again shows their significance to the overall fluctuations and correlations. It is worthwhile
to note that the corresponding k! values from the CELLO “toy” model are independent of
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Figure 6.5: k' as a function of rapidity: CELLO data (total event sample) are shown with error bars. The

solid and dotted curves show the corresponding results from Jetset 7.2 PS and Jetset 7.2 PS4+ BE respectively.
The dashed curve is the result from the CELLO “toy” model.
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Figure 6.6: k! as a function of rapidity: CELLO data (two-jet event sample) are shown with error bars. The
solid and dotted curves show the corresponding results from Jetset 7.2 PS and Jetset 7.2 PS+BE respectively.
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rapidity and moreover always close to zero. revealing only Poissonian fluctuations. From this
it 1s concluded that the occurrence of negative binomial distributions in parts of phase space,
as observed in the data (and also in Jetset) is due to dynamical and kinematical properties
of the particle production process. This point is further elaborated in section 6.4.

6.3.2 Two-jet event sample

The most spectacular observation in the two-jet study is the failure of the Jetset Monte Carlo
in reproducing the rapidity dependence of the k= parameter. The observed discrepancy is
statistically significant. To consolidate this further, systematic studies have been performed
to make sure the effect is not artificial. This has been done by varying the two-jet selection
criteria as well as the acceptance criteria for charged particles. The discrepancy between
Jetset and CELLO data always remained.
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Figure 6.7: CELLO two-jet data on k~' are compared to Jetset 7.2 PS after detector simulation (solid line)
and before detector simulation (dotted line). The dashed line shows the Herwig 5.0 PS result.

Besides this observation it is also evident when comparing figures 6.5 and 6.6 that the
strength of correlations is reduced in two-jet events. This is easily understood from what has
been said before, namely that hard gluon radiation (which is absent in the two-jet selection)
contributes significantly to fluctuations and correlations in multihadron production.

Already at this stage it can be assumed that the failure of the Jetset Monte Carlo has its
origin in the treatment of the non-perturbative phase. This conjecture is based on the fact
that the discrepancy appears only in two-jet events where the non-perturbative hadronization
phase dominates the particle production process. In contrast to that hard bremsstrahlungs
gluons characterize the total event sample and thereby conceal details of the soft hadroniza-
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tion process. A detailed study of fluctuations and correlations in the Jetset and Herwig Monte
Carlo programs is presented in section 6.4, concentrating on these aspects.

An intriguing result is presented in figure 6.7. where it is immediately seen that the Herwig
5.0 PS simulation provides a very good description of the data, concerning both the shape
and the magnitude of the &' distribution. And. since Herwig involves cluster and Jetset
string fragmentation i.e. completely different schemes for the non-perturbative regime, this
comparison also provides the key to understand the difference of the two models. It should
be emphasized that there is. as far as is known. no other distribution revealing such strong
differences between cluster and string-based models. It is further seen from this picture that
detector effects only cause a minor distortion of the A~ distribution. This is important
insofar as the following model studies are done without detector simulation.

6.3.3 Clan production

According to Giovannini and Van Hove the negative binomial distribution is generated by
independent emission of entities, which they call clans, which subsequently decay. At the
basis of this process they see the QCD parton shower with the gluon self-interaction as the
dominant multiplication mechanism [40,41]. It is assumed that the number of clans follows a
Poisson distribution. In addition, the decay of these clans is assumed to cause a logarithmic
distribution for the number of particles per clan. In this context the parameter k~! gives
the ratio of probabilities for the two cases that two particles belong to the same clan or
to different clans. Therefore the k™' parameter is a measure of aggregation. The average
number of clans (N.) and the average number of particles per clan (n.) are then related to
the negative binomial parameters as follows:

(N.) = kln (1 + %) ; (ne) = (6.9)

A-li—.n; (Ne) = (n), ‘h_%tlo na)=1. (6.10)
Equation 6.10 corresponds to the Poissonian limit.

To a large extent the above ideas are actually incorporated in the Herwig Monte Carlo
program (5] (cf. also chapter 2). It is therefore tempting to compare the rapidity distribution
of clusters, produced in the preconfinement phase of the Herwig 5.0 PS simulation with the
number of clans as derived from negative binomial fits to the multiplicity distribution in the
corresponding rapidity bins. This comparison, presented in figure 6.8, shows that the shape
of both distributions is in fact similar, however, the normalization differs by a factor of two.

In figures 6.9 and 6.10 the number of clans (N.) and the average multiplicity per clan (n.)
are shown for the total data sample and are compared to the two-jet selection.

It is to note that (NV.) is mainly sensitive to the average multiplicity (n), while (n.) has
a larger sensitivity to the A~ parameter. This is easily seen if (N.) is expanded in a power

series: -
i 1(n) 1 ((n)
(Ne) = (n) [1—§T+§(—k—) —] . (6.11)

The comparison with the Jetset simulation shows reasonable agreement in case of the
(Ne) distribution both for the total event sample and the two-jet selection, this is because
the mean multiplicity is slightly too large in the Monte Carlo. In the total event sample
the multiplicity per clan is reproduced only if Bose-Einstein correlations are included in the
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Figure 6.8: Rapidity distribution of clusters in the Herwig 5.0 PS model compared to the distribution of clans
obtained from negative binomial fits to the multiplicity distribution (solid line — primary particles; dotted line
— final state charged particles).

simulation; otherwise the particle density provided by the Monte Carlo is significantly too
low for positive rapidity values. This shows again that the “negative” rapidity region is
dominated by gluon bremsstrahlung, concealing other effects.

Both Monte Carlo versions fail to describe the average multiplicity per clan in two-jet
events. Of course, this reflects the discrepancy already noted in the k~' parameter. It is
further observed that negative binomial distributions occur if the average multiplicity per
clan (n.) is larger than one, as it is expected from (6.10).

6.3.4 Interpretation

The interpretation of the results obtained so far is as follows: the perturbative QCD phase
generates primary massive colour singlet states. Their fluctuations in rapidity space are Pois-
sonian to a good approximation. In the case where additional gluon fragments are projected
onto the event axis negative binomial distribution occur already at this level. The subsequent
decay® generates negative binomial distributions for the final state particles, provided there
is a sufficient overlap among the decay products from different primary sources. This is ob-
served in the rapidity region |y| < 2 (see figures 6.5 and 6.6). The probability to have more
than one primary particle in a given rapidity interval is essentially zero for absolute rapidity

*N.B. that decay products are approximately Gaussian distributed with ¢(y) = 0.5 around the rapidity of
the decaying particle.



66

number of clans
= = o o pt
[AN] = (o)) (00] (=)

=
o

Chapter 6. Multiplicity distributions

=TT ¥ %

L S B A e

T

S
- ENEET I T N

L e g

P S U] [ SRRV Y (SO v
t

e e IS e MU T SR || TN ST v (I

-4

-2

0

2

4

-4

g

2

4

rapidity

Figure 6.9: Distribution of clans for the total event sample (left) and for two-jet events (right) compared to
the Jetset 7.2 PS and Jetset 7.2 PS+BE model (solid respectively dotted lines).
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Figure 6.10: Multiplicity per clan for the total event sample (left) and for two-jet events (right) compared to
the Jetset 7.2 PS and Jetset 7.2 PS+BE model (solid respectively dotted lines).
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values larger than two. This fact is, of course. related to the fragmentation process. In the
Jetset 7.3 PS simulation at 35 GeV centre of mass energy, for instance, the average momen-
tum of primarily produced particles is (p) = 3.29 GeV and the average mass of these objects
is (m) = 0.82 GeV: this implies average rapidity values of (y) = 2.1 (if transverse momentum
is neglected). This is exactly the rapidity value where the k= ! distribution approaches zero
(see figure 6.12). indicating the transition from the rapidity region where primary particles
are close enough to give an effective overlap of their decay products, to the region where
primary particles occur only isolated and hence an overlap is 1mpossible.

6.4 Discussion of models

It is the purpose of this section to demonstrate how the observed properties of multiplic-
ity distributions are accomplished in ¢*¢~ Monte Carlo simulations and thereby justify the
conjectures and conclusions drawn in the preceding sections.

The striking difference between Herwig and Jetset concerning the rapidity dependence of
the k~! parameter in two-jet events is examined in detail and traced to its origin.

6.4.1 Correlations and fluctuations

According to the procedure presented in section 6.3 the multiplicity distributions generated
by various Monte Carlo models are studied. The following models, discussed in detail in
chapter 2, are considered for analysis. A short list of their basic properties is given here:

e Jetset 7.3 gg: a pure Lund string model without gluon radiation. In this case (di)-
quark pair creation in a string-like force field is the only source for particle production.
This model is available as an option in Jetset 7.3.

e Jetset 7.3 ME: an O(a%) matrix element QCD approximation followed by Lund string
fragmentation. Here it should be noted that compared to the “standard” parton shower
model the matrix element model requires a change of the longitudinal and transverse
fragmentation parameters: i.e. from a = 0.5 — 1 and from b = 0.9 — 0.7 GeV~? for the
Lund symmetric function (2.13) and from o, = 0.35 — 0.4 GeV for the width of the
Gaussian p, distribution. In addition, the joining parameter should be increased from

0.8 to 1.1 GeV [9].
e Jetset 7.3 PS: the Lund parton shower model followed by string fragmentation.
e Herwig 5.0 PS: the Herwig parton shower model followed by cluster fragmentation.

e Ariadne 3.1 CD: the Lund colour dipole parton shower model followed by string
fragmentation.

6.4.1.1 Primary and final state particles

In figure 6.11 the fitted k™' values are displayed for the Jetset 7.3 ¢qg model for primary! and
final state particles. A marked difference between the two distributions is observed: while the

IThe term primary refers to charged and neutral particles, which in the case of string fragmentation come
directly from the string, or to cluster decay products in the case of cluster fragmentation.
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Figure 6.11: Rapidity dependence of k! in the Jetset 7.3 gg model (dotted line) compared to a “toy” model
(dashed line). The solid line indicates the results obtained for primary particles.

k=1 values for primary particles are always negative, thereby signifying binomial multiplicity
distributions, the analogous curve for final state particles indicates the occurrence of negative
binomial distributions in parts of phase space.

To illustrate this further a simple “toy” model is designed in analogy to the CELLO “toy”
model as described in section 5.4 on page 53. This model generates the inclusive rapidity
distribution as obtained from the Jetset 7.3 ¢g simulation: that is to say it reproduces the
rapidity distribution on average, without generating genuine particle correlations in individual
events. In this model each primary particle is split in two according to a Gaussian distribution
with a width of 0.5 units in rapidity.

In figure 6.11 the rapidity dependence of the k~! parameter is displayed both for the
primary particles and the decay products. As expected the primary multiplicity distribution
is characterized by k! < 0; i.e. it is binomial. In contrast to that the final multiplicity
distribution has negative binomial form, indicated by positive k~! values. Comparing the
“toy” model with the Jetset 7.3 ¢g simulation in figure 6.11 similar features are observed,
but also apparent differences occur. While the “toy” model gives rise to negative binomial
distributions in the total rapidity range, these are only observed in restricted intervals in
the ¢g simulation. This difference is partly due to kinematical constraints, which are not
fulfilled in the “toy” model: e.g. nothing prevents two primary particles from being produced
at rapidity values of e.g. y = +3.5 in the “toy” model, which will be clearly impossible if
four-momentum is conserved. A further property of the Lund string model is revealed by this
study — namely that fluctuations of the primary particle multiplicity are less than Poissonian
[8] (cf. also chapters T and 8).
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Figure 6.12: Rapidity dependence of k~! for various models (solid line — primary particles, dots ~— final state
charged particles).

6.4.1.2 Gluon radiation

The significance of hard gluon radiation is demonstrated in figure 6.12, where large k™!
parameters are observed in the rapidity range from —1.5 to 0. This effect is already observed
at the level of primary particles, making it clear that gluon fragments induce negative binomial
distributions in those parts of phase space where an overlap with the pure quark fragments
occurs.

At this level the four studied models do not differ significantly enough to be distinguished
by experiment. This is due to the fact that perturbative gluon radiation dominates the ob-
served fluctuations and correlations, thus masking the non-perturbative hadronization pro-
cess. In the following section only those events that pass a two-jet selection will be considered
for analysis, tacitly focussing on the non-perturbative phase.
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6.4.2 Cluster versus string models

The topic of this section is the dramatic difference observed as the Jetset 7.3 PS and Herwig
5.0 PS simulations are compared regarding the rapidity dependence of multiplicity distribu-
tions. This difference is only revealed in fluctuations of the particle multiplicity, the inclusive
distributions being almost identical (see figure 6.13).
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Figure 6.13: Inclusive y, ¢ and p? distributions for two-jet events: Herwig 5.0 PS (statistical errors indicated)
is compared to the Jetset 7.2 PS simulation (histograms).

First of all it will be demonstrated that this difference has its origin in the treatment of
the non-perturbative hadronization phase and is not due to different parton shower approxi-
mations. Throughout this section solely two-jet events will be considered for analysis.

For this purpose parton showers generated with the Herwig 5.0 PS program are transferred
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Figure 6.14: Rapidity dependence of k= in two-jet events: Jetset 7.3 PS (solid line), Herwig 5.0 PS (dotted
line) and the Herwig parton shower with Lund string fragmentation (dashed line).

to the Jetset 7.3 program. Partons are then connected to Lund strings, keeping trace of the
colour flow: from this point on fragmentation commences as usual.

In figure 6.14 the resulting k' distributions from the pure Herwig 5.0 PS and Jetset 7.3 PS
simulations are compared to the hybrid scheme. Obviously, the hybrid scheme is very close to
the Jetset 7.3 PS simulation, thus identifying differences in string and cluster fragmentation
as the reason for the apparent difference between Herwig and Jetset. In addition, a slight
difference between the two parton showers, when connected to strings, is observed. And,
since hard gluon radiation is excluded by means of the two-jet selection, this effect has its
explanation in terms of different approximations in the treatment of soft gluons during parton
shower evolution.

6.4.2.1 Lund string model

In the following paragraphs the occurrence of correlations and fluctuations in the Lund string
model is investigated. An attempt is made to “retune” the string model in order to reproduce
the measured k~! distribution. The following aspects come to mind which might have an
impact on correlations and fluctuations in two-jet events:

Longitudinal fragmentation

Lund symmetric fragmentation: The Jetset 7.3 PS model uses the Lund symmetric
function ((2.13) on page 12) to generate the longitudinal splitting variable z; i.e. to determine
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Figure 6.15: Studies of the k~! rapidity dependence on two-jet events in the Lund string model: the solid
line shows the result obtained from the default Jetset 7.3/6.3 PS simulation and the dotted line is the Herwig
5.0 PS result for comparison. The modified Jetset 7.3/6.3 PS results are displayed with error bars: a: Lund
symmetric fragmentation function with a = 0.0 and b = 0.4 GeV~ 2% b: Field-Feynman, Peterson scenario, the
dashed line corresponds to string fragmentation according to Bowler; c: Jetset 6.3 PS with P/(V 4 P) = /2:0.5
and (p?) = (50 MeV)? for 7 mesons and (450 MeV)? for p mesons; d: Jetset 7.3 PS including higher meson
multiplets.
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the energy-momentum fraction taken by a hadron. This function is controlled by two param-
eters a and b which are highly correlated. The average multiplicity is essentially determined
by the ratio a/b while multiplicity fluctuations are related to the expression (ab)~! [67]. The
correlation of the two parameters is shown in figure 6.16. The line is a fit to those a and b
values which reproduce the default average fractional energy (rp) = 0.22 and the correspond-
ing average multiplicity (N) = 9.0 of primary particles in the simple ¢g model. The relation
is almost linear with b ~ 0.4 4 a. Evidently a wide range of a and b values gives essentially
the same results with respect to inclusive distributions, but correlations and fluctuations are
expected to increase as @ and b are decreased.
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Figure 6.16: Correlation of parameters for the Lund symmetric function in a pure ¢ model.

In the case of large a and b parameters the ordering of particles, i.e. the coincidence
between rapidity and rank is strict, corresponding to a coherent string state. If both a and b
are decreased the ordering is diminished and consequently fluctuations are enhanced [8,47].
This is proven in figure 6.15a, where the A~ distributions from the rapidity scan are shown for
the two parameter sets a = 0.5,b = 0.9 GeV ? (default values) and a = 0.0,b = 0.4 GeV 2.
However, the effect is not large enough to explain the difference between Jetset 7.3 PS and
Herwig 5.0 PS.

Field-Feynman & Peterson and Bowler fragmentation: The Peterson function
((2.14) on page 12) offers an alternative parameterization for the energy-momentum splitting
in the longitudinal fragmentation process of heavy charm and bottom quarks. In this case the
average energy-momentum fraction taken by the heavy hadron is in accord with the Bjorken
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formula [73/:
. 1 GeV
(z) ~1— , (6.12)
meg
where mg i1s the mass of the heavy quark. In contrast to that the Lund symmetric function

leads to the relation [48]:

1+ a

(z) ~1- (6.13)

=
bmy,

where my is the mass of the heavy hadron.

The underlying space-time structure of the Lund string model, which implies that on
average all string breakups take place along a hyperbola of constant invariant time 8,47,
implies a different average rapidity separation for heavy and light hadrons. In case of the
Peterson function the heavy hadron is on average 0.7 units in rapidity aliead of any other
hadron, which is the same rapidity separation as between neighbouring ordinary hadrons.
The requirement of left-right symmetry in the Lund function implies a larger rapidity sepa-
ration for heavy particles: i.e. heavy particles appear to be more isolated in this approach,
as a consequence of the larger amount of energy taken from the string by a heavy hadron’.
Hitherto the experimental and theoretical situation is ambitious, although there is exper-
imental evidence against the Lund symmetric function, which predicts a too hard bottom
quark fragmentation at LEP energies [49]. It has been shown by Bowler [84] that also in the
string model it is possible to retain a 1/m dependence (6.12) for massive endpoint quarks.

This issue is very important for the determination of the top quark mass at a future
¢"¢” linear collider [89]. In this context the study of particle correlations in the different
fragmentation approaches is certainly worthy.

In figure 6.15b the resulting A~' distribution is shown for a simulation where the light
up, down and strange quarks are treated according to the Field-Feynman function ((2.7) on
page 10) with @ = 0.77 and charm and bottom quarks are fragmented with the Peterson
function with e, = 0.1 and ¢, = 0.01. The comparison with the standard simulation shows
that particle correlations are different in this approach. Similarly the Bowler type fragmen-
tation (dashed line in figure 6.15b) does not provide a significant improvement with respect
to Herwig. Nomne of the studied string fragmentation schemes is particularly favoured by the
data, and there still remains a general discrepancy between string and cluster fragmentation.

Transverse fragmentation: The tunneling mechanism implies a Gaussian p; distribution

the string is assumed to be one-dimensional the p, must be compensated locally: i.e. p (q) +
p.(g) = 0. As a consequence half of a hadron’s p. will be compensated in each of its
neighbours. For this reason two neighbouring hadrons, sharing a ¢g pair have a tendency
to appear at opposite azimuthal angles. These anti-correlations are not accessible through
the sole analysis of the rapidity distribution. The two- and three-dimensional intermittency
analyses presented in chapter 8 are sensitive to this aspect of multiparticle production.

In the standard Lund string model the average p? a quark acquires due to the tunneling
process is assumed to be (p? ) = (350 MeV)? independent of its mass. If this is interpreted as
being due to a transverse extension of the string a mean square radius of (#?) = (0.56 fm)’
is obtained. This result is in striking agreement with the radius of the “pion source”, as
obtained from the analysis of Bose-Einstein correlations in section 9.1.

‘The rapidity separation between first and second rank hadrons is 0.55 for light hadrons, 0.94 for charmed
hadrons and 1.5 for bottom hadrons [8].
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6.4. Discussion of models

According to an argument of Gustafson and Sjogren [65] the (p?) of a hadron species
should be smaller the lighter the produced hadron is. In addition lighter hadrons have a
tendency to appear in “bunches”. The argument is repeated here briefly: the probability for
a quark to fit into a bound state meson is proportional to m ' [8], i.e. it depends on p,.
For heavy particles the p, dependence is only weak. but pions have a mass much smaller
than the average p,. For this reason primary pions should have smaller transverse momenta
than other mesons. And since a ¢g pair with small p, produces two mesons, these have an
increased probability to end up as two pions. Primary pions thus have a tendency to come
in bunches, an effect not included in the standard Jetset model.

A modified version of the Jetset 6.3 PS program 66| has been used to study this effect.
This version allows us to chose the width of the Gaussian p, distribution separately for e.g.
7 and p mesons. This simplified treatment does not include the “bunching” of pions. The
latter effect certainly would increase the A~' values due to a stronger aggregation of particles.
To simulate this behaviour the P/(V + P)’ ratio has been changed from its default value
0.5 to V2 -0.5. This doubles the probability to produce two neighbouring pions, because
this probability is proportional to [P/(V + P)*. In addition, the (p?) has been chosen to
be (50 MeV)? for m mesons. (450 MeV)? for p mesons and (350 MeV)? for all other primary
particles. The corresponding result is presented in figure 6.15¢. Although the A~! distribution
has changed in the right direction, the effect is still too small to account for the difference
between CELLO and Jetset.

Higher multiplets: Other differences between Jetset 7.3 PS and Herwig 5.0 PS concern
the primary particle composition and the treatment of particle decays. Herwig generates
the meson multiplets listed in table 6.2, where the corresponding Jetset parameterization of
production probabilities is also given. The parameters a,/3,v, ¢ and (%};)j refer to particles

Multiplet Quark spin | Orbital angular | Meson spin Jetset 7.3
=) momentum L Jr parameterization

Pseudoscalar 0 0 0 (‘,}:P) : 1-a)

. + P
Axialvector 0 1 1 (‘,;P ) : a
Vector 1 0 1 (th)f(l—ﬂ—'y*é)
Scalar?) 1 1 (U (‘,LP)!/_?
Axialvector 1 1| 1Y ( V‘-:P ) 7 i

‘f

Tensor 1 1 2+ (V+P)f 6
a) Scalars are not included in Herwig

Table 6.2: Meson multiplets.

produced directly from the string and have the following meaning:

§P and V are used to abbreviate the production probability for pseudoscalar and vector mesons respectively.
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a is the probability that a spin one meson (J” = 1%) is produced with a total quark
spin S = 0 and orbital angular momentum L = 1.

e /3 is the probability that a spin zero meson (J¥ = 0%) is produced with a total quark
spin S = 1 and orbital angular momentum L = 1.

e 5 is the probability that a spin one meson (J” = 1) is produced with a total quark
spin S = 1 and orbital angular momentum L = 1.

e & is the probability that a spin two meson (J¥ = 2%) is produced with a total quark
spin S = 1 and orbital angular momentum L = 1.

. (#)ud = 0.5 is the probability that a meson, containing v and d quarks only, has

spin one.

o (‘.ip)’ = 0.6 is the probability that a strange meson has spin one.

o (‘—.:—P)cb = 0.75 is the probability that a charm or bottom meson has spin one.
The standard Jetset 7.3 simulation includes only pseudoscalar and vector mesons, i.e. the
parameters a, (3,5 and  are equal to zero, although these multiplets are implemented. It can
be expected that the absence of higher multiplets, which implies a suppression of higher mass
states, has an influence on particle correlations. To study this the parameters a, /3,y and é
in the Jetset 7.3 PS model have been chosen to reproduce the primary meson multiplicities
of the Herwig 5.0 PS model. This four parameter fit has been performed with the routine
VALLEY [50], where each function call generated 5000 Jetset 7.3 PS events according to the
actual values of a, /3,7 and §. The y? has been determined from the difference of meson rates
in Herwig 5.0 PS and Jetset 7.3 PS. The fit results are: a = 0.026,3 = 0.056,~ = 0.042 and
6 = 0.026.

Figure 6.15d compares the modified Jetset 7.3 PS simulation to the Herwig 5.0 PS simu-
lation and to the standard Jetset 7.3 PS simulation. Only a minor increase of the k~! values
is observed.

A further area of difference between Jetset 7.3 PS and Herwig 5.0 PS concerns the treat-
ment of particle production and decay. Firstly, the masses of several resonances such as
p,K* etc. are generated in Jetset according to truncated Breit-Wigner distributions, while in
Herwig these particles always acquire the same mass. Secondly, the decay tables and matrix
elements used in Jetset are much more detailed compared to the Herwig realization. This case
has been analysed by first switching the decay width off in Jetset and then by invoking the
Jetset routines for particle decays in Herwig. No significant impact on the k£~ ! distribution
was found.

6.4.2.2 Herwig cluster model

Two major reasons are respousible for the apparently different particle correlations in cluster
and string models:

1. The local formation of clusters from neighbouring quarks and antiquarks preserves fluc-.
tuations occuring during parton shower evolution. The string model, by virtue of its
underlying space-time structure smoothes these fluctuations.
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2. The cluster mass spectrum resembles that of primordial resonances. In contrast to that
only relatively light particles are produced in the string model¥.

To illuminate this situation figure 6.17 shows the cluster mass spectrum obtained from Herwig
5.0 PS in comparison with the primary particle mass spectrum generated by Jetset 7.3 PS. The
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Figure 6.17: Cluster mass spectra from Herwig 5.0 PS (solid line — M; = 3.5 GeV, dashed line — M; = oc
[scaled up by a factor of ten]) and primary particle mass spectrum from Jetset 7.3 PS (open histogram). The
bumps in the cluster mass distribution are due to clusters containing charm or bottom quarks.

primary particle mass spectrum is shifted to lower values and moreover has a less developed
tail to larger masses. The significance of heavy clusters to the overall particle correlations
and fluctuations is revealed in the following study.

Cluster fission: The Herwig model invokes a “symmetrical string breaking” scheme to split
a cluster C' of mass M¢ above the fission threshold M; = 3.5 GeV into two clusters X and Y’
with masses M3 ~ M} =~ QoM¢, where Qq is the string energy density (cf. section 2.2.3 on
page 14 for a detailed description of the cluster model). At most a small fraction of clusters
is involved (see figure 6.17) and therefore most event properties are not sensitive to details
of the cluster fission model, the particle correlations being one exception.

