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Abstract

This thesis presents iuvestigations of particle production in electrou positron amiihilatioit.
based 011 data taken with thc CELLO detector at tlie PETRA storage ring at 35 GeV centre

of mass energy.
The analysis comprises general aspects of f"1 c annihilation, such äs global event shapes

and inclusive cross sections, and extcnds to fluctuatioiis and correlations in tlie multihadronic
final stale. Various topics are covered in tliis analysis, amoiig these are iiiultiphcity distribu-
tioiis. iiiterniittency, Bose-Einstein correlations and two-particle correlations. These studier
give access to tlie perturbative and nou-perturbative phase of nlultiparticle production. and

thereby not only assist tests of Monte Carlo models, but also provide Information necessary
f'or future improvements. The data strongly support tlie concept of a local transition froin
tlie parton to tlie hadron phase, äs is realized in düster fragmentation models.

In additioii to the well-kiiown Böse-Einstein effect, an apparent shift of tlie p° ineson
mass is observed. It is shown that tlie two effects have a conimon origin in the interference

of ideiitical pions in P°TT X* final states.
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Chapter l

Introduction

In 19G4 quarks made their appearance in particle physics: G eil-Mann and Zweig developed

a group theoretical scheme to order mesons and baryons int o supermultiplets of St/(3) in

which the u, d and 5 quarks are the basic flavour triplet units. The name quarks originales

from the novel >-Finnegans Wake-C by James Joyce, where on page 383 the following poem
i s found:

— Three quarks for Muster Mark!
Sure he hasn't got much of a bark
And sure any he has it's all beside the mark.

At that time the general belief was that of quarks äs fictitious mathematical objects rather

than äs real physical states - this changed during the sixties when experimenters working

with bubble chambers were discovering new particles which fitted into the predicted SU (Z]

supermultiplets. Since about 1968 the structure of the nucleon has beeil studied by observing

deep inelastic lepton-nucleon scattering. Such investigations have provided a large body of in-

formation on the dynamics of quark-quark iiiteraction; in particular the results suggested the

existence of point-like constituents inside the nucleon. Based on these observations F'eyiiman

developed the parton model - later on it was recognized that the static quarks of Gell-Mann
and Zweig and the dynamic partons of Feynman are in fact the same objects. Since then

many experiments have been devoted to the analysis of quarks and the strong forces acting

between them. In particular, experiments at c+e~ colliding beam machines gave deep insight

into this area of physics.
The present thesis attempts to investigate the transition from colour triplet quarks to

colour singlet hadrons - a process governed by the strong iiiteraction, which is described by

a field theory called Quantum Chromo Dynamics (QCD).

The strength of the iiiteraction implies that already 10~23 seconds after the annihilation of

electron and positron has created a coloured quark-antiquark pair, these transforminto colour
singlet rnetastable objects, which themselves undergo various transitions until fiiially stable
particles emerge and are eventually observed in the CELLO detector - the extrapolation to
the early stage of the event is thus difficult. A similar problein is encountered in astrophysics,
where extrapolations are made from the present state of the universe to the initial big-bang:
and, to a certain extent the same methods are used in the two areas of physics, e.g. quantum
interferometry, factorial moment analyses etc. A great advantage of e+ e~ physics is, of course,

its larger event rate.
This thesis is divided into two main sections: the present section (chapters 1-4) contains

general aspects of e+e~ annihilation, while the second section (chapters 5-10) is devoted to
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multiparticle production. Chapter 2 gives a theoretical introduction to the physics relevant
for the subsequent analyses; in particular it covers coimiionly used hadronization niodels.
This is iollowed in chapter 3 by a description of the experimeiit, which has been adapted
from [16]. Global properties of annihilation events and inclusive cross sections are treated in
chapter 4. Chapter 5 contains basic information for the subsequent analyses of multiparticle
production. In chapter 6 multiplicity distributions are analysed in great detail, including
investigations of Monte Carlo raodels. Chapters 7 and 8 are dedicated to intermittency, the
former covering niore general aspects and the latter describing some experimental analyses.
Böse-Einstein and two-particle correlations are analysed in chapter 9 and nnallv the results
are summarized in chapter 10. The niore extensive numerical results are presented in tabular
form in the appendices A-C.



Chapter 2

Theory

The maiii concern of this thesis is to investigate the mechanism of particle production in
e+ e~ aniiihilation; in particular those aspects related to the very early stage of the event.
Experimental and theoretical limitatious are encountered in this attempt: firstly, Information
on the primary event is only indirectly available through the observed final state particles;
and then, the application of the basic theory (QCD) is limited by theoretical difficulties. For
these reasons pheiiomenological models are of vital importance for the present illvestigations,
and therefore we shall discuss them here in some detail, a more complete survey is given in
[48,49].

IV

Figure 2.1: The four phases of e+c annihilation: I. electro-weak phase with initial state radiation, II.
perturbative QCD phase with gluon radiation off the leading quarks, III. confinement phase where colour
singlet hadrons emerge and IV. decay into final state particles.

Various models of this kind exist, and can all be divided into four steps äs depicted
in figure 2.1. e+e~ annihilation into qq pairs proceeds via virtual j/Z° exchange, with
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possible photon radiation off the initial stale. This first step is purely electro-weak and
therefore calculable tu high precisioii. In the second phase the leading quarks eniit gluons,
which eventiially splil into pairs of quarks or gluons. The Simulation of this process relies
on approximations to QCD, of which different types are used in the correspoiidiiig inodels.
In the third step the parton state is transformed into a System of colour-singlet hadrons.
This process is governed by low momentum transfer. iinplying large values of &$•> which
makes a perturbative description impossible, and therefore requires the use of fragmentation
models. Amoiig these the string aiid cluster inodels are most. successful. In the final step
matrix elenients or simple phase space decays are used to transform primary hadrons into
stable particles. These decays proceed through nieasured decay channels with their respective

branching ratios.

2.1 Perturbative QCD

T wo different approaches are commonly used to approximate the perturbative hadroiiization
phase: these are the matrix element (ME) approach in Ö(o|) (available in the Jetset program
9]), and the parton shower (PS) approach in leading log approximatioii. The latter comes

in three differeiit versious: the original one due to Marchesini and Webber implemeiited into
the Herwig program [5], the Lund Version due to SjÖstrand and Bengtsson in Jetset [9 and a
fairly new one from the Lund group - the colour dipole (CD) approach available in Ariadne

W-

2.1.1 Matrix elements

The Born terrii aniiihilation process e+ c~ —» qq is modined through possible gluon radiation
of the coloured quarks: in O(a$) this yields e+e~ —* qqg events. The cross section for the
latter process can be expressed in terms of the scaled energies X{ — 2E{/Ecm, i ~ q,q,g.
satisfying ^, x-, = 2. For massless partons the matrix elenient is:

l a<7 ÖLS ,-, - i • ~ t . . - 1 0 0 / 9 l
~ — — ( - F J — —r , 0 < X,i ^ l, ? == 1,2,3 (A.l

where a0 is the lowest order Born terni cross section and Cp — 4/3 is the colour factor
corresponding to the transition q —» qg.

Energy-momentum coiiservatiou implies y,j = mJJE*m — l — .TA-, and this relation is used
to classify a three-parton system: if inin( y , j ) < ycllt for any of the three possible combinations,
the correspoiidiiig three-parton system is called a two-jet eveiit. Of course, the cross sections
for two- and three-jet production are tlieii functions of ycut.

The cross section (2.1) is divergent for Xi —> l or .r2 —> 1; however, this is compensated by
a correspoiidiiig sillgularity in the qq cross section, provided propagator and vertex corrections
are included. The total cross section is therefore finite and amounts to <7tot — fT0(l + as/^r).
In Monte Carlo models it is iiecessary to apply a iion-zero ycut in the three-jet phase space,
since these models are based on probabilistic rules and therefore could not handle a negative
total two-jet cross section.

In O(a2s) two für t her parton states can occur: c + t ~ —> qqgg and e+ c~ —> qqq'q', the
latter is relatively uncommoii and coiitributes only ^ 5 % to the total four-jet rate. As in the
previous case the Monte Carlo Simulation requires the specification of a ycul, such t hat oiily
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positive total cross sectioiis occur. Several schemes exist, which regulate the classification of
an n-parton system äs either two-jet, three-jeT or four-jet (see [49] for a discussion).

2.1.2 Parton showers

Owing to the vast number of Feymuan diagranis contributing to inulti-parton cross sectioiis
these liave not been calculated yet. An alternative to these excessive calculatioiis is available
in terms of the leading logarithm approximation (LLA) . In this approach only the leading
ternis of the perturbative expansion are kept, thus neglecting non-leading corrections. This
provides the basis for parton shower programs. since it is possible to give a probabilistic
Interpretation to the LLA if certain kinematical simplifications are made. In parton showers
the essential features of coherence are retained [7;. Furthermore, parton showers contain
the correct Sudakov daniping, which is iiiissing in lowest Orders matrix elemeiits; and, they
generate inulti-parton final states with "Jets within Jets". It is therefore expected that parton
showers provide a superior description of the internal jet structure, but are inferior to the
O(Q|) matrix element calculation, witli respect to wide-angle hard parton emission.

Parton shower models are based on the iterative use of the Altarelli-Parisi equations which
detemiiiie the probability P that a branching G —> bc occurs during a small change dt of the
evolutioii parameter t = \n(Qlvol/A. )'.

'2.2)

Figure 2.2: Parton shower in e^e annihilation [6],

Theoretical considerations suggest that the Q2 scale of as is p^, i.e. approxiuiately the
transverse momentum of the branching, and this is the scale actually used in programs such

as Herwig and Jetset. The Pa-.bc in (2.2) are the Altarelli-Parisi Splitting kernels:

P^gg( = ) CF : , (2.3)
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P V ~ >> i fy A \ä(~) Af - ( l - - ) " '

P f f _ g q(~) -Tn(c 4 l ( — * ) ) . (2.5)

which determine the distribution in energy-momentum in the transition a —> 6c, such that 6
takes a fraction c and r a fraction l — ~ of the energy-momentum carried by parton a. The
CF = 4/3, NC — 3 and T/j — r?y/2 (7?y = 5 is the number of active quark flavours) are colour
factors determined by the gauge structure of QCD.

The evolution process starts at. the maximum allowed virtuality tmar for a parton (depend-
ing on the avaüable phase space) and stops whenever it is below the threshold tm,„. Partons
emerging in this process may themselves brauch, so that eventually a tree-like structure
clevelops (cf. figure 2.2).

Shower algorithms: Different interpretations of the quantities Q^wo/i Q2 ail(^ ~ are P°ssible,
insofar äs the resulting physical differcnces are of iton-leading character and are thus not
accessible by leading log calculations. The shower algorithms in Herwig and Jetset differ in
the choice of Qlvoi, but both use the p\f the branching for the scale in a$(Q2}-

In the Herwig model angular ordering is accomplished by the choice of an angular variable
for the evolution process: Qlvoi — E2(, with ( =i l — cos 9. Since the energy E of the branching
parton is constant, a decrease in Qlvo! automatically leads to decreasing opeiiing angles in
successive branchings.

The Jetset parton shower develops in the centre of inass frame, with z defined äs the energy
fraction in this frame. The evolution variable f is chosen to be / = ln(rn 2 /A 2 ) , iinplying that
angular ordering must be imposed äs an additional constraint on the m and z values of each
branching. A special feature of this approach is that it matches the first branching, which
is not constrained by the angular ordering requirement, onto the first order matrix eleuient
(2.1) for qqg production.

The colour dipole approach 3,4], realized in the Ariadne program. starts from (2.1). which
can be rewritten äs:

dn = —±dyd? , (2.6)
4?r k^

where Ä-± , y and ^ are the transverse momentuin, rapidity and azimuth of the radiated gluon.
The physical picture is that of a colour dipole formed by the qq pair: this dipole radiales
gluons according to (2.6). Once the first gluon has been emitted the System consists of two
dipoles; one between the quark and the gluon and the other betweeii the antiquark and the
gluon. Subsequent gluon radiation is assumed to occur independently from the two dipoles;
in this way the procedure is generalized to iimlti-gluon radiation. Because the gluon with the
largest p± is radiated first the angular ordering condition, arising from soft gluon. interfereiice,
is automatically taken into account.

2.2 Fragmentation

2.2.1 Independent fragmentation

In this section the fragmentation model of Field and Feynman [2] is discussed. This model
is actually not used in the present analysis; however, it contains a number of basic features
which still can be fouiid in more receut models.



.

The intention of the authors was to give a parameterization of the properties of quark
jets. äs a refereiice Standard for the experinients.

The model involves the following assumptions:

• The probability that the hadron containing the original quark leaves the remaining jet
a fraction rj of its momentum is given by an arbitrary function /(??). This ultimately
determines the momentum distributioii of hadrons, and hence /(??) is coiistrained by
experimeiital data.

• New quark-antiquark pairs are produced according to the degree that flavour SU(3) is

broken, such that 55 is half äs probable äs u77. This particular choice was suggested by
experimental data, rather than äs a theoretical predictioii.

• The spin of primary mesons corresponds to vector and pseudoscalar states with eqtial

probability. This was inferred from p°/7T° ^ l at large p± in pp collisions.

• The transverse momentum of priniary quarks is Gaussian distributed, according to
e^.p(-p2l/2(T^)d2p± . This implies (p2±] = 4.7^ for primary mesons, for firstly primary
mesons receive contributions from t wo quarks, and secondly p± is a two-dimeiisional

vector. The quark-antiquark pair qiq~, has zero transverse momentum; i.e. transverse
momentum is coiiserved locally in a pairwise fashion.

A severe shortcoming of this approach is that the fragmentation of jets proceeds independently
for each primary quark, such that total flavour, eiiergy and momentum are not exactly
conserved in this process. Special procedures were developed which adjust these quantities at
the end of the fragmentation process and thereby eiiforce conservation. The model does not
include baryou production, and the character of the model does not make a clear Suggestion
of what baryons to expect. Similarly, the treatmeiit of transverse momentum is arbitrary
to some extent (see the discussion below). The Separation of loiigitudinal and transverse
fragmentation is, of course, an idealizatioii. The particular simple ansatz for the transverse
part reflects the dominance of longitudiiial degrees of freedom in colour coiifinement.

The underlying physical picture is äs follows: a quark g0 produced at some light-cone
eiiergy-momentum W+ = E + p\\n the z direction creates a colour field in which new quark-
antiquark pairs are formed to discharge this field. In this process the production of particles
with mass ni is suppressed by a factor exp{—7rr?j2/F), where F is the field force acting 011 the
colour charges. Thus it. is more difficult to create 55 pairs, for s quarks may have a larger mass

than u and */ quarks. The quark q0 then combines with the antiquark q{ to form the rank-1

meson tfcÖT, carryiiig a fraction z^ of the original W+ and leaving a fraction of l - z-^ = TJI to
the remaining jet. In the next step a <?292 pair may emerge from the field to give the raiik-2

mesoii gi</2 with a fraction ^2(1 — C ] ) of W+ etc. This process is iterated until finally the
eiiergy is used up (see figure 2.3).

Longitudinal fragmentation: It should be noted that the order in rank reflects the flavour
relationship and does not necessarily coincide with the order in momentum; i.e. the rarik-2
primary mesonmay have alarger momentum than the raiik-1 mesoii. The degree of agreement
betweeii ordering in rank and momentum depends 011 the function /(?/); e.g. if /(TJ) is a delta-
fuiictioii (f(r}) — 6(7; — o) ) , such that every hadron would leave the same fractiou a of its
eiiergy to the remaining jet, the hadroiis later m rank have to have smaller momenta than
those earlier in rank, corresponding to strict ordering.
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remainder

Figure 2.3: Iterative jet production: indioated arr flavour. transverse momentum and light-cone en-
ergy-momentum relationship.

In determiniiig the Splitting of the original W* the function /(?/) is assuined to be the
same at each step independent of the reniaining energy: i.e. the reinaiiider q-i jet fragnients
exactly like the original qö jet, only scaled down by a factor l — ~i in eiiergy. The choice of
the function /(?/) is constrained by the fact that the resultiiig particle distributions fit the
experimental data. Usually a parabola is chosen:

.

where a = 0.77 is the recommended default value. The identification of z with the fraction of
the jet's W+ yields a fiat central rapidity plateau for niesons produced deep in the cascade.
For srnall z values the meaii loss of rapidity per primary meson is then given by:

(2.8)

and aniounts to 0.56 units per primary meson, for /(T?) according to (2.7) with a = 0.77.

Traiisverse fragmentation: The assumption that qq pairs emerge with zero transverse
momentum from the colour field leads to strong anti-correlations between mesons neighbour-
ing in rank. As indicated in figure 2.3 the rank-; meson qi-\qi lias p ± ( i ) — p±i~i — p±i- From
this it is immediately seen that mesons adjacent in rank have a strong tendency to appear at
opposite azimuthal angles with respect to the jet axis. The correlation coefRcient;

has the value — - for j = i -\- l, i.e. for mesons adjacent in rank and is zero otherwise. This is
certainly a very particular choice and is considered äs a pure guess by Feynman and Field [2].
In general it is also possible to give the centre of mass of the emergiiig qq pairs a Gaussian
distribution. This would change the correlation coefficient (2.9) from the value — | to any
value between — ̂  and -(-^. Furthermore, it is not unreasonable to expect p± correlations
between different qq pairs. Usually, not nmch attention is given to transverse fragmentation
properties. It will becoine clear in the course of this thesis that the models are indeed too
simple in this respect, and do not provide an adequate description of nature.
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2.2.2 String fragmentation

In tliis sectioii string fragmentation according to t he Limd model is discussed; a detailed
description of tliis model is given in [8].

The coiicept underlying string fragmentation is that of linear QCD coiifinement at large
distances. The process of hadron produotion in t+ 1~ annihilation is assumed to occur in a
colour flux tiibe which evolves in a volume of approximately l x l x 30 fm3, at t he energy of
this experiment. The traiisverse extensiou of tliis string is of a typical hadroiiic size (l fm)
and the longitudinal exteiision is deterinined by the energy deiisity K % l GeV/fm on the
string, äs inferred from hadron spectroscopy.

A Lorentz covariant and causal description of particle production off this flux tube is
possible in terms of the massless relativistic string, with its particular kinematics. In the
model it. is assumed that the flux tube may break into t wo colour singlet pieces via spontaneous
formation of qq pairs in the colour field. On average, these breaks occur when the quark and
antiquark are 1 - 5 fm apart in their rest frame. This pair production is considered äs a
quantum mechanical tunneling process, such that quarks with traiisverse mass ni\ r??2 -f p2,
are produced in one space-time point and then tuimel out to the classical allowed region.
Classically, quarks with transverse mass cannot be produced in one point, but must be
produced at a certaiii distaiice to provide the field energy wliich is necessary to geiierate
the transverse mass. The probability for the tunneling of a quark is proportional to:

exp( — Trm^/re) — exp( — TTTT? //c)exp(— ?rp^/«) . (2.10)

This formula has two important implications:

• The factorization of transverse momeiitum and mass implies a Gaussiaii p± spectmm
for the emerging quarks, independent of the quark flavour.

• Heavy quark production is suppressed in the fragmentation (u : d : s : c ^ l : l :
0.3 : 10~n), thus charm and bottom quarks are not expected to be produced during
fragmentation.

Hadrons are then formed from a quark from one break and an antiquark frorn an adja-
cent break; this is very similar to the independent fragmentation scheine, and therefore the
concept of rank applies also here. However, while the iterative structure of the independent
fragmentation model was just an ad hoc assumption, the string model is based on a particular
space-time structure.

Space-time structure: In an iterative process the original string, stretched between the
qo quark and the q^ antiquark, may break into two colour singlet pieces via the formation
of a qiq{ pair at ( x l ^ ^ } in space-time. Further breaks may then occur at later tinies (x , , / , )
(see figure 2.4). Quarks and antiquarks from adjacent breaks combine to form Subsystems,
which are ei t her hadrons or fragmeiit fürt her. Energy and momeiitum of the q,qt+i hadron
are given by /c(x,-+i — £,) and AC(/,-+I — t,-) respectively. The mass m of the hadron <frg,-+i thus
constraiiis the production point s to lie on the hyperbola:

2T77

which can be parameterized äs:

m
- — (coshy,smhj/) , (2.12)

K



12 Chnpter 2. Theory

1 <

Figure 2.4: Hadron formation in the string model.

where y is the rapidity of the hadroii in the q0g0 rest frame.

The Splitting of the original W + is done according to the left-right Symmetrie fragmenta-
tion function:

« ^f ( z ) = :.13)

where a and 6 are free parameters. Equation 2.13 is the most general fragmentation function
(with some simplincations) obeying left-right symmetry. This property refers to the fact that,
in principle, it should be impossible to distinguish whether a fragmentation process started
from the quark or the antiquark eiid of the string. This requirement is not fulfilled in the
independent fragmentation model, described in section 2.2.1.

As an alternative to (2.13) the so-called Peterson function
charm and bottom quarks:

10] inay be used for lieavy

(2-14)

where zq = (m^/m^} and m0 is a mass scale related to light hadrons.

As in independent fragmeiitatioii, string models separate the fragmentation process into
longitudinal and transverse parts, although these do not decouple completely since the trans-
verse mass enters in (2.13). Transverse fragmentation is handled the same way äs in the
independent fragmentation model; i.e. it is locally compensated and Gaussian distributed,
implying stroiig correlation eifert.s äs discussed above.

The probability distribution of qq production vertices in invariant time r2 = t2 — x2 is
given by:

P(T)dT cc raexp(-&r)<*r, (2.15)
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where F = ( K T ) S and a and b are the parameters of the Symmetrie fragmeiitation function
(2.13). Thus, the q^ production vertices are not randomly distributed in space-time, but
kiuematical boundary conditions require:

for adjacent breaks, with F0 = 0 for the initial values at the quark and antiquark ends
respectively. For large t, i.e. for particles produced in the central plateau away frorn the ends
of the jet system the production points will, on average, lie on the hyperbola F = (l + a)/b.

In the Monte Carlo model the string breaks alternate between the quark and the antiquark
end of the string system. A special procedure is adopted to handle the production of the
last two hadrons: when the remaining eiiergy falls below a threshold (s= 2 GeV) the iterative
process is stopped and a final qq pair is formed to join the quark and antiquark ends of the
string via the formation of two final hadrons.

Gluon radiation: The Lund string model can cope with both collinear and soft gluon
radiation and this is why the model is said to be "infrared safe". Basically, this is because

(a;

Pfl

___/--/—^'-

Figure 2.5: Strings with attached gluons [48j: a) an ordinary three-jet event, b) a thiee-jet event with a soft
gluon and c) a three-jet event with a collinear gluon. The dashed lines indicate the trajectories of the partons
and the solid ünes show the evolving string at different tinies.

every emitted gluon just adds a kink to the string and thereby oiily changes the direction
of energy-momeiitum flow, figure 2.5 shows the time evolution of the string for three typical
cases. For this reason the model can be used in connectioii with both parton showers and
matrix elements.
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2.2.3 Cluster fragrnentation

The central idoa of cluster fraginentation is t hat of prcconfinement [l , which means those
propertles of QCD. which are respoiisible for the local formation of colour singlet clusters.
once the perturbative Jet development has come to its end.

In this section we shall briefly discuss the cluster model implemented into the Herwig
program 5;: a complete description of this model can be found in 5.6].

A basic requirement for any cluster model, in order to conform with the idea of precon-
rinement is that it does not disrupt too much the connection between colour and momentum
flow. This is realized äs follows: wheii the perturbative branching process approaches the
scale Qo — 2™,, — ^m^ the nctitious gluon mass mg — Q0 prevents further branchings of the
*ype 9 ~* 99-> such that all outgoing gluons eventually decay into light (i/ or </) (di)quark-
anti(di)quark pairs. The latter process is relatively uncommon in the perturbative phase and
is enforced by a suitable modification of the g —» qq form factor. The relative abundances
of different quark flavours are regulated by the quark mass assignments. In addition, the
production of diquark pairs is controlled by t wo parameters: the scale Q^ below which di-
quark pair production may occur, and a probability Pj (constant per unit logQ) that it will
occur. This diquark scheme was introduced to account for baryon-antibaryon correlations
[11], which require a relative diquark production rate of approximately 5 %; by default, it is
switched off.

Figure 2.6: C'olour structure in cluster fragmentation [6]: the blobs represent colour singlet clusters which
subsequently decay.

At this stage the event consists solely of (di)quark-aiiti(di)quark pairs, and the dominant
colour structure may be presented in a planar form äs shown in figure 2.6. Neighbouring
quarks and antiquarks are theii combined to give colour neutral clusters. It is to note that
these clusters have a distribution in mass and spatial size concentrated at low vahies which
is approximately iiidependent of the scale of the hard scattering process, reflecting the basic
properties of preconfinement. The average mass of these clusters is actually about 3r;?g (cf.
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figure 6.17 on page 77) .
Clusters. 011 the average, are supposed tu represent t he spectruni of priiiiordial resonances

occuring in the early stages of confinement. With this in mind, it appears reasonable that
tlieir decay should be a kind of averaged resonaiice decay. In the niodel it is tlms assumed
that niost clusters disiiitegrate int o two hadrons. This decay is Isotropie in the rest frame
of the pair and proceeds via the production of (di)quark-anti(di)quark pairs with one of the
following flavours: a~ü, dd* ss, cc, uuuü, dddd, ss~ss udud, usiTs or dsds. such that a cluster
decay s either iiito two mesoiis or into two baryons. The decay products are selected froin the
following multiplets: O",!31 or 2+ for mesons and | or | for baryons. Each decay with the
appropriate flavour is weighted ac cordin g t o the spin degeneracy (25 + 1) and the available
pha.se space.

An appcaliiig property of this approach is that it does not distinguisli betweeii longitudinal
and transverse fragmeiitatioii in contrast to indepeiident-jet and st ring models. 1t is furt.her
noted that the (di)quark-aiiti(di)quark pairs, produced to split the clusters. are not associated
with any dynamical properties, such äs energy-uioiiientuiii or spin. but carry flavour only.
This is certaiiily an idealization; however, it gives definite predictions for the suppression of
stränge and chariii particles and baryons, which in this case is completely determined by the
phase space available in cluster decays.

Three exceptions froni the above scheine may occur:

1. Clusters coiitaining heavy flavours (6 or / ) undergo weak V — A decays, giving a lighter
quark and a colour singlet ferniion-antiferniion pair from the decay of a virtual W
boson.

2. Low mass clusters, too light to decay into two hadrons, collapse into the lightest hadron
of their flavour. Energy-momeiitum conservation is accomplished by an exchange of
energy with a neighbouring cluster.

3. For very massive clusters the two body decay is considered to be too poor an approx-
iination. An iterative fission model is used instead to split those heavy clusters until
their mass falls below the fission thresliold Mj — 3.5 GeV. Only the light uü , dd
and ,ss flavours are produced during cluster fission. Eiiergy-momentinn is distributed
symmetrically amoiig the two decay products: i.e. a cluster of mass Ale formed from
a (di)quark of momentum p^ and an anti(di)quark of momentum p^ decays into two
clusters X and Y with

PY

Thus cluster fission is similar to string fragnientation.



Chapter 3

CELLO experiment

The data studied in this thesis were taken in the year 1986 with the CELLO detector at the
c* e~ storage ring PETRA at DESY in Hamburg. Since 1978 five collaborations conducted
experiments with centre of mass energies up to 46.8 GeV in the four interactioii regions at
PETRA 12] (see figure 3.1). After 1986 data taking was stopped and PETRA was modified
for its present role äs an injector for the HERA storage ring. In 1986 measurements were
performed at a centre of mass energy of 35 GeV. For CELLO this last year yielded data
corresponding to a time integrated luminosity of 86 pb'1.

JADE HF-Halls N

PETRA

Hol! NE

DORIS

6 Hall E

MARK J TASSO

Figure 3.1: Storage ring PETRA with injection scheme.

The first section of this chapter describes the inain features of the CELLO detector which
are relevant for the analyses presented in this thesis. A description of the storage ring PETRA
and the other experiments caii for instance be found in 12]. The subsequent sections descnbe
the data flow through the chain trigger - data acquisition - filter - event reconstruction -
data reductioii.

I G
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3.1 CELLO detector

Due to t.he relatively low event rate most detectors at c"1 ( machines are designed äs gencral

purpose detectors. Iii contrast to detectors at fixed target machines. which select one or more
particular processes to be studied. these are built to record all types of event s of interest.

CELLO was constructed äs such a general purpose detector in 1978 by a group of French
aiid G er man Institutes [13]. The maiii requirements are a füll coverage of the solid angle to

measure and possibly identify charged and neutral particles. A special technical feature of
the CELLO detector is the superconducting coil. of an novel design at that time, with an
overall thickness of only 0.5 radiation lengths including the cryostat aiid iiisulating material.
This design allows an undistorted energy measurement of photons and electrons in the lead
liquid argon calorimeter surroundiiig the coil. Due to the fine segmentation of the calorimeter,

shower topologies are easily reconstructed and photons and electrons caii be identiüed and
separated froin hadrons 14]. The above compoiients surrouiid the cyliudrically Symmetrie
ceiitral trackiiig chamber which has a leiigth of 2.2 m and thus allows us to measure charged
particles over a large solid angle (97% of 4?r). With good hermeticity of the calorimeters
(coverage down to an angle of 45 mrad with respect to the beam axis), CELLO has a large
efficiency for reconstructiiig truly exclusive eveiits, i.e. eveiits where all final state particles

are detected.

3.1.1 Survey

Figure 3.2 shows a schematic view of the detector at the time of construction. Various

components have later been added or modified. The following list gives a survey of the
detector parts at the time of the last run period in 1986. Those parts which are relevant for
the analysis will be described below. A detailed description of the other components can be
found in [13]. Going from the inner parts to the outer parts of the detector, one finds the
following components:

• Beam pipe: the aluminium vacuum pipe surrounds the beam axis at a distance r — 7.8
cm. The wall thickness is 0.03 radiation lengths (A0) (before 1982 0.07 A0).

• Beam pipe chambers: since 1982 t wo staggered layers of drift tubes with a length
of l m surrouiid the beam pipe. Their thickness amouiits to 0.01 X0. These chambers
were added in order to improve the vertex recoiistruction and momentum resolutioii

[17].

• Central detector: the central detector consists of a system of cylindrical drift and

proportional chambers that measure track coordinates of charged particles between
r = 17 cm aiid r — 70 cm. The amouiit of matter in these components sums up to 0.02

AV

• Superconducting solenoid: the aluminium coil with a wall thickness of 0.5 A0 creates
a solenoidal field of 1.32 T.

• Barrel calorimeter: the central barrel shaped lead liquid argon calorimeter consists
of 16 identical modules with a depth of 20 A"0. Their distance from the beam axis is

r = 106.7 cm.
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• Return yoke: the 80 cm thick iron construction serves not only äs a return yoke for

the magnetic flux but also äs a hadron filter of 5-8 absorption lengths.

• Muon chambers: muons with nioineuta /> • 1.2 GeV traverse the hadron filier and
are subsequeiitly detected in the muon chambers. These large area chambers with a

drift cell structure are read out äs proportional chambers and cover approximately 90 (/J

of the solid angle.

In the forward region the detector is completed by:

• End cap calorimeter: tliis lead liqiiid argon calorimeter consists of four modules of

21 A"0 complementing the barrel calorimeter in the forward region.

• Hole tagger: a set of scintillation counters with 4 X0 material in between was added

in 1982 t o close the acceptance hole for neutral particles between the barrel and end
cap calorimeters.

• End cap proportional chambers: two crossed layers of proportional chambers in

front of the end cap calorimeter improve the reconstructioii of forward going tracks.

• Forward calorimeter: due to the installation of mini beta quadrupoles in 1982, the

forward detector was totally remodeled and now consists of a set of scintillator strips
and lead glass blocks to measure the position and energy of scattered electrons and
positrons.

r

1.5 m

1.0 m --

0.5 m

Barrel calorimeter

Endcap
prop. chamber.. '

...cos l? =0.87

Hole tagger

.. cos-tf =0.93

Inner detector Endcap
calorimeter

cos i? =0.99 Forward
calorimeter

• - • • i? = 45mrad

I m 2 m 3 m

Figure 3.3: Geometrical acceptance of the CELLO detector.

A schematic view of the geometrical acceptance of the detector components is given in

figure 3.3. Here, only the innermost components of the detector are shown. The CELLO co-
ordinate system is defined with the c-axis aloiig the night directioii of the incoming electrons.

The x-axis lies in the plane of the storage ring poiuting outwards, the y-axis is defined by
y — z x x. In the plane perpeiidicular to the beam axis the polar coordmates r and
used; the angle i? is determiiied with respect to the c-axis.

are
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3.1.2 Central track detector

The central detector cousists of a system of cyliiidrical drift and proportional chambers, äs
depicted in figure 3.4. They are mounted concentrically to tlie beara axis aud have an outer
radius of 0.7 m and an overall lengtli of 2.2 m. Altogether there are 7 drift and 5 proportional
chanibers. Tlieir positkm and other parameters can be taken froni table 3.1.

Cathode strips
90° 30°

Proportional ch amber s

Dri f t chambers

Beam pipe chambers

Figure 3.4: Central tracking device.

The two inner chambers were added in 1982 to improve the vertex rec.onstruction in the
rt^-plane. They consist of two layers of drift tubes which are arranged parallel to the beam
axis with a length of l m. Each of the drift tubes contaiiis a single anöde wire in a gas mixture
of 50 % argon and 50 % ethane at atmospheric pressure. The coordinates perpendicular to
the beam axis are determined by a measurement of the time difference between the passage
of a particle through the drift tube and the arrival of the ionization pulse on the anöde wire.
The resolution achieved in this chamber is 180 //m 17].

The drift chambers are constructed from entirely open drift cells. Each drift cell consists
of one anöde wire separated from adjacent ones by a set of three cathode wires. The lateral
distance between adjacent anöde wires is on the average 15 mm. The drift chambers are
grouped in sets of two or three chambers with a comruon gas volume enclosed by two mylar
cylinders. As in the case of the drift tubes a gas mixture of argon and ethane in a ratio of
1:1 at atmospheric pressure is used. The resolution of the r^-coordinates reconstructed from
the space-drift-time-relation is 170 /mi [18].

The proportional chambers are used to determine the r-coordinate of track points. This
is accomplished by two cyliiidrical cathodes finely segmented in strips oriented at 90° and 30°
with respect to the cylinder axis. The two cathode cylinders enclose a large number of axial
anöde wires with mutual spacings of the order of 2.5 mm. The precision of the r^-coordinate
measuremeiit is given to first order by the geometrical resolution (spacing/vl2 ^ 770
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ch amber
numbei

1
2
3
4
5
6
7
Q

9
10
11
12
13
14

chamber
type

drift t übe
drift t übe
prop. eh.
prop. eh.
drift eh.
drift, eh.
prop. eh.
drift eh.
drift eh.
drift. eh.

prop. eh.
drift eh.
drift, eh.
prop. eh.

radius iiumber of
[cm]

10.90
11. 3T
17.0
21.0
25.5
30.4
35.7
40.2
45.1
50.0

55.3
59.8
64.7
70.0

sigual wires

128
128
512
512
104
128

1024
168
192
208
1536
256
256
1536

distance of
wires [mm]

5.35
5.54
2.09
2.58

15.41
14.92
2.19

15.03
14.76
15.10
2.26

14.68
15.88
2.86

$ cathode strips
90°

252
228
—
—
366
—
—
—
420
—
—

494

30l

—

256
256
—
—

512

—
—
768
—
—
768

Table 3.1: Geometrical and electrical parameters of the rentral tracking detector.

The charge induced on the cathode strips at the point of incidence next to the anöde wire is
measured by an analog readout of eacli strip. The resolution of the c-position achieved this
way is a ^ 440 jmi. The proportional chambers are run with a gas mixture of 80 % argon
and 20 % isobutane with an ad mixture of 0.2 % freon. Besides determiiiiiig the r-position of
track points the proportional chambers are used in the fast track trigger. The Information
from both projectioiis is already available after 2 ^s.