If cluster fission is completely abandoned (M; = oc) the particle correlations are strongly
enhanced and in fact much too large compared to the data. This effect is revealed in figure 6.18
and is clear evidence for a string-like nature of particle production in the colour field of ¢g

This is not really a property of the model, rather it is due to our limited knowledge of higher resonances.
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rapidity

Figure 6.18: Studies of the k! rapidity dependence in the Herwig cluster model on two-jet events: the solid
line shows the result obtained from the default Herwig 5.0 PS simulation with M; = 3.5 GeV, the results from
the modified version with M; = oo are shown as the dotted line. The CELLO data are displayed with error
bars for reference.

pairs created in e'e~ annihilation. On the other hand a pure string model, as discussed
on pages 71ff smoothes fluctuations from the perturbative phase of particle production too
rigorously and thereby underestimates the correlations.

6.5 Outlook — e"e  annihilation at LEP

The storage ring LEP delivers a high rate of e*¢~ annihilation events at the Z° pole at 91
GeV centre of mass energy. The abundant pair production of colour triplet quarks (3) and
antiquarks (3) allows detailed analyses of the strong interactions.

It is generally believed that the perturbative QCD phase is more developed at LEP ener-
gies compared to the lower PETRA energies and therefore marked differences for multiplicity
fluctuations can be expected. It is not clear a priori whether the differences between cluster
and string fragmentation remain observable under these conditions. This question is an-
swered in figure 6.19, where the rapidity dependence of the k! parameter in the models
Jetset and Herwig is compared. If the total event sample is analysed, the two models give
almost identical results. This is because gluon radiation is the main cause of fluctuations.
Compared to the 35 GeV data in figure 6.12 the fluctuations appear stronger, indicated by
larger A~! values. And further, the rapidity range dominated by gluon radiation is enlarged,
revealing the larger phase space available at higher energies. The analysis of two-jet events
(selected according to the prescription in section 4.1.1 with d,u,, = 5 GeV) shows the same
difference between cluster and string fragmentation that has been the topic of the preceding
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Figure 6.19: Rapidity scan at LEP energies: the total event sample is indicated by the open dots (Jetset)
and the solid line (Herwig); the two-jet selection is represented by the open squares (Jetset) and the dotted line
(Herwig).

sections. This opens the possibility to continue the study of this effect at LEP.

6.6 Summary on multiplicity distributions

The topic of the present chapter has been the occurrence and interpretation of particle corre-
lations and fluctuations observed in longitudinal phase space. To study this case the multi-
plicity distributions in central rapidity bins of varying size have been analysed and compared
to Monte Carlo simulations. To facilitate these differential analyses the (negative) binomial
distribution has been used to condense the information contained in the multiplicity distribu-
tion into two numbers: in particular the k! parameter turned out to be a sensitive measure
of correlations and fluctuations. The observed dependence of the correlation strength on the
rapidity bin size was found to be genuinely due to a dependence on the rapidity position, as
has been made clear by the rapidity scan.

An important result has been that correlations observed in the total event sample are to
a large extent caused by the occasional appearance of hard gluons.

The analysis of two-jet events revealed a significant difference between cluster and string
models, where the former are favoured by the experimental data. In particular properties
of longitudinal and transverse fragmentation have been analysed and modified to improve
the performance of the string model. Although an improvement has been obtained it is not
sufficient to remove the discrepancy between experimental data and model. From this study
it is concluded that pure string fragmentation smoothes the effect of soft gluon radiation
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too much. In addition it has been noted that the mass spectrum of primary particles in
the string model is too soft and should be modified to reproduce the primordial resonance
mass spectrum, as is the case in the cluster model. A problem occurs here with the Lund
symmetric fragmentation function, which tends to order heavy particles more strictly in
rapidity. Nevertheless, evidence for a string-like nature of particle production is provided by
the requirement of string-like fission of heavy clusters, without which the cluster model would
also fail to describe the data.




Chapter 7

Intermittency — theory and
experiment

In this chapter theoretical and experimental aspects of intermittency analyses are discussed.
The term intermittency originally names the temporal and spatial fluctuations in turbulent
fluids [82] and has been introduced into high energy physics by Bialas and Peschanski [75).
The intermittent behaviour of a system reveals itself as factorial moments growing as a power
with the decreasing size of the analysed phase space domain é:

29
(F) x (%) : (7.1)
The existence of such a power law could eventually be interpreted as the manifestation of a
self-similar and fractal process. It will become clear in the course of this investigation that
this relation is not always straightforward, and therefore the term intermittency is solely used
to name the factorial moment analysis and not to express a particular interpretation.

The present study of factorial moments of multiplicity distributions has the analysis of
particle correlations and fluctuations in common with the investigations presented in chap-
ters 6 and 9. In addition, factorial moments facilitate the analysis of higher order correla-
tions and allow an analysis even in three-dimensional phase space. Moreover the observed
behaviour can be attributed to a fractal dimension of the multihadronic final state — an
intuitive description which eases the understanding of the results.

In the following sections an introduction to the factorial moment method is given. The
corresponding analyses are presented in chapter 8. Part of this work is already published
|53-55] and was presented at conferences [60-63].

7.1 Factorial moments

The topic of the present chapter is intermittency in one- and two-dimensional projections
of phase space and in the three-dimensional phase space itself. The topological dimension
of the phase space projection under consideration is denoted by Dr. This study consists of
an investigation of the resolution dependence of factorial moments and its origin. For this
the original phase space is successively. and simultaneously in each dimension, divided into
halves, yielding one-dimensional bins for Dy = 1, two-dimensional planes for Dr = 2 and
three-dimensional boxes for Dy = 3. The resulting total number of Dr-dimensional phase
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space cells m obtained after B bisections in each dimension is given by the following relation:
Total number of phase space cells: m = 2P78 (7.2)

The normalized factorial moments of rank ¢ are then defined by the following formulae [76/:

= 1 & (np(ng — 1)+ (ng — g+ 1)) _
(P = =3 = : (7.3)
h=1 /
P 1 & (np(nge —1) - (g — g+ 1)) ~
(Fay- = 2§ k(72 ((:u. q . (7.4)
m,:‘] (ny)

Two averages are implied in the above definitions: the average over m phase space cells (these
might be one-, two- or three-dimensional, depending on D7) and the average over all events,
as indicated by the square brackets. The two above definitions differ in the normalization:

e Equation 7.3 defines the so-called horizontal average, where the normalization is done
according to the overall average number per bin (n) = S, (ny)/m. Due to this
global normalization horizontal moments are sensitive to the shape of the inclusive
distribution. This implies a rise of the factorial moments up to the scale where the
particle density is almost constant over one bin, after that genuine particle correlations
become visible.

o Equation 7.4 defines the vertical average, where the normalization is done according to
the local average (n;). Owing to this definition vertical moments are sensitive only to
fluctuations within each bin, but not to the overall shape of the inclusive distribution.

The original meaning of intermittency in the sense of Bialas and Peschanski as a power law
growth (7.1) is only revealed in case of constant inclusive distributions [75]. This reflects
a basic intention behind intermittency analyses, namely the main emphasis to particle fluc-
tuations inside individual events in contrast to fluctuations of the event ensemble. Since a
constant inclusive distribution is hardly ever found in nature and in particular ¢* ¢~ annihi-
lation is characterized by jet production, which signals a strong reduction of the transverse
phase space, several procedures have been proposed to unfold variations of the event ensemble
from the factorial moment analysis. The local normalization implied by (7.4) is a first exam-
ple; here the weighting according to the average bin population compensates the variation of
the inclusive distribution. More sophisticated methods are presented in the following section.

7.2 Variable transformations

It is clearly visible in figures 5.3 and 5.2 that the inclusive distributions observed exper-
imentally are not constant. Their variations would modify the factorial moments at the
corresponding resolution scales and therefore fake intermittent behaviour, even in case of
complete absence of genuine particle correlations. However, it is possible to unfold these
variations from the factorial moments by appropriate variable transformations, as will be
explained in the following.
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7.2.1 Ochs method

The method proposed by Ochs is intended for use in three-dimensional intermittency analyses
|77], where in particular the p? distribution shows strong variations. The procedure consists
of a variable transformation r — . such that the distribution p(&) is constant. This is
achieved by the transformation:
Sl i (r")da'!
r(x —Z——— ; (7.5)
!  }
‘lfnnn (-T )d'r
where p(z) are the inclusive density functions and r is any phase space variable, like y, ¢
or p*. Tmin and T, are the lower and upper phase space limits of the variable z. The
transformed distribution p(#) is uniform in the range from zero to one. This transformation
is intended to adjust the binsize in such a way that, on average, each bin contains the same
number of particles. In figure 7.1 the transformation functions for y — y, ¢ — pandl — [
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Figure 7.1: Cumulative distributions (CELLO data) of y, ¢ and ]og(pi) for the variable transformation
according to Ochs.

are shown; 1% log(p? ) has been used to reduce the rapid variation of the p? distribution and
Lence to facilitate the numerical treatment. In case of constant inclusive distributions the
transformation functions would be straight lines.

The Ochs method is applicable in any dimension, but it has the disadvantage that each
linear phase space projection is treated independently and therefore correlations between dif-
ferent variables are neglected — an approximation which is not always sufficient as is demon-
strated in figure 7.2. In the ideal case of uncorrelated variables the particle density in the
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transformed space would be constant. i.e. every box would contain the same number of parti-
cles. This is apparently not the case. since a clearly non-constant particle density is observed
after the transformation. The high quality of the Monte Carlo simulation is also visible in
figure 7.2, which is seen to reproduce the phase space population extremely well, implying a
correct sunulatmn of correlations between the phase space variables.

7.2.2 Bialas & Gazdzicki method

A generalization of the previous transformation has been proposed by Bialas and Gazdzicki
|79]. Their treatment takes the correlations hetween different variables into account. In the
three-dimensional case the method is based on the following integral equations:

ol ys2)

Pz, y,=) Sy datdyde (7.6)
Plz,y) = /P(1 oy, 2t (7.7)
P(z) = /P(z,y')dy', (7.8)

where the integrals run over the full phase space. The transformed variables z, 3y, Z are then
defined in terms of the probability densities P (7.6—7.8):

x

E(2,y,2) = P(z")dz" , (7.9)
-~ L4 P z, ! d § v - ! L4
y(:r,y,:) / w :/ P('T-,y,)dy ) (‘10)
Ymin P(I‘) Yman
z : P(z,y,z')d?’ / -
< Z = s P < d.. . .11
(,9,2) f:m Plz.v) - Z,9,2') (7.11)

Since the computational realization of this transformation is non-trivial a short description
of the invented algorithm is given here.

7.2.2.1 Transformation algorithm

The problem is to find a decomposition of the three-dimensional phase space into boxes with
equal particle content. After e.g. B = 6 bisections in every dimension the total number of
boxes is m = 2' = 262,144. Given six coordinates to define the position of a box in phase
space, a total of ~ 1.57-10° coordinates must be known to enable the assignment of a particle
to its box. Once these coordinates are defined. the actual assignment requires us to compare
three particle coordinates with six coordinates of 262,144 boxes!

The idea to solve this problem is as follows: the information needed to perform a three-
dimensional intermittency analysis consists of three phase space variables, e.g. y,¢,p? and
the event number for all particles. This data is stored in arrays and is kept in the main
memory of the computer. In the first step the y array is ranked in ascending order, providing
an index array which is used to trace the remaining variables (¢, p> and the event number) to
the elements in the ranked y sequence. Then the y array is divided into the desired number of
sub-arrays containing equal numbers of particles. Since particle numbers are integer valued
this division is not always possible. Actually N particles are distributed over m boxes as
N = myn 4+ my(n — 1), with m = m, + m,. Particles belonging to the same y sub-array
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are given a common index. replacing the old y values. This index, together with the event
number. is later on used to determine the phase space boxes occupied by particles from the
same event. In the second step, for every y sub-array separately, the corresponding ¢ array
is ranked in ascending order, again using an index array to trace the remaining variables (p?
and event number) to the ranked ¢ sequence. As before the desired division is made and
particles belonging to the same ¢ sub-array are assigned a common index, replacing the old
¢ values. In the third step, for every o sub-array separately, the corresponding p® array is
ranked in ascending order. The index array is now used to trace the event number to the
ranked p? sequence and the desired division is made, replacing the p? values of particles
belonging to the same p? sub-array by a common index.

At the end of the procedure the position of each particle in the transformed phase space
is defined by three indices, labeling the phase space box and by its event number. In the
final step the entries are sorted according to the event number. This information is readily
transformed into factorial moments. The complete procedure for 500.000 particles with six
different phase space decompositions, including the calculation of factorial moments and the
covariance matrix requires one minute of computer time (including I/0) on the DESY IBM
ES 9000/720 vector facility. This fast performance made possible the detailed analyses and
Monte Carlo studies presented in chapter 8. For illustration figure 7.3 visualizes a few steps
of the algorithm in the two-dimensional case.

7.3 Covariances and statistical errors

The covariances Vj;, between factorial moments F¥ and F} of the same rank g are defined by
the following matrix:

Vim = (I ELY — {EEHFE) (7.12)
and the F? are given by (7.3) and (7.4). In case of the horizontal normalization the covariances
must be determined after the average over bins has been carried out, since only the bin-
averaged moments are expected to have a common mean value. In case of the vertical
normalization a mathematical equivalent procedure would be to consider each bin as an
individual measurement, but also here the bin-averaged moments have been used.

From the covariance matrix (7.12) the error on the mean value (F?) is obtained as:

1
Error on mean value: - Vam . (7.13)
event

These are the errors used in the forthcoming analyses. The complete covariance matrix is also
used to propagate the errors from the factorial moment measurement to the corresponding
fractal dimension, as discussed in section 7.4.

The covariance matrix is of interest in itself: at first it can be transformed into a correlation
matrix:

s
cl,=—=_ (7.14)

: ]
ViV,

which reveals the information inherent in the factorial moments. And second its inverse
(Vi) ™! is predicted to be tridiagonal in the a-model [80].
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Figure 7.3: Graphical representation of the Bialas and Gazdzicki transformation algorithm in the two-dimen-
sional case: y.@ coordinates from 331 particles of forty events are indicated by the crosses. The subdivision
into boxes of equal particle content is shown for B = 0,...,3.
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7.3.1 Test of statistical errors

To test the validity of (7.13) fifty CELLO type experiments (20,000 events each) have been
simulated with Jetset 7.2 PS. The factorial moments (F¢) from a one-dimensional rapidity
analysis in the range —2 < y < +2 have been calculated for each individual experiment.
This yields, for every rank ¢ and every bin division m a distribution with fifty entries. The
r.m.s. width of these distributions gives an estimate for the “true” standard deviation. In
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Figure 7.4: Test of error estimate: the per cent errors from the covariance matrix, averaged over fifty experi-
ments, are shown as the open symbols. The “true” errors, obtained as the r.m.s. width from fifty experiments,
are shown as the lines (F? — circles and dash-dotted line, F® — squares and dashed line, F* — diamonds and
dotted line, F® +— triangles and solid line).

figure 7.4 the “true” per cent error on (F?) is presented as a function of the number of bins
m and compared to the average per cent error derived from the covariance matrix. It is
found that the factorial moments from different experiments follow a Gaussian distribution
with a standard deviation given by (7.13) for ¢ = 2,3 and for modest values of m in the case
of higher ranks. For very large m values and high ranks ¢ the factorial moments show an
exponential distribution due to many experiments with zero contribution to the mean value.
In this case (7.12) is no longer a robust error estimate; i.e. it underestimates the errors. It
is found that the error estimate given by (7.12) is reliable, provided at least ten events from
a single experiment contribute to the mean value (F2). This criterion applies to all results
presented in chapter 8.
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7.4 Fractal dimensions

The local intermittency exponents % are related to the factorial moments by the following

derivative:
g OlagEr) (718
= Bmm s

i.e. they correspond to the slopes in a double logarithmic plot of In (F?) versus lnm. In this
context the term local is used to express the m dependence of 9.

The theory of fractals [81.82] allows these local intermittency exponents to be interpreted
as a fractal dimension of the object under study via the linear relation:

‘Pq
D":DT(I—q_l) . (7.16)

In general D} may depend on the rank g, in this case the object under study is a multifractal.

A simple example may explain the relation between factorial moments and fractal dimen-
sions: Assume that N particles are randomly distributed in a Dp-dimensional phase space
consisting of m cells. Then the particle content of every phase space cell k follows a Poisso-
nian distribution with (n;) = N/m, and the (F?) calculated according to (7.3) and (7.4) are
observed to be independent of m. Consequently the derivatives (7.15) vanish and D} = Dy
for all ranks ¢. Now consider the other extreme case, that all N particles of an event are
placed in one singular point, then the sum in (7.4) and (7.3) is constant for any given m and
(F¢) is given by the factor m(?~1), consequently p? = ¢ — 1. Inspecting (7.16) gives D% = 0
for all ranks g, which coincides with the intuitive expectation for a point-like object. This
example can be generalized to distributions which are phase space like in D} dimensions and
singular in Dy — D% dimensions. The factorial moments (F?) of such distributions can be
shown to exhibit a power law behaviour with slope:

Dq
¢qz( —D—;)(q—l). (7.17)

Solving this equation for D} leads to the definition of fractal dimensions (7.16).




Chapter 8

Intermittency analyses

The topic of this chapter is intermittency analyses according to various methods which are
summarized in table 8.1. These analyses cover different aspects of multiparticle produc-
tion, depending on the studied variables and their dimensionality. The numerical results are
presented in tabular form in the appendices A-C.

Transformation: None Ochs Bialas
Normalization: vertical horizontal | vertical horizontal | horizontal
Dr =1 Yy + + - - +

Dy =2 Y, @ + 3 =+ oE Sr

Dr =3 Y, 9, P} 2 - - + +

Dr =3 p./E3,p,/E5,p./E3 - i = - +

Table 8.1: Survey of intermittency analyses.

The factorial moments in high energy multiparticle production have a complex structure.
This means on the one hand that the interpretation is not straightforward: on the other hand,
it opens the possibility to study subtle details of the hadronization process. The strategy of
this analysis is to isolate individual effects, if possible directly from the data, or by means of
Monte Carlo simulations. This procedure proved very powerful in relating the experimental
observations to known physical processes.

In this thesis I will not follow the cumbersome historical evolution of intermittency analy-
ses but rather present the current state of the art. The comparison with results from processes,
other than e* ¢~ annihilation, is beyond the scope of this work; the interested reader may
consult review articles [52]. Intermittency studies from TASSO at PETRA and experiments
at LEP can be found in [56,57-59].

This chapter is divided into five sections; the following sections 8.1 and 8.2 are dedicated
to one- and higher-dimensional analyses, using cylindrical coordinates defined by the anni-
hilation event. Section 8.3 presents further aspects of intermittency analyses. In section 8.4
a three-dimensional analysis in cartesian coordinates is presented. Finally the results are
summarized in section 8.5.

90
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8.1 One-dimensional analysis

The first intermittency analyses were in every case one-dimensional, until the importance of
the phase space dimension was noted 78 .

8.1.1 Full rapidity range

At first the full rapidity interval from —5 to -5 is considered for analysis, over which the
inclusive distribution varies strongly (figure 5.3). This situation is ideal to study the effect
of a varying inclusive distribution on the factorial moments, and it further emphasizes the
effect of the different normalizations implied by (7.3) and (7.4), as well as demonstrating the
effect caused by a variable transformation.

8.1.1.1 Horizontal normalization
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Figure 8.1: Horizontal factorial moments in full rapidity space: CELLO data (open symbols) are compared
to the CELLO “toy” model (dotted lines) and to the Jetset 7.2 PS simulation (solid lines).

Figure 8.1 compares the horizontal moments (F")h calculated from CELLO data to the cor-
responding results from the CELLO “toy” model (see section 5.4 on page 53 for a description
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of the model). This comparison makes it apparent that the fast initial rise of the factorial
moments is entirely due to the variation of the inclusive distribution.

At B - 2 (by = 2.5) the onset of genuine particle correlations is signified by almost
constant moments in the “toy” model, in contrast to the rising moments observed in real
experiment. This extends up to B = 4 (by = 0.5). after which a saturation of the moments
is observed both in the data and in the “toy™ model.

Figure 8.1 displays also the results obtained from the Jetset 7.2 PS simulation, which are
seen to be in good agreement with the data.

8.1.1.2 Vertical normalization
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Figure 8.2: Vertical factorial moments in full rapidity space: CELLO data (open symbols) are compared to
the CELLO “toy” model (dotted lines) and to the Jetset 7.2 PS simulation (solid lines).

The vertical moments (F%)" are seen to behave completely differently in figure 8.2. In this
case the local normalization (7.4) gives large weights to phase space regions of low particle
density, and thereby amplifies this contribution to the bin-averaged moments.

From the analysis of multiplicity distributions in chapter 6 it has become clear that
fluctuations in the low density region |y| = 2 are binomial. This translates, by virtue of
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the local normalization. into almost constant factorial moments (F?) and (F?). In fact, from
the slight decrease of (F?) it is seen that fluctuations are really smaller than Poissonian.

For higher ranks (¢ = 4,5) the contribution from the rapidity region |y| > 2 is drastically
reduced, at least in real data, leading to rising factorial moments. This is because factorial
moments of rank g receive contributions from those bins only, which contain at least g parti-
cles. It is simply energy-momentum couservation whichs makes it impossible to find four or
five particles in the rapidity region |y| - 2. Fluctuationsin the “toy” model are Poissonian by
construction. with additional constraints imposed to reproduce the total multiplicity and the
inclusive distribution. This leads to the observed constancy or even decrease of the factorial
moments.

8.1.1.3 Variable transformation

iy
H

40 F

m.,.
5
A
&
v

I RAARR
|

3.0

TTTTTT
™

2.0

Y
LAARARAS RARAA

1.0

LAARARS RARARAL

0.0

llllllllllllLlllllIlIIllllllllllIllllllllllllllll

llllllllllllllllllllIllllllllllllllllllll
HHHHH HHH

\AAS I

15 F

T
™

o

1.0

0.5

LEe e |

g e b oo a2 o b,
—t—t =t t
| PN I (O T el

1 | | | | L l 1
7 8 0 1 2 3 4 5 6 7 8
isections [B]

3
o
o

Figure 8.3: Transformed factorial moments in full rapidity space: CELLO data (open symbols) are compared
to the CELLO “toy” model (dotted lines) and to the Jetset 7.2 PS simulation (solid lines).

In the case of a one-dimensional analysis the transformation procedures of Ochs and Bialas
& Gazdzicki, discussed in section 7.2 are identical. Since their computational realization is
completely different the one-dimensional analysis serves as a consistency check. Inspecting the
tables in appendix A it is seen that both procedures give in fact the same results. Furthermore,
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it is noted that the horizontal and vertical normalization in case of the Ochs method vield
identical results. This is. of course, as expected since the inclusive distribution is constant
after the variable transformation.

In figure 8.3 CELLO data are once more compared to the “toy” model, which shows only
Poissonian density fluctuations, indicated by constant factorial moments after the variable
transformation. The description provided by the Jetset 7.2 PS simulation is satisfactory, al-
though the model slightly underestimates the data. It is demonstrated in the following section
that the description can be considerably improved if Bose-Einstein correlations are included
in the Monte Carlo simulation. The significance of the Bose-Einstein effect for fluctuations
in the Jetset model has already been noted in the analysis of multiplicity distributions in
chapter 6.

8.1.1.4 Hard gluon radiation

It is intuitively clear that hard gluon radiation induces strong fluctuations in rapidity space.
Fragments from a gluon radiated under an angle ¥ off a primary quark populate the (pseudo)-
rapidity region 7 = — In|tan(d/2)].
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Figure 8.4: Transformed factorial moments for two-jet events compared to the entire data sample in the full
rapidity range: the total event sample (open circles) is compared to the two-jet selection (open squares). The
Jetset 7.2 PS and 7.2 PS+BE simulations are indicated by the solid and dotted lines respectively.

This effect can be isolated directly from the data by means of the two-jet selection de-
scribed in section 4.1.1 on page 31. A marked difference is observed in figure 8.4, where the
transformed factorial moments from two-jet events are compared to the entire data sample.
The initial rise of the factorial moments up to resolution scales of dy =~ 0.5, exhibited by the
total event sample, is considerably reduced in two-jet events.

Another important observation is the apparent failure of the Jetset model in describing the
two-jet data. Since this discrepancy becomes visible after effects from hard gluon radiation
have been removed, it reveals its non-perturbative origin. This effect has been studied in
detail in chapter 6 and is further examined in the following section.
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8.1.1.5 Multiplicity dependence

Following a suggestion of Ochs the multiplicity dependence of factorial moments has been
studied [68,70]. The idea is that an inadequate treatment of the hadronization process should
be emphasized in events of low multiplicity. In particular, it is conjectured under the as-
sumption of local parton hadron duality, that string models should underestimate particle
correlations due to their energy dissipating mechanism.

N I A R R I B B [ L T L IR A LT GEY
0.2 -] 0.
- In<F2> 1 104
0.1 B ‘_,Q"‘Q""§~-~§—-—- | 7 0.2
[ T 1 j
0.0 & goBe i 1 oo
-0.1 4 J-02
1 b
-0.2 = -1 -0.4
I S S I W | i

| L | |
5 6 7 8 0 1 2 3 4 5 6 7T 8
1-D bisections [B]

Figure 8.5: Multiplicity dependence of factorial moments in the full rapidity range. The open symbols represent
the CELLO data, while the curves show the Jetset 7.2 PS+BE simulation: (N) = 6.8 — open circles and solid
lines: (N) = 9.9 — open squares and dotted lines: (N) = 13.5 — open diamonds and dashed lines.

To test this idea the total event sample is split in three sub-samples of mean multiplic-
ities (N) = 6.8,9.9 and 13.5, containing approximately the same number of events. The
transformed factorial moments from a one-dimensional analysis in the full rapidity range are
presented in figure 8.5 and compared to the Jetset 7.2 PS+BE simulation. Apparently the
higher multiplicity events are very well described, while a significant failure is observed for
very low multiplicity events. This observation supports the results from the factorial moment
analysis of two-jet events and is in full agreement with the study of multiplicity distributions
in chapter 6.

It is expected that residual 7 pair events preferentially appear in the lowest multiplicity
sub-sample ((N) = 6.8). Since these events are not included in the Monte Carlo simulation,
it might be asked what their contribution to the factorial moments is. To reject any such
events it is required that at least one event hemisphere (defined by the sphericity tensor)
must contain a minimum of five charged particles. It is virtually impossible that a 7 pair
event passes this condition. The factorial moment analysis is then repeated, and it is found
that the discrepancy between the CELLO data and the Jetset model remains, although at
a reduced level, which can be attributed to the increased mean multiplicity implied by the
additional selection criterion. From this it is concluded that the observed discrepancy is a

real effect. This observation is further supported by DELPHI and OPAL at LEP [57,58|.

The comparison of cluster and string-based fragmentation models in figure 8.6 reveals
a marked difference between the two approaches. The general trend is that cluster models
show larger correlations than string models due to the local hadronization mechanism in the
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Figure 8.6: Comparison of low multiplicity events (N = 2—8) in cluster and string models in a one-dimensional
y analysis of (F?): Jetset 7.3 PS (solid line), Jetset 7.3 ME (dotted line), Ariadne 3.1 CD (dashed line) and
Herwig 5.0 PS (dash-dotted line).

former. If this figure is compared to the experimental data (figure 8.5) it can be concluded
that the cluster model provides an adequate description of particle correlations in rapidity
space, in line with the results obtained in section 6.4. The strong ordering in rapidity space
occurring in the Lund string model smoothes particle fluctuations, which is apparently not
supported by the data. The Bose-Einstein effect partly removes this ordering and thereby
increases the fluctuations, as is visible in figure 8.4.

8.1.2 Central rapidity range

It was pointed out in chapter 6 that particle production in the rapidity region |y| > 2 is
strongly affected by conservation laws. This rapidity region is excluded from the analyses
presented in this section. The difference between horizontal and vertical normalization is small
in this case because the rapidity distribution varies only slowly over the range considered here.
Therefore figure 8.7 shows only the horizontal factorial moments; for completeness appendix A
contains all other results.

The comparison with the “toy” model reveals the full strength of correlations present in
the data and makes it clear that the factorial moment method is adequate to extract these.

From figure 8.7 it is immediately seen that the factorial moments of rank ¢ = 2,....,5
rise linearly up to éy =~ 0.5; after that, the moments bend over and approach a constant
value. In this context an important observation has been made by Ochs; namely that the
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Figure 8.7: Horizontal factorial moments for central rapidity: CELLO data (open symbols) are compared
to the CELLO “toy” model (dotted lines), to the Jetset 7.2 PS simulation (solid lines) and to the Jetset 7.2
PS+BE simulation (dashed lines).

intermittent behaviour of a three-dimensional system remains eventually unresolved in one- or
two-dimensional analyses [78]. Therefore any conclusion about the existence of intermittent
fluctuations in e*
are presented further below.

The resolution dependence of factorial moments can be compared to the observation made
in section 6.2, where the k! parameter for multiplicity distributions in central rapidity bins
was found to approach a constant value for éy < 0.5, implying constant factorial moments of
all ranks. This result has been obtained under the implicit assumption that the multiplicity
distributions are of negative binomial type. This assumption is now supported by the direct
measurement of factorial moments, which indeed show the expected constancy.

e~ annihilation must be the subject of higher-dimensional analyses, which

8.2 Higher dimensions

The results presented in this section are based on the variable transformation due to Bialas
and Gazdzicki described in section 7.2. Results from other methods are available in tabular
form and can be consulted in the appendices B and C for reference.
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8.2.1 Phase space dimension

An important finding in intermittency studies is the significance of the phase space dimension.
It was shown by Ochs [78] that a three-dimensional intermittent system may hide this property
if analysed in one- or two-dimensional projections of phase space.
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Figure 8.8: Transformed factorial moments (F?) — (F®) for increasing number of bins m = 2P7°8_ The open
symbols represent the CELLO data, while the curves show the Jetset 7.2 PS+BE model. Dy = 1; y analysis —
open circles and solid lines: Dy = 2; y, ¢ analysis — open squares and dotted lines: Dy = 3; y,d),pi analysis
+— open diamonds and dashed lines.

In the preceding section the one-dimensional factorial moments have been seen to saturate
after a strong initial rise. From the analysis of two-jet events it has been concluded that
this initial rise of the moments is related to hard gluon bremsstrahlung, which causes strong
multiplicity fluctuations in certain rapidity regions. What happens now in higher dimensions?

To answer this question, figure 8.8 compares the factorial moments from the one-
dimensional y. the two-dimensional y, ¢ and the three-dimensional y, ¢, p? analyses. Indeed,
the higher dimensional factorial moments of rank two and three apparently show a continual
rise up to the highest resolution scales, accessible with the given detector resolution. This
behaviour can alternatively be expressed as a fractal dimension of the analysed system, as
has been discussed in section 7.4 on page 89. Figure 8.9 presents these fractal dimensions,
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Figure 8.9: Fractal dimensions D% and D} for increasing number of bins m = 2P7B_ The open symbols
represent the CELLO data, while the solid and dashed lines show the Jetset 7.2 PS model with and without
Bose-Einstein correlations.

and it is clearly seen that the dimension of the multihadronic final state is smaller than the
topological phase space dimension. It is further noted that this property is observed only in
the higher dimensional analyses, revealing the importance of the phase space dimension.
The higher ranks ¢ = 4,5 show a very different pattern: firstly they are very similar in all
dimensions and secondly they bend over and approach a constant value. This implies that
there are no four- and five-particle correlations. A not very surprising result, since at 35 GeV
particle systems of that size correspond to entire jets, of which at most three appear in one
event, leaving not much freedom for the development of a cascade with a fractal structure.

The complex behaviour of the factorial moments is further discussed in the following
sections. It is certainly due to conventional physics, since it is apparent that the Jetset 7.2
PS+BE simulation provides an excellent description in all dimensions.

8.2.2 7' Dalitz decays and resonance decays

The contribution of resonance decays to the complex resolution dependence of factorial mo-
ments is best analysed by means of Monte Carlo studies. Their importance is demonstrated
in figure 8.10, where the dramatic change in the fractal dimension (see section 7.4 on page 89
for the definition) due to 7° Dalitz decays is shown. It should be noted that the Dalitz decays
are only visible in higher dimensional analyses and moreover they occur at scales where the
finite detector resolution becomes important, making it impossible to see the full strength of
the effect. However, as shown in figure 9.2, there are many other resonance decays at larger
correlation scales, which are easily accessible by the experiment and modify the factorial
moments as well. Under these circumstances it is noteworthy that CELLO has measured
a variety of inclusive particle cross sections (see section 4.4) to be in good agreement with
standard Monte Carlo models.
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8.2.3 Bose-Einstein correlations

In section 9.1 a direct measurement of Bose-Einstein correlations is presented. It is found
that the correlation length is ( ~ 0.1 GeV?, from this an effect is expected at intermediate
and high resolution scales.

The analysis of like-sign charged particles provides more information on the significance of
Bose-Einstein correlations, since the effect of resonance decays is strongly reduced. For this
analysis positive and negative particles from one event are considered as two separate events.
The corresponding results are shown in figure 8.11. Obviously, the Monte Carlo including
Bose-Einstein correlations provides a very good description of the data. And furthermore,
the difference between the two Monte Carlo versions is much more pronounced than in the
analysis of all charged particles (figures 8.8, 8.9). This makes it clear that Bose-Einstein
correlations have to be included in the Jetset model to describe the factorial moments.

Bose-Einstein correlations are one reason for the discrepancy between TASSO data and
Jetset version 6 56, since this model does not include Bose-Einstein effects and further does
not include a proper treatment of 7° Dalitz decays [62].

8.2.4 Azimuthal anti-correlations

In section 6.4.2.1 particle production in the string model was discussed. There it was stated
that the one-dimensional nature of the string leads to azimuthal anti-correlations. These
correlations are expected to become visible in an analysis including the azimuthal angle
around the jet axis, as shown by Sjostrand [69].

Here we present a one-dimensional analysis of the azimuthal distribution of particles
around the jet axis (see section 5.2). Only two-jet events are considered for analysis, since
hard gluon radiation would obscure the effect.

The results are presented in figure 8.12: anti-correlations, indicated by decreasing factorial
moments, are seen only at very coarse resolution in the data. Contrary to this, the factorial
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Figure 8.11: Factorial moments and fractal dimensions for like-sign charged particles. Lower plots: (F?) and
(F?); the data are represented by the open symbols and the Jetset 7.2 PS+BE simulation is indicated by the
curves. Dy = 1; y analysis — open circles and solid lines: Dy = 2; y, ¢ analysis — open squares and dotted
lines: Dy = 3; y,¢,p’ analysis — open diamonds and dashed lines. Upper plots: D% and D}. The open
symbols show the CELLO data while the solid and dashed lines correspond to the Jetset 7.2 PS model with
and without Bose-Einstein correlations.

moments from the Jetset 7.2 PS model decrease also at higher resolution and fail to describe
the data.

The initial decrease of the moments, at coarse resolution, can be attributed to global p,
conservation in the entire event, while the decrease observed at higher resolution scales in
the Jetset model is due to the local p, conservation of quark-antiquark pairs produced off a
one-dimensional string.

An interesting observation is made when Bose-Einstein correlations are included in the
Jetset model: the azimuthal anti-correlations disappear and the model provides a very good
description of the data. This is understandable, since the strong anti-correlations induced by
local p;, compensation are destroyed by the Bose-Einstein effect. Whether the parameteri-
zation of the Bose-Einstein effect in the model of Sjostrand [9] is correct remains an open
question. However, this model provides an improved description of particle correlations and
fluctuations in the string model and therefore has physical significance at least in this context
(cf. section 9.1).
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Figure 8.12: Transformed factorial moments for two-jet events in ¢ space. CELLO data (open symbols) are
compared to the Jetset 7.2 PS simulation with and without Bose-Einstein correlations after detector simulation,
shown by the solid and dotted lines respectively. The Lund string model (dashed line) is compared to the Herwig
cluster model (dash-dotted line) on the generator level.

Finally it should be pointed out that the Herwig model fails significantly to describe
azimuthal correlations in the data (figure 8.12). It might be objected that the Herwig simula-
tion does not include the Bose-Einstein effect. However, this objection does not apply here —
particle correlations in the Herwig model remain almost unchanged when Bose-Einstein cor-
relations are introduced according to the recipe of Sjostrand. This holds for both azimuthal
and rapidity correlations, although the expected effect is visible in the Q? distribution. The
reason for this is twofold: firstly, Herwig contains fewer like-sign charged particle pairs than
Jetset, such that the generated correlation strength is weaker (see section 9.1). Secondly, the
disorder of the final state particles already before Bose-Einstein correlations are turned on is
larger in the cluster model. In other words, it is impossible to disorder further a completely
disordered system. In this point string and cluster models differ significantly: while the for-
mer model produces an almost coherent system, the latter produces an almost disordered
final state.
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8.3 Aspects of intermittency analyses

In this section additional results from the above intermittency analyses are presented.
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Figure 8.13: Fraction of events contributing to the factorial moment measurement according to Bialas and
Gazdzicki. The open symbols represent the CELLO data and the curves show the Jetset 7.2 PS model. Dy = 1;
y analysis +— open circles and solid lines: Dr = 2; y, ¢ analysis — open squares and dotted lines: Dy = 3;
y, &, p° analysis — open diamonds and dashed lines.

Fraction of events: In figure 8.13 it is shown how the fraction of events, contributing
to the measurement of factorial moments, varies with the resolution scale. This is done for
different ranks ¢ of the moments and different topological dimension Dy of the analysed
phase space. A strong variation over four magnitudes is observed, making clear the need for
a precise Monte Carlo simulation. The comparison with the Jetset 7.2 PS simulation shows
excellent agreement in all dimensions and for all ranks.

Cluster multiplicity: The multiplicity distribution of clusters obtained during the facto-
rial moment analysis is presented in KNO form in figure 8.14 (cf. section 6.1). The multi-
plicity distributions are shown for B = 0,...,3, corresponding to m = 1,2,4,8 bins in the
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one-dimensional rapidity analysis and to m = 1,4,16, 64 bins in the two-dimensional rapidity-
azimuth analysis. For m = 1, of course, the ordinary multiplicity distribution is recovered;
for two bins in the one-dimensional analysis e.g. the multiplicity distribution of single event
hemispheres is obtained. The Jetset 7.2 PS model provides an excellent description also of
these distributions.

Correlation matrices: In figure 8.15 the correlation matrices C? from the one-, two-,
and three-dimensional factorial moment analyses are shown (see section 7.3). Large positive
correlations are observed between all data points, showing that the same event contributes
to factorial moments at different resolution scales. These correlations have to be taken into
account if the data are compared to the Monte Carlo. The largest correlations, even between
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Figure 8.15: Correlation matrices C'? from one-, two- and three-dimensional analyses (left to right).
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very distant data points, occur in the one-dimensional analysis. In the higher-dimensional
analyses more information is available. reducing the correlations, however, they are still
sizeable.

Inverse covariance matrices: The inverse covariance matrix (V?)~! (see section 7.3) from
the analysis of (F?) in one dimension is presented in table 8.2 and compared to the Jetset
7.2 PS+BE prediction. Apparently both matrices are very similar, again demonstrating
the high quality of the Monte Carlo. Interestingly they have an approximate tridiagonal
structure, which is, however, also true for the CELLO *“toy” model without any genuine
particle correlations. From this it can be concluded that the tridiagonal structure of the
inverse covariance matrix is a general property of factorial moment analyses.

1.00 1.00
-1.01 1.33 \ -1.00 1.30 \
0.04-0.27 0.38 0.04-0.26 0.37
0.01 -0.02-0.16 0.26 0.00-0.01 -0.16 0.25
0.00 0.00 0.00-0.10 0.15 0.00 0.00 0.00-0.09 0.14
0.00 0.00 0.00 0.00-0.05 0.07 0.00 0.00 0.00 0.00-0.05 0.07
0.00 0.00 0.00 0.00 0.00-0.02 0.04 0.00 0.00 0.00 0.00 0.00-0.02 0.04
0.00 0.00 0.00 0.00 0.00 0.00-0.01 0.02 0.00 0.00 0.00 0.00 0.00 0.00-0.01 0.02
0.00 0.00 0.00 0.00 0.00 0.00 0.00-0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00-0.01 0.01
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00)

Table 8.2: Inverse covariance matrices: data (left) and Jetset 7.2 PS+BE (right). The matrix elements are
normalized to (V%)™

8.4 Cartesian three-dimensional analysis

In this section a study of multiplicity fluctuations of charged particles in Lorentz invariant
phase space is presented. For this the differential phase space element dLips is decomposed
according to (5.1). In contrast to the decomposition (5.2) this parameterization allows a
unique definition of a resolution scale, since all variables are of the same dimensionality. A
further advantage of this approach is the invariance of the factorial moments under rotational
transformations of the analysed variables, thus making the definition of a preferred axis (such
as the sphericity axis) unnecessary. The results presented below have been checked to be
identical if the variables are defined in the laboratory frame or by the eigenvectors of the
sphericity tensor.

The factorial moments of the charged multiplicity distribution are evaluated at different
resolution scales according to the prescription given in section 7.1 on page 81. For reasons that
will become clear later, the original phase space volume A Lips has been chosen to be thousand
times larger than the volume actually occupied by our events, namely 1/(27)*-1/2-10° GeV?,
corresponding to a range of +50 GeV for the single variables p,/Eg (see figure 5.2). This
arbitrary choice influences the absolute value of factorial moments at a given scale, implying
a strong initial rise, but has no effect on the slopes at high resolution.

The analysis is performed with up to fourteen successive bisections B in every dimension,
vielding a maximum of m = 2%? three-dimensional phase space cells. The scale B can be
related to the four-momentum transfer Q* by:

()
Drln?2

(8.1)
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where A’p/E = 10° GeV? is the initial size of the phase space volume. Typical Q? scales are
also indicated in the figures to ease the comparison to physical processes.

For this analysis a special smoothing procedure is applied to remove fluctuations caused by
the accidental setting of bin borders. This is accomplished by moving the complete event at
random inside the large phase space volume. which for this purpose is continued periodically.
The factorial moments from each event are calculated at ten different random positions and
the average is taken. We have checked that the results are not influenced by this procedure,
except that artificial fluctuations are damped.
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Figure 8.16: Factorial moments in three-dimensional phase space. The open symbols show the data (statistical
errors are typically smaller than the symbol size and are omitted for clarity) and the dotted and solid curves
correspond to the Jetset 7.2 PS simulation prior to and after detector simulation. The dashed curve indicates
the Jetset 7.2 PS+BE model and the dash-dotted curve represents the CELLO “toy” model.

In figure 8.16 the factorial moments are displayed: different slopes are seen at different
resolution scales. A very interesting behaviour is observed for (F?), which after a strong initial
rise flattens out, but then starts to rise again. The results from a Monte Carlo simulation
with the Jetset 7.2 parton shower model, with default parameters after inclusion of initial
state radiation are seen to be in good agreement with the data. Including Bose-Einstein
correlations in the simulation improves the description. Similarly the Jetset 7.2 ME model
provides a good description of the data. It is also visible in figure 8.16 that detector effects
are of minor importance in this analysis.

The comparison with the CELLO “toy” model (consult section 5.4 for a description of
the model) shows that the fast initial rise of the moments is entirely due to the variation of
the inclusive distribution, which is very strong due to the choice of the large initial phase
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space volume. However. for B - 5 the moments from the “toy” model are seen to bend
over and saturate. This is in contrast to the experimental data and also to the Monte Carlo,
both contain genuine particle correlations, which cause rising factorial moments at certain
resolution scales.

8.4.1 Local fractal dimensions

Figure 8.17 shows the fractal dimension D} (cf. (7.16) on page 89) inferred from (F?) for
increasing resolution. The errors shown are propagated from the measurement of ( F?) using
the covariance matrix (7.12).

On top of figure 8.17 the geometrical meaning of the fractal dimension is indicated. For
very coarse resolutions the events appear point-like (D} = 0). This limit could only be
reached with a very large initial value for A Lips. which is the justification for this particular
choice. With increasing resolution the structure begins to emerge: first along the jet-axis and
then also transverse to the jet-axis. At very small scales all dimensions are fully resolved, and
in the geometrical interpretation one expects Di = 3. The data. however, show a maximum
dimension D% = 2.5 followed by a decrease to about D% =~ 2.0. This reduction of D% is the
manifestation of the strong rise of (F?) at ultra-fine resolution. This complex behaviour is
well reproduced by the Jetset 7.2 PS Monte Carlo simulation, both with and without detector
simulation.

8.4.1.1 Multifractal objects

In the geometrical interpretation given above one would expect the fractal dimension derived
from factorial moments to be independent of the rank g, i.e. one expects ¢9/(g — 1) = const.
This relation does not apply to multifractal objects. To search for a possible multifractal
behaviour the slopes p? obtained from (F?) of rank ¢ at a given resolution scale m are fitted
to the expression:

w"=r(q—l)<§> (8.2)

where r = 0 indicates geometrical scaling and = 1 corresponds to the scaling law predicted
by the a-model: i.e. a simple cascade model [75]. The fitted z values are shown in figure 8.18: a
clear deviation from the simple geometrical scaling law is observed as the resolution increases.
This behaviour is well described by the Monte Carlo expectation, both with and without
detector simulation, again demonstrating the small influence of detector effects on this type
of analysis. The reason for the observed multifractal behaviour is the interplay of processes
with different correlation lengths, occuring e.g. in the resonance region.

8.4.2 Monte Carlo studies and discussion

Given the success of the Lund model in describing the data, we have undertaken some gen-
erator studies in order to isolate the effects contributing to the observed complex behaviour
of the fractal dimension and the scaling law. The corresponding (F?) and D} curves are
displayed in figures 8.19 and 8.20.

o The simplest case considered consists of primary particles produced in ¢gg events with
no transverse degrees of freedom. i.e. (p? ) = 0. These events exhibit a one-dimensional
structure once the jet structure is resolved (solid line in figure 8.19). It is interesting
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Figure 8.17: Fractal dimension D} as a function of B. The open symbols show the data with errors propagated
from (F?).
parton shower calculation prior to and after detector simulation. The dashed line shows the Jetset 7.2 PS+BE
simulation, while the CELLO “toy” model is indicated by the dash-dotted line. Displayed above is a pictorial
view of the fractal dimension at four typical scales. Upper row: plane along the sphericity axis. Lower row:
plane perpendicular to the sphericity axis. This picture has been prepared using 400 Monte Carlo events.

Superimposed, as the dotted and solid lines are the corresponding results from the Jetset 7.2
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Figure 8.18: Anomalous scaling law. The open symbols show the data with errors propagated from the
factorial moments. The dotted and solid curves correspond to the Jetset 7.2 PS simulation prior to and after
detector simulation. The Jetset 7.2 PS+BE simulation is seen as the dashed line and the CELLO “toy” model
is represented by the dash-dotted line. # = 0 indicates geometrical scaling.

to note that although the Lund string fragmentation mechanism is an iterative process
no deviation from a one-dimensional object is seen in the high resolution limit, thus
excluding it as a source of intermittency. In fact, since the Lund string is an almost
coherent system the magnitude of fluctuations is even below that of Poissonian noise,
as has been discussed in section 6.4.

e An important property of string fragmentation is its iterative character. To exhibit

a fractal structure a further property is required; namely self-similarity. The latter
property is absent in ordinary fragmentation mechanisms since different = values are
used at each iteration. The self-similar character is rectified by the fragmentation
function:

f(z) =é(z—a), (8.3)

where the parameter a takes a fixed value in the range m,/Epam < a < 1. This
treatment leads indeed to a fractal behaviour as is indicated by an increase of D}
(dotted line in figure 8.19). It should be emphasized that the events, in the geometrical
sense, are still one-dimensional without any transverse degree of freedom.
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Figure 8.19: Jetset model generator studies of (F?) and D} with primary particles. If not stated otherwise, the
Lund symmetric fragmentation function is used. Transverse string fragmentation is completely suppressed; i.e.
(%) = 0. Solid line: primary particles from g7 events: dotted line: ditto, but using a self-similar fragmentation
function with @ = 0.45: dashed line: primary particles from an O(a%) matrix element (ME) simulation:
dash-dotted line: ditto, using the parton shower (PS) algorithm: thick solid line: ditto, using the colour dipole
approximation (CD). The thick dashed line shows the behaviour of a point-like object.
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Figure 8.20: Jetset model generator studies of (F?) and D%. Solid line: final stable particles in a default PS
simulation: dash-dotted line: ditto, but neglecting e*¢~ pairs from the 7° Dalitz decay: dotted line: primary
particles from qg events with with (p7) = (0.35 GeV)?: dashed line: final stable particles from gg events with
P2)=(0 GeV)2. The thick dashed line shows the behaviour of a point-like object.
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Iu case of the fragmentation function (8.3) the number of steps S in the fragmentation
chain for a single jet is given by the following expression:

ln(i)

S=q 4 — )
In(1 — a)

(8.4)

where ¢ = E,.;,,/Epeam and E,,;, is the energy where the process stops. The multiplicity
1s given by (N) = 25 + 1 and the variance of this distribution is strictly zero. The
maximum fractal dimension D}, obtained in this way does not depend on a. but occurs
at higher resolution the smaller the a parameter is.

The inclusion of initial state QED radiation was found to give a very slight increase of
the fractal dimension.

The effect of gluon emission is seen after inclusion of QCD radiation; (dashed line in
figure 8.19) according to O(a%), (dash-dotted line) according to the leading log approx-
nmation (parton shower) and (thick line) according to the colour dipole approximation.
The first approach leads to a maximum fractal dimension of D% ~ 1.35. The parton
shower leads to a higher fractal dimension of D% ~ 2, very similar to the colour dipole
approach. The reason for this behaviour is that every emitted gluon adds a kink to the
string and thereby increases its “length”. Comparing the matrix element to the parton
shower, it is observed that the main increase of the fractal dimension comes from soft
gluon radiation. This topic is also discussed by Andersson et al. in [67).

Unfortunately, a straightforward distinction between the different perturbative QCD
descriptions is hindered by transverse degrees of freedom, as is made clear after giving
the quarks the standard (p?) of (0.35 GeV)?, which leads to a fast rise of D% towards
three (dotted line in figure 8.20).

The influence of resonance decays is demonstrated by the dashed line in figure 8.20,
which corresponds to ¢g events with (p? ) = 0, where resonances are allowed to decay.
A very interesting structure is observed: at intermediate scales the fractal dimension
appears much larger than one, almost reaching three, followed by a decrease towards
one. This behaviour implies the existence of correlated two-particle production up
to the highest resolution. This sounds rather interesting; however, the explanation is
simple. The Dalitz decay 7 — ¢*¢ 4 has been identified as the source of this effect.
This is demonstrated by a comparison of the default parton shower simulation (solid
line in figure 8.20) and the same simulation just neglecting the 7° Dalitz decay (dash-
dotted line). It is obvious that the rise of (F?) observed in the high resolution limit
and thus the decrease of D} is caused by the Dalitz decay of neutral pions, which is the
only source for correlated two-particle production in this limit. This is understandable
since the e* e invariant mass distribution (and thus its correlation function) is almost
(up to the small electron mass scale) singular at threshold, leading to an intermittent
behaviour (for the connection between two-particle correlation function and factorial
momments see e.g. [83,76]). A similar effect is produced by photon conversion (7 — e*e™)
in the beam pipe.

A study of Bose-Einstein correlations as implemented into the Jetset 7.2 program re-
vealed a significant rise of the factorial moments at intermediate and high resolution
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scales. The size of this effect is of the right order of magnitude to improve further the
agreement of the data and the Monte Carlo concerning the factorial moments. Also the
fractal dimension is reduced by Bose-Einstein correlations, since the pion phase space
is effectively decreased. It is apparent in figure 8.17 that this effect is present in the

data.