The tracking detector is completed by two crossed layers of proportional chambers which
are mounted onto the front end of the eiid cap calorimeter. The anöde wires measure the
x- and y-coordinates while the cathode planes are divided into sectors of A(^> and conceiitrie
rings, respectively. The resolution is of the order of 5 mm. The end cap proportional chambers
cover the acceptance region of 0.910 < cos •& < 0.988 [13].

The geometrical acceptance of the central tracking detector is 84 % of 47r if a track is
required to hit all 14 chambers. Using in addition the iiiformation of the end cap propor-
tional chambers and requiring oiily five chambers of the inner detector to determine all track
parameters, the acceptance is iiicreased to 97 % of the füll solid angle.

The deflection of charged particles in the magnetic field of the CELLO superconducting
coil forces the particles onto circular tracks in the r^-plaue with a curvature inversely propor-
tional to their transverse niomeiituin. The precisioii of momentum reeoiistruction depeiids
011 the iiumber of track points measured, the resolution of the chambers and on multiple scat-
tering in the detector material traversed. The momentum resolution of the CELLO central
detector was determined to be 17]:

P i

where p± is measured in GeV. The vertex of a track can be determined with a precisioii of
^ 330
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3.1.3 Lead liquid argon calorimeter

Figure 3.5: Structure of the lead liquid argon calorimeter.

The CELLO calorimeter has a sampling structure of lead layers alternating with layers of
the active material argon. Electrons and photons create a secondary particle cascade by
means of bremsstrahlung and pair creation. The ionization loss of these secondary particles
is recorded in the argon. Electromagnetic showers at the maximum PETRA energies are
fully absorbed in the 20 X0 striicture of the calorimeter. A good detection emciency. energy
resolution and spatial resolution of photons is achieved over the entire solid angle. Cascades
mduced by hadronic particles, however, are not completely contamed in the calorimeter due
to its deptli of only 0.9 absorption leiigths. This feature, on the other hand, allows a good
electron-hadroii Separation. This is accomplished by the three-dimensional reconstruction of
shower topologies in the highly segmented calorimeter structure [14].

material in front of calorimeter
depth of calorimeter
thickness of lead layers
distance between lead lavers
iiumber of layers
number of electronic channels
aiigular resolutiou
acceptaiice in j cos $

barrel
calorimeter

1.1 Ar0

20 X0

1.2 nun
3.6 nun

41
9248

4 mrad
. 0.86

end cap
calorimeter

1.2Xo
21 Z0

1.2 mm

3.6 inm
42

1472
6 mrad

0.92 - 0.99

Table 3.2: Technical data of the liquid argon calorimeters.

The barrel calorimeter is composed of 16 modules with trapezoidal cross sectioii corre-
spondiug to a sector of au octagon. The two octagoiis are mirror images arranged Symmetrie
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t o z =• 0 inside one large cryostat with an overall length of 4 m. The end cap calorimeter
consists of four half-cylindrical Stacks: two at each end of the detector enclose the beam pipe
(cf. figure 3.5}.

The modules in each of the calorimeters are identical. Layers of 1.2 mm lead plates
(cathodes) and 1.2 mm lead strips (anodes) alternate (see figure 3.6 a ) ) . The gap width
between the lead layers is 3.6 mm (4 mm in the end cap calorimeter) and is filled with liquid
argem. The lead strips and plales are at a relative voltage of 2.5-5 kV. The orientation of
the strips in the barrel part alternates between an aligiiment parallel to the beam axis (y1-
measuring), with an angle of 90° (t?-measuriiig) and at 45° (to resolve ambiguities). The
strips in the end cap calorimeter are alternately vertical, horizontal and circular. The width
of the strips is of the order of 2-3 cm. In front of the calorimeter there are two additional
copper liquid argon layers (three in the end cap) which serve äs dE/dX-gaps.

^
Figure 3.6: Geometrie (a) and electronic (b) structure of the lead liquid argon calorimeter

There are more thaii 3000 strips in each of the modules. In order to decrease the number
of electronic channels, neighbouring strips have been grouped to block layers (see figure 3.6
b) ) with a scheine that yields a uniform aiigular resolution. For the azimuthal angle (p this
uniform resolution is given by the octagonal structure of the calorimeter, for the polar angle
-$ (measured from the beam axis) it is achieved by a coarser read out structure towards the
forward region. A detailed description of this read out block structure is given in [14]. The
number of chaimcls to be read out is thus reduced to 576 in a barrel module and 368 in
an end cap module. To reduce the amount of data written to tape, channels with a signal
below 2 a above the electronic noise pedestal are suppressed. The electronic noise in a double
layer corresponds to = l fC. This has to be compared with the charge deposit of 5 fC for a
miiiimum ioiiizing particle [14].

The eiiergy resolution of the calorimeter is given by the samphng fluctuatioiis. A further
degradation results from material in front of the calorimeter, miscalibration, dead channels
etc. The resolution for electromagnetic showers in the CELLO calorimeter achieved in the
running experiment is:

_ — v s \t vjv JL v / \h E beiiig measured in GeV (® — quadratic addition of the terms).
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3.1.4 For\vard calorimeter

The forward calorimeters nicasure electrons that are scattered at small aiigles not accessible

to the end cap calorimeter. They serve äs a uioiiitor for the luminosity ineasurement based

011 Bhabha eveiits and are used to trigger. and to measure the Q2 of two-photon reactions.

The calorimeters are located at a distaiice of 2.65 111 froin the interaction poiiit and cover

the acceptance region froui 45-110 mrad. Lead glass blocks are used äs shower counters; 20

blocks are fouiid 011 each side of the detector. Each half-circular quarter contaiiiing 10 blocks

is mounted directly onto the beam pipe. The lead glass blocks have lateral dinieiisions of

typically 5 cm (— 2 A0) and a length of 13 A0. The Cherenkov light eniitted by the charged
particles in the shower cascade is detected by photomultipliers. The positional ineasurement

of the tagged electrons is improved by meaiis of a scintillator hodoscope. Half circular scin-
tillator strips of l cm width are read out by photomultipliers at each end. A thin. layer of

lead (0.5 A"0) gives an early start to the shower cascade and hence an iucreased sigiial in the
sciiitillators. Comparing the light Output at each end allows a deteruiination of the position

along the scintillator (^-coordinate), the radial position of the scintillator hit. determining

the angle with respect to the beam axis. This Information is combined with the centre of

gravity position froin the lead glass blocks.

Due to the location of the forward counters a large amouiit of material is positioned in

front of the calorimeter. This fact degrades the energy resolution over a large ränge; in some

angle regions the energy measurement cannot be used at all. O n average the material in

front of the calorimeter amouiits to 2 A"0 up to an angle of 90 xnrad; above this the end cap
cryostat shields the forward calorimeter with 10 X0 of material.

3.2 Data acquisition and event reconstruction

Every 3.8 fj.s the electron and positron bunches cross each other in the interaction region of

the CELLO detector. Most of the bunch crossings do not result in any physically interesting

interaction. Owing to the small cross section. aiinihilation event s occur at a rate of l per

10 niinutes at the typical luminosity of 5 • 1030 cm~2s~1 . Background reactions such äs
interactioiis of beam particles with the residual gas in the beam pipe (bcam gas events),

interactions with the material of the beam pipe wall (beam wall events). cosmic ray event s

[cosmics] and Synchrotron radiation are by far niore abundant. In order to suppress this

backgrouiid aiid still accept the majority of physically interesting event s a fast trigger logic
is essential. The time needed to read out fully all the detector components liniits the data

acquisition rate to about 5 Hz. In order not to lose too niany interesting events the trigger

conditions cannot be too strict, and hence a second filter is needed to reduce the amount

of backgrouiid accepted by the loose trigger conditions and to minimize the expenditure of

Computer time needed for the füll reconstruction of the data.

The forthcoming sectioiis describe the sequeiice of data acquisition and recoiistructiou

through the chain trigger, filter, event recoiistructiou and data reduction.

3.2.1 Trigger System

The trigger uses Information froin all components of the detector. A number of basic condi-

tions are combined to give the trigger conditions selected. Basic conditions are for example
the energy sums in the calorimeter modules. the energy in the forward calorimeter and the
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iiumber of tracks in the central and end cap track detector. Altogether there are IG trigger
conditions defmed for the CELLO detector. at least one of which has to be fulfilled for an
event to be recorded. The difFerent conditions cover the various signatures of c+e~ collisions.
Here we describe only those conditions that are relevant for triggering aniiihilation events.

The fundamental ingredient for the charged particle trigger is a Software programmable
hardware track finding processor 19;. This processor eiiiploys the iiiformatiori of the five
proportional chainbers and of two of the drift chambers for the identinoation of tracks in the
r^-projection and of the 90C cathodes for the rc-projection. The chamber signals are divided
iiito 64 azimuthal (äs shown in figure 3.7) and 37 polar sectors. Each track creates a certain

PC U

Figure 3.7: r<^-sectors for the trigger logic: Shown are the seven chambers used in the trigger, their segmen-
tation in the ri^-projection and a track that ends in sector 0.

signal pattern in the sectors of the seven chambers. All possible patterns of tracks above a
certain traiisverse momentum can be determined. These patterns are then stored in random
access memories (RAM) - one set for transverse momenta above 650 MeV (rtpH masks) and
one set for p±_ > 250 MeV (r<pL masks). Tö take into account chamber inefficiencies, additional
masks are stored with only 5 or 6 points per track. These precomputed masks are compared
with the signals from the central detector. If the pattern coincides with any of the masks the
correspondiiig condition is transfered to the master trigger unit. A similar identification is
done in the rr-projection where at least three out of five hits in the proportional chambers
are required. The location of masks is done in less t hau l /j.s.

The neutral particle trigger makes use of the Information from the liquid argon calorimeter.
Here the energy of a s tack is computed by means of a hardware sum of all channels. Using
discriminators, several trigger conditioiis can be defined corresponding to the energy deposited
in the calorimeter. This System of discriminator triggers (LAl to LA4) has been supplemented
with and partly replaced by a System of flash ADCs [20]. For every module two trigger sums
are formed by summing up all channels or those channels that lie in the region of the maximum
of electromagnetic showers (4-7 A"0). The second sum is taken at a difFerent time to exploit
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the shape of the FADC signal. Thus showers can be rejected t hat do not coincide with the
beam crossing (e.g. cosniics, electronic noise). All the above Information is combined to four
trigger conditions LAlFL to LA4FL. hiside the master trigger unit the number of masks
r^(n) and rr( in) satisfied is combined with further basic conditions to give the final trigger
criteria.

3.2.2 Data acquisitioii

The CELLO data acquisitioii System is steered and controlled by an online Computer of the
type DEC PDP-11. The detector is read out by n CAMAC* System which is organized in a
tree like structure: each detector component is assigned to a brauch, and the online Computer
is the root. Each brauch is controlled by a mini Computer. These minicomputers are used to
calibrate and test the assigned detector componeiits without iiiterfering with the rest of the
system. During data acquisitioii they monitor the perforniance of their detector component.
Zero suppression of channels without Information is already accomplished at this level; block
addresses are added to the remaining data words for Identification.

Once the master trigger unit sends its Interrupt signal to the online Computer, the PDP-
11 stops all other operations, disables further triggers and starts with the data acquisitioii.
The Information from all branches is transfered to the main memory where it. is formated
into a data structure with variable length (typically several hundred to several thousand
16-bit words). During tliis process the data structure is checked, and in the rase of severe
readout errors the eveiit is rejected. Already at this s tage a fast track reconstruction is done
which is used to verify the track triggers, and on the basis of the number of tracks found the
event is classified. Candidates for multihadronic and Bhabha eveiits are xnarked for separate
reconstruction. All events are then passed on and the readout. system is again enabled for
further data acquisitioii. This whole process takes about 50 ms. The events are stored on a
disk nie which is organized äs a ring buffer. Once the space on this buffer is almost exhausted
the data are transmitted via a permanent link to the IBM in t.he DESY Computer centre and
are copied to magnetic tape (DUMP tapes).

Events marked by the online Computer are immediately reconstructed and then written
to a special disk nie. These events are scanned by the shift crew usiiig an interactive display
program to monitor detector performance and reconstruction chain.

The Bhabha events are furthermore used to determine the position of the interaction point
of each filling of the PETRA storage ring. The knowledge of this position is crucial for the
further reconstruction of the data, since all track parameters are determined relative to the
primary vertex.

3.2.3 Filter

Soft trigger conditions are essential for the data acquisitioii at general purpose detectors. This,
of course, increases the aiiHmnt of background reactions acquired, and hence a preselection
of events is necessary before the time-consuming füll reconstruction of the data is done. Such
a filter öfters the possibility to conduct a more reftned analysis of the events than that. done
at the trigger level.

The CELLO filter program ;21j analyses the events without refering to the trigger explic-
itly. The basic iiiput informations used in this program are:

"Computer Automated Meas"irei»*'11t And Control
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• the inner detector wire chamber coordinates

• the hardware energy sums in the calorinieters

• the energy of single chamiels in the liquid argon calorimeter

In a first step charged tracks comiiig from the interaction point (assumed at r—0 with an
uncertaiiity of 3 cm) are reconstructed in the r^-plane reqniring a miuinium of 9 points per
track. In a secoiid stage the reconstniction öl tracks in the rr-projectioiis is performcd with
no assumptioiis about the interaction point. Instead. there must be at least one track with a
r-vertex not more tlian 5 cm apart from the c-vertices of 60 % of all other tracks. For those
eveiits a common r-vertex is compnted that has to be withm -15 cm around the origin (z —
0). Otherwise all reconstructed tracks are ignored.

The energy sums of the calorinieters are classified according to their energy levels. For
each stack the signal time relative to the time of the interaction is computed from the FADC
sums taken at two diflereiit times. Signals in a stack within. ± 300 ns around the expected
time are classified äs in time. In a second stage showers are reconstructed from the signals
of the single channels in the liquid argon calorinieters.

Fiiially, at least one of the fired triggers has to be verified on the basis of the analysis
described above. Less t h an l % of all recoiistructable events for most of the reactions are
affected t In s way.

During dat.a acquisitioii the filter program ruiis on an IBM 370/E emulator. The eveiits
are read in from the online disk and marked accepted or rejected according to the criteria
selected. An ideiitical program executes on the central DESY IBM Computer. Tliis program
reads in all events, analyses all events accepted by the emulator and those not analysed by
the emulator due to time limitations, and writes all accepted events oiito magnetic tapes
(FILTER tapes). As an additional check 5 % of the events marked rejected are reconstructed
once more.

In the ruii period 1986 out of 61.5 million triggered events 7.5 million (12 .2%) were
accepted by the filter. The FILTER tapes for that year are used äs an input for the füll event
reconstructioii described in the following section.

3.2.4 Event reconstruction

The raw event data are processed by several iiidepeiident programs, called processors. The
main prograiu OFFRAM constitutes a frame around these processors, steers the sequence
of reconstruction and delivers the required Information about the conditions of the detector
compoiients (calibration coiistants, defect chamiels, resolutions. etc.) to these processors.
The results of the reconstruction, e.g. track and shower parameters, are stored in banks and
are written together with the raw data onto data suimiiary tapes (DST tapes). Because of
the huge amount of Computing time needed, the productioii of the DST tapes is split up
betweeii several of the Institutes participatiiig in the CELLO collaboration.

The program OFFRAM embodies the following processors:

CELPAT: The program CELPAT reconstructs tracks of charged particles in the inner
detector by an iterative procedure described below. First, the signal of the anodes and the
30° and 90° cathodes of the proportional chambers are correlated to form three dimensional
space points; tracks in the r;:-plane are fornied by a fit to a straight line pointiiig to the
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interaction region. Then, three point s in the ry-projection are searched for, t h a t can be
connected by a segment of a circle passing within 15 cm of the interaction point. The points
used have t o lie within one of the predefined sectors in the inner detector which corresponds
to a cut in the transverse momentum of the particle. In the vicinity of the segment, further
points are sought for. A collection of at least 7 points (G points for low momentum tracks)
is called a track candidate. After a successful fit of these track candidates the points used
are excluded froin the search for further candidates. This procedure is repeated with larger
sectors corresponding to smallcr transverse moinenta iintil, finally, low eiiergy tracks with
transverse momenta down to 100 MeV are recoustructed. At last, complete tracks are formed
by coiiibiniiig the ry and rr-parts with the help of the spatial Information of the proportional
ch ambers.

CLGEOM: For the tracks found by CELPAT, a further fit is performed includiiig the
interaction point and taking into account the inhomogeneities of the magnetic field. The use
of the primary vertex positioii determined from the Bhabha events improves the momentum
resolution of tracks coming from the interaction point. For the case of particles created at
secondary vertices this result cannot be used.

ECCPAT: Particles traversing the detector in the very forward region (0.91 <
0.99) hit few chambers of the inner detector. Using in addition the hits in the end cap
chambers and including the primary vertex äs a measured point, ECCPAT reconstructs these
forward going tracks.

LATRAK: The processor LATRAK reconstructs showers in the liquid argon calorimeters.
At first, two-dimensional shower energy clusters are formed in each layer of the calorime-
ter employing the difTerent directioiial orientation of the lead Strips (cf. section 3.1.3). For
all tracks in the inner detector pointing to the two-dimensional clusters, three-dimensional
clusters are constructed along the flight direction of the particle. A straight liiie fit is ap-
plied including the intersection point of the track with the magnetic coil to determine the
orientation of the shower inside the liquid argon. Ah1 other three-dimensional showers are
constructed under the assumption that they are created by photons coming from the primary
vertex.

LNKJOB: This program links showers to tracks in the inner detector. This assignment of
showers initiated by charged particles prevents them from being treated äs photons later on.

MUCH: This last processor extrapolates tracks through the calorimeter and the hadron
filter and combiiies them with the hits in the muon chambers. The distance between the
extrapolated position and the actual hit is a measure for the quality of the identification äs
a muon.

For the purpose of this and several other analyses substantial improvements have beeil
iinplemeiited in the recoiistruction chaiii, e.g. identification of secondary vertices [22,23], par-
ticle identification below l GeV in the liquid argon calorimeter [14], shower reconstruction in
the forward calorimeter and an improvenient of plioton identification and their discrinunation
from electroiiic noise [16,15].
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Multihadronic events

4.1 Multihadronic event selection

Following the data reconstruction there are two more selection steps. The first one consists
of soft cuts to obtain all annihilation arid two-photon events 24]. This selection is the basis
for next to all physical analyses coiiducted in the CELLO collaboration. The second selection
yields events resulting from multihadronic e+ c~ annihilation processes.

Oii average. multihadronic events produced at 35 GeV centre of mass eiiergy consist
of 14 charged and IG neutral particles, about. 70% of which are recorded by the CELLO
detector. The remainder escape detection due to limited geometrical acceptance aiid detection

thresholds. Owiiig to the high eiiergy release in the detector, multihadronic events have a
distinct sigiiature which allows us to select tliem very efficiently from the far more abundant
backgroimd. Nevertheless, several physical processes remain that may fake multihadronic
annihilation events:

1. The creation of r pairs ( r + e " —* T + T~] may result in t wo-je t like events of low multi-
plicity. Most of the events coiitain between two and six charged particles, which carry
a large fraction of the total centre of mass eiiergy. Events with more t h an four charged
particles are rare and occur oiily in about 2 % of all cases.

2. Higher order QED processes with leptons and photons in the final state 25], e.g. ra-
diative Bhabha events e+e~ —» c* c~-]. Events with more t h an two charged particles in
the final state are suppressed at order ö4m.

3. The two-photon process, äs depicted in figure 4.1, generates events with maiiily low

invariant mass and often with a large boost in direction of the incomiug electrous.

4. The iiiteractioii of the electrou (positron) bunches with the residual gas in the vacuum
chamber* creates events with a large boost aloiig the beam pipe. These so-called beam
gas events are umformly distnbuted along the ;-axis. It should however be remembered
that trigger biases may lead to a non-uiiiform acceptance. Beam gas events are due to
interactions with atomic nuclei and therefore have a positive iiet charge.

"The gas pressure in the PETRA vacuum chainber is about 10 9 mbar and is mainly due to Hvdrogen,

Oxygen and Water.

29
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5. Electrons or positrons leaving their nominal orhit jiiay interact with the beam pipe. The
beam wall events originating in t.Iris way also have a positive net charge. and occasionallv
cause a high activity in the beam pipe chamber s.

Figure 4.1: Schematic view of the two-photon process.

On the basis of the above listed characteristics it is possible to select multihadromc events
with a high efficiency at a very low background rate. This is achieved by the following cuts:

• Charged particles are accepted if:

1. Their polar angle is in the ränge from 25° to 155°.

2. Their momentum component perpendicular to the beam axis is greater than 150
MeV.

3. Their distance of closest approach to the beam axis is less than 15 mm.

4. Their z position lies within three Standard deviations of the mean event z position,
äs determined from all charged particles in the event.

5. They have no sequence of more than three successive inissiiig chambers.

6. They register in more than 50 % of the chambers available to theni.

7. In addition, for each pair of particle candidates it is checked whether their hit
patterns in the central detector are identical within the chamber resolution. From
such particle pairs only the track with the better primäry vertex compatibility is
kept.

• Calorimeter showers are identified äs neutral particles if:

1. They are not linked to extrapolations of charged particle tracks.

2. Their polar angle is in the ränge from 32° to 148°.

3. Their measured euergy exceeds 250 MeV.

• Multihadronic events are selected for analysis if:

1. They contaiii at least five charged particles.
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2. The visible energy in charged particles is at least 22 % of the total centre of mass

energy.

3. The total energy recorded in the calorimeters is at least IG % of the total CM
energy.

4. To an alternative to points 2 aiid 3 it is sufficieiit t hat the visible euergy in charged
and neutral particles is at loast 33 ( ' ( of the total CM energy.

5. The net charge suiii is less tlian six.

6. The niagnitude of a lougitudinal nioinentum imbalance in the event is less then
57 % of the beaiu energy.

7. The event axis. takexi to be the sphericity axis äs deteruüned from all charged and
neutral particles, has j c o s f l j < 0.8G5.

8. The number of hits recorded in the beam pipe chanibers is less thaii 70.

18,543 events passed the above selection aiid are the basis for the subsequent analysis. The
remaining background rate was estimated from visual scanning to be below 3 % and consists
mainly of r pair, two-photon and beam gas events.

The efficiency of the multihadronic event selection (including the complete data acquisi-
tion chain) can be computed from the measured lumiiiosity t — 86 pb"1 [26] and the total
hadronic cross section cr(c+e~ — » hadrons) — 377 pb and auiounts to 57 %. This figure is well
reproduced by Monte Carlo simulations.

4.1.1 Two-jet selection

In part II of this thesis two-jet events will be used for analyses of particle correlations. For
this purpose two-jet events are defined by the following criteria:

1. The number of chisters, äs determined by the LUCLUS algorithm 9] using charged and
neutral particles in an event, must be eqtial to two. The resolution scale djoin, above
which two clusters may not be joined has been set to 7 % of the total visible mass.

2. The two cluster axes must be parallel within a margin of 25°.

The fürs t requiremeiit selects events t hat consist entirely of two particle clusters, while the
second requiremeiit effectively rejects events with hard initial state radiation. The latter
process can occur äs a high energy photon escaping detection through the beam pipe, leaving
behind a boosted jet System at reduced energy. which appears V-shaped in the laboratory
system. In this case the defmition of an event axis by the final state particles is meaiüngless.

Tlle above selection yields 6,831 events, i.e. 36.8 % of the total event sample. This number
may be compared to the corresponding Monte Carlo results: from the Jetset 7.2 PS Simulation
26,645 out of 76,899 events are classified äs two-jet events, i.e. 34.6 %. The Jetset 7.2 PS-f-BE
Simulation yields 9,401 out of 25,588 events, i.e. a fraction of 36.7 %.

4.2 Global event shapes

The topic of this section is those global properties. related to the shape of the aniiihilation
event. which can be expressed äs a single number. Various quantities of this kiiid have been



-i- Multihsdronic

constructed that are sensitive measures for certain aspects of e + c annihilation. It is obvious
that the Information obtainable from these measurements cannot be very detailed . However.
it is a minimal requirement that the Monte Carlo inust reproduce these global quantities if il
is to serve äs a reference Standard in more detailed aiialyses. It is the purpose of the following
paragraphs to investigate this for the Jetset model.

Thrust observables: Thrust T is defined by the expression:

r ^ m a x / ^ ' ^'J" l , (4.1)
\ p> !

where the sum includes charged and neutral particles. The iterative solutio» of this equation
is done with the rout.ine LUTHRU 9], The so-called thrust axis rjthrust- f°r which (4.1) is satis-
fied. is used to defme the correspouding77,^0,07- axis. which fulnlls the rrlatkm rfmalf>r->i'thrust — 0
and obeys (4.1) for T ~--> TmajOT and fj —» fjrnajvr- The ?Jmi„07. axis and the corresponding Tminor

value simply follow from (4.1), with the direction beiiig defined by orthogoiiality i liste ad of
maximization.

Two-jet events, in the ideal one-dimensional case without any traiisverse degree of free-
dom, are characterized by T = l and Tmajor = Tminor = 0, while isotropic events have T -= 0.5.
The projected quantities Tmajor and Tminor are a measure for the traiisverse exteiision of the
event with respect to the thrust axis. The imbalance between both traiisverse directions is
called oblateness O\ = Tmajor -Tminor-, thus events which are Symmetrie around fjthrust have

Sphericity observables: Sphericity is based on the momentum tensor:

^ vavß
s«0== ^li^L - Q , ß = i 2 , 3 . (4.2)

EiP?

Due to its symmetry this tensor has oiily six iiidepeiident componeiits. Diagonaliziiig this
tensor removes three further componeiits; the remainiiig three eigenvalues A, satisfy the con-
ditions Xl > A2 > A3 and V. A, - 1. Sphericity S and aplanarity A are then expressed in
terms of these eigenvalues:

S = ^ ( A 2 + A 3 ) , A~ ? A 3 . (4.3)£

Ideal two-jet events have 5 = 0 and 1̂ — 0, while spherical events are characterized by S = l.
Deviations from a planar shape are indicated by A > 0.

4.2.1 Unfolded distributions

The measured event shape distributions are infiuenced by three efFects which have to be
accouiited for in a comparison of the data to tlie model.

• Limited detector acceptance implies that only a certaiu fraction of events is accepted
for analysis.

• Fiiiite detector resolutioii and loss of particles cause a smearing of the measured quan-
tities.
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Figure 4.2: Differential thrust cross section in comparison with the Jetset 7.2 PS model. The data are shown
with statistical errors and the Monte Carlo result is represented by the solid line; the upper plot shows the data

normalized to the Monte Carlo.
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Figure 4.3: Differential Tmajor cross section in comparison with the Jetset 7.2 PS model. The data are shown
with statistical errors and the Monte C'arlo result is represented by the solid line; the upper plot shows the data
normalized to the Monte Carlo.
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Figure 4.4: Differential Tmin„r cross section in comparison with the Jetset 7.2 PS model. The data are shown
with statistical errors and the Monte Carlo result is represented by the solid line; the upper plot shows the data

normalized to the Monte Carlo.
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Figure 4.5: Differential oblateness cross section in comparison with the Jetset 7.2 PS modei. The data are
shown with statistical errors and the Monte Carlo result is represented by the solid line; the upper plot shows
the data normalized to the Monte Carlo.
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Figure 4.6: Differential sphericity cross section in comparison with the Jetset 7.2 PS rnodel. The data are
shown with statistical errors and the Monte Carlo result is represented by the solid hne; the upper plot shows

the data iiornialized to the Monte Carlo.
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Figure 4.7: Differential aplanarity cross section in comparison with the Jetset 7.2 PS model. The data are
shown with statistical errors and the Monte Carlo result is represented by the solid line; the upper plot shows
the data normalized to the Monte Carlo.
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• Radiative correotions imply a. certain transformation of the ohserved quantities.

A statistically correct way to account for the above effects, i.e. to measure the utruev dis-
tributions with correct statistical errors, is provided by the method of regularized unfolding
j 2 7 j . Of course, the unfolding requires the complete knowledge of the above effects: this
information is available through Monte Carlo Simulation s. For this analysis the program
RUN (Regularized UNfolding) [28] is used, which is especially designed for usage in high
energy experimeiits. The program requires äs input the correlatiuns of generated aiid niea-
sured quantities from Monte Carlo events and, of course, the experimental distributions. To
account for radiative effects the event shape variables of generated Monte Carlo events were
computed in the centre of mass System of the virtual photon:

Per,, = pt* + pe- ~ p-r , (4.4)

where pt± is the 4-vector of the incoming electron (positron) and p~, is the radiative photon.
For noii-radiative events the centre of mass System coincides with the laboratory System.

The unfoldecl thrust-based distributions are presented in figures 4.2 - 4.5, where they are
compared to the Jetset 7.2 PS model. The general agreement between data and Monte Carlo
is very good: only the tails of the distributions show systematic deviations at the ten per cent
level. This is due to a slight mismatch between the longitudinal and transverse extension of
the events in the model, since there appear too mauy events at large thrust values and too
few at large Tmajor and T^^^ values. The transverse properties itself are particularly well
reproduced, äs can be judged from the oblateness distributioii. From this it is concluded
that the model behaviour could easily be rectified if simultaneously a harder longitudinal
momentum spectrum and less transverse momentum were used in the fragmentation.

In addition an excess of K 130 events is observed at very high thrust, well compatible
with the rate expected from residual T pair events.

The sphericity and aplanarity distributions are displayed in figures 4.6 aiid 4.7. Of course,
these quantities are related to the thrust variables; there is e.g. a 85 % anti-correlation between
thrust and sphericity and a 85 % correlation between Tmjnor and aplanarity and, perhaps less
obviously, a 85 % correlation between sphericity and T™^. However, the tensor (4.2) is
quadratic in momentum, while thrust depends only linearly on momentum. Therefore the
sphericity-based measures have a larger sensitivity to high momentum particles. This means
that sphericity is not infrared stable. Besides giviiig theoretical problems, this also implies
that sphericity-based observables are more sensitive to detector efFects. There is only a 70 %
correlation between the generated and reconstructed sphericity observables, while the thrust
observables show correlatioiis between 75 and 80 %.

Interestingly, the same systematic deviations from the Jetset 7.2 PS model äs seen in this
experiirient are also observed in the OPAL experimeiit 29].

4.3 Inclusive charged particle cross section

The momentum distributioii of charged particles reflects properties of the underlying
hadronizatioii process. Therefore it is worthwhile to study, aiid it furthermore assists tests of
the Monte Carlo model.

4.3.1 Unfolding procedure

The measurement of the xp — p/'E^arn distributioii is complicated by four effects:
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• The probability to observe a charged particle is less than one. i.e. a certain fraction of
particles escapes detection.

• Initial state radiation implies that not the true xp is measured. but a related quantity
.r' which is given by some traiisforuiation.

• The measured x„ is smeared out due to the fiiiite detector resolutioii.

• Spurious tracks niay be generated by the track Unding algorithm. not corresponding
to a real particle. In addition. photon couversion in detector material produces low
energetic particle pairs.

The program RUN for regularized unfolding I281 allows a proper treatment of this case. For
the unfolding procedure the above eifects have to be known precisely. This requires u s to
identify reconstructed particles faf ter detector Simulation) with the generated particles. For
this purpose the following procedure has been adopted: the parameters of all reconstructed
particles are compared with the parameters of all generated particles. Ushig the covariance
matrix from the track fit, a \ table is constructed on the basis of which the associations gen-
erated —t measured particle are made. In practice there are almost every time fewer particles
reconstructed than generated, and therefore all reconstructed particles can be associated with
generated particles. In the few other cases the additional reconstructed tracks are classified
äs background.

If there were 110 background in the eveiits, the probability distributioii of the associations
would be coiistant between zero and one, otherwise a peak at zero probability is expected.
Particles below a certain minimum probability are thus identifted äs background and it is
assumed that they occur at the same rate in the experimental data. The background rate
determiiied in this way corresponds to approximately one particle per event. This background
is subtracted from the data before unfolding.

4.3.2 Radiative corrections

The efFect of radiative corrections is twofold: firstly initial state radiation reduces the effective
centre of mass energy and secondly virtual corrections lead to an increased cross section. If
these electro-weak corrections are applied to the cross section, it is possible to compare data
at difTerent energies. which eventually reveals the scaling violations caused by the rmmiiig of
the strong coupling coiistant.

The radiative corrections are calculated within the Jetset 7.3 program [9j. The total cross
section in order o^m reads [30]:

O^. fk„ar l /. 1,2 \ Ff F _ L\\
(4.5)

here E is the beam energy and k is the energy of the radiated photon. The upper and lower
bouiids for fc have been set to fc„,m = 0-01 • E and kmax — 0.99 • E respectively. At 35
GeV centre of mass energy the total cross section amounts to 377 pb. The cross section <TO

corresponds to siiigle photon annihilation and is given by the following formula:

4?TQ2 R
(T0(s) = - -R = 86.8- nbGeV2 , (4.6)

35 S
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where 7? (=3.91 at 35 GeV) is the ratio of tlie contiiiuum cross section to the lowest order
muon pair production cross section. At 35 GeV centre of mass energy <TO takes the value 277
pb. The cross section (4.5) consists of two terms: the l -i- 6 term is a function of the cutoff
k min t such that siiigular terms cancel between the real and virtual eniissioii probabilities.
This term corresponds to events without a detectable photon in the final s täte, while the
integral represents events that did radiate a photon. The corresponding Feynman diagrams
are depicted in figure 4.8. For the purpose of unfoldiiig the .r;, is calculated after the particles

Figure 4.8: Feynman diagrams for e 4e annihilation.

are boosted in the centre of mass of the virtual photon (4.4). If no initial state radiation
occurs this System coincides with the laboratory frame. This procedure is only applicable for
generated particles, since nnite detector acceptance and resolution do not allow to deterrnine
the 4-vector of a radiated photon with the required precision, With this definition of xp the
unfolding program implicitly determines the transfonnation caused by initial state photon
radiation. The remainiug correction era(f takes care of the increased cross section due to
virtual emissiou and accounts for the lower average multiplicity in radiative events:

(4.7)

this factor is 1.257 at 35 GeV. The difTereiitjal cross section \jatot dcr/dxp is presented in
figure 4.9 and listed in table 4.1. The comparison with data from TASSO [3l] and TPC 32]
sliows consistent agreement amoiig the different experiments. The Jetset 7.2 PS Simulation
is seen to give too few particles at large xp and too many at small xp, although the general
agreement is satisfactory. The observed deviations from the Jetset model are largest for the
CELLO experiment. however, this is not surprising since Jetset is tuned to TPC and TASSO
data. The difierences observed among the experiments reveal systematic uncertainties. In
this experiment, the systematic uncertainty is estimated to vary between 2 and 10 %, and is
largest for very small and very large xp, where detector effects are more important.
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The underestimatioii of the prodtiction rate of high energetic particles in the Jetset model
has already been discussed in the analysis of global event shapes in the previous section.

The meaii inultiplicity (??} and the iiiean fractional momentum (x„] can be obtained froin
the cross section by Integration:

p/

T l =, •< n —

v t ot J dx

& tot ("
i..t p

The following values are obtained in the xp ränge froin 0.019 t o 0.955: (7?) — 11.4, (xp\r the data and (n) = 11.9, (xp} — 0.10 for the Jetset 7.2 PS Simulation.

(4.8)

(4.9)
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Table 4.1: Inclusive charged particle y„ cross section.

4.4 Cross sections for various particle species

In this section we present the cross sections of ideiitified particles measured by CELLO and
compare them to the predictions froni Monte Carlo models.