Finally. it is clear that these different effects do not simply add in the dimension, such that
we cannot argue in favour of one or the other QCD approach. The parton shower and the
matrix element ansatz with default parameters both describe our data.

Monte Carlo studies of the scaling coefficient = (cf. (8.2) and figure 8.18) indicate that
the deviation from geometrical scaling at low resolution scales is due to the jet structure of
the events. The strong violation of the geometrical scaling law at high resolution can be
attributed to particle decays.

It may be criticized that the particular choice of variables (5.1), and more importantly
the choice of a very large initial volume, lead to strong variations of the inclusive distribution
and the large initial slopes are thus trivial. This particular choice has been made to reach
the zero-dimensional limit, and does not invalidate the results derived in the high resolution
limit, since for small bin sizes the inclusive distribution is constant to a good approximation.
The sensitivity of this approach for genuine density fluctuations, as well as the quality of
the data is demonstrated by the observation of a strong effect due to 7° Dalitz decays and
v conversions in detector material. Moreover, a variation of the inclusive distribution at
*¢~ annihilation, independent of the choice of variables.
This is due to the mixture of events with different kinematics and topology, such as light and
heavy quarks or hard and soft gluon radiation. In addition, the presentation of local slopes
(or equivalently dimensions) as a function of the resolution scale clearly shows that there is
a smooth transition, rather than a simple power law, as is implied by the usual straight line
fits, whose results of course depend on the fit range chosen.

intermediate scales is inherent in ¢

8.4.3 'Transformed variables

In this section the three-dimensional analysis according to the phase space decomposition
(5.1) is repeated: however, with variables transformed according to the recipe of Bialas and
Gazdzicki described in section 7.2. In this case the original phase space volume covers only
the range actually occupied by the events. The results from this analysis are presented in
figure 8.21. Compared to the analysis according to the decomposition (5.2), presented in
figure 8.8, a much stronger rise of the factorial moments is seen. The influence of the non-
constant inclusive distribution is completely removed as can be seen from the “toy” model

result.

8.5 Summary on intermittency

In summary we have presented intermittency analyses in one- and two-dimensional projections
of phase space and in three-dimensional phase space itself, using various methods to calculate
the factorial moments. The significance of factorial moments in ¢* e~ annihilation and their
sensitivity to certain aspects of the complex hadronization process have been discussed in
detail. The main results and conclusions are:
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Figure 8.21: Transformed factorial moments in three-dimensional phase space. The open symbols show the
data and the dotted and solid curves correspond to the Jetset 7.2 PS simulation with and without Bose-Einstein
correlations. The lower curves indicate the results from the CELLO “toy” model (solid curve — (F2), (dotted
curve — (F?), (dashed curve — (F*), (dash-dotted curve — (F%)).

® The factorial moment analysis of the total event sample is dominated by the occasional
occurrence of hard bremsstrahlungs gluons, which populate a certain phase space region.
Their contribution is so strong that it completely conceals the soft hadronization phase.
For this reason various QCD inspired hadronization models all give the same result.
The effect from hard gluons is seen in all dimensions and cannot be circumvented by a
variable transformation.

e Two-jet events are ideal to test the non-perturbative hadronization phase. Animportant
observation is the failure of the Lund string model to reproduce the rapidity correlations
and fluctuations in these events. In line with the analysis of multiplicity distributions
in chapter 6 the Herwig cluster model provides a good description of this property. The
reason for this is the space-time structure underlying the string model, which leads to a
regular pattern in rapidity space for hadrons produced off a string. In contrast to this
the cluster model preserves, via its local hadronization mechanism, the fluctuations
occuring during parton shower evolution. From this it is concluded that the non-
perturbative hadronization process is really of a local nature, giving support the idea
of local parton-hadron duality.

e Azimuthal anti-correlations, predicted by the string model due to local p, conservation
are not observed with the same strength in the data. However, the inclusion of the Bose-
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Einstein effect in e string model diminishes these anti-correlations and this model
provides a good description of the data. The Herwig cluster model fails to describe the
azimuthal correlations. The model behaviour is not rectified after inclusion of the Bose-
Einstein effect. The reason for this difference between cluster and string models is the
regular pattern of particle production in the latter, compared to a disordered particle
state in the former. From this it is understandable that the Bose-Einstein effect has
practically no influence on particle fluctuations in the cluster model.

The importance of the phase space dimension is seen in the higher-dimensional analyses,
which yield factorial moments growing as a power with the resolution scale. This is,
however, only observed for the moments of rank two and three and has a rather trivial
origin in Dalitz decays and other resonance decays. The moments of higher rank do
not show this power law behaviour and it 1s also not expected that objects of that size
should develop a fractal structure at the energy of this experiment.




Chapter 9

Two-particle correlations

9.1 Bose-Einstein correlations

In the previous discussion of multiparticle production the relevance of particle correlations has
been pointed out. In this context the analysis of Bose-Einstein correlations is important, as it
gives access to the space-time structure underlying particle production in ¢*
In addition. such an analysis allows us to determine the corresponding parameters of the
Jetset model.

¢~ anmnihilation.

9.1.1 Introduction

It is a general belief that Bose-Einstein correlations in ¢* ¢~ annihilation occur as a con-
sequence of quantum-mechanical interference among identical bosons. This effect becomes
visible as an enhancement in the correlation function
p2(p1,Pp2)
pi(p1)pa(p2)
of two identical pions with 4-momentum p, and p, respectively. The analysis is done as a

Ca(pr,p2) = (9.1)

function of the Lorentz invariant Q = /—(p; — p2)?, which is the momentum difference in

the centre of mass of the pair, and is equal to \/M? — 4m? if both particles are pions.

Neither the numerator nor the denominator of (9.1) can be determined directly from the
data: p,(Q) receives unwanted contributions from non-identical particle pairs, such as pion-
kaon pairs. Furthermore, a certain fraction of particle pairs consists of electro-weak decay
products; e.g. from D° K2 and 7 decays. It is not expected that particle pairs containing such
electro-weak decay products experience Bose-Einstein correlations with an effective radius
small enough to be observed experimentally [85]. These two effects result in a reduction of
the original enhancement.

The denominator in (9.1) is not directly accessible, but can be approximated by p%(Q),
i.e. by the density of oppositely charged particle pairs, with inherent problems.

In the case where the emission is completely incoherent and comes from a Gaussian shaped
source the correlation function takes the form:

Col0) =14 A | (9.2)

The parameter A allows for partial coherent emission and for other effects, causing an apparent
reduction of the real enhancement. The parameter R is related to the mean square radius Ry
of the source; i.e. Ry = hcR.
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9.1.2 Analysis

The basis for the present analysis is a sample of 18,543 multihadronic annihilation events,
the selection of which has been described in section 4.1. In addition, V'° pairs identified as
secondary K2 or A decays or photon conversion in detector material are rejected (see [23.33]
for details of the 17° identification).

Two different reference samples. determined entirely from the data, are used in this anal-
ysis:

1. Neutral pairs from the same event: these have the kinematical and topological fea-
tures in common with the like-sign pairs. This reference sample is strongly affected by
resonance production, requiring sizeable Monte Carlo corrections with their inherent
uncertainties.

II. Neutral pairs from mized jets: in this case correlations among particles of opposite
charge (e.g. due to resonance decays) are circumvented by reflecting all positively (or
negatively) charged particles at a plane perpendicular to the sphericity axis. By means
of this jet mizing, correlations due to unlike-sign particle pairs are destroyed, while
like-sign correlations are retained and moreover the event topology is preserved. This
method has been developed in the course of the present work [61,62| and was recently
applied by the ALEPH collaboration [87]. It works ideally for two-jet events, since
hard gluon radiation tends to invalidate this reference sample, requiring a Monte Carlo
correction. This correction is comparatively small and moreover does not depend on
details of resonance production, the latter being modeled only crudely in the Monte
Carlo. Therefore systematic uncertainties are reduced, and thus the results obtained
from this method appear to be more reliable.
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Figure 9.1: Raw correlation function: reference sample I (left) and reference sample II (right). The curves
represent the fit results: Gaussian fit (dashed curve) and exponential fit (solid curve); the dotted range is
excluded from the fit.
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The correlation functions, using the two reference samples, are presented in figure 9.1. In

extracting the parameters A and Ry, imperfections of the reference sample can be accounted
for by multiplying (9.2) with a linear function of Q:

Gaussian c(Q) (a7 + a,Q)(1 + /\(_R:Qz) g (9.3)

Exponential C(Q) = (a1 + a;Q)(1+ Xe B9, (9.4)

[l

where the a; are free parameters. In addition to the Gaussian function (9.3) the exponential
function (9.4) is used in this analysis — the fits to these functions are indicated in figure 9.1. Q
values below 0.08 GeV are generally excluded from the fit to reduce systematic uncertainties,
which may arise from the strong detector effects in this region. In addition, for reference
sample I the @ region 0.3 — 1 GeV, which is heavily affected by resonance decays, is excluded
from the fit (figure 9.1). More importantly, just underneath the expected Bose-Einstein
enhancement, strong contributions from 7 and n’ decays occur, as is visible in figure 9.2.

YR I | e N EESN f7i  AL e TR
10% E
103 .
10% | -
10° £ E

-6 2

Log10(Q?*[GeV?])

Figure 9.2: Q? distribution of e*e~ and 7+ x~ pairs, obtained from the Jetset 7.3 PS simulation.

Detector effects tend to cancel in the correlation function, provided the tracking efficiency
is identical for like- and unlike-sign particle pairs. The remaining difference can be corrected
with the function €,(Q) = Cjj¢/Cfit., where the Monte Carlo need not necessarily contain
Bose-Einstein correlations. In this analysis the detector correction £,(Q) has been computed
from both Monte Carlo versions with and without Bose-Einstein correlations. As expected,
these gave very similar results (see table 9.1).

Imperfections of the reference sample are unfolded by normalizing the corrected correlation
function to the correlation function generated by the Monte Carlo with the Bose-Einstein
effect switched off.
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' Reference sample 1 Reference sample 11 |
Correlation function | Fit | A Strength | Rq Radius [fm] | A Strength | Ry Radius [fm] |

Data raw ‘ Gauss. | 0.55 + 0.06 | 1.09+ 0.09 |0.52 + 0.03 0.56 £+ 0.03

! Exp. |1.32+0.22 2.14 + 0.27 1.05 £ 0.05 0.75 £+ 0.02

Data corrected”) Gauss. | 0.20 + 0.04 0.75 £ 0.12 0.23+£0.02| 0.55+0.05

‘ Exp. 1031 +0.08] 1.13+0.31 1 0.43 + 0.04 0.66 + 0.06

Data corrected”) | Gauss. | 0.21 = 0.04 | 0.84+ 0.17 [0.25+ 0.03| 0.73 = 0.09

‘ Exp. |0.38 £0.09 1.38 + 0.27 0.41 £ 0.04 0.70 £+ 0.16

Table 9.1: Bose-Einstein results: a) detector correction with Jetset 7.2 PS, b) detector correction with Jetset
7.2 PS+BE; the corrected correlation functions are normalized to Jetset 7.2 PS.

The corrected correlation function C5(Q) is presented in figure 9.3 and the fit results are
summarized in table 9.1. In our case the fit slightly favours the exponential function (9.4)
from the Gaussian function (9.3). For the final values of A and R, the results from the two
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Figure 9.3: Corrected correlation function: reference sample I (left) and reference sample II (right). The curves
represent fit results: Gaussian fit (dashed curve) and exponential fit (solid curve); the dotted range is excluded
from the fit. The structure at Q@ ~ 0.75 GeV in the left hand plot is due to a p” mass shift of 2~ 20 MeV.

reference samples are combined. This yields:

A =0.22 +0.03, Ro= 0.61+0.08 fm
A =040 0.05, Ro=0.71+0.10 fm

Gaussian

Exponential

These results do not include Coulomb corrections nor non-pion corrections. Similar values
of these parameters are reported by TASSO (A = 0.35 + 0.03, R, = 0.80 £ 0.06 fm) [86] and
ALEPH () = 0.28 + 0.01, R, = 0.51 £ 0.02 fm) (87|

Jetset Bose-Einstein model: The parameters required by the Jetset Bose-Einstein model
to reproduce our data were determined to:
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2.4 +0.3 |
0.60 = 0.08 fm |

LA
Ry

Il

Here, the exponential function was used to describe the shape of the Bose-Einstein enhance-
ment, which is slightly favoured by our data. These values are in good agreement with those
obtained by the OPAL collaboration at LEP: i.e. A = 2.5. Ry = 0.60 fin [88]. This can be
regarded as a success for the Bose-Einstein model of Sjostrand |9, insofar as it provides a
description of the effect, independent of the centre of mass energy. The radius of the pion
source, inferred from Bose-Einstein correlations is in remarkable agreement with the trans-
verse extension of the Lund string of 0.56 fm (see section 6.4.2.1). However, the large value
required for A (= 2.4), which is supposed to be smaller than one, indicates that Bose-Einstein
correlations are still not understood in the scope of this model.
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Figure 9.4: Comparison of input/output correlation strength in Herwig (squares) and Jetset (circles).

In this context, the relation between input and output correlation strength in the Jetset
Bose-Einstein model is analysed. It is found that the output strength (using jet-mixing, and
normalizing to the model prediction without Bose-Einstein correlations) is approximately 1/5
of the input strength in case of the Jetset 7.2 PS simulation, and even smaller (1/8) in the
Herwig 5.0 PS simulation (see figure 9.4). The weaker response observed in Herwig is due to
a lower rate of like-sign charged particle pairs within the effective Bose-Einstein radius.
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9.2 p’ meson mass shift

An interesting structure is seen in figure 9.3, where the two-particle correlation function
obtained from the data is normalized to the corresponding function from the Monte Carlo
simulation without Bose-Einstein correlations. At Q =~ 0.75, i.e. in the p° resonance region, a
variation of the correlation function is observed, which can be attributed to an apparent shift
of the p” meson mass of = 20 MeV. This observation is supported by data from PETRA [86]
and LEP [87], which all show the same structure (figure 9.5).
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Figure 9.5: Two-particle correlation function C2(Q) from TASSO [86] at PETRA and ALEPH at LEP [87],
normalized to the corresponding Monte Carlo prediction without Bose-Einstein correlations: a clear structure
is seen at Q% =~ 0.56, Q ~ 0.75, which is attributed to an apparent shift of the p® meson mass of ~ 20 MeV.

This effect is seen more directly if the Q distribution of #* 7~ pairs from the Monte
Carlo simulation is subtracted from the data. Since the Monte Carlo contains a standard p°
Breit-Wigner, the mass shift is clearly revealed (figure 9.6).

Surprisingly, the Bose-Einstein model of Sjostrand produces an effective p° meson mass
shift of the same order of magnitude, as is indicated in figures 9.6 and 9.7. Since this
model does not contain specific assumptions on the 77 strong interactions, but is rather a
parameterization of the Bose-Einstein effect, the occurrence of a p° mass shift in this model
is considered as the consequence of kinematical constraints.

In figure 9.7 the interference term:

m2, _ - mf, (9.5)
('m"hr - mf,)2 + 'm;‘;r‘;‘; ’ ’

is also indicated. This interference term provides an explanation for the p° meson mass shift
observed in p° photoproduction [90]; however, it does not describe the effect observed in e*e”
annihilation.
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Figure 9.6: Q distribution of 7 7~ pairs, with the Jetset 7.2 PS prediction subtracted. The histogram shows
the Jetset 7.2 PS+BE simulation, with the Jetset 7.2 PS prediction subtracted.

9.2.1 p’7" model

In the above analysis two different effects were identified in the data: the well-known Bose-
Einstein effect — and a new effect, revealing itself as an apparent shift of the p° meson mass.

We note that in both cases charged pions are involved which take part in the strong
interaction. In this section a simple model is presented, which demonstrates that the two
effects are intimately connected and in fact have a common origin.

The simplest final states in e* ¢~ annihilation, of relevance for the present investigation,
are of the following type:

ete” - minfn; X,

where either the 7 7; or the 7y m; can form a p° meson.

To study this process three-pion phase space events are generated with a distribution in
total energy according to p°r* combinations in the Lund model. The events are produced
with the following matrix elements:

-Mnon—sym — B""’(TTI]:;) ) (9‘6)
1 ; . o
Mnym = %[Bv‘ (77113)—+- BW’("723)] ’ (9“)

where BW (m;;) is the p Breit-Wigner:

m,I’,
2
iJ

(9.8)

B"V(mu) =

2 L ¢
m2 —m?; —im,I,
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Figure 9.7: p° meson mass shift induced by Bose-Einstein correlations in the Jetset model: the solid curve
shows the Breit-Wigner generated by Jetset 7.2 PS. After Bose-Einstein correlations are included as a classical
force, acting on the final state pions, the dashed curve is obtained. The dotted curve shows the difference of
the two and the dash-dotted curve indicates the interference term (9.5).

The matrix element M,,,_,,m corresponds to the situation in hadronization models, where
particle production is described as a stochastic process, completely neglecting quantum me-
chanical interference. In contrast, the matrix element M,,,, is symmetric under exchange of
the identical pions 7; and 7, , preserving the interference structure.

In figure 9.8 the two-particle correlation function C3(Qi2) = f*"(Q12)/f"" "™ (Q12) of
the two identical pions 7; and m; is shown. A clear enhancement is seen at low Q values,
corresponding to a strength A = 0.7 and a radius R = 2.4 fm. The enhancement is well
described by the exponential form (9.4), with an additional quadratic term to describe the
decrease at large Q values.

In addition, the 7% 7~ invariant mass distribution is modified by the syminetrized matrix
element. This is indicated in figure 9.8, where the mass distributions f""~*¥™(m;3,m33) and
£2¥™ (my3,ma3) as well as the difference of the two are shown.

This model thus provides a qualitative description of both the Bose-Einstein effect and
the p° meson mass shift, as observed in et e~ annihilation. These two effects have a common
origin, namely the interference term in (9.7).

It did not escape our attention that the apparent p° meson mass shift must be taken into
account, if the inclusive p° production cross section is to be determined.
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Figure 9.8: Correlation function and mass distribution, obtained from the p’7* model (see text). The
dashed curve in the right hand plot is obtained from the symmetrized matrix element (9.7) and the solid curve
corresponds to the non-symmetric matrix element (9.6); the dotted curve is the difference of the two, i.e. the
interference term.

9.3 Rapidity correlations

Complementing the analyses of the preceding sections, an analysis of rapidity correlations is
presented. For this purpose, the rapidity correlation functions are defined as follows [83],

pily) = <Z‘5(yl‘“yi)> ) (9.9)

p2(v1,y2) = <Z 6(vr — yi)é(y2 — yj)> ; (9.10)

i#)

where the square brackets indicate the average over all events, and the sum runs over all
rapidity bins é.
Here we present results in terms of the reduced cumulant:

p2(y1,92)

6ot LR L (9.11)
p1(y1)pi(yz2)

ka(th,y2) =

Apparently ky(y;,y,) vanishes in the case where the two variables become statistically inde-
pendent. In figure 9.9 the CELLO data on k,(y;,y2) are plotted for the total event sample
and for selected two-jet events. Strong correlations with a range of one unit in rapidity
are observed. These are seen to be much weaker in the two-jet sample, which indicates
their origin due to hard gluon radiation. In addition strong long range correlations due to
energy-momentum conservation are observed. The corresponding projections along the main
diagonal are displayed in figure 9.10 and compared to the Lund model, which is seen to re-
produce the data quite well. As in the factorial moment analysis the Monte Carlo including
Bose-Einstein correlations gives a better description of the data at small éy. It is also seen
that the correlations are larger for y < 0, i.e. in the event hemisphere opposite of the most
energetic jet, which is likely to contain additional particles from gluon jets.
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Figure 9.10: Reduced cumulant ks(y;,y2) averaged over |y; + y2| < 0.6 for the entire data sample (upper
plots) and for selected two-jet events (lower plots). The left plots correspond to negative values of y; and y,
and the right plots to positive values. The data (open circles) are compared to the Jetset 7.2 PS model with
(solid lines) and without (dotted lines) Bose-Einstein correlations.




Chapter 10

Summary on multiparticle production

We have presented detailed investigations of multiparticle production in e* ¢~ annihilation.
Correlations and fluctuations among the final state particles were used to give information on
the perturbative and non-perturbative phase of ¢*¢~ annihilation. This procedure provided
access to the underlying production mechanism and allowed us to distinguish between cluster
and string fragmentation models. The basic results and conclusions are summarized here:

e Correlations and fluctuations depend strongly on rapidity: owing to phase space con-
straints and other conservation laws, fluctuations of the particle density are of binomial
type (less than Poissonian) for |y| ~ 2. In contrast, the central rapidity region is char-
acterized by gluon radiation and particle decays with negative binomial fluctuations
(larger than Poissonian).

e In an analysis of the total event sample, multiplicity fluctuations are to a large extent
caused by the occasional appearance of hard gluons, concealing other effects. For this
reason, various QCD based hadronization models all give the same result, such that
they cannot be distinguished by the experiment.

e Access to the non-perturbative phase is provided by a two-jet selection: here clus-
ter and string fragmentation differs significantly, where the former is favoured by the
experimental data.

— The Lund symmetric fragmentation produces particles off the string with a regular
pattern in rapidity and azimuth, such that density fluctuations occuring during
parton shower evolution are smoothed and underestimate the data.

— Owing to the local nature of particle production in the Herwig cluster model, den-
sity fluctuations from the parton shower are transferred to the cluster distribution.
This model provides a good description of the data, which supports the hypothesis
of local parton-hadron duality.

— Further, it is noted that the mass spectrum of primary particles in the string model
is considerably softer than the corresponding cluster mass spectrum. As this is no
genuine property of the string model, but rather due to our limited knowledge of
the higher resonances, it is suggested that the mass spectrum should be modified
to reproduce the primordial resonance mass spectrum, as is the case in the cluster
model. Still this does not guarantee larger correlations, since the Lund symmetric
function would order heavier particles more strictly.
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— Evidence for a string-like nature of particle production comes from the requirement
of string-like fission of heavy clusters, without which the cluster model would also
fail to describe the data.

e Azimuthal anti-correlations, predicted by the string model due to local p, conservation,

are not observed with the same strength in the data. However, the inclusion of the Bose-
Einstein effect as a classical force in the string model diminishes these anti-correlations
and this model provides a good description of the data. The Herwig cluster model
fails to describe the azimuthal correlations, indicating that isotropic two-body decays
of clusters may be too poor an approximation of reality. The model behaviour is not
rectified by inclusion of the Bose-Einstein effect.

The significance of Bose-Einstein correlations is completely different in the Lund string
and the Herwig cluster model. This is for two reasons: firstly. Herwig contains fewer
like-sign particle pairs within the effective Bose-Einstein radius of the model. And
secondly, particles are produced colherently off the string, while cluster fragments are in
a disordered state. Therefore, the Bose-Einstein effect causes a strong disruption of the
initial ordering of particles produced off the string. Since this ordering never existed,
among cluster decay products, only a negligible effect results in this case.

The importance of the phase space dimension is seen in the higher-dimensional intermit-
tency analyses, which yield factorial moments growing as a power with the resolution
scale. This is observed ouly for the moments of rank two and three, however, and has
a rather trivial origin in Dalitz decays and other resonance decays. The moments of
higher rank do not show this power law behaviour and it is also not expected that
objects of that size should develop a fractal structure at the energy of this experiment.

Bose-Einstein correlations are observed with a strength A = 0.2 0.4 and an associated
radius of Ry = 0.6 — 0.7 fm, depending on the assumed shape of the correlation function.

A new phenomenon is observed in the data, namely an apparent shift of the p° meson
mass of approximately 20 MeV.

An explanation for both the Bose-Einstein effect and the p° meson mass shift is provided
in terms of interference in a three pion system, where two p° meson combinations are
possible.




Appendix A

Factorial moments in one dimension

The results tabulated here and in the following appendices are entirely written by a computer
program. In addition to the CELLO data the corresponding results from Jetset 7.2 PS and
Jetset 7.2 PS+BE are presented. The Monte Carlo results are given both on the generator
level (indicated as g) and on the detector level (indicated as d).
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Appendix A. Factorial moments in one dimension

(F?) one-dimensional analysis (full y)

|
i Transformation:

None Ochs Bialas

| Normalization: vertical horizontal vertical horizontal horizontal
| CELLO 1 0.984 4+ 0.005 0.984 + 0.005 | 0.984 + 0.005 0.984 + 0.005 | 0.984 + 0.005
i J72PS+BEd 1 0.978 4+ 0.004  0.978 + 0.004 | 0.978 4+ 0.004 0.978+ 0.004 | 0.978 + 0.004
J72PS+BEg 1 1.040 £ 0.003  1.040 = 0.003 | 1.040 4+ 0.003 1.040+ 0.003 | 1.036 + 0.003
JT72PSd 1 0.979 £+ 0.002 0.979 = 0.002 | 0.979 + 0.002 0.979+ 0.002 | 0.979 + 0.002
Ji2PSg 1 1.042 4+ 0.006 1.042 = 0.006 | 1.042 4+ 0.006 1.042+ 0.006 | 1.038 + 0.006
CELLO 2 0.975 4+ 0.005 0.981 + 0.005 | 0.975 + 0.005 0.975+ 0.005 | 0.975 + 0.005
J72PS+BEd 2 0.971 4+ 0.004 0.975 =+ 0.004 | 0.971 + 0.004 0.971+ 0.004 | 0.971 + 0.004
J72PS+BEg 2 1.077 + 0.003 1.077 + 0.003 | 1.077 4+ 0.003 1.077+ 0.003 | 1.073 £ 0.003
JT7.2PSd 2 0.966 4+ 0.002  0.971 + 0.002 | 0.966 + 0.002 0.966 + 0.002 | 0.966 + 0.002
J72PSg 2 1.069 + 0.006 1.070 + 0.006 | 1.070 4+ 0.006 1.070+ 0.006 | 1.066 + 0.006
CELLO 4 0.981 + 0.007 1.542 4+ 0.009 | 1.064 + 0.006 1.064 + 0.006 | 1.063 + 0.006
J72PS+BEd 4 0.968 + 0.006 1.544 + 0.007 | 1.055 4+ 0.005 1.055+ 0.005 | 1.055 + 0.005
J7.2PS+BEg 4 1.139+ 0.005 1.772+ 0.006 | 1.176 4+ 0.004 1.176+ 0.004 | 1.171 + 0.004
J7.2PSd 4 0.963 + 0.003 1.549 + 0.004 | 1.044 + 0.003 1.044 + 0.003 | 1.044 + 0.003
JT7T2PSg 4 1.122 + 0.008 1.763 + 0.011 | 1.159 4 0.007 1.159+ 0.007 | 1.155 + 0.007
CELLO 8 0.980 + 0.050 1.674 + 0.010 | 1.122 4+ 0.007 1.122+ 0.007 | 1.122 + 0.007
J72PS+BEd 8 0.861 + 0.023 1.673 4 0.009 | 1.105 4+ 0.006 1.1054+ 0.006 | 1.105 =+ 0.006
J72PS+BEg 8 1.148 + 0.027 1.948 + 0.007 | 1.246 4+ 0.004 1.246 + 0.004 | 1.241 + 0.004
J7.2PSd 8 0.886 + 0.017 1.668 & 0.005 | 1.089 + 0.003 1.089+ 0.003 | 1.089 + 0.003
J 7.2°PS g 8 1.256 + 0.057 1.930 4 0.013 | 1.220 4+ 0.007 1.220+ 0.007 | 1.216 + 0.007
CELLO 16 | 0.893 +0.024 1.793 4 0.012 | 1.148 + 0.008 1.148+ 0.008 | 1.148 + 0.008
JT72PS+BEd 16 | 0.843+ 0.015 1.783 +0.010 | 1.125 4 0.006 1.125+ 0.006 | 1.125 + 0.006
JT72PS+BEg 16 | 1.767 4 0.261 2.069 4+ 0.008 | 1.278 4+ 0.005 1.278+ 0.005 | 1.274 + 0.005
J7.2PSd 16 | 0.843 4+ 0.010 1.7654 0.006 | 1.107 £ 0.004 1.107+ 0.004 | 1.107 + 0.004
JT2PSg 16 | 2.602+ 0.865 2.036 4 0.014 | 1.244 + 0.008 1.244 + 0.008 | 1.240 + 0.008
CELLO 32 | 0.865+ 0.022 1.834 + 0.014 | 1.150 £+ 0.009 1.150+ 0.009 | 1.150 + 0.009
J72PS+BEd 32 | 0.844+ 0.015 1.821+0.011 |1.135+0.007 1.135+ 0.007 | 1.135 =+ 0.007
J72PS+BEg 32 | 3.667+ 1.379 2.124+ 0.009 | 1.296 + 0.005 1.296 + 0.005 | 1.291 + 0.005
JT7.2PSd 32 | 0.841+ 0.011 1.802+ 0.006 |1.116 + 0.004 1.116+ 0.004 | 1.116 + 0.004
J72PSg 32 | 10.087 + 8.454 2.080 + 0.015 | 1.262 4+ 0.009 1.262+ 0.009 | 1.257 + 0.009
CELLO 64 0.837+ 0.017 1.848 4+ 0.016 | 1.142 4+ 0.011 1.142+ 0.011 | 1.141 + 0.011
J72PS+BEd 64 | 0.8324 0.016 1.827+0.013 |1.145+0.009 1.145+ 0.009 | 1.146 + 0.009
JT72PS+BEg 64 | 7.492+44.352 2.147-+0.010 | 1.307 + 0.006 1.307 + 0.006 | 1.302 + 0.006
J7.2PSd 64 | 0.833+ 0.016 1.812-+ 0.008 [1.121+0.005 1.121+ 0.005 | 1.121 =+ 0.005
J72PSg 64 | 7.943+6.319 2102+ 0.017 |1.271+0.011 1.271+0.011 | 1.265 + 0.010
CELLO 128 | 0.828 + 0.019 1.848 4 0.020 | 1.121 + 0.015 1.121+ 0.015 | 1.126 + 0.015
J72PS+BEd 128 | 0.854 4+ 0.028 1.847+ 0.016 [ 1.153+0.012 1.153+ 0.012 | 1.155 + 0.012
J72PS+BEg 128 | 8.619+ 6.016 2.168+ 0.011 |1.318+ 0.007 1.318+ 0.007 | 1.311 + 0.007
JT2PSd 128 | 0.839+ 0.028 1.824 4+ 0.009 | 1.125+ 0.007 1.125+ 0.007 | 1.125 + 0.007
J 7.2 PS g 128 | 5.481 + 4.008 2.114 4+ 0.020 | 1.270 4+ 0.013 1.270+ 0.013 | 1.266 + 0.013
CELLO 256 | 0.808 + 0.026 1.815+0.026 | 1.127+0.020 1.127+ 0.020 | 1.137 + 0.020
J7.2PS+BEd 256 | 0.878 4+ 0.046 1.849 + 0.022 | 1.141 + 0.016 1.1414 0.016 | 1.141 + 0.016
J7.2PS+BEg 256 | 4.011 4+ 2.523 2.191 +0.014 | 1.3224 0.010 1.322+ 0.010 | 1.310 + 0.009
J7.2PSd 256 | 0.801 +0.014 1.824+0.012|1.111+0.009 1.111+ 0.009 | 1.114 + 0.009
J 7.2°PSig 256 | 6.480+ 5.115 2.135+ 0.024 | 1.274 4+ 0.017 1.274+ 0.017 | 1.280 + 0.017
CELLO 512 | 0.821 +0.039 1.840 -+ 0.036 | 1.137+ 0.028 1.137+ 0.028 | 1.155 + 0.028
J72PS+BEd 512 0.952+ 0.103 1.851 =+ 0.029 | 1.132 + 0.022 1.132+4 0.022 | 1.118 + 0.022
J 7.2 PS+BE g 512 5.441 +4.285 2213+ 0.018 |1.344+0.013 1.344+ 0.013 | 1.335+ 0.013
J7.2PSd 512 | 0.803+ 0.021 1.813+0.016 | 1.106 + 0.013 1.106+ 0.013 | 1.108 + 0.013
J72PSg 512 | 1.489+ 0.334 2.170 + 0.032 | 1.285+ 0.023 1.285+ 0.023 | 1.281 + 0.023

Table A.1: (F?) one-dimensional analysis (full y).




(F?) one-dimensional analysis (full y)

Transformation: None ! Ochs Bialas
Normalization: vertical horizontal | vertical horizontal horizontal
CELLO 1 l 0.960 + 0.008 0.960 + 0.008 | 0.960 + 0.008 0.960 = 0.008 | 0.959 + 0.008
J 7.2 PS+BE d 1 0.942 + 0.006 0.942 + 0.006 | 0.942 + 0.006 0.942 + 0.006 | 0.942 + 0.006
J72PS+BE g 1 1.116 + 0.005 1.116-+ 0.005 | 1.116 + 0.005 1.116 4+ 0.005 | 1.107 + 0.005
JT.2PSd 1 0.945 + 0.003 0.945+ 0.003 | 0.945 + 0.003 0.945 + 0.003 | 0.945 + 0.003
JT72PS g 1 1.120 + 0.009 1.1204+ 0.009 | 1.120+ 0.009 1.120+ 0.009 | 1.112 -+ 0.009
CELLO 2 10.942 4 0.009 0.955+ 0.008 | 0.942 + 0.009 0.942 + 0.009 | 0.941 + 0.008
J 7.2 PS+BEd 2 0.928 + 0.007 0.939+ 0.007 | 0.927 + 0.007 0.927 + 0.007 | 0.927 + 0.007
J7.2PS+BE g 2 1.206 + 0.006 1.206+ 0.006 | 1.207 + 0.006 1.207 + 0.006 | 1.197 £ 0.006
JT72PSd 2 0.915=+ 0.004 0.926+ 0.004 | 0.913 + 0.004 0.913 + 0.004 | 0.913 + 0.004
JT2PSg 2 1.174 + 0.010 1.174+0.010 | 1.174 +0.010 1.174 £ 0.010 | 1.166 + 0.010
CELLO 1 0.866 = 0.013 2.786+ 0.030 | 1.243 4+ 0.017 1.243 + 0.017 | 1.241 £ 0.017
J 7.2 PS+BE d 4 0.851 + 0.011 2.786+ 0.025 | 1.223+0.013 1.223 +0.013 | 1.222 + 0.013
J72PS+BEg 4 1.277 4+ 0.011 3.792+0.023 | 1.603 +0.012 1.603 +£0.012 | 1.590 4+ 0.011
JT7.2PSd 4 |0.840+ 0.007 2.770+0.014 | 1.188 4+ 0.007 1.188 + 0.007 | 1.188 + 0.007
J72PSg 4 1.236 + 0.020 3.694+ 0.039 | 1.522+0.019 1.522+ 0.019 | 1.512 + 0.019
CELLO & |0.887+ 0.013 3.379+0.048 | 1.428 +0.023 1.429 + 0.023 | 1.426 + 0.023
J72PS+BEd & |0.875+0.010 3.406+4 0.039 [ 1.380+0.018 1.380+0.018 | 1.380+ 0.018
J7.2PS+BE g 8 1.711 + 0.307 5.003 + 0.041 | 1.840 + 0.014 1.840+0.014 | 1.825+£ 0.014
JT7.2PSd 8 |0.843+ 0.006 3.370+0.023 | 1.328 +0.010 1.328 £0.010 | 1.328 + 0.010
JT.2:PS & & [1.110+0.015 4.841+0.069 | 1.714+0.023 1.714 +0.023 | 1.701 £+ 0.023
CELLO 16 | 0.954 + 0.021 4.037 + 0.067 | 1.503 + 0.030 1.503 -+ 0.030 | 1.501 + 0.030
J72PS+BEd 16 |0.934 +0.018 4.018 £ 0.055 | 1.463 + 0.024 1.463 & 0.024 1.463 + 0.024
J72PS+BEg 16 |1.386+0.133 5.7534+ 0.051 | 1.971 + 0.018 1.971 4+ 0.018 | 1.955+ 0.018
J7.2PSd 16 | 0.882 + 0.010 3.879+ 0.030 | 1.407 +0.013 1.407 + 0.013 | 1.406 + 0.013
JT2PS¢g 16 | 1.183 + 0.028 5.451+ 0.083 | 1.809+0.029 1.809+ 0.029 | 1.795 + 0.029
CELLO 32 |1.031 + 0.037 4.337+0.104 | 1.543 +0.046 1.543 + 0.046 | 1.536 + 0.045
J72PS+BEd 32 [0.943 +0.024 4.193+0.072 | 1.515+0.035 1.515+0.035 | 1.512+ 0.035
J72PS+BEg 32 |1.472+0.185 6.190 + 0.064 | 2.049 + 0.024 2.049 + 0.024 | 2.037 + 0.024
JT.2PSd 32 [0.932+0.014 4.158+ 0.043 | 1.467 + 0.020 1.467 + 0.020 | 1.466 + 0.020
J1.2PSg 32 |1.230+ 0.066 5.765+ 0.105 | 1.907 + 0.038 1.907 + 0.038 | 1.890 + 0.038
CELLO 64 | 1.017 + 0.060 4.306+ 0.134 | 1.503 + 0.065 1.503 &+ 0.065 | 1.497 £ 0.065
J72PS+BEd 64 |0.934+0.031 4.194+0.104 | 1.569 = 0.059 1.570+ 0.059 | 1.571 + 0.059
J72PS+BE g 64 [1.272+0.030 6.381 =+ 0.083 | 2.088 + 0.035 2.088 + 0.035 | 2.073 + 0.035
J7.2PSd 64 | 0.966 + 0.037 4.182+ 0.062 | 1.507 +0.033 1.507 £ 0.033 | 1.508 + 0.033
JT2RSig 64 |1.323+0.101 6.047+ 0.138 | 1.958 + 0.058 1.958 + 0.058 | 1.942 + 0.057
CELLO 128 | 1.166 + 0.166 4.420+ 0.222 | 1.436 +0.105 1.436 £ 0.105 | 1.415+ 0.104
J7.2PS+BE d 128 [ 0.925+ 0.040 4.309+ 0.167 | 1.649 £ 0.099 1.648 + 0.099 | 1.672 + 0.099
J 72 PS+BE g 128 | 1.301 + 0.055 6.512+ 0.116 | 2.170 +£ 0.056 2.170+ 0.056 | 2.126 + 0.054
JT7.2PSd 128 | 1.046 + 0.069 4.330+ 0.102 | 1.517 +0.054 1.517 + 0.054 | 1.520 £ 0.054
JT72PSg 128 | 1.325 4+ 0.169 6.101 + 0.205 | 1.932 + 0.090 1.932 + 0.090 | 1.887 £ 0.087
CELLO 256 | 1.431 + 0.493 4.163+0.366 | 1.392+0.211 1.396 + 0.212 | 1.421 £ 0.214
J 7.2 PS+BE d 256 | 1.065 + 0.085 4.943 + 0.362 | 1.536 & 0.161 1.532 4+ 0.160 | 1.565 + 0.162
J 7.2 PS+BE g 256 | 1.293 & 0.055 6.676+ 0.188 | 2.110 4+ 0.090 2.110 + 0.090 | 2.084 + 0.093
J72PSd 256 | 1.181 + 0.253 4.310+ 0.176 | 1.438 £ 0.093 1.437 +0.093 | 1.447 % 0.093
JT2PSg 256 | 1.252 + 0.106 6.435+ 0.336 | 1.956 + 0.164 1.956 + 0.164 | 2.025 £ 0.161
CELLO 512 | 0.810 + 0.199 3.794 + 0.816 | 1.265 4+ 0.365 1.265+ 0.365 | 1.264 &+ 0.365
J72PS+BEd 512 |0.981+0.132 4.943+0.614 | 1.523 £ 0.317 1.516 £ 0.316 | 1.384 + 0.302
J72PS+BE g 512 |1.285+ 0.096 6.973+ 0.335 | 2.562 + 0.202 2.554 + 0.201 | 2.318 + 0.188
J7.2PSd 512 | 1.925 + 1.024 4.310+ 0.328 | 1.609 + 0.201 1.606 + 0.200 | 1.542 + 0.197
J72PSg 512 | 1.352 + 0.299 6.771- 0.588 | 2.145+ 0.306 2.145 + 0.306 | 2.171 £ 0.306

Table A.2: (F®) one-dimensional analysis (full y).

131




Appendix A. Factorial moments in one dimension

(F*) one-dimensional analysis (full y)

Transformation: None Ochs Biatas
Normalization: vertical horizontal vertical horizontal horizontal
CELLO 1 10.934+0.011 0.934+0.011 | 0.934+0.011 0.934+ 0.011 | 0.933 + 0.011
JT72PS+BEd 1 |0.898+0.009 0.898 4 0.009 | 0.898 +0.009 0.898 + 0.009 | 0.898 + 0.009
J72PS+BEg 1 |1.230+0.008 1.230+ 0.008 | 1.230+ 0.008 1.230+ 0.008 | 1.215+ 0.008
JT7.2PSd 1 | 0.905+ 0.005 0.905+ 0.005 | 0.905+ 0.005 0.905+ 0.005 | 0.905 + 0.005
J 7.2 PS.g 1 (1.237+0.015 1.237+0.015 | 1.237+0.015 1.237+ 0.015 | 1.223 &+ 0.015
CELLO 2 | 0.915+ 0.014 0.933+0.014 | 0.919+0.015 0.919+ 0.015 | 0.917 + 0.015
J72PS+BEd 2 |0.887+0.011 0.902+0.011 | 0.885+0.011 0.885+ 0.011 | 0.885 + 0.011
J72PS+BEg 2 |1.414+0.011 1.411+0.011 |1.414+0.011 1.414+ 0.011 | 1.396 + 0.011
J7.2PSd 2 | 0.862+ 0.006 0.877+0.006 | 0.859+ 0.006 0.859+ 0.006 | 0.859 + 0.006
JT72PSg 2 |1.327+0.018 1.327+4+0.018 | 1.328+0.018 1.328 4+ 0.018 | 1.313 + 0.018
CELLO 4 | 0.7534+0.019 5.382+0.100 | 1.725+ 0.057 1.725+ 0.057 | 1.721 £ 0.057
JT72PS+BEd 4 |0.754+0.016 5.341+ 0.079 | 1.645+ 0.036 1.645+ 0.036 | 1.644 + 0.036
J72PS+BEg 4 |1.434+0.023 8.928+ 0.086 | 2.665+ 0.039 2.665+ 0.039 | 2.628 + 0.039
J 7.2 PS'd 4 | 0.737+0.012 5.210-+0.043 | 1.559+ 0.020 1.559+ 0.020 | 1.559 + 0.020
JT72PSg 4 | 1.376 +£ 0.045 8.366+ 0.137 | 2.372+ 0.059 2.372+ 0.059 | 2.347 + 0.059
CELLO 8 | 1.199+ 0.044 8.067+0.261 | 2.230+0.093 2.230+ 0.093 | 2.214 & 0.091
J72PS+BEd 8 |1.166+0.032 8.125+ 0.208 | 2.079+ 0.064 2.079+ 0.064 | 2.079 + 0.064
J72PS+BEg 8 |1.806+0.027 16.436+ 0.270 | 3.326 4+ 0.057 3.326 + 0.057 | 3.285 + 0.057
JT72PSd 8 | 1.084+0.017 8.058+0.120 | 1.953 4+ 0.035 1.953 + 0.035 | 1.953 + 0.035
J 1.2 PS'g 8 |[1.589+0.042 15.213+ 0.427 | 2.855+ 0.089 2.855+ 0.089 | 2.828 + 0.089
CELLO 16 | 1.428 + 0.062 10.977+ 0.414 | 2.415+0.139 2.415+ 0.139 | 2.395 + 0.136
J72PS+BEd 16| 1.374+0.052 10.892+4+0.350 | 2.389+0.111 2.390+ 0.111 | 2.392 + 0.111
J72PS+BE g 16 |2.063+0.054 20.570+ 0.388 | 3.828 + 0.088 3.827+ 0.088 | 3.779 £ 0.087
JT7.2PSd 16 | 1.251 4+ 0.027 10.186+ 0.185 | 2.248 4+ 0.065 2.248 4 0.065 | 2.248 + 0.065
J1.2PSg 16 | 1.715+ 0.057 18.240+ 0.589 | 3.166 4+ 0.126 3.166 + 0.126 | 3.135 £ 0.125
CELLO 32| 1.807+0.153 13.528+1.032 | 2.737+0.319 2.736 + 0.318 | 2.619 + 0.298
JT72PS+BEd 32|1.45840.082 11.491+40.533 | 2.601+0.216 2.600+ 0.216 | 2.572 + 0.214
J72PS+BEg 32| 2.308+0.073 23.799+0.601 | 4.228 +0.146 4.227+ 0.146 | 4.204 + 0.146
J7.2PSd 32| 1.550+ 0.065 11.973+0.369 | 2.619+0.135 2.620+ 0.135 | 2.614 &+ 0.135
J' 7.2 PSig 32 |1.936+0.102 20.336+0.901 | 3.430+ 0.197 3.430+ 0.197 | 3.387 £ 0.196
CELLO 64 | 1.474+ 0.160 11.919+1.275 | 2.312+ 0.382 2.311 + 0.381 | 2.263 + 0.378
JT72PS+BEd 64| 1.485+ 0.152 11.232+1.002 | 2.973+4 0.638 2.976 + 0.640 | 2.974 + 0.640
J72PS+BE g 64 |2434+0.164 25370+ 0.965 | 4.373+ 0.320 4.374 4 0.320 | 4.301 + 0.313
JT7.2PSd 64 | 1.604 + 0.146 11.935+ 0.697 | 2.784 +0.385 2.785+ 0.385 | 2.784 + 0.385
J72PSg 64 | 2.125+ 0.170 22.458 +1.383 | 3.922+ 0.416 3.920+ 0.416 | 3.800 =+ 0.405

Table A.3: (F*) one-dimensional analysis (full y).
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(F®) one-dimensional analysis (full y)

Transformation: None Ochs Bialas
Normalization: vertical horizontal vertical horizontal horizontal
CELLO 1 10.911+0.017 0.911 4+ 0.017 0.911+0.017 0.911+ 0.017 | 0.909 +0.017
JT72PS+BEd 1 | 0.850+0.012 0.850+ 0.012 0.850+ 0.012 0.850+ 0.012 | 0.850+0.012
J72PS+BEg 1 |1.391+0.014 1.391 + 0.014 1.391 + 0.014 1.391 + 0.014 1.368 4+ 0.013
J 7.2 PSd 1 | 0.862+ 0.007 0.862 4 0.007 0.862 + 0.007 0.862+ 0.007 | 0.861 4 0.007
JT7.2PSg 1 | 1.400+ 0.025 1.400 4 0.025 1.400 4+ 0.025  1.400+ 0.025 1.379 + 0.024
CELLO 2 [ 0.906 4+ 0.025 0.923 + 0.023 0.922 + 0.027 0.922+ 0.027 | 0.920 £ 0.027
J72PS+BEd 2 | 0.857+0.018 0.871+ 0.017 0.854 + 0.018 0.854+ 0.018 0.854 + 0.018
JT72PS+BEg 2 | 1.741+0.022 1.735 + 0.022 1.742 4+ 0.022 1.742 + 0.022 1.711 £ 0.022
JT2PS d 2 [ 0.8184+0.011 0.831 + 0.010 0.813 4 0.010 0.813+ 0.010 | 0.812+0.010
JT7.2PSg 2 | 1.548 +0.033 1.549 + 0.033 1.549 4+ 0.033  1.549+ 0.033 1.525+ 0.033
CELLO 4 | 0.787+0.025 10.818-+ 0.333 | 2.976 4 0.209 2.977+ 0.209 | 2.965+ 0.209 |
J72PS+BEd 4 |0.7664+0.019 10.550+ 0.257 | 2.576 4+ 0.110 2.576+ 0.110 | 2.575+ 0.110
JT72PS+BEg 4 |1.705+0.043 22.483 + 0.334 5.398 + 0.143 5.398 + 0.143 5.293 + 0.140 i
J7.2PSd 4 [0.73240.018 10.046+ 0.140 | 2.380+ 0.061  2.380+ 0.061 2.379 £ 0.061 |
J 7.2 PS¢ 4 | 1.565+0.078 19.922+ 0.496 | 4.412+ 0.205 4.413+ 0.205 | 4.352+0.202 |
CELLO 8 | 2.197+0.160 22.893+ 1.540 | 4.399+ 0.415 4.400+ 0.415 | 4.300+0.397 |
J72PS+BEd 8 |1.98940.124 22.357+ 1.336 | 3.746 + 0.257 3.746+ 0.257 | 3.743 & 0.257 ‘
JT72PS+BEg 8 |3.453+0.099 65974x 1.945 | 7.333+0.270 7.333 &+ 0.270 7.221 + 0.266
JT7T2PSd 8 | 1.773+0.064 22.509+ 0.759 | 3.503 +0.144 3.503+ 0.144 3.503 + 0.144 |
J7.2PS'g 8 | 2.693+0.126 57.194+ 2.974 | 5.692+ 0.439 5.693 + 0.439 5.649 1+ 0.439 il
CELLO 16 | 2.724 + 0.240 33.848 + 2.549 | 4.726 + 0.675 4.726+ 0.675 | 4.596 + 0.654 I
J72PS+BEd 16 |2.627+0.250 33.906+ 2.359 | 4.824 + 0.529 4.825+ 0.529 4.828 4+ 0.529 |
J72PS+BEg 16 | 4.288+0.171 89.329+ 3.394 9.261 + 0.503  9.261 4 0.503 | 9.110 + 0.496 |
JT72PSd 16 | 2.239 4 0.110 30.596 + 1.218 | 4.558 4+ 0.392 4.558 &+ 0.392 4.558 +0.392 |
JT72PSg 16 | 3.346+ 0.251 T71.764+ 5.078 | 6.635+ 0.623 6.635+ 0.624 | 6.590 + 0.618
CELLO 32 | 4.839+ 0.956 57.880+ 11.173 | 7.123 +2.475 7.113+ 2.470 | 6.127 +2.328
J72PS+BEd 322869+ 0.388 34.673+ 3.786 | 5.620 + 1.447 5.615+ 1.445 5.502 + 1.442
J7.2PS+BE g 32 |5.170=%0.305 112.194 + 6.993 | 11.084 + 0.962 11.084 +0.962 | 11.074 £ 0.960
J7.2PSd 32 | 3.418 + 0.330 42.455+ 3.456 | 6.649+ 0.963  6.650+ 0.964 6.648 + 0.964
J 7.2.PS;g 32 | 3.972+0.419 86.748 + 8.589 | 7.037+ 1.061  7.035+ 1.061 7.024 +1.051

Table A.4: (F®) one-dimensional analysis (full y).
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Appendix A. Factorial moments in one dimension

(F?) one-dimensional analysis (central y)