In the scope of this thesis a method has been developed which allows a iiieasurenient
of the difFerential yg — ^D'l^btam fross section for charged D" meson production froni
the so-called slow pion ( T T ^ ) . Coinpared to the usual ine t ho d of explicit D* reconstniction
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Figure 4.9: Differential charged particle cross section: CELLO data are shown with statistical errors, the
horizontal bars indicate the ränge over which the measured values are supposed to represent the average. The
data are compared to the Jetset 7.2 PS model and to the TASSO (open squares) and TPC (open dots} results
(errors omitted for clar i ty) . The inset shows the cross section at small zp on a linear scale. The iipper plot
shows the data normalized to the Monte Carlo.
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Figure 4.10: Dt:t cross section: the squares are from reconstructed D*± mesons and the circles show the
unfolded result from the p\\n of slow pions. The solid line shows the fit result for the Peterson
fragmentation function.

this method has the advantage to use the füll statistics of the decay D*+ —> D°TT$, and
furthermore it is independent of any D° branching ratios. The advantage of high statistics is
partially compensated by a larger background rate such that the overall statistical accuracy
is about the same in the two niethods. The aiialysis has been described in detail in [35J
aiid is repeated here only briefly: due to the low energy release in the decay D*+ —> D°IT^,
the TrJ is restricted to very low p± relative to the D' flight direction. The latter is almost
parallel to the event axis (determined e.g. by the linearized sphericity tensor (5.3)) since the
inertia carried by the charm quark is retained in the D*^ meson. Therefore, slow pions from
D*± decays show up äs an enhanced production of particles with very low p± relative to the
event axis. Fiiially, the longitudinal monientum of the slow pion is highly correlated with the
D*^ energy, which makes it possible to unfold the D energy spectrum from the measnred
longitudinal momentum spectrum of slow pions. In figure 4.10 the two methods are seeu to
give consistent results of the charged D' meson cross section.

Particle

2
7T°

ri

K° ± r°
A''+ -f A''-
D*+ ± D*-

A± A

CELLO
13.6 ± 0.3 ± 0.8 [34]
6.4 ±0.6 ±0.9 [34]

0.63 ±0.12 ±0.15

1.42 ± 0.09 ± 0.18

34

33]
0.77±0.17± 0.14 [33]

0.27 ± 0.03 [35]
0.21 ±0.03± 0.03 33

Jetset

14.54
O.G4
0.79

1.38
0.74

0.273
0.225

Ariadne

14.56
6.64
0.80

1.38
0.74

0.279
0.224

Herwig
14.63
6.84
0.79

1.40
0.59

0.248
0.271

Table 4.2: Cross sections of identified particles: the results from Jetset 7.3 PS, Ariadne 3.1 C'D and Herwig 5.0
PS are based on 70,000 events for each model. All programs are run with the default parameter values provided

by the authors [9,4,5]. Herwig has been modified to call the Jetset routines for particle decays.

In table 4.2 the measured cross sections of various particle species can be seen to be in
good agreement with the results from different Monte Carlo simulations.
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Chapter 5

Preliminaries

5.1 Introduction

In this section of tlie thesis a comprehensive analysis of multiparticle prochiction is presented.
Tlie aiialysis is based 011 dat. a taken witli t he CELLO detector at. thc PETRA c+c~ collider.
The geiieral framework of f 4 t" annihilation is discussed in t he previous section.

The preseilt study consists of an analysis of particle fluctuations and correlations up to
the finest resolution scales accessible by the experiment. Owing to tlie clean initial state.
c+ e~ experiiiients are very well suited for this type of analysis.

The maiii interest in these studies is focussed on the experimentally observable properties
of hadron distributions and their relation to QCD, the gauge theory of the strong iiiteractions.
This relation is not straightforward since the theory is solved only perturbatively, restricting
its application to high Q2 processes and thus leaving the description of hadron formation to
phenomenological Monte Carlo models, These models are therefore of vital importance to
relate the experimentally accessible Information to the fundamental theory.

Various methods, of a similar kind and complementing each other, are applied to unravel
the complex structure of the hadroiiization process. In the present chapter general aspects,
relevant to all subsequent analyses, are described. Chapter 6 present s an analysis of multi-
plicity distributions in rapidity space via a iiovel method. This procedure gives access to the
different patterns of particle production in cluster and string models, which are compared
and discussed in detail. Chapter s 7 and 8 are dedicated to intermittency analyses, i.e, to
analyses of iiiultiplicity fluctuations in phase space domains of variable size and dimension.
Several aspects of multiparticle production are isolated in this complex analysis and studied
in some detail; this comprises an Interpretation of the results in terms of fractal dimeiisions.
Soine of the applied method s and techniques have been developed in the course of this thesis.
Chapter 9 contains an analysis of t wo-particle correlations, including the analysis of Bose-
Eiiistein correlations. Finally the summary and conclusions are presented in chapter 10. Part
of the work presented here is already published [53-55,60-63], and these refereuces should be
consulted for für t her details.

5.2 Variable definition

It is the aini of this study to investigate the correlation structure of particle production in
three-dimensional phase space and in its lower-dhiiensional projections. For this purpose the
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Lorentz invariant phase space element dLips of a single particle is decomposed äs folknvs:

l dpxdpydp:
dLips =

4(27T
- dy d<j) dp± .

(5.1)

(5.2)

The Symmetrie decomposition (5.1) has the advantage of being independent of the choice
of a reference axis. This parameterization of dLips will be used in chapter 8 for a three-
dimensional interniittency analysis. In coiitrast, the decomposition (5.2) breaks rotational
invariance. In this case the three variables rapidity (y = 0.5In (E + p; } / ( E — pn)]), azimuth
(4>) and traiisverse momentum squared (p2±) inust be evaluated with respect to a suitably
chosen reference axis. A graphical representation of the used variables is given in figure 5.1
with a three-jet event äs example.

Figure 5.1: Definition of variables and event axes; the depicted three-jet event is generated by Jetset 7.3 PS.
The cootdinate System is defined by the eigenvectors 5^ of the linearized spheticity tensor.

Since the inain concern in tlic study of multiparticle production is the soft hadronization
process, it is natural to take the event axis äs reference axis. and thereby eliminate distortions

due to the l + cos2 T? angular distribution of the hard scattering process e+e qq. This
axis is obtained äs the first eigenvector S-^ of the linearized spliericity tensor (5.3), which is
determined by the three-momenta of charged and neutral particles in an event. Note that
throughout this analysis charged particles are identified äs pions and neutral particles äs
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photons, if not cxplicitly stated otherwise.

S ah _
i;~ — 5.3)

In tlie above defiuition of S/„( onc power of p has been removed compared to tlie usual
definition of sphcricity ((4.2) 011 page 32). Therefore S/,n is inuch closer to thrust, which is
also linear in inomenta.

In geiieral the orieutatioil of the sphericity axis is arbitrary, iinplying t hat there is no
principal difference between positive and negative rapidity values. However, individual ( + f ~
aimihilation events are not Symmetrie in rapidity sincc density fluctuations due to limited
statistics, finite detector resolution and acceptance or gluon radiation occur. To account for
these effects the sphericity axis is oriented in direction of the most energetic jet, For this
purpose the jet configuration and jet energies are deteriiiined by the LUCLUS clustering
algorithm 9]. By meaiis of the above definition positive rapidity values indicate particles
belongiiig to the most energetic jet (which is likely to be a quark jet that did not radiate hard
gluons) and negative values signify particles from the less energetic Jets (preferentially quark
jets and their radiated gluon Jets). In an analogous way the origin of the azimuthal coordi-
iiate. i.e. 4> = 0, is taken to be the second eigenvector S2 of the liuearized sphericity tensor.
With these definitions the corresponding inclusive (averaged over many events) distributions
contain information about "trivial" fluctuations, which are present in every event.

In figures 5.2 - 5.4 the inclusive distributions corresponding to the decompositions (5.1)
and (5.2) are shown and compared to the Jetset 7.2 PS+BE Monte Carlo Simulation. The
perfect reproduction of these distributions by the Monte Carlo is a necessary precondition
for the subsequent analyses. In this context it is noteworthy that the Jetset 7.2 Monte Carlo
is run with default parameters [9], except for the inclusion of Böse-Einstein correlations äs
will be discussed in section 9.1.

5.3 Detector resolution

Detector resolution

- 0.10
= 10°

0.025 GeV2

cr(6px/E$) - 0.054 GeV*
Ei) - 0.060
E^ = 0.050

Table 5.1: Average two-particle resolution from the Monte Carlo Simulation.

In an analysis of particle correlations the detector resolution must be known to allow an
interpretatioii of the data. The two-particle resolutioii has beeil estimated by comparmg

the difTerences (f>) in the studied variables of particle pairs prior to the detector Simulation

with the corresponding values after detector Simulation. In doing this, efiects due to particle

misidentificatioii and uncertainties in deterniining the event axis are taken into account.
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0.0
0 - 2 - 1 0 l 2

Figure 5.2: Inclusive pr/E», py/E* and p:/E* distributions: CELLO data (statistical errors indicated) are
compared to the Jetset 7.2 PS-fBE Simulation (histogranis). The dips at pr ~ 0 and py — 0 are caused by the
acceptance threshold at p± ^ 150 MeV.
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Figure 5.3: Inclusive y. <j> and p2± distributions: CELLO data (statistical errors indicated} are cornpared to
the Jetsei 7.2 PS-l-BE Simulation (histograms).
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Figure 5.4: Inclusive y, </> and p\s for two-jet events: CELLO data (statistical errors indicated)
are compared to the Jetset 7.2 PS+BE Simulation (histogranis).
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The average two-particle resolutioxi for the decompositioiis (5.1) and (5,2) can be found in

table 5.1. It should be noted that the detector resohitiou function is truely tliree-dimensional
and therefore the quoted valnes can be considered äs upper limits: that is to say the detector
can easily resolvo t wo particles with e.g. a <\i/ of 0.01 provided their azinmthal coordinates

differ sufficieiitly.
It is obvious tha t a very accuratr Simulation of ihr detector performaiice is required to

allow the analysis of particle production in sinall regions of plia.se space. In tliis context the
rxperience CELLO has gaiiied tlirougli inaiiy two-photon aualyses (see e.g. [14.15,51]) turncd
out to be very helpful. These aualyses typically deal with detection efRciencies of a few per
null, which assisted tests and improvements of the detector Simulation.

5.4 CELLO "toy" model

Complementary to the Standard c+c~ annihilation Monte Carlo models such äs Jetset, Her-
wig, and Ariadne, which are described in chapter 2, a CELLO "toy'1 model is used for refer-

ence. This model serves äs a null model for correlation studies. iiisofar äs it does not contain
any genuine particle correlations but reproduces the inclusive distribut.ioiis. The model has
been designed äs follows:

• The same number of events äs in the CELLO data are generated.

• The charged particle multiplicity distribution is exactly reproduced.

• Particles are randomly distributed in iiidividual events.

• No correlations between y, 4> and p]_ exist.

• The inclusive y. <f> and p\s are reproduced on average, but not event by
event.

This is realized äs follows: in a first step the charged particle multiplicity, rapidity. azimuth
and transverse momentum squared distributions of the CELLO data are recorded and stored.

In the second step events with particle multiplicities according to the stored values are gener-

ated. A random number generator assigns y, <f) and p]_ values independently to the particles,
such that the inclusive distributions are reproduced. This is achieved with the routine HIS-
RAN [72i , which makes use of the cumulative distribution, obtained from CELLO data. to
transform a uniform random number distribution into the desired inclusive distribution.

The same procedure can. of course, be used for the variable decomposition (5.1).



Chapter 6

Multiplicity distributions

In this chapter multiparticle production in < ~* ( ' annihilation processes is studied via the mul-
tiplicity distributioii of charged particles. This study revealb properties of both the perturba-
tive and the non-perturbative lladronization phase, thus providing access to the fundamental
structure of the strong interactions.

In the foliowing section the general features of multiplicity distributions are discussed.
This is followed in section 6.2 by the Standard analysis of multiplicity distributions in central
rapidity intervals of different width. In this context Monte Carlo simulations are used to
relate the exp er i mental fhidings to physical processes.

In section 6.3 multiplicity distributions are analysed in rapidity intervals of constant width
but different central values. This scan covers the entire rapidity ränge, a procedure which
shows the underlying physical processes in a very transparent way. The observed features
motivate a discussion of particle production in string and cluster models, which is preseiitedin
section 6.4. An outlook for LEP is given in section 6.5 and finally the results are summarized
in section 6.6.

6.1 General features

The basis for the preseiit investigatioii is a sample of 18,543 multihadronic events which passed
the selection described in section 4.1. The measured charged particle multiplicity distributioii
is presented in figure 6.1. where it is seen to be accurately reproduced by the Jetset 7.2 PS
model including a detailed detector Simulation. Two-jet events, selected according to the
prescription given in section 4.1, are compared in figure 6.1 to the total event sample. Au
astouiiding similarity of both distributions is observed. evidently reproduced by the Jetset
partou shower Monte Carlo. This reveals an adequate treatment of gluon radiation in the
model.

The invariance of the ty function ( G . l ) under a two-jet selection suggests that it is of
fundamental meaniiig. In this context the so-called KNO scaliiig 42] is of some iiiterest. For
asymptotically high energies it means that the multiplicity distributioii Pn can be expressed
in the universal form:

Pn= — *(--) , ^ , (6-1)
(n) (n)

where {/)} — Y]^Lo n^n and ^(;) is an energy indepcndent scaliiig function. Already at lower

energies KNO scaling seems to be approximately fulfilled [45.46], although this is only a

traiisient pheiiomenou uiirelated to the exact KNO scaling predicted by QCD [6].
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Figure 6.1: Multiplicity distributions of charged particles of the total event sample (left) and of two-jet events
(right) compared to the Jetset 7.2 PS Simulation (solid lines).

In this connection the asymptotic QCD prediction of a 9/4 times larger multiplicity in
gluon jets compared to quark jets should be mentioned [74]. This is due to the greater colour
charge of the gluon, which leads to increased gluon bremsstrahlung. However, the observable

differences expected at present energies are small 48,6).

It had been realized at an early stage that multiplicity distributions reflect the underlying
dynamical and kinematical structure of multiparticle production processes and therefore pro-
vide information on the production mechanisni fsee 64] for a recent review). Subsequently,
various statistical distributions were proposed to describe the data; e.g. negative binomial,
gamnia aiid log normal distributions.

The aiialysis presented here is not aiiiied at determiiiiiig which specific distribution pro-
vides the best description of the data. We shall restrict ourselves to the Negative Binomial
Distribution (NBD), which is known to describe multiplicity distributions froni a variety of
high energy processes reasonably well, and condenses the entire information contained in the
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multiplicity distribution into t wo numbers. This is feasible iiiasniucli äs tlie NBD gives a
precise description of multiplicity spectra. Under this condition it is possible to perfonn and
present differential analyses of the data.

6.1.1 Negative binomial distribution

To obtain an efTective parametenzation of the obsorved behaviour. the negative binomial
distribution is fitted to the multiplicity distributioiis:

+ k-l
A- -l

T(k)T(n
A- - 2 - - f c nnkh

T? «77
(6.4)

Equation 6.4 can be traiisformed into a very efHcient algoritlim, facilitatiiig the application
of a fit t mg procedure.

For Illustration the negative binomial distribution is presented in figure 6.2 aiid compared
to the Poisson distribution.

The variaiice Var(n) of the negative binomial distribution is given by the expression:

Var(rt) = (n2) - (n)2 - (n) + ̂ - . (6.5)

Froin this it immediately follows for the second normalized moment C2 aiid the second nor-
malized factonal moment F2:

/„2\ (77(7? — 1 ) )
,

(n ) ( n ) (7?)

In the limit k —> oc the NBD goes over in a Poisson distribution. It is therefore evident that
the Poisson distribution has constant factorial moments, the direct measurement of which is
presented in detail in chapters 7 and 8.

Different mechaiiisms have beeil suggested which give rise to negative binomial or siiii-
ilar distributions: stimulated emission [39,40], cluster or clan production 40] and parton
branching [43,44]. Depending on the assumed mechanisin the parameter k acquires different
meaning, äs will be discussed für t her below.

Negative values of the parameter k correspoiid to a positive binomial distribution, i.e.:

" UV", i = 0,1,2,...n. (6.7)

The geiieralization to Don-integer 77 is conveniently done in terms of F functions, jüelding:

Pi(n>P] = rr^^r/1^^ P1*""'' • '<« + !- (6-8)r(i + i)F(?i -i + i]

The binomial distribution has meaii (i} = rtp aiid variaiice V a r ( i ) — npq. This allows us
to express the parameters of the binomial distribution (n ,p ) in terms of parameters of the
negative binomial distribution ( ( n ) , k): i.e. r? — —k and p = — {
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Figure 6.2: Negative binomial distributions for different k"1 and (n) values compared to the Poisson distribu-
tion (crosses): k~l = l i—* solid line, fr"1 = 10"1 i—» dotted line, fr"1 — 10~2 i—> dashed line and fr"1 = 10~3 •—<
dash-dotted line.

6.2 Central rapidity intervals

In this section the charged particle multiplicity in central Symmetrie rapidity bins of variable
size is studied. For the particular definition of rapidity used in this analysis the reader should
consult section 5.2.

The resulting multiplicity distributions are presented in figure 6.3 äs a functioii of the scal-
ing variable z: starting at the smallest value of \y\ 0.05 the rapidity wiiidow is successively
enlarged uiitil finally the füll rapidity ränge is covered. In doing this the average multiplicity
(n] increases from 0.12 to 9.3 {cf. table 6.1). This implies, by virtue of the definition of z
(6.1). a rapidly changing distribution ^(z] if {n} is large (see also figure 6.2 for Illustration).
The details of this general behaviour. however, will depend on the dyiianiics of the production
process - and via this relation iiifomiation on the physics of t hat process is extracted.

The solid curves in figure 6.3 show the correspoiiding results rrom the Jetset 7.2 PS + BE
Simulation includiiig detector Simulation. Notable agreemeut is observed between data and
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Figure 6.3: Multiplicity distribution of charged particles in central Symmetrie rapidity bins: CELLO data
(statistical errors indicated) are compared to the Jetset 7.2 PS-fBE Simulation (solid lines). The dotted lines
represent fits to the negative binomial distribution. The dashed lines indicate negative k parameters, i.e. the
occurrence of binomial distributions. Starting at y £ 0.05 each subsequent distribution has been scaled down
by one decade.