Transformation: None Ochs Bialas [
Normalization: vertical horizontal vertical horizontal horizontal |
CELLO 1 1.047 4+ 0.008 1.047 + 0.008 | 1.047 + 0.008 1.047 -+ 0.008 | 1.047 =+ 0.008 P
J 7.2 PS+BE d 1 1.049 £ 0.006 1.049 + 0.006 | 1.049 = 0.006 1.049 + 0.006 | 1.049+ 0.006 .[
J72PS+BEg 1 1.114 + 0.005 1.114+ 0.005 | 1.114 + 0.005 1.114 + 0.005 | 1.114 + 0.005 |
1.7.2°PS'd 1 |1.048 +£0.004 1.048+ 0.004 | 1.048 = 0.004 1.048 + 0.004 | 1.047 + 0.004
1 7:2°PS)g 1 |1.113+0.008 1.113+ 0.008 | 1.113 +0.008 1.113 + 0.008 | 1.113 + 0.008
CELLO 2 [1.094 +0.008 1.096+ 0.008 | 1,095+ 0.008 1.095 =+ 0.008 | 1.095+ 0.008
JT72PS+BEd 2 |1.104+0.007 1.1054 0.007 | 1.104 + 0.007 1.104 =+ 0.007 | 1.104 4 0.007
JT2PS+BEg 2 [1.204+0.005 1.21140.005 | 1.206 + 0.005 1.206 + 0.005 | 1.206 + 0.005
J7.2PSd 2 | 1.087+ 0.004 1.089+ 0.004 | 1.087 + 0.004 1.087 + 0.004 | 1.086 + 0.005
J72PSg 2 | 1.182+ 0.009 1.190+ 0.009 | 1.186 + 0.009 1.186 =+ 0.009 | 1.186 + 0.009
CELLO 4 |1.166+0.010 1.165% 0.009 [ 1.156 = 0.009 1.156 + 0.009 | 1.156 + 0.009
J72PS+BEd 4 |1.171+0.008 1.166+ 0.008 | 1.158 + 0.008 1.158 & 0.008 | 1.158 + 0.008
J72PS+BEg 4 |1.27240.006 1.279+4 0.006 | 1.275+0.006 1.275+ 0.006 | 1.275+ 0.006
J72PSd 4 |1.144+0.004 1.138+4 0.004 | 1.133 +0.004 1.133 +0.004 | 1.130+ 0.005
J72PSg 4 | 1.237+0.010 1.247+0.010 | 1.245+0.010 1.245+ 0.010 | 1.245+ 0.010
CELLO 8 |1.2154+0.011 1.216+ 0.010 | 1.198 +£0.010 1.198 + 0.010 | 1.198+ 0.010
J72PS+BEd 8 |[1.21540.009 1.213+0.008 | 1.196 4+ 0.009 1.196 + 0.009 | 1.196 <+ 0.009
J72PS+BEg 8 |1.314+0.006 1.331+0.006 | 1.318 4+ 0.006 1.318+ 0.006 | 1.317 % 0.006
J7.2PSd 8 | 1.1794+0.005 1.177+ 0.005 | 1.166 + 0.005 1.166 =+ 0.005 | 1.165+ 0.006
JT2PSg 8 |1.272+0.010 1.29240.011 | 1.279+0.010 1.279 =+ 0.010 | 1.280 =+ 0.010 ||
CELLO 16 | 1.238+0.013 1.239+0.012 | 1.215+0.012 1.215+ 0.012 | 1.215+ 0.012
J72PS+BEd 16 [1.234+0.010 1.233+40.010 | 1.214+0.010 1.2144 0.010 | 1.214 4 0.010
JT72PS+BE g 16 |1.331+0.007 1.350+ 0.007 | 1.340 + 0.007 1.340 + 0.007 | 1.339+ 0.007
J72PSd 16 | 1.193 4+ 0.006 1.193+ 0.005 | 1.182+0.005 1.182+ 0.005 | 1.184 + 0.007
J72PS g 16 |1.285+0.011 1.309+40.012 | 1.295+ 0.011 1.295+ 0.011 | 1.295+ 0.011
CELLO 32 [1.246+ 0.015 1.245+0.014 | 1.219+0.014 1.219+ 0.014 | 1.220+ 0.014
J72PS+BEd 32 |1.253+0.012 1.249+0.011 | 1.227 £ 0.011 1.227+ 0.011 | 1.227 0.011
J72PS+BE g 32 [1.34040.007 1.361+ 0.007 | 1.350 +0.007 1.350 + 0.007 | 1.350 4 0.008
J72PSd 32 | 1.202 £+ 0.007 1.202+ 0.006 | 1.187 + 0.006 1.187 + 0.006 | 1.191 + 0.008
J72PSg 32 | 1.299+0.012 1.322+0.013 | 1.302+ 0.012 1.302+ 0.012 | 1.302+ 0.012 .
CELLO 64 | 1.235+ 0.018 1.231+0.017 | 1.221 +0.017 1.221+ 0.017 | 1.220+ 0.017 !
J72PS+BEd 64 [1.257+0.015 1.2524 0.014 | 1.248 + 0.014 1.248 + 0.014 | 1.248 + 0.014 ||
J72PS+BE g 64 [1.354+0.008 1.376+ 0.009 | 1.357 + 0.008 1.357 =+ 0.008 | 1.356 + 0.009
J7.2PS d 64 | 1.203 + 0.008 1.203 + 0.008 | 1.197 + 0.008 1.197 + 0.008 | 1.198 + 0.010
J72PS¢g 64 | 1.305+ 0.014 1.328 + 0.015 | 1.310+ 0.015 1.310=+ 0.015 | 1.311+ 0.015
CELLO 128 | 1.252 4+ 0.024 1.241 4 0.022 | 1.203 + 0.022 1.203 + 0.022 | 1.203 + 0.022
JT72PS+BEd 128 |1.24340.019 1.234+ 0.018 | 1.245+ 0.018 1.245 +0.018 | 1.244+ 0.018
JT72PS+BE g 128 |1.364+0.010 1.388+ 0.010 | 1.368 + 0.010 1.368 + 0.010 1.366 + 0.011
JT2PSd 128 | 1.203 £ 0.010 1.203 4 0.010 | 1.198 + 0.010 1.198 4 0.010 | 1.192+ 0.012
J72PSg 128 | 1.315+ 0.018 1.340+4 0.018 | 1.320 + 0.018 1.320 4+ 0.018 | 1.321 + 0.018
CELLO 256 | 1.284 4 0.032 1.276+ 0.030 | 1.233 £ 0.029 1.233 + 0.029 | 1.245 + 0.030
J72PS+BEd 256 | 1.226+0.025 1.220+ 0.024 | 1.232 + 0.025 1.232 + 0.025 1.2294 0.025
J72PS+BE g 256 | 1.3744 0.014 1.402+0.014 | 1.377+ 0.013 1.377 <+ 0.013 1.361+ 0.014
J7.2PSd 256 [ 1.194 £ 0.014 1.194+0.013 | 1.190 +0.013 1.190 4 0.013 | 1.183 4 0.017
J72PS¢g 256 | 1.321 4 0.023 1.348+0.023 | 1.311 4+ 0.023 1.311 -+ 0.023 1.310+ 0.023
CELLO 512 | 1.271 £ 0.045 1.2624 0.042 | 1.219+ 0.041 1.219+ 0.041 | 1.257 + 0.042
J72PS+BEd 512 |1.252+0.036 1.257+ 0.034 | 1.258 + 0.034 1.258 + 0.034 | 1.222+ 0.033
J72PS+BE g 512 [1.386+ 0.018 1.412+ 0.018 | 1.414 +0.018 1.414+40.018 | 1.405+ 0.019
J7.2PSd 512 | 1.187+0.019 1.183+0.018 | 1.179+0.018 1.179 + 0.018 1.144+ 0.022
J72PSg 512 | 1.309+ 0.032 1.334+0.032 | 1.316 + 0.031 1.317+ 0.031 | 1.310+ 0.031

Table A.5: (F?) one-dimensional analysis (central y).
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(F?) one-dimensional analysis (central y)

Transformation: None ‘ Ochs Bialas
Normalization: vertical horizontal | vertical horizontal horizontal
CELLO 1 1.164 £ 0.015 1.164 = 0.015 | 1.164 + 0.015 1.164 + 0.015 | 1.164 + 0.015
J72PS+BEd 1 [1.16240.012 1.162+0.012|1.162+0.012 1.162+ 0.012 | 1.162 & 0.012
J72PS4BEg 1 |[1.372+0.010 1.372+0.010 | 1.3724+ 0.010 1.372+ 0.010 | 1.370 £ 0.010
J7.2PSd 1 1.159+ 0.007 1.159-+ 0.007 | 1.159 + 0.007 1.159+ 0.007 | 1.158 = 0.008&
JT.2PS'g 1 1.364 4+ 0.017 1.364+0.017 | 1.364 + 0.017 1.364 + 0.017 | 1.364 + 0.017
CELLO 2 1.317+ 0.018 1.321+0.018 | 1.320+ 0.018 1.320+ 0.018 | 1.320 + 0.018
JT72PS+BEd 2 |1.344+0.015 1.347+0.015 | 1.343 + 0.015 1.343 + 0.015 | 1.343 & 0.015
J72PS+BEg 2 1.664 +0.012 1.698-+0.013 | 1.673+0.012 1.673+ 0.012 | 1.673 + 0.013
J7.2PSd 2 |1.290+0.008 1.292+ 0.008 | 1.287 + 0.008 1.287 + 0.008 | 1.284 + 0.010
J 7.2 PS'g 2 1.571 + 0.020 1.606 =+ 0.020 | 1.584 + 0.020 1.584 + 0.020 | 1.584 + 0.020
CELLO 4 1.619 4+ 0.033 1.552+0.026 | 1.581 + 0.030 1.581 + 0.030 | 1.581 + 0.030
J72PS+BEd 4 |1.632+0.024 1.556=+ 0.020 | 1.585+ 0.022 1.585+ 0.022 | 1.585 £ 0.022
J72PS+BEg 4 |1.978+0.018 2.001+0.018 | 1.990+0.018 1.990+ 0.018 | 1.986 + 0.018
J7.2PSd 4 |1.5384+0.013 1.464+0.011 | 1.487+0.012 1.487+ 0.012 | 1.472+ 0.014
JT.2PS g 4 |1.798+0.027 1.848+0.028 | 1.832+ 0.027 1.832+ 0.027 | 1.832 + 0.027
CELLO 8 |1.814+0.042 1.758+0.037 [ 1.732+0.037 1.732+ 0.037 | 1.732 + 0.037
J72PS+BEd 8 |1.813+0.033 1.746+0.028 | 1.737+0.029 1.737 % 0.029 | 1.737 =+ 0.029
J72PS+BEg 8 |[2170+0.022 2.256+0.022 | 2.181+0.022 2.181 % 0.022 | 2.175+ 0.022
J72PSd 8 |1.6914+0.018 1.635+0.016 | 1.628 4+ 0.016 1.628 + 0.016 | 1.625 + 0.019
J 7.2 PSg 8 |1.9414+0.033 2.044+0.035 | 1.985+ 0.033 1.985+ 0.033 | 1.985 + 0.033
CELLO 16 | 1.911 +0.058 1.853+ 0.051 | 1.799+ 0.050 1.799 =+ 0.050 | 1.802 + 0.050
J7.2PS+BEd 16 |1.885+0.045 1.822+0.039 | 1.814+0.040 1.814 4 0.040 | 1.813 =+ 0.040
J7.2PS+BE g 16 |2.244+0.026 2.342+0.027 | 2.296 & 0.027 2.296 & 0.027 | 2.289 + 0.028
JT7.2PSd 16 | 1.756 + 0.024 1.709+ 0.022 | 1.704 + 0.022 1.704 £ 0.022 | 1.727 £ 0.027
JT.2PSg 16 | 2.0354 0.043 2.159+ 0.045 | 2.074 + 0.042 2.074 + 0.042 | 2.073 £ 0.041
CELLO 32 | 1.907 + 0.082 1.849+0.073 | 1.783 4+ 0.076 1.783 4 0.076 | 1.785 + 0.076
172PS+BEd 32 |2.031+0.073 1.924+ 0.059 | 1.860+ 0.059 1.860 4 0.059 | 1.858 + 0.059
J7.2PS+BEg 32 |2.257+0.035 2.367+0.036 | 2.350+ 0.036 2.350+ 0.036 | 2.351 + 0.038
J.0.2PSd 32 | 1.794 4+ 0.039 1.741+ 0.032 | 1.740 4+ 0.033 1.740 £ 0.033 | 1.775 & 0.041
JT2PS g 32 | 2.125+ 0.058 2.237+ 0.060 | 2.136 + 0.057 2.136 & 0.057 | 2.135 =+ 0.057
CELLO 64 | 2.067 +0.143 1.912+0.116 | 1.859+0.110 1.859 4 0.110 | 1.839 + 0.109
J72PS+BEd 64 |1.992+40.120 1.821+0.090 | 1.936+0.100 1.936 & 0.100 | 1.936 + 0.100
J72PS+BEg 64 | 2290+ 0.049 2.415+ 0.051 | 2.342+ 0.050 2.342 + 0.050 | 2.345 + 0.052
J72PSd 64 | 1.796+0.061 1.739+0.052 | 1.7174 0.051 1.717+ 0.051 | 1.736 &+ 0.064
J72PSg 64 | 2.130+ 0.086 2.237+0.085 | 2.148 4+ 0.088 2.148 + 0.088 | 2.151 & 0.087
CELLO 128 | 1.842 + 0.259 1.717+ 0.206 | 1.523 + 0.208 1.522 + 0.208 | 1.522 + 0.208
J 7.2 PS+BEd 128 | 2.232+0.200 2.027+0.173 | 2.160+ 0.212 2.161+ 0.212 | 2.161 + 0.212
J7.2PS+BEg 128 |2.311+0.081 2446+ 0.083 | 2.317+ 0.085 2.317+ 0.085 | 2.306 & 0.088
J7.2PSd 128 | 1.931 +0.128 1.782+0.095 | 1.660 4+ 0.088 1.660 + 0.088 | 1.638 + 0.112
J72PS¢g 128 | 2.206 + 0.147 2.362+ 0.150 | 2.259+ 0.148 2.258 4 0.148 | 2.252 + 0.147
CELLO 256 | 1.513 + 0.407 1.561 =+ 0.441 | 0.858 + 0.259 0.859 + 0.259 | 1.249 =+ 0.413
J 7.2 PS+BEd 256 | 1.509 4 0.291 1.602+ 0.279 2.090 + 0.326 2.088 + 0.325 | 2.088 + 0.325
J7.2PS+BE g 256 | 2.612+ 0.168 2.756+ 0.169 | 2.522+ 0.155 2.521 4 0.155 | 2.413 + 0.153
J7.2PSd 256 | 2.076 +0.225 1.819+0.172 | 1.730+ 0.168 1.730 + 0.168 | 1.888 -+ 0.248
JT72PSg 256 | 2.015+ 0.232 2.122+ 0.234 | 2.252+ 0.241 2.252 + 0.241 | 2.278 &+ 0.242

Table A.6: (F®) one-dimensional analysis (central y).




Appendix A. Factorial moments in one dimension

(F*) one-dimensional analysis (central y)

Transformation: None Ochs Bialas
Normalization: vertical horizontal vertical horizontal horizontal
CELLO 1 |1.374 +0.029 1.374 +0.029 | 1.374+0.029 1.374 = 0.029 | 1.374 + 0.029
J72PS+BEd 1 |1.35140.021 1.351 4+ 0.021 | 1.35140.021 1.351 4+ 0.021 | 1.351 &+ 0.021
JT7T2PS+BEg 1 |[1.838+0.020 1.838+0.020 | 1.838+0.020 1.838 +0.020 | 1.833 + 0.020
J72PSd 1 (1.347+0.012 1.347+0.012 | 1.347+0.012 1.347+0.012 | 1.345+ 0.015
JT72PS g 1 |1.815+0.035 1.815+0.035| 1.815+0.035 1.815-+0.035 | 1.815+ 0.035
CELLO 2 | 1.723 + 0.042 1.731 4 0.041 | 1.735+ 0.043 1.735+ 0.043 | 1.735 + 0.043
J72PS+BEd 2 |1.769+0.033 1.775+4+0.033 | 1.766 + 0.033 1.766 + 0.033 | 1.766 + 0.033
JT2PS+BE g 2 |2574+0.030 2.679+0.032 | 2.601+ 0.031 2.601+0.031 | 2.603 + 0.032
J72PSd 2 |1.6394+0.017 1.64240.017 | 1.630+ 0.017 1.630+0.017 | 1.622 + 0.021
JT72PSg 2 | 2.286 +0.045 2.389+0.048 | 2.317+0.046 2.317 + 0.046 | 2.317 + 0.046
CELLO 4 | 2.765 +0.148 2.351 +0.089 | 2.652+ 0.123 2.652 + 0.123 | 2.652 + 0.123
J72PS+BEd 4 |2676+0.088 2.303+0.059 | 2.552+ 0.080 2.552+ 0.080 | 2.552 + 0.080
JT7T2PS+BE g 4 |3.748+40.071 3.794 4 0.069 | 3.783 4+ 0.070 3.783 + 0.070 | 3.761 4 0.070
J7.2PSd 4 | 2463 +£0.053 2.112+0.036 | 2.283 + 0.041 2.283 + 0.041 | 2.223 + 0.044
J72PSg 4 | 3.052 4+ 0.086 3.220+ 0.092 | 3.158 + 0.088 3.158 + 0.088 | 3.159 + 0.088
CELLO 8 13.345+0.199 3.049+0.164 | 3.102+ 0.162 3.102+ 0.162 | 3.101 + 0.162
J72PS+BEd 8 |3.236+0.141 2.880+ 0.100 | 3.002+ 0.112 3.002 + 0.112 | 3.002 + 0.112
JT72PS+BE g 8 [4.449+40.103 4.752+ 0.104 | 4.463 + 0.097 4.463 + 0.097 | 4.438 4+ 0.100
JT72PSd 8 | 3.009+0.094 2.701 4+ 0.076 | 2.748 + 0.075 2.748 + 0.075 | 2.729 + 0.086
JT72PSg 8 | 3.520+ 0.144 3.872+0.153 | 3.661 + 0.127 3.661 + 0.127 | 3.664 + 0.127
CELLO 16 | 3.799 + 0.315 3.528 4 0.270 | 3.293 + 0.254 3.292 + 0.254 | 3.319 + 0.258
J72PS+BEd 16| 3.527+0.236 3.194+ 0.191 | 3.280+ 0.203 3.280 = 0.203 | 3.279 + 0.203
JT7T2PS+BE g 16 | 4.669+0.132 5.003+ 0.137 | 5.016 + 0.150 5.016 & 0.150 | 4.992 + 0.153
J7.2PSd 16 | 3.229 + 0.141 2.987+ 0.128 | 2.999+ 0.113 2.999+ 0.113 | 3.121 + 0.145
JT.2PS g 16 | 3.938 + 0.232 4.357 4+ 0.243 | 3.973+ 0.190 3.973 + 0.190 | 3.971 + 0.189
CELLO 32 | 3.310 £ 0.580 3.179+ 0.546 | 3.419+ 0.634 3.418 + 0.633 | 3.418 + 0.633
J72PS+BE d 32|4.04840.703 3.370+ 0.418 | 3.342 + 0.385 3.342 + 0.385 | 3.342 + 0.385
J72PS+BE g 32 |4.779+40.247 5.129 + 0.235 | 5.284 + 0.246 5.285 + 0.246 | 5.311 + 0.256
J7.2PSd 32| 3.617+0.460 3.109+ 0.243 | 3.273+0.224 3.273 +0.224 | 3.362 + 0.278
JT2PSg 32 | 4.219+4+0.342 4.537 4 0.358 | 4.262 + 0.348 4.263 + 0.348 | 4.268 + 0.348

Table A.7: (F*) one-dimensional analysis (central y).
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(F*®) one-dimensional analysis (central y)

Transformation: None Ochs Bialas
Normalization: vertical horizontal vertical horizontal horizontal
CELLO 1 1.712 &+ 0.063 1.712 4+ 0.063 1.712+ 0.063 1.712+ 0.063 1.712 4+ 0.063
J72PS+BEd 1 1.627 + 0.038 1.627 + 0.038 1.627 + 0.038 1.627+ 0.038 1.627 & 0.038
J72PS+BEg 1 | 2.637+0.042 2.637+0.042 | 2.637+ 0.042 2.637+ 0.042 | 2.623 £ 0.043
J72PSd 1 1.625 + 0.021 1.625 + 0.021 1.625 + 0.021 1.625+ 0.021 1.623 + 0.026
J 7.2PSg 1 | 2.5854+0.074 2.585+ 0.074 2.585+ 0.074 2.585+ 0.074 | 2.585 + 0.074
CELLO 2 | 2.406+0.099 2.412-+0.096 | 2.451+0.103 2.451+ 0.103 | 2.451 % 0.103
JT2PS+BEd 2 | 2.448+0.078 2.458+ 0.078 | 2437+ 0.074 2.437+ 0.074 | 2.437+0.074
JT2PS+BE g 2 | 4.331£0.079 4.605%+ 0.084 4.407 + 0.085 4.407+ 0.085 | 4.415+ 0.089
JT72PSd 2 | 2.1844+0.040 2.183 + 0.039 2.157+ 0.038 2.157+4 0.038 | 2.141 + 0.047
JT.2PS g 2 | 3.554+0.107 3.804+0.114 3.613+ 0.106 3.612+ 0.106 | 3.613 + 0.106
CELLO 4 | 6.019+0.773 4.108 4+ 0.360 | 5.580+ 0.600 5.580+ 0.600 | 5.580 =+ 0.600
JT72PS+BEd 4 | 5.019+0.354 3.676+ 0.196 | 4.753 4+ 0.345 4.753 + 0.345 | 4.753 4 0.345
JT2PS+BEg 4 | 8.559+0.338 8.571+0.316 | 8.635+ 0.333 8.635+ 0.333 | 8.506 4 0.319
JT72PSd 4 | 4.735+0.274 3.445+ 0.156 | 4.101+0.174 4.101+ 0.174 | 3.820 4+ 0.150
JT2PS g 4 | 5.968 + 0.311 6.478 + 0.344 6.256 + 0.311 6.256 4+ 0.311 6.257 + 0.311
CELLO 8 | 7.522+1.002 6.496 + 0.797 | 6.658 £ 0.710 6.658+ 0.710 | 6.658 & 0.710
J72PS+BEd 8 | 6.468+0.675 5.101+0.368 | 5.770+ 0.438 5.770+ 0.438 | 5.770 &+ 0.438
J72PS+BE g 8 |11.066+0.605 11.975 % 0.590 10.969 + 0.512 10.970 + 0.512 | 10.884 + 0.533
JT7T2PSd & | 6.829 4+ 0.608 5.556 + 0.490 5.7054+ 0.463 5.705+ 0.463 | 5.498 + 0.472
J T:2.PS g 8 | 7.562+ 0.873 8.612+ 0.900 7.7294 0.555 7.729+4 0.555 | 7.740 & 0.556
CELLO 16 | 8.657+ 1.460 8.161+1.289 | 6.771+1.316 6.770+ 1.316 | 6.953 + 1.334
J72PS+BEd 16| 7.323 +£1.121 6.184 + 0.938 | 6.798 +1.009 6.798+ 1.009 | 6.798 &+ 1.009
JT72PS+BE g 16 |11.191 4 0.766 12.225 + 0.798 | 13.589+ 0.884 13.590 + 0.884 | 13.491 + 0.892
JT7.2PSd 16 | 7.202 +0.995 6.565+ 0.990 | 6.250+ 0.666  6.250+ 0.666 | 6.783 £ 0.840
JT72PSg 16 | 9.579 + 1.562 10.742+1.659 | 8.7324+ 0.897 8.731+ 0.897 | 8.731 4+ 0.897
CELLO 29 | 8.196 + 3.404 8.783 + 3.927 | 0.0004 0.000  0.000+ 0.000 | 0.000 = 0.000
J72PS+BEd 32|13.251+6.620 7.5354+2.984 | 6.879+2.339  6.880+ 2.339 6.880 + 2.339
J 72PS+BE g 32| 12.836+1.975 13.276 + 1.628 | 14.267 +1.742 14.268 + 1.742 | 14.526 + 1.834
J7.2PSd 32 13.623 + 6.901 7.428 + 2.309 7.524+ 1.441 7.524+ 1.441 7.616 4+ 1.745
J72PSg 32| 9.011 +1.972 9.917+ 2.305 9.485 + 2.296  9.486 + 2.297 | 9.486 4 2.297

Table A.8: (F°®) one-dimensional analysis (central y).
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(F?) two-dimensional analysis (full y, ¢)

Transformation: ] None Ochs Biatas
Normalization: | vertical horizontal vertical horizontal horizontal
CELLO 1 0.984 £ 0.005  0.984 4 0.005 | 0.984 = 0.005 0.984 £ 0.005 | 0.984 + 0.005
J 7.2 PS+BE d 1 0.978 + 0.004  0.978 + 0.004 | 0.978 + 0.004 0.978 = 0.004 | 0.978 + 0.004
JT7T2PS+BE g 1 1.040 + 0.003  1.040 + 0.003 | 1.040 + 0.003 1.040 = 0.003 | 1.036 =+ 0.003
J7.2PSd 1 0.979+ 0.002 0.979 4 0.002 | 0.979 + 0.002 0.979 £ 0.002 | 0.979 + 0.002
JT:2PSig 1 | 1.042+ 0.006 1.042 4 0.006 | 1.042 + 0.006 1.042 £ 0.006 | 1.038 + 0.006 |
CELLO 4 0.933 4 0.005  0.937 + 0.005 | 0.932 + 0.005 0.932 + 0.005 | 0.931 & 0.005 ||
J 7.2 PS+BE d 4 0.933 + 0.004  0.937 + 0.004 | 0.933 + 0.004 0.933 = 0.004 | 0.932 + 0.004
JT72PS+BE g 4 1.037 + 0.003  1.037 + 0.003 | 1.037 £+ 0.003 1.037 = 0.003 | 1.033 + 0.003
J7.2PSd 4 0.923 + 0.002  0.927 4+ 0.002 | 0.922 + 0.002 0.922 + 0.002 | 0.922 + 0.002
J 12 PSig 4 1.022 + 0.005 1.022+ 0.005 | 1.022 + 0.005 1.022 + 0.005 | 1.019 + 0.005
CELLO 16 0.888 + 0.011  1.404 +0.010 | 1.012 + 0.007 1.012+0.007 | 1.011 £ 0.007
J 7.2 PS+BE d 16 0.889 + 0.009  1.433 +0.008 | 1.026 £ 0.006 1.026 = 0.006 | 1.025 & 0.006
J7.2PS+BE g 16 1.075+ 0.006 1.683 +0.006 | 1.179+0.004 1.179+0.004 | 1.174 £ 0.004
J7.2PSd 16 0.870+ 0.005 1.399 4 0.004 | 0.982+ 0.003 0.982+0.003 | 0.982 + 0.003
JT72PSg 16 1.031 £0.011 1.635+0.011 | 1.125+ 0.007 1.125+ 0.007 | 1.122 + 0.007
CELLO 64 1.107+0.163  1.849+0.017 | 1.176 £ 0.012 1.203 +£0.012 | 1.179 + 0.012
J 7.2 PS+BEd 64 0.819+0.022 1.923+0.015 | 1.178 £ 0.010 1.207+ 0.010 | 1.187 + 0.010
J72PS+BE g 64 1.472+0.107  2.260+0.011 | 1.369 £ 0.007 1.397 £ 0.007 | 1.372 &+ 0.007
J T2PSd 64 0.848 + 0.051  1.800 4 0.008 | 1.092 £+ 0.005 1.114+ 0.005 | 1.094 & 0.005
1T2PSg 64 2.295+0.321 2.105+0.018 | 1.249 + 0.011 1.273+0.011 | 1.250 + 0.011
CELLO 256 0.941 + 0.046  2.282+0.032 | 1.333 £ 0.024 1.374+0.023 | 1.348 + 0.023
J72PS+BEd 256 0.8754 0.037 2.355+ 0.027 | 1.310 + 0.019 1.359+0.019 | 1.315+ 0.018
J72PS+BEg 256 7.342+3.080 2.779+0.018 | 1.532+ 0.011 1.578 +0.011 | 1.536 =+ 0.011
J7.2PSd 256 0.81040.019  2.151 +0.014 | 1.176 £ 0.010 1.212+0.010 | 1.181 £ 0.010
J7.2PSg 256 | 26.373+15.928 2.491+0.029 | 1.353 + 0.018 1.394+ 0.018 | 1.357 £ 0.018
CELLO 1024 0.985+ 0.061  2.683 £+ 0.061 | 1.438 £ 0.046 1.506 = 0.045 | 1.447 £ 0.044
J7.2PS+BEd 1024 0.874 + 0.040 2.662+0.052 | 1.401 + 0.037 1.476 + 0.037 | 1.421 £ 0.036
J72PS+BE g 1024 4.185+1.491 3.225+0.031 | 1.783 + 0.021 1.836 + 0.021 | 1.785 + 0.021
J72PSd 1024 0.825+ 0.027 2.369+0.027 | 1.279+ 0.020 1.311 =+ 0.019 | 1.253 £ 0.019
J T2'PSig 1024 | 16.369+ 8.839 2.859 4+ 0.051 | 1.527 + 0.036 1.577 +0.036 | 1.531 =+ 0.035
CELLO 4096 1.058 + 0.082  3.043 4+ 0.126 | 1.599 + 0.097 1.751+0.097 | 1.710 & 0.095
J7.2PS+BEd 4096 0.980 + 0.091  3.038 4 0.105 | 1.619 £ 0.080 1.722+0.077 | 1.566 & 0.074
J 72PS+BE g 4096 6.730 + 3.058  3.949 4 0.062 | 2.278 + 0.048 2.335+ 0.047 | 2.300 & 0.046
J7.2PSd 4096 0.904 + 0.060  2.605+ 0.054 | 1.341 +0.041 1.381 +0.039 | 1.364 £ 0.039
JT2PSg 4096 | 6.629 + 2.892  3.469 4 0.102 | 2.002 + 0.083 2.049 + 0.078 | 2.005 £ 0.077
CELLO 16384 | 1.155+0.174 3.452+0.271 | 1.781 +£ 0.218 2.145+ 0.215 | 1.654 =+ 0.190
J72PS+BEd 16384 | 0.939+0.103 3.4034+0.217 | 1.774 £ 0.204 2.039 £+ 0.172 | 1.647 + 0.157
J7.2PS+BE g 16384 | 4.971+1.709 5.293+0.137 | 3.302 £ 0.116 3.399+0.110 | 3.334£ 0.108
J7.2PSd 16384 | 0.915+0.093 2.817+0.111 | 1.557 £ 0.091 1.607 + 0.084 | 1.502 = 0.081
J 7.2 PSg 16384 | 3.675+ 0.933 4.768 + 0.236 | 2.745 + 0.209 3.001 £0.189 | 2.727+ 0.179
CELLO 65536 | 0.895+ 0.241 4.085+ 0.577 | 0.903 £ 0.258 1.879+0.392 | 1.388 & 0.337
J7.2PS+BEd 65536 | 0.532+0.089 3.187+0.414 | 0.903 + 0.240 1.729 £ 0.305 | 1.188 + 0.253
J 7.2 PS+BE g 65536 | 3.814+0.554 T7.858 4 0.333 | 5.198 +0.318 5.655 % 0.282 | 4.977 & 0.264
J72PSd 65536 | 1.006+0.174  3.309 + 0.240 | 1.587 £ 0.179 1.864 +0.180 | 1.620 + 0.168
J 7.2/PS'g 65536 | 1.974 + 0.289  6.280 + 0.540 | 2.178 + 0.283 4.341 + 0.451 | 3.084 + 0.376

Table B.1: (F?) two-dimensional analysis (full y, ¢).
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(F®) two-dimensional analysis (full y, ¢)
Transformation: None Ochs Bialas
Normalization: vertical horizontal vertical horizontal horizontal
CELLO 1 |0.960 4+ 0.008 0.960 4 0.008 | 0.960 + 0.008 0.960 + 0.008 | 0.959 + 0.008
JT72PS+BEd 1 |0.942+0.006 0.942+ 0.006 | 0.942+ 0.006 0.942+ 0.006 | 0.942 + 0.006
JT72PS+BEg 1 1.116 £ 0.005 1.116+ 0.005 | 1.116 + 0.005 1.116 + 0.005 | 1.107 & 0.005
J 7.2 PSid 1 [0.94540.003 0.945+ 0.003 | 0.945+ 0.003 0.945 + 0.003 | 0.945 + 0.003
J 7.2 PSig 1 1.120 £ 0.009 1.120+ 0.009 | 1.120+ 0.009 1.120+ 0.009 | 1.112 + 0.009
CELLO 4 |0.84340.009 0.850+ 0.009 | 0.839+ 0.009 0.839+ 0.009 | 0.839+ 0.009
JT72PS+BEd 4 |0.838+0.007 0.844-+ 0.007 | 0.837 4 0.007 0.837+ 0.007 | 0.837 £ 0.007
JT72PS+BEg 4 |1.09040.006 1.089+ 0.006 | 1.090+ 0.006 1.090+ 0.006 | 1.081 + 0.006
J 7.2 PSid 4 | 0.808 +0.004 0.815+ 0.004 | 0.808 + 0.004 0.808 + 0.004 | 0.808 + 0.004
J.T:2 PS'g 4 |1.036+0.010 1.036+0.010 |1.036+ 0.010 1.036+ 0.010 | 1.029+ 0.010
CELLO 16 | 0.664 +0.035 2.147+ 0.035 | 1.074 + 0.023 1.075+ 0.023 | 1.069 & 0.023
JT72PS+BEd 16 |0.725+0.030 2.304+0.030 | 1.128+0.018 1.128+0.018 | 1.126+ 0.018
JT2PS+BE g 16 |1.056+0.023 3.31840.026 | 1.604 +0.015 1.604+ 0.015 | 1.590+ 0.015
J72PSd 16 | 0.633 +0.016 2.093+ 0.015 | 0.999 =+ 0.009 0.999 + 0.009 | 0.998 + 0.009
J17.2PSg 16 | 0.981 + 0.044 3.004+ 0.039 | 1.385+ 0.022 1.385+ 0.022 | 1.376 + 0.022
CELLO 64 | 0.843 4+ 0.046 4.415+ 0.162 | 1.651 + 0.082 1.747 £ 0.078 | 1.602 + 0.068
J72PS+BEd 64 [1.011+0.046 5.250+ 0.131 | 1.739+ 0.064 1.888 + 0.067 | 1.754 % 0.063
J72PS+BE g 64 |1.307+0.028 7.900+0.105 | 2.576 + 0.046 2.738+ 0.046 | 2.608 + 0.044
J T2 PSd 64 | 0.770 4+ 0.021 4.329+ 0.065 | 1.402 + 0.032 1.502 £ 0.031 | 1.450 + 0.032
JT2PSg 64 | 1.062+0.052 6.356+ 0.153 | 1.940 + 0.069 2.081 + 0.069 | 1.966 + 0.065
CELLO 256 [ 1.284 4+ 0.191 8.089 + 0.550 | 2.366 + 0.389 2.371 + 0.283 | 2.606 + 0.327
JT72PS+BEd 256 |1.323+0.140 10.463 + 0.629 | 2.938 + 0.262 3.493 £ 0.295 | 2.701 & 0.266
J 7.2 PS+BE g 256 | 2.258 4+ 0.246 15.829 + 0.404 | 3.934 + 0.192 4.323 4 0.183 | 4.095+ 0.187
J7.2:PSd 256 | 1.134 £ 0.158 7.786+ 0.262 | 1.992 4+ 0.124 2.208 + 0.127 | 2.044+0.120
J72PSg 256 | 1.329 4+ 0.110 11.555+ 0.564 | 2.514 + 0.195 2.881 + 0.233 | 2.714+ 0.204

Table B.2: (F?) two-dimensional analysis (full y, ).
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I
L'L (F*%) two-diminsional analysis (full y, @)
| Transformation: None Ochs Bialas
| Normalization: vertical horizontal vertical horizontal horizontal
[ CELLO 1 10.9344+0.011 0.934 +0.011 | 0.93440.011 0.934+ 0.011 | 0.933+ 0.011
I 72PS+BEd 1 | 0.89&8+ 0.009 0.898 + 0.009 | 0.898 + 0.009 0.898& + 0.009 0.898 + 0.009
JT72PS+BEg 1 |1.230=+ 0.008 1.230+ 0.008 i 1.230 + 0.008 1.230+ 0.008 | 1.215+ 0.008
’ J7.2PSd 1 | 0.905=0.005 0.905 + 0.005 [ 0.905 4+ 0.005 0.905+ 0.005 | 0.905+ 0.005
J7.2 PSig 1 [1.237£0.015 1.237=+0.015 | 1.2374+0.015 1.237+ 0.015 | 1.223 4 0.015
CELLO 4 | 0.771 £0.019 0.776 + 0.018 | 0.766 4 0.018 0.766 + 0.018 | 0.764 + 0.018
J72PS+BEd 4 |0.741+0.012 0.749+0.012 | 0.747+ 0.012 0.747 + 0.012 | 0.748 + 0.012
J72PS+BEg 4 |1.186+ 0.011 1.183+0.011 | 1.186+0.011 1.186 + 0.011 | 1.171 + 0.011
J72PSd 4 | 0.693 + 0.007  0.699 + 0.007 | 0.694+ 0.007 0.694 + 0.007 | 0.694 + 0.007
JT72PSg 4 | 1.052+ 0.017 1.052+ 0.017 | 1.052+0.017 1.0524+ 0.017 | 1.040+ 0.017
CELLO 16 | 0.417 = 0.018 3.363 = 0.138 | 1.320+ 0.088 1.321 + 0.088 | 1.310+ 0.088
JT72PS+BEd 16 | 0.484 +0.026 3.838+0.118 | 1.400+ 0.063 1.401 + 0.063 | 1.393 + 0.062
J72PS+BEg 16 [ 1.114+ 0.076 7.200+ 0.129 | 2.668 + 0.066 2.666 + 0.066 | 2.629 + 0.065
J7.2PSd 16 | 0.399 + 0.017 3.119+0.058 | 1.122+0.034 1.123+ 0.034 | 1.119+ 0.034
J72PSg 16 | 0.972+ 0.192 5.711 +£0.154 | 1.923 4+ 0.073 1.924+ 0.073 | 1.917 + 0.080
CELLO 64 [ 1.223 + 0.239 14.684 + 3.392 | 3.140+0.834 3.1724+ 0.785 | 2.172 + 0.424
J72PS+BEd 64 |1.618+0.233 17.479+1.416 | 3.355+0.474 4.289+ 0.563 | 3.483 + 0.488
J72PS+BEg 64| 2.523+0.169 38.1324+1.399 | 7.3504+ 0.510 7.958 4+ 0.436 | 7.458 &+ 0.421
J7.2PSd 64 | 0.887+ 0.072 12.763+0.734 | 2.346 + 0.219 2.589+ 0.211 | 2.716 &+ 0.252
d T2 PSig 64 | 1.699+ 0.314 25.625+ 1.929 | 4.877+ 0.801 5.299+ 0.711 | 4.797 4 0.650
Table B.3: (F*) two-dimensional analysis (full y, $).
(F®) two-dimensional analysis (full y, ¢)
Transformation: None Ochs Bialas
Normalization: vertical horizontal vertical horizontal horizontal
CELLO 1 |0.911+0.017 0.911+0.017 | 0.911+0.017 0.911+ 0.017 | 0.909 + 0.017
J72PS+BEd 1 | 0.850+0.012 0.850+0.012 | 0.850+0.012 0.850+ 0.012 | 0.850 4+ 0.012
J72PS+BEg 1 |1.391+0.014 1.391+0.014 |1.391+0.014 1.391+ 0.014 | 1.368 + 0.013
J 7.2 PS:d 1 | 0.862+ 0.007 0.862 + 0.007 | 0.862+ 0.007 0.862+ 0.007 | 0.861 + 0.007
J 7.2 PSig 1 | 1.400+ 0.025 1.400+ 0.025 | 1.400+ 0.025 1.400+ 0.025 | 1.379+ 0.024
CELLO 4 | 0.751 4+ 0.046 0.746 - 0.045 | 0.745+4 0.041 0.745+ 0.041 | 0.742 + 0.041
J72PS+BEd 4 |0.649+0.020 0.656+0.019 | 0.674+0.022 0.674+ 0.022 | 0.675 + 0.022
J72PS+BEg 4 |1.349+0.023 1.344+0.023 | 1.350+ 0.023 1.350+ 0.023 | 1.326 + 0.023
J7.2PSd 4 | 0.597+0.014 0.598+0.013 | 0.604+0.013 0.604+ 0.013 | 0.605+ 0.013
J72PSg 4 |1.076+0.029 1.076+0.029 | 1.076 +0.029 1.076 + 0.029 | 1.060 + 0.029
CELLO 16 | 0.393 + 0.048 5.213 + 0.565 | 1.9154+0.419 1.912+ 0.418 | 1.903 + 0.417
J72PS+BEd 16 | 0.457+ 0.037 6.392+ 0.467 | 1.898 +0.222 1.905+ 0.225 | 1.856 &+ 0.215
J72PS+BEg 16 | 1.077+ 0.056 17.434+ 0.940 | 5.461 4+ 0.384 5.452+ 0.384 | 5.348 + 0.377
JT7.2PSd 16 | 0.318 + 0.019 4.626 + 0.254 | 1.461 + 0.167 1.466 + 0.170 | 1.451 + 0.169
JT72PSg 16 | 1.323 + 0.653 11.081 4 0.664 | 2.961 + 0.270 2.964 + 0.271 | 3.066 + 0.376

Table B.4: (F®) two-dimensional analysis (full y, ¢).
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[F?) two-dimensional analysis (central y, full ¢)
| Transformation: None [ Ochs Bialas

' Normalization: vertical horizontal vertical horizontal horizontal
\ CELLO 1 1.047 £+ 0.008 1.047 = 0.008  1.047 = 0.008 1.047 4+ 0.008 | 1.047 + 0.008
| J 7.2 PS4+BE d 1 1.049 £ 0.006  1.049 + 0.006 | 1.049 = 0.006 1.049 4 0.006 | 1.049 + 0.006
|J 7.2 PS+BE g 1 1.114 + 0.005 1.114 = 0.005 ‘ 1.114 + 0.005 1.114 + 0.005 | 1.114 + 0.005
| JT.2PSd 1 1.048 4+ 0.004 1.048 = 0.004 | 1.048 = 0.004 1.048 +0.004 | 1.047 + 0.004
| J7.2 PS g 1 1.113 £ 0.008 1.113+ 0.008 | 1.113 = 0.008 1.113 + 0.008 | 1.113 + 0.008
CELLO 4 1.065 + 0.008 1.066 + 0.008 | 1.065 + 0.008 1.065 + 0.008 | 1.065 + 0.008
J 7.2 PS+BE d 9 1.080 + 0.007 1.081 + 0.007 | 1.080 + 0.007 1.080 + 0.007 | 1.080 + 0.007
|J 7.2 PS+BE g 4 1.173 + 0.005 1.180 4+ 0.005 | 1.175+ 0.005 1.175+ 0.005 | 1.175 =+ 0.005
{ -~ J 72 PSd 4 1.051 4+ 0.004 1.052 + 0.004 | 1.050 =+ 0,004 1.050 + 0.004 | 1.049 + 0.005
J 7.2PSg 4 1.140  0.009 1.147 + 0.009 | 1.144 + 0.009 1.144 + 0.009 | 1.144 + 0.009
| CELLO 16 1.167 £ 0.012 1.154 + 0.011 | 1.145 + 0.011 1.145+ 0.011 | 1.146 + 0.011
i J 7.2 PS+BE d 16 1.204 £ 0.010 1.186 + 0.009 | 1.180 + 0.010 1.180+ 0.010 | 1.180 + 0.010
J 7.2 PS+BE g 16 1.317 £ 0.007 1.324 + 0.007 | 1.320 + 0.007 1.320 4+ 0.007 | 1.319 + 0.007
JT:2'PS'd 16 1.111 £+ 0.005 1.100 & 0.005 | 1.094 &+ 0.005 1.095+ 0.005 | 1.094 + 0.006
JT7T2PS¢g 16 1.223 £ 0.011 1.235+ 0.011 | 1.231 4 0.011 1.231 4+ 0.011 | 1.232 + 0.011
CELLO 64 1.347 4+ 0.025 1.499 + 0.020 | 1.327 + 0.019 1.344+ 0.019 | 1.339 + 0.019
7.2 PS+BE d 64 1.383 = 0.021 1.552+ 0.017 | 1.363 + 0.016 1.383+0.016 | 1.370 + 0.016
J 7.2 PS+BE g 64 1.481 + 0.010 1.686 + 0.011 | 1.513 4+ 0.010 1.536 + 0.010 | 1.516 + 0.010
JT7.2PSd 64 1.236 = 0.010 1.383 + 0.009 | 1.214 4+ 0.008 1.230 4 0.008 | 1.226 + 0.010
JT2PS¢g 64 1.305 + 0.016 1.494+ 0.017 | 1.345+ 0.015 1.363 4+ 0.015 | 1.350 + 0.015
CELLO 256 1.481 £ 0.049 1.808 + 0.038 | 1.505 + 0.035 1.529 4 0.034 | 1.509 + 0.034
J72PS+BEd 256 |1.451+0.039 1.807+ 0.032 | 1.527 +0.029 1.562+ 0.029 | 1.543 + 0.028
J72PS+BE g 256 1.656 = 0.018 2.013 + 0.018 | 1.711 +0.016 1.75240.016 | 1.725 + 0.017
J7.2PSd 256 | 1.351 £ 0.020 1.605+ 0.016 | 1.322+0.015 1.343 +0.015 | 1.332 + 0.018
JT2PSg 256 | 1.406 £ 0.028 1.721 + 0.029 | 1.475+ 0.026 1.507 + 0.026 | 1.480 + 0.025
CELLO 1024 | 1.642 4+ 0.108 2.058 + 0.076 | 1.752 4+ 0.072 1.835+ 0.071 | 1.795 + 0.070
7.2 PS+BEd 1024 |1.511 4+ 0.073 2.020 + 0.062 | 1.691 4+ 0.058 1.742+ 0.057 | 1.663 + 0.055
JT72PS+BE g 1024 | 1.985+4 0.036 2.376 + 0.034 | 1.989 + 0.031 2.031 + 0.031 | 2.008 + 0.032
JT7.2PSd 1024 | 1.450 £+ 0.040 1.760 + 0.032 | 1.439 + 0.029 1.458 +0.029 | 1.434 + 0.035
J .2 PS:g 1024 | 1.676 + 0.056 2.042 + 0.055 | 1.710 £+ 0.051 1.754 + 0.051 | 1.674 + 0.050
CELLO 4096 | 1.734 £ 0.209 2.273 + 0.157 | 2.015+ 0.154 2.166 + 0.152 | 2.198 + 0.154
J7.2PS+BEd 4096 |1.726 + 0.147 2.369+ 0.129 | 1.876 + 0.118 2.048 4+ 0.120 | 1.916 + 0.118
J72PS+BE g 4096 | 2.646 + 0.083 2.993 + 0.072 | 2.549 + 0.068 2.600 + 0.067 | 2.549 + 0.068
JT7.2PSd 4096 | 1.603 + 0.094 1.826 + 0.063 | 1.544 + 0.060 1.576 + 0.059 | 1.573 + 0.072
J72PSg 4096 | 2.321 £ 0.139 2.674 + 0.122 | 2.302+ 0.117 2.394+0.114 | 2.315+ 0.112
CELLO 16384 | 1.491 + 0.351 2.506 + 0.342 | 1.792 + 0.293 2.379+0.323 | 1.912 + 0.285
J7.2PS+BEd 16384 | 1.676 + 0.293 2.536 + 0.265 | 2.127 + 0.317 2.508 + 0.264 | 2.006 + 0.236
J72PS+BE g 16384 | 3.963 + 0.221 4.400 + 0.171 | 3.889 + 0.175 4.019+ 0.164 | 3.643 + 0.161
J72PSd 16384 | 1.891 £ 0.184 2.085 + 0.135 | 1.725 + 0.127 1.876 4+ 0.127 | 1.670 + 0.149
J7.2PSg 16384 | 2.880 + 0.328 3.509 + 0.273 | 2.711 + 0.255 3.298 + 0.268 | 3.128 -+ 0.266
CELLO 65536 | 0.721 £ 0.231 3.059 + 0.721 | 0.906 + 0.285 2.549 4 0.658 | 0.000 + 0.000
J7.2PS+BEd 65536 | 0.919+ 0.312 2.118 + 0.486 | 1.123 4+ 0.330 2.564 + 0.534 | 1.338 + 0.386
J 7.2 PS+BE g 65536 | 5.639 + 0.670 6.898 + 0.426 | 5.199 =+ 0.408 6.399 + 0.409 | 5.665 + 0.399
JT2PSd 65536 | 2.268 £ 0.438 2.745 + 0.309 | 2.006 + 0.280 2.606 +0.301 | 1.817 + 0.312
J72PSg 65536 | 2.096 + 0.383 4.989 + 0.648 | 2.350 + 0.362 5.580+ 0.686 | 3.213 + 0.521

Table B.5: (F?) two-dimensional analysis (central y, full ¢).
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—
(F3?) two-dimensional analysis (central y, full ¢)
Transformation: None Ochs Bialas
Normalization: vertical horizontal vertical horizontal horizontal
CELLO 1 1.164 + 0.015 1.164+ 0.015 | 1.164 4+ 0.015 1.164+ 0.015 | 1.164 + 0.015 |
J 7.2 PS+BE d 1 1.162 £ 0.012 1.162+0.012 | 1.162+0.012 1.162+0.012 | 1.162+ 0.012
J 7.2 PS+BE g 1 1.372+£ 0.010 1.372+0.010 | 1.372+0.010 1.3724+ 0.010 | 1.370 4 0.010
J7.2PSd 1 1.159 + 0.007 1.159+ 0.007 | 1.159 + 0.007 1.159 + 0.007 | 1.158 4 0.008
JT72PSg 1 1.364 + 0.017 1.364 =+ 0.017 | 1.364 + 0.017 1.364 + 0.017 | 1.364 + 0.017 |
CELLO 4 1.224 £+ 0.020 1.227+ 0.020 | 1.224 4+ 0.020 1.224 + 0.020 | 1.223 + 0.020 |
J 7.2 PS+BE d 4 1.268 + 0.016 1.270+ 0.016 | 1.265+ 0.016 1.264 + 0.016 | 1.265+ 0.016
J 7.2 PS+BE g 4 1.554 4+ 0.012 1.584+0.013 | 1.562 +0.012 1.562+ 0.012 | 1.561+ 0.013
J7.2PSd 4 1.172+ 0.008 1.174+ 0.008 | 1.170+ 0.008 1.170+ 0.008 | 1.165+ 0.010
J72PSg 4 |1.41740.019 1.447-40.020 | 1.429+0.019 1.429+ 0.019 | 1.429 + 0.019
CELLO 16 | 1.628 + 0.054 1.497 + 0.042 | 1.497 + 0.043 1.496 + 0.043 | 1.494 + 0.043
JT72PS+BEd 16 |1.778 4+ 0.041 1.647-+ 0.034 | 1.687 + 0.037 1.687 + 0.037 | 1.689 + 0.037
J72PS+BE g 16 |2.160+ 0.026 2.182-+4 0.025| 2.170+£0.025 2.171+ 0.025 | 2.167 = 0.026
J'7.2 PSd 16 | 1.420+ 0.020 1.333+0.017 | 1.348 +0.017 1.348+ 0.017 | 1.343 + 0.020
Ji7.2 PS’g 16 | 1.727+0.034 1.770+ 0.034 | 1.777 £ 0.037 1.776 £+ 0.037 | 1.778 £+ 0.037
CELLO 64 | 2.495+ 0.402 2.971+0.164 | 2.2944+0.166 2.351 4+ 0.144 | 2.259+ 0.139
J72PS+BEd 64 | 2.654+ 0.220 3.284+0.148 | 2.647 4+ 0.129 2.771 £ 0.134 | 2.646 + 0.134
JT72PS+BE g 64 |3.299+0.101 4.570+ 0.093 | 3.442+ 0.079 3.586 + 0.080 | 3.450 & 0.081
J7.2PSd 64 | 1.957+ 0.087 2.631+ 0.071 | 1.867 + 0.057 1.973 4 0.060 | 1.888 + 0.068
JT7.2PSg 64 |2.159+ 0.105 3.252+0.127 | 2.438 +0.111 2.525+0.112 | 2.459+ 0.108
CELLO 256 | 2.478 + 0.498 5.620+ 0.810 | 3.002 + 0.559 3.122+ 0.562 | 3.122 4+ 0.493
J72PS+BEd 256 |2.768 + 0.642 5.438+ 0.621 | 3.545 4 0.480 3.787 + 0.460 | 3.399 + 0.439
J 7.2 PS+BE g 256 | 4.722 + 0.364 8.334+ 0.411 | 5.672 4+ 0.352 6.113 + 0.349 | 5.644 + 0.385
J 7.2 PSd 256 | 2.400 £+ 0.369 4.554 + 0.317 | 2.482 1+ 0.206 2.662+ 0.211 | 2.456 + 0.249
JT72PSg 256 | 3.053 + 0.461 5.875+ 0.686 | 3.387 + 0.388 3.675+ 0.441 | 3.184 + 0.325