Monte Carlo.
The (negative) binomial aualysis has beeil performed on the total event sample and on

selected two-jet events using the routine VALLEY [50]. In table 6.1 the fit results and
statistical errors are presented; a graphical Impression of the dependence of k~l 011 the rapidity
bin width is given in figure 6.4 for the total event sample and the two-jet selection respectively.

6.2.1 Total event sample

From figure 6.4 it is seen that the multiplicity in central rapidity bins \y\ 2 is distributed
binomial, indicated by k < 0. In sinailer rapidity bins negative binomial distributions occur
signified by nou-zero values of k~l. For bin sizes smaller t hau 0.5 units the k~l parameter
appears to be approximately constant within the experimental accuracy, despite the fact that
the meaii multiplicity {??} decreases rapidly (cf. table 6.1).

The description provided by Jetset 7.2 PS is unsatisfactory in that the model underesti-
mates the size of the k~l parameter. The Situation is considerably improved if Böse-Einstein
correlations are included in the Simulation. In this way an adequate description of the data
is obtaiiied. Firstly this shows the significance of Bose-Einstein correlations and secoiid it
reveals the meaning of the k~l parameter. Since Bose-Einstein correlations effectively pro-
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|y l ränge

füll

4

3

2

1

0.5

0.2

0.1

0.05

Total sample

(«> L!
9.33 ±0.020
9.87 ±0.018
9.93 ±0.010
9.27 ± 0.020
9.82 ±0.017
9.87 ±0.010
8.71 ±0.021
9.24 ±0.018
9.33 ±0.011
6.38 ± 0.020
6.81 ±0.018
6.97 ±0.010
2.75 ± 0.012
2.97 ±0.011
3. 12 ±0.007
1.26 ±0.007
1.35 ± 0.006
1.44 ±0.004
0.49 ±0.003
0.53 ± 0.003
0.57 ±0.002
0.24 ± 0.002
0.27 ± 0.002
0.28 ± 0.001
0.12 ± 0.001
0.13 ±0.001
0.14 ±0.001

-0.02 ± 0.001
-0.03 ±0.001
-0.03± 0.001
-0.02± 0.001
-0.03 ± 0.001
-0.03 ±0.001

0.00 ± 0.001
-0.01 ± 0.001
-0.01 ±0.001

0.06 ± 0.002
0.05 ± 0.002
0.05 ±0.001
0.17 ±0.006
0.17 ±0.005
0.16 ±0.003
0.27 ±0.012
0.26 ±0.010
0.23 ±0.005
0.37± 0.030
0.28 ± 0.022
0.27 _:. 0.012

0.4Ü ~ 0.055
0.31 ± 0.045
0.27 ± 0.021
0.37 ±0.101
0.36 ± 0.081
0.30 ± 0.041

Two-jet

M

8.63 ± 0.030
9.04± 0.027
9.05 ±0.010
8.52 ± 0.030
8.95 ± 0.025
8.94 ±0.015
7. 60 ±0.030
8. 02 ±0.025
8.01 ± 0.015
4.75 ±0.025
5.06 ±0.021
5.09 ±0.012
1.69 ±0.013
1.81 ±0.011
1.87 ±0.007
0.70 ±0.007
0.75 ±0.006
0.79 ±0.004
0.26 ±0.003
0.29 db 0.003
0.30± 0.002
0.12 ± 0.001
0.14 ± 0.001
0.15 ±0.001
0.06 ±0.001
0.07 ±0.001
0.07 ± 0.001

sample

A-1

-0.04 ±0.001
-0.05± 0.001
-0.05 ± 0.001
-0.03 ± 0.001
-0.05± 0.001
-0.04± O.OÜ1
-0.01 ± 0.002
-0.03 ±0.001
-0.03± 0.001

0.02 ± 0.004
-0.01 ±0.003
-0.01 ± 0.002

0.04 ± 0.010
-0.03 ± 0.008
-0.03 ± 0.004

0.06 ±0.024
-0.04 ± 0.017
-0.04 ±0.010

0.08 ± 0.068
-0.05 ± 0.051
-0.02 ± 0.029
-0.04 ±0.133
-0.13 ±0.078

0.03 ± 0.064
0.01 ± 0.322

-0.01 ± 0.236
0.03 ±0.131

Table 6.1: Negative binomial parameter for central rapidity bin*. The first entry in a block corresponds to the
CELLO data, the second and third entry show the Jetset 7.2 PS-FBE and the Jetset 7.2 PS results respectively.
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Figure 6.4: k l for central rapidity bins: The open symbols show the CELLO data (total event sample i-*
open dots, two-jet sample >—• open squares). The solid and dotted curves show the corresponding results froin
Jetset 7.2 PS and Jetset 7.2 PS+BE respectively. The dashed curve is the result from the CELLO "toy" niodel.

duce more particles close by in phase space, it can be concluded t hat the k~l parameter is
a measure of aggregatioJi. Tliis is also the meaniiig assigiied to k~l by Giovaiinini and Van
Hove [40]. In this context it is noteworthy that iiothing of the kind is observed in the CELLO
"toy" model (cf. section 5.4 for a description of the niodel), which makes it amply clear that
dynamical and kinematical particle correlations and fluctuations inside illdividual events are
at the basis of the observed behaviour.

6.2.2 Two-jet event sample

From the above discussion it can be conjectured that hard gluon radiation modifies the
multiplicity distribution. In particular it can be expected that gluon fragments, if projected
onto the event axis, will populate certain rapidity regions. And, since hard gluons occur only
in a fraction of the total event, sample, strong fluctuations in the multiplicity distribution of
all events will occur äs a consequence. For this reason the analysis of the total event sample
maialy tests the perturbative phase of QCD; i.e. properties related to hard gluon radiation.
This is coiuplemeiited by the analysis of two-jet events, which is mainly sensitive to the
iion-perturbative phase of QCD.

From figure 6.4 it is apparent that particle production in two-jet events is less influenced by
correlations and fluctuations thaii is the total event sample, justifying the above conjecture.
This subject is also discussed by Andersson et al. in [67].
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An observation of great iniportance is the sigiiificant failure of both the Jetset 7.2 PS
and the Jetset 7.2 PS i-BE simulations in describing the two-jet data: while the data show
clear evidence for negative binomial distributions for i t y j < 2, the Monte Carkt still predicts
biiioinial multiplicity fluctuations. This is a very interestiiig observation. in line with the
conjecture of Ochs 68.70] t hat the notion of local parton hadron duality. whicli means a
duality between parton and hadron distributions 7l]. requires a local hadronization process,
in possible contradiction to the energy dissipatiiig string mechanisni.

The explanatioii for the observed behaviour of the k-'l paranieter and the failure of the
Lund string model to reproduce the effect is subject of the followiilg sections.

6.3 Rapidity scan

In this section a detailed analysis of the origin of the observed (negative) binomial regularities
is presented. In the previous section an iiicrease of the k~l coefficient with decreasing rapidity
bin size has beeil observed. Here it will be demortstrated t hat this behaviour is not originally
related to the decreasing bin size, but is actually due to the absolute position of the rapidity
bin.

For this purpose the rapidity ränge ext eil ding froin —4 to + 4 is divided into overlapping
bins of 0.5 units each, yielding 31 individual multiplicity distributions. In a second step the
(negative) binomial distribution (6.4, 6.8) is fitted to these multiplicity distributions. In
figures 6.5 and 6.6 the fitted k~l paranieter from the rapidity scan is displayed for the total
eveiit sample and for two-jet eveiits separately.

Before discussiiig the figures let nie recall the definition of rapidity used here, since this
is necessary for a thorough uiiderstaiidiiig of the results. In this study rapidity is defined
with respect to the linearized sphericity axis (5.3). Furthermore the sphericity axis has been
oriented in direction of the niost energetic jet. Due to this definition negative rapidity values
signify phase space regions where gluon radiatioii preferentially occurs, positive rapidity val-
ues, on the other hand, indicate phase space regions dominated by pure quark fragmentation.
It should however be remenibered that this ideal Separation is diluted by detector resolution
and acceptance efFects.

6.3.1 Total event sample

In figure 6.5 the fitted k"1 paranieter is displayed for the total data sample and compared
to the Jetset 7.2 PS and Jetset 7.2 PS + BE simulations. A stroiig Variation with rapidity is
observed. For large values of \y\l multiplicity distributions are indicated by negative
k~l values. In the other parts of phase space negative binomial distributions occur, expressed
by positive k~l values. The observed functional dependence is not Symmetrie in rapidity, äs
is expected for the rapidity definition used here. Aiid, äs outlined above, the correlations
for negative rapidity are iiideed larger than for positive rapidity. Given this behaviour it is
readily understood that the k~l paranieter will also depend on the size of the rapidity bin,
althougli this is not the genuine cause.

The comparison with model simulations in figure 6.5 demonstrates that Jetset 7.2 PS gives
an adequate description of the data, provided Böse-Einstein correlations are included. In fact,
the difTerence in the fc"1 distribution due to Bose-Einstein correlations is remarkably large
and again shows their significance to the ovcrall fluctuations and correlations. It is worthwhile
to note that the corresponding k~l values from the CELLO "toy" model are i n dep eil den t of
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Figure 6.5: A' ' äs a function of rapidity: CELLO data (total event sample) are shown with error bars. The
solid and dotted curves show the corresponding results from Jetset 7.2 PS and Jetset 7.2 PS-j-BE respectively.
The dashed curve is the result from the CELLO "lov'1 model.

0

-4

Figure 6.6: k * äs a function of rapidity: CELLO data (two-jet event sample} are shown with error bars. The
solid and dotted curves show the corresponding results frorn Jetset 7.2 PS and Jetset 7.2 PS+BE respertively.
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rapidity and moreover always close to zero. revealing only Poissonian fhictuations. Froni this

it is concluded that the occurreiice of negative binoinial distributions in parts of phase space,

äs observed in the data (and also in Jetset) is due to dynamical and kineiiiatical properties

of the particle production process. This point is further elaborated in section 6.4.

6.3.2 Two-jet event sample

The most spectacular observation in the two-jet, study is the failure of the Jetset, Monte Carlo
in reproducing the rapidity dependence of the k'1 paraineter. The observed discrepancy is

statistically significant. To consolidate this further. systeinatic studies have beeil performed

to make sure the effect is not artificial. This has been done by varying the two-jet selection

criteria äs well äs the acceptance criteria, for charged particles. The discrepancy between

Jetset and CELLO data always reniained.
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Figure 6.7: CELLO two-jet data 011 k l are compared to Jetsei 7.2 PS alter detector Simulation (solid line)
and before detector Simulation (dotted l ine ) . The dashed line shows the Herwig 5.0 PS result.

Besides this observation it is also evident when comparing figures 6.5 and 6.6 that the
streiigth of correlatioiis is reduced in two-jet events. This is easily uiiderstood from what has
been said before, namely that hard gluon radiation (which is abseilt in the two-jet selection)

contributes significaiitly to fluctuations and correlatioiis in multihadron production.

Already at this stage it can be assumed that the failure of the Jetset Monte Carlo has its
origin in the treatmeiit of the nou-periurbative phase. This conjecture is based 011 the fact

that the discrepancy appears oiily in two-jet events where the non-perturbative hadroiiization
phase dominates the particle production process. In contrast to that hard bremsstralilungs
gluoiis characterize the total eveiit, sample and thereby conceal details of the soft hadroniza-
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tion process. A detailed study of fmctuations and correlations in the Jetset and Herwig Monte

Carlo programs is presented in section 6.4. concentrating on these aspects.
An intriguing result is presented in figure 6.7. where it is iiiiiiiediately seen t hat the Herwig

5.0 PS Simulation provides a very good description of t ho data, coiicerning bot h the shape
and the magnitude of the J'"1 distribution. And. since Herwig involves cluster and Jetset
string fragmentatioil i .e. completely different Scheines for the iion-perturbative regiine. this
comparisoii also provides the koy to understand the difference of the t wo models. It should
be eniphasized that there is. äs far äs is known. 110 other distribution revealing such strong
differeiices between cluster and string-based inodels. It is further seen froin this picture that
detector effects only cause a ininor distortion of the A-""1 distribution. This is important
insofar äs the following model s tu dies are done without detector Simulation.

6.3.3 Clan production

According to Giovaniiini and Van Hove the negative binomial distribution is generated by
independent emission of entities, which they call clans. which subsequently decay. At the
basis of this process they see the QCD parton shower with the gluon self-interaction äs the

dominant multiplication mechanisni [40,41]- It is assumed that the number of clans follows a
Poisson distribution. In additioii, the decay of these clans is assumed to cause a logarithmic

distribution for the number of particles per clan. In this context the parameter k~l gives
the ratio of probabilities for the t wo cases that two particles belong to the same clan or
to difFereiit clans. Therefore the k"1 parameter is a measure of aggregation. The average

number of clans (Nf) and the average number of particles per clan (11 c] are then related to

the negative binomial parameters äs follows:

lim (Nc) = ( n ) , lim (nc} - l . (6.10)
k—-oe> k—-oo

Equation G.10 corresponds to the Poissonian Limit.
To a large extent the above ideas are actually incorporated in the Herwig Monte Carlo

program [5] (cf. also chapter 2). It, is therefore teuipting to compare the rapidity distribution
of clusters, produced in the precoiinnement phase of the Herwig 5.0 PS Simulation with the

number of clans äs derived from negative binomial fits to the multiplicity distribution in the
correspoiiding rapidity bins. This comparisoii, presented in figure 6.8, shows that the shape

of both distributions is in fact similar, however, the normalizatioii difFers by a factor of two.
In figures 6.9 and 6.10 the number of clans (Nc) and the average multiplicity per clan ( n c )

are shown for the total data sample and are compared to the t wo-je t selection.
It is to iiote that. (Nc) is maiiily sensitive to the average multiplicity {??), while (nc) has

a larger seiisitivity to the k parameter. This is easily seen if (Nc) is expanded in a power
series:

I d i ] l
(JV.)a

1 k- 3 \
(6.11)

The comparisoii with the Jetset Simulation shows reasonable agreement in case of the
(Nc) distribution both for the total event sample and the two-jet selection, this is because
the mean multiplicity is slightly too large in the Monte Carlo. In the total event sample
the multiplicity per clan is reproduced oiily if Böse-Einstein correlations are included in the
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Figure 6.8: Rapidity distribution of clusters in the Herwig 5.0 PS niodel compared to the distribution of clans
obtained froin negative binomial fits to the multiplicity distribution (solid üne i—> primary particles; dotted line
t—* final state charged particles).

Simulation; otherwise the particle density provided by the Monte Carlo is sigiiificantly too
low for positive rapidity values. This shows again t hat the "negative" rapidity region is

dominated by gluon bremsstrahlung, concealing other effects.
Both Monte Carlo versions fail to describe the average multiplicity per clan in two-jet

events. Of course, this reflects the discrepancy already noted in the k"1 parameter. It is
further observed that negative binomial distributions occur if the average multiplicity per
clan (n c) is larger than one, äs it is expected from (6.10).

6.3.4 Interpretation

The Interpretation of the results obtained so far is äs follows: the perturbative QCD phase
generates primary massive colour singlet states. Their fluctuations in rapidity space are Pois-
souian to a good approxiiiiation. In the case where additioiial gluon fragmeiits are projected
onto the event axis negative binomial distribution occur already at this level. The subsequent
decay* generates negative binomial distributions for the final state particles, provided there
is a sufficient overlap among the decay products from difFerent primary sources. This is ob-
served in the rapidity region y < 2 (see figures 6.5 and 6.6). The probability to have more
than one primary particle in a given rapidity interval is essentially zero for absolute rapidity

*N.B. that decay products are approximately Gaussiaii distributed wi th

the decaying particle.

0.5 around the rapidity of
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Figure 6.9: Distribution of clans for the total event sample (left) and for two-jet events (right) compared to
the Jetset 7.2 PS and Jetset 7.2 PS-fBE model (solid respectively dotted lines).
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the Jetset 7.2 PS and Jetset 7.2 PS + BE model (solid respectively dotted lines}.
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values larger than two. This fact is, of course. related to the fragmentation process. In the
Jetset 7.3 PS Simulation at 35 GeV centre of mass energy, for instance. the average momeii-
tum of primarily produced particles is (p) — 3.29 GeV and the average mass of these objects
is (TT?) - 0.82 GeV: this implies average rapidity values of (y] — 2.1 (if transverse momentum
is neglected). This is exactly the rapidity value where the A1"1 distribution approaches zero
(see figure 6.12). indicatiiig tho transition from the rapidity region where primary particles
are close enough to give an effective overlap of their decay products, to the region where
primary particles occur only isolated and hence an overlap is impossible.

6.4 Discussion of models

It is the purpose of this section to demoiistrate how the observed properties of multiplic-
ity distributions are accomplished in e 4 r " Monte Carlo simulations and thereby justify the
conjectures and conclusioiis drawn in the preceding sections.

The strikiiig differeiice betweeu Herwig and Jetset coiicerning the rapidity dependence of
the k parameter in two-jet events is examined in detail and traced to its origin.

6.4.1 Correlations and üuctuations

According to the procedure presented in section 6.3 the multiplicity distributions generated
by various Monte Carlo models are studied. The following models, discussed in detail in
chapter 2, are considered for aualysis. A short list of their basic properties is given here:

• Jetset 7.3 gq: a pure Lund string model without gluon radiatioii. In this case (di)-
quark pair creation in a string-like force field is the only source for particle production.
This model is available äs an Option in Jetset 7.3.

• Jetset 7.3 ME: an Ö(o|) matrix eleinent QCD approximation followed by Lund string
fragmentation. Here it. should be noted t hat compared to the "Standard" parton shower
model the matrix element model requires a change of the loiigitudinal and transverse
fragmentation parameters: i.e. from a = 0.5 —* l and from b — 0.9 —* 0.7 GeV~2 for the
Lund Symmetrie function (2.13) and from <TPI = 0.35 —» 0.4 GeV for the width of the
Gaussi an p± distribution. In addition, the joining parameter should be iiicreased from
0.8 to 1.1 GeV [9].

• Jetset 7.3 PS: the Lund parton shower model followed by s t ring fragmentation.

• Herwig 5.0 PS: the Herwig parton shower model followed by cluster fragmentation.

• Ariadiie 3.1 CD: the Lund colour dipole parton shower model followed by string
fragmentation.