Table B.6: (F?) two-dimensional analysis (central y, full ¢).
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I
(F?) two-dimensional analvsis (central y, full @) !‘
[
Transformation: None Ochs | Bialas 1
Normalization: vertical horizontal vertical horizontal | horizontal
CELLO 1 [1.374+0.029 1.374+ 0.029 | 1.3744 0.029 1.374+0.029 | 1.374 £ 0.029 !
J72PS+BEd 1 |1.351=+0.021 1.351+ 0.021 | 1.351+ 0.021 1.35140.021 | 1.351 £ 0.021 ||
J72PS+BEg 1 |1.838-+0.020 1.838+0.020 | 1.838+0.020 1.838+0.020 | 1.833 = 0.020 |
J7.2PSd 1 |1.347+0.012 1.347+0.012 | 1.347+ 0.012 1.347+0.012 | 1.345+ 0.015
JT72PS g 1 | 1.815+0.035 1.815+ 0.035 | 1.815+ 0.035 1.815+0.035 | 1.815 £ 0.035
CELLO 4 | 1.547 + 0.058 1.548 + 0.057 | 1.547 4 0.057 1.547 4 0.057 | 1.545 £ 0.057
JT72PS+BEd 4 | 1.572+0.036 1.576+ 0.036 | 1.569+ 0.036 1.568+0.036 | 1.571 £ 0.036
JT7T2PS+BEg 4 |2.275+0.031 2.363+0.032 | 2.295+ 0.031 2.295+0.031 | 2.293 & 0.033
JT:2PS d 4 [1.375+0.020 1.375+ 0.019 | 1.369+ 0.019 1.369+0.019 | 1.359 + 0.023
JT2PS g 4 [ 1.877T+0.042 1.9554 0.044 | 1.904 + 0.043 1.904 £ 0.043 | 1.904 = 0.043
CELLO 16 | 2.879+0.356 2.181 4+ 0.207 | 2.295+ 0.220 2.291 +0.219 | 2.277 + 0.219
JT72PS4+BEd 16| 2.959+0.187 2.471+0.138 | 2.695+ 0.162 2.693 +0.161 | 2.714 & 0.162
J72PS+BE g 16 |4.320+0.139 4.356 %+ 0.142 | 4.342+ 0.132 4.343+0.132 | 4.309 £ 0.131
J7.2PSd 16 | 2.081 + 0.106 1.756 4+ 0.075 | 1.834 4+ 0.076 1.836 4+ 0.077 | 1.773 + 0.081
J7.2PS g 16 | 2.713+0.130 2.786 4 0.125 | 3.019+ 0.202 3.015+ 0.202 | 3.019 = 0.202
Table B.7: (F*) two-dimensional analysis (central y, full ¢).
(F?®) two-dimensional analysis (central y, full ¢)
Transformation: None Ochs Biatas
Normalization: vertical horizontal vertical horizontal horizontal
CELLO 1 | 1.7124+0.063 1,712+ 0.063 1.712+ 0.063 1.712+ 0.063 | 1.712 + 0.063
J72PS+BEd 1 1.627 + 0.038 1.627 + 0.038 1.627+ 0.038 1.627-+ 0.038 | 1.627 £ 0.038
JT7T2PS+BE g 1 | 2.637+0.042 2.637+0.042 | 2.637+0.042 2.637+ 0.042 | 2.623 + 0.043
JT72PSd 1 1.625 + 0.021 1.625 + 0.021 1.625 4+ 0.021 1.625+ 0.021 1.623 £ 0.026
J72PSg 1 | 2585+ 0.074 2.585+ 0.074 2.5854+0.074 2.585+4 0.074 | 2.585 + 0.074
CELLO 4 | 2190+ 0.199 2.173+0.192 2.193+0.195 2.191+0.194 | 2.187 %+ 0.194
J72PS+BEd 4 | 1.964+0.082 1.974 + 0.082 1.979 4+ 0.084 1.978 4+ 0.084 | 1.987 + 0.085
JT72PS+BE g 4 | 3.584+0.083 3.794 + 0.088 3.628 +0.086 3.628 + 0.086 | 3.624 & 0.089
J7.2PSd 4 | 1.670 4 0.055 1.662 4+ 0.051 1.660 + 0.051 1.660+ 0.051 | 1.634 + 0.053
J72PSg 4 | 2.582+£0.096 2.746+0.102 | 2.641+0.100 2.642+ 0.100 | 2.642+ 0.100
CELLO 16 | 6.992 £+ 2.502 3.733+1.192 | 4.192+4+1.229 4.1724+1.222 | 4.172 4+ 1.222
JT72PS+BE d 16| 50284+ 0.726 3.665+ 0.476 | 4.536+ 0.690 4.525+ 0.686 | 4.607 = 0.687
J72PS+BE g 16 |10.523+1.041 10.622+ 1.111 | 10.488 + 0.866 10.494 + 0.865 | 10.163 + 0.793
J"7:2 PSid 16 | 3.822+ 0.748 2.702 + 0.438 2.808 + 0.431 2.827+4+ 0.442 | 2.380 + 0.350
J 7.2 PSig 16 | 4.443 + 0.493 4.425 + 0.438 6.659+ 1.509 6.629+ 1.520 | 6.608 + 1.518

Table B.8: (F®) two-dimensional analysis (central y, full ¢).
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Appendix C. Factorial moments in three dimensions

y, @, p° analysis (Ochs method)

[ Dataset [Bins] (F0° [ (75" | (FH" | (7%)" |
CELLO 20 70.984 + 0.005[0.960 + 0.008 [0.934 = 0.011 [ 0.910 = 0.017

J7.2PS+BE d| 2° |0.978 + 0.004|0.942 + 0.006 | 0.89& = 0.009 | 0.850 =+ 0.012

J T2 PS+BE g| 2° [1.040+ 0.003 |1.116 + 0.005 | 1.230 + 0.008 [ 1.391 = 0.014
J7.2PSd 29 10.979 4 0.002|0.945 + 0.003 | 0.905 + 0.005 | 0.861 + 0.007
J72PSg 20 [1.041 4 0.006 [ 1.120 + 0.009 | 1.237 + 0.015 | 1.400 + 0.025

CELLO 2% 10.972 4+ 0.006 | 0.964 + 0.014 [ 1.039 = 0.048 [ 1.361 £ 0.213

J72PS+BEd| 2* |0.966 + 0.005|0.946 + 0.011|0.971 = 0.026 | 1.043 = 0.064

J7.2PS+BE g| 2° |1.074 4 0.003 |1.231 4 0.008 | 1.545 + 0.022 | 2.135 + 0.071
J7.2PSd 2% 10.954 4+ 0.003 [0.903 + 0.006 [ 0.880 + 0.013 | 0.894 + 0.034
JT2PSg 2% [1.057 + 0.006|1.158 4+ 0.013 | 1.322 + 0.029 | 1.543 £ 0.068

CELLO 2% [1.121 4+ 0.011]1.460 + 0.067 | 2.446 + 0.389 -

J7.2PS+BEd| 2° |1.131+0.010|1.533 +0.052|2.064 = 0.313 ~

J 7.2 PS+BE g| 2° |1.307 + 0.006(2.248 + 0.039 | 5.563 + 0.413 -
J7.2PSd 2% |1.064 + 0.005|1.353 + 0.028 | 1.879 + 0.175 -
J72PSg 2% [1.230 4+ 0.011 |1.902 + 0.055 | 3.498 + 0.324 -

CELLO 2% [1.542 + 0.033[4.109 + 0.752 - -

J72PS+BEd| 2° |1.581 + 0.028|5.404 + 0.715 - -

J7.2PS+BE g| 2° [1.928 +0.017|8.734 +0.474 - -
J7.2PSd 2° [1.413+0.015|3.253 4 0.272 - -
J72PSg 2% 11.701 + 0.028 | 6.518 + 0.670 - -

CELLO 212 12.006 + 0.103 - - -

J 7.2 PS+BE d| 2'2 |2.076 + 0.087 - - -

J 7.2 PS+BE g | 2'? |2.816 + 0.052 - - -
J7.2PSd 212 |1.786 + 0.045 = - -
J72PSg 212 12.361 + 0.087 - - -

CELLO 215 12.450 £ 0.316 - - -

J 7.2 PS+BE d| 2'® |2.944 + 0.286 - - -

J 7.2 PS+BE g| 2'° [4.174 4+ 0.174 - - -
J7.2PSd 215 12.325 £ 0.143 - - -
J72PSg 215 13.186 + 0.274 - - -

CELLO 218 13,267 +1.033 - = -

J 7.2 PS+BE d | 2'® |4.321 + 0.966 - - -

J 7.2 PS+BE g | 2'® [6.678 4+ 0.612 - - -
J7.2PSd 218 13.413 + 0.487 - - -
J72PSg 215 16.095 + 1.060 - - -

Table C.1: y, ¢, p? analysis (Ochs method).
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y, 0, p} analysis (Bialas method)

Dataset | Bins| (F2)" | (F¥' (P 1 ) ]
CELLO 29 10.984 + 0.005[0.959 + 0.008 [0.933 + 0.011 [0.909 + 0.017
J7.2PS+BEd| 2 [0.978 + 0.004|0.942 + 0.006 | 0.898 =+ 0.009 | 0.850 + 0.012
J 7.2 PS+BE g| 2° |1.036 = 0.003 |1.107 + 0.005 [ 1.215 4 0.008 | 1.368 + 0.013
J72PSd 20 10.979 + 0.002 | 0.945 + 0.003 | 0.905 + 0.005 | 0.861 + 0.007
JT2PSg 20 |1.038 =+ 0.006[1.112 4 0.009 {1.223 4 0.015 | 1.379 + 0.024
CELLO 29 70.972 + 0.006 | 0.965 + 0.014 [ 1.043 + 0.048 [ 1.378 =+ 0.213
J 7.2 PS+BEd| 2° |0.965=+ 0.0050.943 + 0.011 [0.969 + 0.026 | 1.040 + 0.063
J 7.2 PS+BE g| 2° |1.066 & 0.003|1.202 £ 0.008 [ 1.473 4 0.021 | 1.988 =+ 0.065
J7.2PSd 2% 10.953 + 0.003 | 0.903 + 0.006 | 0.881 + 0.014 | 0.899 + 0.036
J7.2PSg 23 1.049 4 0.006|1.132 + 0.013 [1.265 + 0.028 | 1.437 + 0.061
CELLO 2% 11.062+ 0.011[1.198 4+ 0.060 [1.991 + 0.415 —
J7.2PS+BEd/| 2% |1.075=+ 0.009|1.306 + 0.049 [1.902 + 0.309 =
J 7.2 PS+BE g| 2% |1.277 + 0.006|2.100 £ 0.038 | 5.212 + 0.404 =
J7.2PSd 26 11.011 + 0.005|1.146 + 0.026 | 1.700 + 0.170 =
JT72PSg 26 11.192 + 0.010|1.729 + 0.053 | 3.169 + 0.320 =
CELLO 29 11.286 + 0.030(2.106 + 0.471 = =
J 7.2 PS+BEd| 29 |1.293+ 0.0252.504 + 0.406 — =
J 7.2 PS+BE g| 2° |1.656 4 0.015|5.295 + 0.330 - -
J7.2PSd 29 11.162+ 0.013|1.774 + 0.207 = —
JT7.2PSg 29 11.417+0.024(2.922 + 0.429 — =
CELLO 212 11.603 + 0.091 = — =
J 7.2 PS+BE d| 2'? |1.570+ 0.074 = - =
J 7.2 PS+BE g| 2'? |2.262 %+ 0.047 - - o
J7.2PSd 212 |1.414 + 0.040 - = =
JT72PSg 212 |1.801 + 0.074 > = =
CELLO 275 11.919 + 0.280 = = =
J 7.2 PS+BEd| 2'® |1.674 4+ 0.212 - = =
J 7.2 PS+BE g | 2'® |3.180+ 0.153 - - =
J7.2PSd 2% 11.524 + 0.115 = = —
J72PSg 215 12,301 + 0.229 - - -~

Table C.2: y, ¢, p’ analysis (Bialas method).
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11 Cartesian three-dimensional analysis (Bialas method)
[ Dataset [Bins| (F3)" [ (FY" | (F4)" [- e
| CELLO 20 70.984 + 0.005] 0.959+ 0.008 0.933 + 0.011 0.909 = 0.017

J7.2PS+BEd| 2° [0.978 = 0.004| 0.942+ 0.006 0.898 + 0.009 0.850 + 0.012

JT.2PS+BE g| 2° |1.037+0.005| 1.109+ 0.009 1.220 + 0.015 1.378 + 0.024
J72PSd 20 0.979+ 0.002| 0.945+ 0.003 0.905 + 0.005 0.861 + 0.007
J72PSg 20 |1.038 = 0.005| 1.110+ 0.009 1.219 4 0.015 1.372 4 0.023

CELLO 2% [1.715+ 0.009| 3.4214 0.037 7.002 + 0.145 14.148 4 0.580

J7.2PS+BEd| 2° |1.716+0.008| 3.422+ 0.031 7.033 +0.123 14.519 + 0.485

J72PS+BE g| 2° |1.737+0.009| 3.676+ 0.037 8.376 + 0.152 19.795 + 0.647
J7.2PSd 23 [1.637+0.004| 3.094+ 0.016 5.946 + 0.058 11.280 =+ 0.222
J72PSg 2% 1.693 +0.009| 3.456+ 0.034 7.495+ 0.126 16.546 + 0.474

CELLO 2% [3.211 + 0.022] 14.042=0.273 | 60.870+ 3.131 |216.309 =+ 30.254

J7.2PS+BEd| 2° |3.157+0.018| 13.898 = 0.241 68.483 + 3.284 |345.173 + 42.983

J7.2PS+BE g| 2% [3.317+0.021| 16.556+0.282 | 97.759+ 4.673 |670.729 & 93.836
J7.2PSd 26 12,924+ 0.010| 11.804+0.117 | 50.409+ 1.400 |205.541 4 15.848
J72PSg 26 3.199+0.020| 15.379+0.244 | 83.730+ 3.181 |462.511 + 41.069

CELLO 2% 14.813=0.061| 36.010=2.287 | 254.886 + 76.828 —

J72PS+BEd| 29 [4.710+ 0.048 | 32.086=1.695 | 205.770+ 53.114 —

J7.2PS+BE g| 2° |5.288+0.052| 51.068 +2.207 |684.786+ 132.591 -
J7.2PSd 29 [4.278 + 0.026 | 28.623+0.910 | 174.919 + 33.867 =
J72PSg 29 15.092 + 0.050| 50.026 +2.094 |647.135+ 101.305 =

CELLO 212 16.313 + 0.184 | 74.126 + 22.343 — -

J 7.2 PS+BE d| 2'? |6.096 + 0.143| 0.000 =+ 0.000 - -

J 7.2 PS+BE g| 2'? [7.281 + 0.153 | 141.987 + 26.532 - -
J7.2PSd 212 |5.512 + 0.078 | 40.558 + 7.403 — -
J72PSg 212 | 7.100 + 0.146 | 138.765 + 24.045 — -

CELLO 275 17.390 + 0.553 - - -

J 7.2 PS+BE d| 2'° |6.616 + 0.422 = - -

J 7.2 PS+BE g| 2'° | 7.928 + 0.420 - - -
J7.2PSd 2'% 16.174 + 0.233 - - -
J72PSg 21% | 8.276 + 0.425 = £ -

Table C.3: Cartesian three-dimensional analysis (Bialas method).
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Cartesian three-dimensional analysis
Dataset | Bins | (F2)" | (F3)" [ (F4” ] FH ]
CELLO 2% 10.9810% + 0.21107 %] 0.9610° + 0.3410°2]0.9310% + 0.5110~ 2 | 0.91-10° + 0.7610 2
J72PS+BE d| 2° [0.9810°+ 0.1710~2 | 0.9410° + 0.2610-2| 0.9010° + 0.3810~2 | 0.8510° + 0.54102
J7.2PS+BE g| 2° [1.0410° £ 0.251072 | 1.1210° 4+ 0.421072 | 1.2410° 4+ 0.6810~2 | 1.4010° 4+ 0.1110""
J7.2PSd 2% 10.9810% + 0.95102|0.9510° + 0.151072 | 0.9010° 4+ 0.2210-2 | 0.8610° + 0.31-10~ 2
J72PSg 2% 11.0410° +0.241072 | 1.1210° + 0.41107? | 1.2310° + 0.6610~2 | 1.3910° 4 0.11.10
CELLO 2% 17.4610° + 0.1610" 7| 5.67107 = 0.21.10° | 4.3510% & 2.4910° | 3.3610° + 2.9710"
J72PS+BEd| 2® [7.4210°+0.1310"!| 5.5810' + 0.1610° | 4.1910% + 1.8710° | 3.1410% + 2.1010?
J72PS+BE g| 2® [7.9410°+0.2010' | 6.6810' + 0.2610° | 5.83102 + 3.3810° | 5.2510% + 4.3310"
J7.2PSd 2% |7.4410° 4 0.7610°2 | 5.6110" + 0.9410"' | 4.2310% + 1.0810° | 3.2010% + 1.2010!
J7.2PSg 2% |7.9410°+0.1910"1 | 6.6710' + 0.2510° | 5.8110% + 3.2410° | 5.2010° + 4.1210"
CELLO 2% [ 5.65107 4+ 0.1310% | 3.3510° + 1.2910" | 2.0210° + 1.2110% | 1.23107 =+ 1.1310
J7T2PS+BEd| 2% | 5.6310' +£0.1010° | 3.3010° + 1.0210" | 1.9610° +9.2110% | 1.16107 + 8.26104
J7.2PS+BE g| 2° | 6.0510" +£0.1510° | 3.9710° + 1.6210" | 2.7310° +1.6510% | 1.95107 + 1.6810°
J7.2PSd 26 15.6410' +0.6010~ ' | 3.3210° + 5.87-10° | 1.9810° + 5.3010% | 1.18107 + 4.67-10%
J72PSg 2% | 6.0510' +£0.1510° | 3.9810° + 1.5710" | 2.7310° 4+ 1.5910° | 1.94107 + 1.6010°
CELLO 29 | 4.0610%2 + 0.9910° | 1.8210° + 7.6710% | 8.51.107 + 5.6010° | 4.0710'° + 4.1510
J7T2PS+BEd| 2° | 4.05102 4+ 0.8010° | 1.8010° + 6.07-10% | 8.25107 + 4.2810° | 3.8310'° + 3.0210®
J72PS+BE g| 2° | 4.3910% +£1.1810° | 2.2010° 4+ 9.71-10% | 1.1810%+ 7.7510° | 6.5810'° + 6.24108
J7.2PSd 29 | 4.06102 + 0.4610° | 1.8110°+ 3.4910% | 8.33107 + 2.4510° | 3.9010° + 1.70108
J72PSg 2% | 4.3910% +1.1410° | 2.2010° + 9.3610% | 1.1710% 4+ 7.4110% | 6.51:10'° + 5.91.10%
CELLO 2121 2.6010° + 7.0210° | 8.2510°% + 4.0410% | 2.8410™° + 2.2510% [1.0210™ + 1.3010™
J7.2PS+BE d| 2'%2 | 2.6110% + 5.71.10° | 8.2210° + 3.2110* | 2.7710'° + 1.7010% |9.6910'® + 9.04-10!!
J 7.2 PS+BE g | 2'2 | 2.8810° + 8.4010° | 1.04107 + 5.2410% | 4.1310"'° + 3.2210% |1.7610'¢ + 2.0310!2
J7.2PSd 212 | 2.6210% + 3.2910° | 8.2610° + 1.8610% | 2.8010'° + 9.94107 [9.9110'® + 5.3110""
J72PSg 2'2 | 2.8810% + 8.1510° | 1.03107 + 5.0410* | 4.1010'° + 3.0510% |1.7310"* + 1.8910?
CELLO 215 1 1.3410% + 3.9810! | 2.5010% + 1.51.10% [5.4210'% + 5.9810'% | 1.3010'7 + 2.7010™°
J 7.2 PS+BE d | 2'% | 1.3610% + 3.3310' | 2.5710% + 1.2510% |5.5810'2 4 4.6410'° | 1.32107 + 1.7710'5
J 7.2 PS+BE g| 2'% | 1.5510" £ 4.9510" | 3.4210° + 2.1110° |8.9910'? £ 9.4010'° [ 2.6510'7 + 4.4710'5
J7.2PSd 215 | 1.3610% 4+ 1.9010" | 2.5610% + 7.1410°% |5.5510'2 + 2.6810'° [1.3210'7 4 1.0510'°
J72PSg 2'5 | 1.5310% + 4.7410" | 3.3510%+ 1.9810° [8.6710'2 + 8.5910'° | 2.5010'7 + 3.9510'5
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50 Appendix C. Factorial moments in three dimensions
Cartesian three-dimensional analysis (continued from previous page)
: Dataset Hw:_m_ Aﬁmﬁ. Aﬁuw, Am&vs w Q‘.&v: g_
CELLO 2T 14.9710% £ 1.58107 | 3.8910% & 2.80107 | 3.7510"7 + 5.581072[4.1410™° £ 1.2510™®

J7.2PS+BEd| 2'® |5.1210% + 1.3510% | 4.1410° + 2.47107 [4.1210'% + 5.0710'%|4.7310'® £ 1.1610'®

J 7.2 PS+BE g | 2'® |6.0610% + 2.0510% | 6.0910° + 4.41107 | 7.8710'% + 1.0910'* | 1.2010%° =+ 3.0210'®
J7.2PSd 218 | 4.9910% + 7.4010' | 3.8910° + 1.31.107 |3.7210'% + 2.5510% | 4.0810® + 5.4910'7
J72PSg 2'8 59110 + 1.9310% | 5.7610° + 4.06107 |7.2310'* + 9.8410'2|1.07102° + 2.6210'®

CELLO 271 [1.2110° & 4.4410° | 2.581070 + 2.5810% [7.0910™ + 1.7410™ [ 2.1610%T & 1.21.10%°

J 7.2 PS+BE d| 22! [1.2710% + 3.81.102 | 2.8210'° + 2.3210% | 8.0710'% + 1.7610'* [ 2.71102" £ 1.56103%°

J 7.2 PS4+BE g| 22! |1.5610% 4 5.7210 | 4.6710'® & 4.4410% [1.9910'® + 4.9210'* | 1.1110%2 £ 7.0810%°
J7.2PSd 221 1.1610% + 1.98102 | 2.3110'° + 1.0910% |5.81.10'° + 7.3510'% | 1.69102" + 5.8010'°
JT2PSg 221 |1.4710% + 5.1410% | 4.0510'° + 3.5610® | 1.5510'® + 3.1810'% | 7.39102" & 3.17102°

CELLO 279 11.9810% +1.1210° | 8.0810™0 + 2.11.107 [5.3910™ + 5.8810"° | 5.151022 + 1.6510%2

J 7.2 PS+BE d| 22 | 2.1610% 4+ 9.7410% | 9.7510'° + 1.8810° |6.5910'® + 5.6010'% | 6.4210%2 + 2.0510%2

J 7.2 PS4+BE g | 22* [2.5610% + 1.2210% | 1.5210"! + 2.8910° | 1.5910'7 + 1.51.10' | 3.0910?® + 1.0410%®
J72PSd 224 | 1.8410% + 4.9210% | 6.9310'° + 8.21.10% | 3.7310'® + 1.8010'% | 2.401022 4 3.8010%
JT72PSg 224 | 2.3310° + 1.0810% | 1.2210'" + 2.0110° [ 9.7110'® 4+ 5.8510'% [ 1.0610%® + 2.071022

CELLO 227 12.6710° + 3.1310° [ 1.7410™T £+ 1.7410™ - -

J 7.2 PS+BE d| 2%7 |2.9210% 4+ 2.7310% | 2.5710" + 2.3110'° - -

J 7.2 PS+BE g | 227 |3.3210° + 2.8210% | 3.1810! + 1.7610'° = -
J7.2PSd 227 | 2.38105 + 1.3710% | 1.5010' + 7.2410° = =
J72PSg 227 | 2.9810° + 2.6010° | 2.9510'* + 1.8310'° - -

CELLO 2%013.4810% + 9.7010° - = =

J72PS+BEd| 2% |3.6610°+8.1810° - - —

J 7.2 PS+BE g| 2% |4.2410° + 8.1310° - - -
J7.2PSd 230 | 2.9710% + 4.1610° = - =
JT72PSg 2%0 13.9710° + 7.9610° = - -

CELLO 2% 15.7410° + 3.50107 = = =

J 7.2 PS+BE d | 2% |4.4210° + 2.5210* - = =

J 7.2 PS+BE g| 2% |6.1810°% + 2.7410* - = =
J72PSd 233 14.2210% 4+ 1.39104 = L L
JT72PSg 233 | 6.6010° + 2.7810* - - -

CELLO 2% 19.5910° + 1.2810° = - =

J 7.2 PS+BE d| 2% |9.1710° + 1.0210° - = =

J 7.2 PS+BE g| 2% |9.6610° + 9.6010* - - -
J7.2PSd 236 716105 + 5.11.104 - - =
J72PSg 2% 11.3010° + 1.0910° - - <

CELLO 2%9 12.0610°% £ 5.3110° = = =

J 7.2 PS+BE d | 2% [1.3610° + 3.51-10° - = =

J 7.2 PS+BE g | 2% |1.3010°% + 3.1510° - - -
J7.2PSd 239 11.2310° + 1.8910° = = =
J72PSg 239 12,1210 + 3.9410° - - -

Table C.4: Cartesian three-dimensional analysis.
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