6.4.1.1 Primary and final state particles

In figure 6.11 the fitted A-"1 values are displayed for the Jetset 7.3 qq model for primary* and

final state particles. A marked difTerence between the two distributions is observed: while the

'The tenn primary refers to charged and neutral particles. which in the case of string fragmentation come
directly from the string, or to cluster decay products in the case of cluster fragmentation.
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Figure 6.11: Rapidity dependence of t ' 1 in the Jetset 7.3 qq model (dotted line) compared to a "toy" model
(dashed line). The solid line indicates the results obtained for primary particles.

k ] values for primary particles are always negative, thereby signifying binoniial multiplicity
distributions, the analogous curve for final state particles indicates the occurrence of negative

binomial distributions in parts of phase space.

To illustrate this further a simple ''toy" model is designed in analogy to the CELLO "toy"
model äs described in section 5.4 on page 53. This model generates the inclusive rapidity
distribution äs obtained from the Jetset 7.3 qq Simulation: that is to say it. reproduces the
rapidity distribution on average, without generating genuine particle correlatioiis in individual
events. In this model each primary particle is split in two according to a Gaussian distribution

with a width of 0.5 units in rapidity.

In figure 6.11 the rapidity dependence of the k~l parameter is displayed both for the
primary particles and the decay products. As expected the primary multiplicity distribution
is characterized by k~l < 0; i.e. it is binomial. In contrast to that the final multiplicity

distribution has negative binomial form, iiidicated by positive A1"1 values. Comparing the
"toy" model with the Jetset 7.3 qq Simulation in figure 6.11 similar features are observed,
but also apparent differences occur. While the "toy" model gives rise to negative binomial
distributions in the total rapidity ränge, these are only observed in restncted intervals in
the qq Simulation. This difFerence is partly due to kiiiematical coiistraints, which are not
fulfilled in the "toy" model: e.g. nothing prevents two primary particles from being produced
at rapidity values of e.g. y — +3.5 in the "toy" model, which will be clearly impossible if
four-momentum is conserved. A further property of the Lund string model is revealed by this
study - namely that fluctuatioiis of the primary particle multiplicity are less than Poissonian
[8] (cf. also chapters 7 and 8).
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Figure 6.12: Rapidity dependence of A"1 for various models (solid line i—* primary particles, dots K-- final state

charged particles).

6.4.1.2 Gluon radiation

The significance of hard gluon radiation is demonstrated in figure 6.12, where large k~l

Parameters are observed in the rapidity ränge from —1.5 to 0. This effect is already observed
at the level of primary particles, making it clear that ghion fragments induce negative binoniial
distributions in those parts of phase space where an overlap with the pure quark fragments
occurs.

At this level the four studied models do not diflfer signincaiitly enough to be distiiiguished
by experiment. This is due to the fact that perturbative gluon radiation doniinates the ob-
served fluctuatioiis and correlatious, thus masking the non-perturbative hadroiiizatioii pro-
cess. In the following section oiily those events that pass a two-jet selection will be considered
for aiialysis, tacitly focussing 011 the non-perturbative phase.
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6.4.2 Cluster versus string niodels

The topic of this sectiou is the dramatic difference observed äs the Jetset 7.3 PS and Herwig
5.0 PS Simulation s are compared regarding the rapidity dependence of multiplicity distribu-
tions. This difference is oiily revealed in fluctuations of the particle multiplicity, the iiiclusive
distributions being almost identical (see ngure 6.13).

0.5 1.0 1.5 2.0 2.5
transverse momentum squared [GeV2]

0.30

- 2 0 2
rapidity

0 90 180 270
azimuth [°]

360

Figure 6.13: Inclusive y, <p and p\s for two-jet events: Herwig 5.0 PS (statistical errors indicated)
is compared to the Jetset 7.2 PS Simulation (histogtams).

First of all it will be demoiistrated that this difference has its origiii in the treatment of
the non-perturbative hadronization phase and is not due to different parton shower approxi-
matioiis. Throughout tliis section solely two-jet events will be coiisidered for analysis.

For this purpose partoii showers geiierated with the Herwig 5.0 PS program are traiisferred
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Figure 6.14: Rapidity dependence of k J in two-jet events: Jetset 7.3 PS (solid line), Herwig 5.0 PS (dotted
line) and the Herwig parton shower with Lund string fragmentation (dashed line).

to the Jetset 7.3 program. Partoiis are then connected to Luiid striiigs, keeping trace of the
colour flow: froin this point on fragmentation commences äs usual.

In figure 6.14 the resulting A'~ : distributions froin the pure Herwig 5.0 PS and Jetset 7.3 PS

sinmlations are compared to the hybrid scheme. Obviously, the hybrid schemeis very close to
the Jetset 7.3 PS Simulation, thus ideiitifying differences in string and cluster fragmentation
äs the reason for the apparent difFereiice between Herwig and Jetset. In addition, a shght
difFerence between the two parton showers, when connected to strings, is observed. And,

since hard gluon radiation is excluded by means of the two-jet selection, this effect has its
explanation in terms of different approximations in the treatment of soft gluons during parton
shower evolution.

6.4.2.1 Lund string model

In the foHowing paragraphs the occurrence of correlations and fhictuations in the Lund string
model is investigated. An attempt is made to "retuiie" the string model in order to reproduce
the measured k~l distribution. The foHowing aspects come to mind which might have an
impact on correlations and fluctuations in two-jet events:

Longitudinal fragmentation

Lund Symmetrie fragmentation: The Jetset 7.3 PS model uses the Lund Symmetrie
function ((2.13) on page 12) to geiierate the longitudinal Splitting variable ~ ; i.e. to deterrnine
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Figure 6.15: Studies of the k~} rapidity dependence on two-jet events in the Lund string model: the solid
line shows the result obtained from the default Jetset 7.3/6.3 PS Simulation and the dotted line is the Herwig
5.0 PS result for comparison. The modified Jetset 7.3/6.3 PS results are displayed with error bars: a: Lund
Symmetrie fragmentation function with a = 0.0 and b - 0.4 GeV~ 2 ; b: Field-Feynman, Peterson scenario, the
dashed line corresponds to string fragmentation according to Bowler; c: Jetset 6.3 PS with P/(V + P) - v^-O.S
and (p^) - (50 MeV)2 for ir mesons and (450 MeV)2 for p mesons; d: Jetset 7.3 PS including higher meson
multiplets.
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the energy-inomentum fractioii taken by a hadron. This fimctioii is controlled by t wo param-
eters a and l which are highly correlated. The average multiplicity is essentially detemiined
by the ratio a/b while niultipücity fluctuations are related to the expression (afr)""1 [67]. The
correlation of the two parameters is shown in figure G.IG. The line is a fit to those a and 6
values which reproduce the default average fractional eiiergy (XE) ~ 0.22 and the correspond-
ing average niultiplicity (TV) = 9.0 of primary particles in the simple qq model. The relation
is alniost linear with b ̂  0.4 + a. Evidently a wide ränge of a and b values gives essentially
the same results witli respect to inclusive distributions, but correlations and fluctuations are
expectecl to increase äs a and b are decreased.
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Figure 6.16: Correlation of parameters for the Lund Symmetrie function in a pure qq model.

In the case of large a and 6 parameters the ordenng of particles, i.e. the coincidence
between rapidity and rank is strict, correspondillg to a cohereiit string state. If both a and b

are decreased the orderiug is diminished and consequently fluctuations are enhanced [8,47].
This is proven in figure G.15a, where the k~} distributions from the rapidity scaii are shown for
the two parameter sets a — 0.5.& = 0.9 GeV"2 (default values) and a = 0.0,6 = 0.4 GeV~2.
However, the efFect is not large enough to explain the difference between Jetset 7.3 PS and
Herwig 5.0 PS.

Field-Feynman &z, Peterson and Bowler fragmentation: The Peterson function
((2.14) on page 12) offers an alternative parameterization for the energy-momentum Splitting
in the longitudinal fragmentation process of heavy charm and bottom quarks. In this case the
average energy-inomeiitum fractioii taken by the heavy hadron is in accord with the Bjorken
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1-1™ (6.12)

fornmla [73l:

where 777,5 ^ s the mass of the heavy quark. In contrast to that the Lund Symmetrie function
leads to the relation [48]:

* = !- ~ . (G.13)

where 77i# is the mass of the heavy hadron.
The underlyiiig space-tinie structure of the Lund string inodel. which implies that on

average all string breakups take place along a hyperbola of coiistant invariant time [8,47],
implies a different average rapidity Separation for heavy and light hadrons. In ca^e of the
Peterson function the heavy hadron is 011 average 0.7 units in rapidity ahead of any other
hadroii, which is the sanie rapidity Separation äs between neighbouring ordinary hadrons.
The reqiiirement of left-right syiiinietry in the Lund function implies a larger rapidity Sepa-
ration for heavy particles; i.e. heavy particles appear to be inore isolated in this approach.
äs a consequence of the larger amomit of eiiergy taken from the string by a heavy liadron*.
Hitherto the experiniental and theoretical Situation is ambitious, although there is exper-
imental evidence against the Lund Symmetrie function, which predicts a too hard bottom
quark fragmentation at LEP energies i 49]. It has beeil shown by Bowler [84] that also in the
string model it is possible to retain a l/m dependeiice (6.12) for massive endpoint quarks.

This issue is very importaiit for the determiiiatioii of the top quark mass at a future
e+ e~ linear collider [89]. In this context the study of particle correlations in the different
fragmentation approaches is certamly worthy.

In ngure 6.15b the resultiiig k~l distribution is shown for a Simulation where the light
up. down and stränge quarks are treated according to the Field-Feynman function ( (2 .7) on
page 10) with a = 0.77 and charm and bottom quarks are fragmented with the Peterson
function with £c — 0.1 and £b = 0.01. The comparisoii with the Standard Simulation shows
that particle correlations are different in this approach. Similarly the Bowler type fragmen-
tation (dashed line in figure 6.15b) does not provide a signincaiit iinprovement with respect
to Herwig. None of the studied string fragmentation Scheines is particularly favoured by the
data, and there still remains a general discrepancy between string and düster fragmentation.

Transverse fragmentation: The tuimeliiig mechanism implies a Gaussian p± distribution
for the emerging quarks (cf. the discussioii in section 2.2.2 on page 11). Furthermore, since
the string is assumed to be one-dimensional the p± must be compensated locally: i.e. p±(q) +
P±(Q) — 0. As a consequence half of a ha.dron's p± will be compensated in each of its
iieighbours. For this reason t wo neighbouring hadrons, sharing a qq pair have a tendency
to appear at opposite azimuthal angles. These anti- correlations are not accessible through
the sole analysis of the rapidity distribution. The t wo- and three-dimensional interinittency
analyses presented in chapter 8 are sensitive to this aspect of multiparticle production.

In the Standard Lund string model the average p\ quark acquires due to the tunneling
process is assumed to be (p\} — (350 MeV) mdepeiideiit of its mass. If this is interpreted äs
being due to a transverse extension of the string a mean square radius of (r2) = (0.56 fm)
is obtained. This result is in striking agreeinent with the radius of the "pion source", äs
obtained from the analvsis of Böse- Einstein correlations in section 9.1.

:The rapidity Separation between first and second rank hadrons is 0.55 for light hadrons, 0.94 for charmed

hadrons and 1.5 for bottom hadrons [8].
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Accordiiig to an argument of Gustafson and Sjogren [65] the (px) of a hadron species
shotild be smaller the lighter the produced hadron is. In addition lighter hadroiis have a
tendency to appear in "bunches". The argument is repeated here briefly: the probability for
a quark to fit into a bound state nieson is proportional to r?)"1 [8], i.e. it. depeuds 011 p± .
For heavy particles the p± dependence is only weak. but pions have a mass much sinailer
than the average p±. For this reason primary pions should have smaller transverse momenta
t h an ot.lier mesons. And siiice a qq pair with small p1 produces t wo mesons, these have an
iiicreased probability to end up äs two pions. Primary pions thus have a tendency to conie
in bunches, an effect not included in the Standard Jetset model.

A modified versioii of the Jetset 6.3 PS program [66] has been used to study this efi'ect.
This version allows us to chose the width of the Gaussian /> i distribution separately for e.g.
TT and p mesons. This simplified treatment does not include the ''bunching" of pions. The
latter effect certaiiily wouldincrea.se the A'"1 values due to a stronger aggregaiion of particles.
To shrmlate this behaviour the P/(V -f Pf ratio has beeil changed from its default vahie
0.5 to v/2 • 0.5. This doubles the probability to produce two neighbouring pions, because
this probability is proportional to P/(V + P}]2. In addition, the (p2j_) has been chosen to
be (50 MeV)2 for TT mesons. (450 MeV)2 for p mesons and (350 MeV)2 for all other primary
particles. The corresponding result is presented in figure 6.15c. Although the A-"1 distribution
has changed in the right direction, the effect is still too small to account for the difference
between CELLO and Jetset.

Higher multiplets: Other differeiices between Jetset 7.3 PS and Herwig 5.0 PS coiicem
the primary particle composition and the treatment of particle decays. Herwig generates
the meson multiplets listed in table 6.2, where the corresponding Jetset parameterization of
production probabilities is also given. The parameters a,/?,7,^ and refer to particles

Multiplet

Pseudoscalar

Axialvector

Vector

Scalara)

Axialvector

Tensor

Quark spin
5

0

0

1

1

1

1

Orbital angular
momentum L

0

1

0

1

1

1

Meson spin
Jp

o-
1+

1-

0+

1+
2+

Jetset 7.3
parameterization

f p \ ^\-

( p \(v+p)fa

( v ^ i 1 S "l(v+p)f(i P
( v } ä( v + p i f P
{ v } -( v + p ) f ^
( v } f( v + p ) f ö

a) Scalars are not included in Herwig

Table 6.2: Meson multiplets.

produced directly from the s t ring and have the following meaiiiiig:

5 P and V7 are used to abbreviate the prodliction probability for pseudoscalar and vector mesons respectively.
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• a is the probability that a spin one ineson (Jp - l4 ) is produced with a total quark
spin 5 = 0 and orbital angular momentum L ~ 1.

• ß is the probability that a spin zero mesoii (J — 0+) is produced with a total quark
spin 5 — 1 and orbital angular momentum L = l.

• 7 is the probability that a spin one mesoii (J - 1+ ) is produced with a total quark
spin 5 = 1 and orbital angular momentum L — l.

• ^ is the probability that a spin t wo mesoii ( J 1 ' — 24 ) is produced with a total quark
spin 5 = 1 and orbital angular momentum L — l.

t (w-jrpj - 0.5 is the probability that a mesoii, contaiiiing u and d quarks only. has

spin one.

• (T^~P) = 0.6 is the probability that a stränge mesoii has spin one.

• (r^-p J = 0.75 is the probability that a charm or bottom mesoii has spin one.

The Standard Jetset 7.3 Simulation includes only pseudoscalar and vector mesons, i.e. the
Parameters a,/?, 7 and 6 are equal to zero, although these multiplets are implemented. It can
be expected that the abseiice of higher multiplets, which implies a suppression of higher mass
states, has an iiifluence on particle correlations. To study this the parameters 0,^,7 and h
in the Jetset 7.3 PS model have been chosen to reproduce the primary mesoii multiplicities
of the Herwig 5.0 PS model. This four parameter fit has been performed with the routine
VALLEY 50], where each function call geiierated 5000 Jetset 7.3 PS eveiits according to the
actual values of o, /3,7 and 6. The \ has been determined froin the differeiice of ineson rates
in Herwig 5.0 PS and Jetset 7.3 PS. The fit results are: a = 0.026,/? = 0.056,7 = °-042 and
6 = 0.026.

Figure 6.15d compares the modified Jetset 7.3 PS Simulation to the Herwig 5.0 PS Simu-
lation and to the Standard Jetset 7.3 PS Simulation. Only a minor increase of the k values

is observed.
A further area of difference between Jetset 7.3 PS and Herwig 5.0 PS concerns the treat-

ment of particle production and decay. Firstly, the masses of several resonances such äs
p, K* etc. are geiierated in Jetset according to truncated Breit-Wigner distribntions, while in
Herwig these particles always acquire the same mass. Secondly, the decay tables and matrix
elements used in Jetset are much more detailed compared to the Herwig realization. This case
has been analysed by first switching the decay width off in Jetset and then by invoking the
Jetset routines for particle decays in Herwig. No significant impact 011 the k~l distribution
was found.

6.4.2.2 Herwig cluster model

Two major reasoiis are respousible for the appareutly differeut particle correlations in cluster

and string models:

1. The local formation of clusters from neighbouring quarks and aiitiquarks preserves fluc-
tuations occuring during partoii shower evolution. The string model, by virtue of its
underlying space-time structure smoothes these fluctuations.
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2. The cluster mass spectrum reseinbles t ha. t of primordial resonaiices. In contrast to tliat

only relatively light particles are produced in tlie string model".

To illuminate this Situation figure 6.17 shows t he cluster mass spectrum obtaiiied from Herwig
5.0 PS in romparison with t he primary particle mass spectrum generated by Jetset 7.3 PS. The

2.0
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1.0 -

0.5 -

0.0

-1.0 -0.5 0.0 0.5 1.0
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1.5

Figure 6.17: Cluster mass spectra from Herwig 5.0 PS (solid line *—• Mj - 3.5 GeV, dashed line i— Mj - oo
[scaled up by a faclor of ten]) and primary particle mass spectrum from Jetset 7.3 PS (open histogram). The
bumps in the cluster mass distribution are due to clusters containing charm or bottom quarks.

primary particle mass spectrum is shifted to lower values and moreover has a less developed

tail to larger masses. The significance of heavy clusters to the overall particle correlations
and fluctuations is revealed in the followmg study.

Cluster fission: The Herwig model invokes a "symmetrical string breaking" scheine to split

a cluster C of mass MC above the fission threshold M/ = 3.5 GeV into two clusters X and Y
with masses M^ ^ -&f>- == QoMc, where Q0 is the string eiiergy density (cf. section 2.2.3 011
page 14 for a detailed description of the cluster model). At most a small fraction of clusters

is involved (see figure 6.17) and therefore most event properties are not sensitive to details

of the cluster fission model, the particle correlations beiiig one exception.
If cluster fission is completely abaiidoiied (A// — oc) the particle correlatious are strongly

enhaiiced and in fact much too large compared to the data. This effect is revealed in figure 6.18
and is clear evidence for a string-like nature of particle production in the colour field of qq

is not really a property of the model, rather it is due to our limited hnowledge of higher resonances.
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Figxire 6.18: Studies of the k l rapidity dependence in the Herwig cluster model on two-jet events: the solid
line shows the result obtained from the default Herwig 5.0 PS Simulation with Mj — 3.5 GeV, the results froni
the modified version with M] - oo are shown äs the dotted line. The CELLO data are displayed with error
bars for reference.

pairs created in c+ c~ annihilation. On the other hand a pure string model, äs discussed
on pages Tlff smootlies fluctuations from the perturbative phase of particle production too
rigorously and thereby underestimates the correlations.

6.5 Outlook — e+e annihilation at LEP

The storage ring LEP delivers a high rate of e+e~ annihilation events at the Z° pole at 91
GeV centre of uiass eiiergy. The abundaiit pair production of colour triplet quarks (3) and

antiquarks (3) allows detailed analyses of the strong iiiteractions.
It is generally believed that the perturbative QCD phase is more developed at LEP ener-

gies compared to the lower PETRA energies and therefore marked difTerences for multiplicity
fluctuations can be expected. It is not clear a priori whether the differences between cluster
and string fragmentation remain observable under these conditions. This question is an-
swered in figure 6.19, where the rapidity dependence of the k~l parameter in the models
Jetset and Herwig is compared. If the total event sample is analysed, the t wo models give
almost identical results. This is because gluoii radiatioii is the maiii cause of fluctuations.
Compared to the 35 GeV data in figure G.12 the fluctuations appear stronger, indicated by
larger k~l values. And further, the rapidity ränge dominated by gluon radiatioii is enlarged,
revealing the larger phase space available at higher energies. The analysis of two-jet events
(selected accordiug to the prescriptiou in sectioii 4.1.1 with rfjott, — 5 GeV) shows the saine
diflerence between cluster and string fragmentation that has been the topic of the preceding
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Figure 6.19: Rapidity scan at LEP energies: the total event sample is indicated by the open dots (Jetset)
and the solid line (Herwig); the two-jet selection is represented by the open squares (Jetset) and the dotted line

(Herwig).

sections. This opens the possibility to continue the study of this effect at LEP.

6.6 Summary on multiplicity distributions

The topic of the present chapter has been the occurrence and Interpretation of particle corre-
lations and fluctuations observed in longitudinal phase space. To study this case the multi-
plicity distributions in central rapidity bin s of varying size have been aiialysed and compared
to Monte Carlo simulations. To facilitate these differential aiialyses the (negative) binomial
distribution has been used to condense the Information contained in the multiplicity distribu-
tioii into two numbers: in particulai the k~l paranieter turned out to be a sensitive measure
of correlations and fluctuations. The observed dependence of the correlation strength on the
rapidity bin size was found to be gemiinely due to a dependence on the rapidity position, äs
has been made clear by the rapidity scan.

An important result has been t hat correlations observed in the total event sample are to
a large extent caused by the occasioiial appearance of hard gluons.

The analysis of two-jet events revealed a sigiiificant difference between cluster and string
models, where the former are favoured by the experimental data. In particular properties
of longitudinal and transverse fragmentation have been aiialysed and modified to improve
the performance of the string model. Although an iinprovenient has been obtained it. is not
sufficient to remove the discrepancy between experimental data and model. From this study
it is concluded t hat pure string fragmentation smoothes the effect of soft gluon radiation
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too rnuch. In addition it has been noted t hat the niass spectrum of priinary particles in

the st ring model is too soft and should be modified to reprodure the priinordial resonance
mass spectrum, äs is the case in the cluster model. A problem occurs here with the Luiid
Symmetrie fragmentation function. which tends to order heavy particles more strictly in
rapidity. Nevertheless, evidence for a striiig-like nature of particle production is provided by
the requirement of string-like fission of heavy clusters, without which the cluster model would

also fall to describe the da.ta.



Chapter 7

Intermittency — theory and
experiment

In this chapter theoretical and experiuiental aspeots of intermittency analyses are disciissed.
Tlie term intermittency originally iiaiues t.lie temporal aiid spaiial fluctuations in turbulent
fluids [82] and has beeil introduced into high energy physics by Bialas and Peschanski [75 .
The iiitermittent behaviour of a System reveals i t seif äs factorial moments growing äs a power
witli t he decreasing size of the analysed phase spare domaiii 6:

The existeiice of such a power law could eveiitually be interpreted äs the manifest ation of a

self-similar aiid fractal process. It will become clcar in the course of this investigation t hat
this relation is not always straightforward, and therefore the term intermittency is solely used
to name the factorial monient analysis and not t o express a particular Interpretation.

The present study of factorial moments of multiplicity distributions has the analysis of
particle correlations and fluctuatioiis in common with the investigations presented in chap-

ters 6 and 9. In addition, factorial moments facilitate the analysis of higher order correla-
tions and allow an analysis even in three-dimensional phase space. Moreover the observed
behaviour can be attributed to a frac.tal dimension of the multihadroiiic final s täte - an
intuitive description which eases the understanding of the results.

In the following sections an introduction to the factorial moment iiiethod is giveii. The
correspondiiig analyses are presented in chapter 8. Part of this work is already publishcd
J53-55J and was presented a t Conferences lGÜ-63].

7.1 Factorial moments

The topic of the present chapter is intermittency in one- and two-dimeusioiial projections
of phase space and in the three-dimensional phase space i t seif- The topological dimension
of the phase space projection under coiisideration is denoted by DT- This study consists of
an iuvestigatioii of the resolution dependence of factorial moments and its origin. For this
the original phase space is successively, and siniultaneously in each dimension, divided into
halves, yielding one-dimensioiial bins for DT -- 1. two-dimensional planes for DT — 2 and
three-dimensional boxes for DT = 3. The resultiug total number of D^-dimensional phase

81
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space cells 777 obtained after B bisections in each diniensiou is given by the following relation:

Total number of phase space cells: 77? - 2 1' . (7 .2)

The normalized factorial moments of rank q are then defined by the following formulae [76|:

-i "i ,. l ,, 1 i l -,, n i 1 \  J ^ V  \ \  T  ^  \ m  v  q  5  '  •  •* l

777 —: (??)9

. (7.4)

T wo averages are implied in the above defmitkms: the average over n? phase space cells (these
iiiight be one-, two- or threc-dimensional. depeiidiiig on DT) and the average over all events,
äs indicated by the square brackets. The two above defnritions difFer in the normalization:

• Equation 7.3 defines the so-called horizontal average, where the normalization is done
according to the overall average number per bin (n] • Y,™=i {"A-}/™- Due to this
global normalization horizontal moments are sensitive to the shape of the inclusive
distribution. This implies a rise of the factorial moments up to the scale where the
particle density is almost constant over one bin, after t hat genuine particle correlations
become visible.

• Equation 7.4 defines the vertical average. where the normalization is done according to
the local average (n^). Owing to this definition vertical moments are sensitive oiily to
fluctuations within each bin, but not to the overall shape of the inclusive distribution.

The original nieaniiig of intermittency in the seiise of Biaias and Peschauski äs a power law
growth (7.1) is oiily revealed in case of constant inclusive distributioiis [75]. This reflects
a basic intention behind intermittency aiialyses, iiamely the niain emphasis to particle fluc-
tuations inside individual events in contrast to fluctuations of the eveiit ensemble. Since a
constant inclusive distribution is hardly ever found in nature and in particular e 4 f ~ aiinihi-
latioii is characterized by jet production, which Signals a stroug reduction of the transverse
phase space, several procedures have been proposed to unfold variations of the event ensemble
from the factorial momeiit aiialysis. The local normalization implied by (7.4) is a first exam-
ple; liere the weighting according to the average bin population compeiisates the Variation of
the inclusive distribution. More sophisticated methods are presentediii the following section.

7.2 Variable transformations

It is clearly visible in figures 5.3 and 5.2 t hat the inclusive distributioiis observed exper-

imentally are not constant. Their variations would modify the factorial moments at the
corresponding resolution scales and therefore fake inteniiitteiit behaviour, even in case of

complete absence of genuine particle correlations. However, it is possible to unfold these

variations from the factorial moments by appropriate variable transformations, äs will be
explaiiied in the following.
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7.2.1 Ochs method

The method proposed by Ochs is intended for use in three-diniensional interniittency analyses
77], where in particular the px distribution shows stroiig variations. The procedure consists

of a variable transformation -r —* .r. such that the distribution p(;r) is constaiit. This js
achieved by the transformation:

where p ( x ) are the inclusive density functions and .r is any phase space variable, like y, <p

or p\. ;cm,n and xmQ3. are the lower and upper phase space limits of the variable y. The
transformed distribution p ( x ) is uniform in the ränge from zero to one. This transformation
is intended to adjust the binsize in such a way that, 011 average, each bin contains the same
number of particles. In figure 7.1 the transformation functions for y —t y. <f> —-* <j> and / —•* /
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Figure 7.1: Ouinulative distributions (CELLO data) o f t / ,
according to Ochs.

and log(p^) for tlie variable Iransformation

are showii; 1= log(p^ ) has been used to reduce the rapid Variation of the p\n and
hence to facilitate the numerical treatnient. In case of constaiit inclusive distributions the
transformation functions would be straight lines.

The Ochs method is applicable in any dimension. but it has the disadvantage that each
linear phase space projection is treated independently and therefore correlations between dif-
ferent variables are neglected - an approximation which is not aiways sufficient äs is demoii-
strated in figure 7.2. In the ideal case of uiicorrelated variables the particle density in the
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transfornied spare would be coiistant. i.e. every box would contain the saine number of parti-
cles. This is apparelltly not the case. since a clearly non-constant particle density is observed
after the transformation. The high quality of the Monte Carlo Simulation is also visible in
tigure 7.2. which is seen t o reproduce the phase space population extremely well, implying a
correct Simulation of correlatioiis between the phase space variables.

7.2.2 Biaias & Gazdzicki method

A generalization of the previous traiisformation has been proposed by Biaias and Gazdzicki
[79]. Their treatment takes the correlatioiis between different variables int o account. In the
three-dimensional case the method is based on the following integral equatioiis:

P(x) [P(x,y')dy' , (7.8)
J

where the integrale run over the füll phase space. The transfornied variables i, y, 5 are then
defined in teriiis of the probability densities P (7.6 — 7.8):

P(x')d.r' . (7.9)
a

= f P^P^=r P(i,y'W, (7.10)
Jilnttn •* \F t J^Tnnj 'Fii ii \ yin iJi

= r p(xi*zt)*z-
^m,n PX

Since the computational realizatioii of this transformation is non- trivial a short description
of the invented algorithm is giveii here.

7.2.2.1 Transformation algorithm

The problem is to find a decomposition of the three-dimensional phase space into boxes with
equal particle conteiit. After e.g. B = 6 bisections in every dimeiision the total number of
boxes is 77? = 21*1 - 262,144. Giveii six coordinates to define the positiou of a box in phase
space, a total of ̂  1.57 -l O6 coordinates rnust be known to enable the assignment of a particle
to its box. Oiice these coordinates are defined, the actual assignmeiit requires us to compare
three particle coordinates with six coordinates of 262,144 boxes!

The idea to solve this problem is äs follows: the Information iieeded to perform a three-
dimeiisional intermittency analysis consists of three phase space variables, e.g. y-,4>-,p\d
the event number for all particles. Tllis data is stored in arrays and is kept in the main
memory of the Computer. In the first step the y array is raiiked in ascending order, providing
an index array which is used to trace the remaining variables (0,/>5_ anc^ tne event number) to
the elemeiits in the ranked y sequence. Then the y array is divided into the desired number of
sub-arrays contaiiiing equal numbers of particles. Since particle numbers are integer valued
this divisioii is not always possible. Actually N particles are distributed over 77? boxes äs
N — r??]?? + r77.2(« — 1), with T?? — m i + 77? 2 - Particles belonging to the sanie y sub-array
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Figure 7,2: Particle density after the Ochs transformation for ten bins in each dimension. The resulting
thousand boxes are labeled 100 x I ( y ) -f 10 x 7(<p) + / ( / ) : l - 0 , . . . , 9. CELLO data (statistical errors
indicated) are compared to the Jetset 7.2 PS Simulation (histogram).
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are given a common index. rcplacing the old y values. This index, together with the event
number. is later 011 used to determine the phase spare boxes occupied by particles froni the
same event. In the second step, for every y sub-array teparately, the corresponding o array
is ranked in ascending order, again using an index array to trace the reniaining variables (p\d event. number) to the ranked o sequence. As before the desired divisioii is made and

particles beloiiging to the same </> sub-array are assigned a comnioii index. replacing the old
O values. In the third step, for evcry o sub- array separately^ the corresponding p\y is
ranked in ascending order. The inde.x array is now used to trace the event number to the
ranked p\e and the desired divisioii is made, replacing the p\s of particles
belonging to the same -p\y by a common index.

At the end of the procedure the positkm of each particle in the transformed phase space
is defined by three indices, labeling the phase space box and by its event nuinber. In the
final step the entries are sorted according to the event number. Tlns Information is readily
transformed into factorial moments. The complete procedxire for 500.000 particles with six
dlfferent phase space decompositions, including the calculatioll of factorial moments and the
covariance matrix requires one minute of Computer tiine (including I /O) on the DESY IBM
ES 9000/720 vector facility. This fast performance made possible the detailed analyses and
Monte Carlo studies presented in chapter 8. For illustration figure 7.3 visiializes a few steps
of the algorithm in the two-dimeiisional case.

7.3 Covariances and statistical errors

The covariances V*m between factorial moments F^ and Ff of the same rank q are defined by
the following matrix:

, (7.12)

and the F^ are given by (7.3) and (7.4). In case of the horizontal normalization the covariances
must be determined after the average over bins has been carried out, since only the bin-
averaged moments are expected to have a common mean value. In case of the vertical
normalization a mathematical equivalent procedure would be to consider each bin äs an
individual measurement, but also here the bin-averagecl moments liave been used.

From the covariance matrix (7.12) the error on the mean value (F^) is obtained äs:

Error on mean value:

These are the errors used in the forthcoming analyses. The complete covariance matrix is also
used to propagate the errors from the factorial inoment measurement to the correspoiiding
fractal dimension, äs discussed in section 7.4.

The covariance matrix is of interest initself: at first it can be transformed into a correlation
matrix:

V.g
lm (7.14)

which reveals the Information iiiherent in the factorial moments. And second its iuverse

(^m)~J 1S predicted to l>e tridiagonal in the ö-model [80].
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88 Chaprer 7. Iiifermiffenry - theory and expcnmcnt

7.3.1 Test of statistical errors

To test the validity of (7.13) fifty CELLO type experiments (20,000 events each) have beeil
simulated with Jetset 7.2 PS. The factorial moinents (F^} from a one-dimensional rapidity
analysis in the ränge —2 ^ : y ^ -(-2 have been calculated for each individual experiment.
This yields, for every rank q and every bin division 777 a distribution with fifty eiitries. The
r.in.s. width of these distributions gives an estimate for the "true" Standard deviation. In

l O2

A
er

v 101

A

V
"ET

10°

10-l

101 102

number of bins
l O3

Figure 7.4: Test of error estimate: the per cent errors from the covariance matrix, averaged over fifty experi-
ments, are shown äs the open Symbols. The "true" errors, obtained äs the r.m.s. width from fifty experimenls,
are shown äs the lines (F2 *—» circles and dash-dotted line, F3 *—> squares and dashed line, F4 *—* diamonds and
dotted line, F5 >—• triangles and solid line).

figure 7.4 the "true" per cent error on (F^} is presented äs a function of the number of bins
777 and compared to the average per cent error derived from the covariance matrix. It is
found that the factorial moments from different experiments follow a Gaussian distribution
with a Standard deviation giveu by (7.13) for q — 2,3 and for inodest values of m in the case
of higher ranks. For very large m values and high ranks q the factorial moments show an
exponential distribution due to maiiy experiments with zero contribution to the nie an value.
In this case (7.12) is no loiiger a robust error estimate; i.e. it underestiniates the errors. It
is found that the error estimate giveii by (7.12) is reliable, provided at least teil events from
a single experiment contribute to the mean value (F^). This criterion applies to all results
presented in chapter 8.
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7.4 Fractal dimensions

The local iiitermittency expoiients ^ are related to the factorial moments by the following

derivative:

(7.15)
c? In m

i.e. they correspoiid to the slopes in a double lop;arithmic plot of In (F£,) versus lim?. In this
context the term local is used to express the 111 dependeuce of ̂ .

The theory of fractals [81,82] allows these local iiitermittency expoiients to be interpreted
äs a fractal dimension of the object under study via the linear relation:

/ vq \9F = DT[l- - . (7.16)

V s-1/

In general D'F may depend on the rank q. in this case the object under study is a multifractal.
A simple example may explaiii the relatioii between factorial moments and fractal dimen-

sions: Assume that N particles are randomly distributed in a .Dx-diinensioiial phase space
consistiiig of 7>? cells. Theu the particle coiitent of every phase space cell k follows a Poisso-
nian distribution with (?jj,) = N/m, and the (F^) calculated according to (7.3) and (7.4) are
observed to be independent of m. Consequently the derivatives (7.15) vanish and D"p = DT
for all ranks q. Now consider the other extreme case, that all N particles of an event are
placed in one singular point, then the sum in (7.4) and (7.3) is constant for any given m and
(F^} is given by the factor rrr9^1', consequently $q — q - 1. Inspecting (7.16) gives D1^ — 0
for all ranks q, which coincides with the intuitive expectation for a point-like object. This
example can be geiieralized to distributioiis which are phase space like in DqF dimensions and
singular in DT — DqF dimensions. The factorial moments (F^) of such distributioiis can be
shown to exhibit a power law behaviour with slope:

VT

Solving this equation for DqF leads to the definition of fractal dimensions (7.16).



Chapter 8

Intermittency analyses

The topic of this chapter is intermittency analyses according to various niethods which are
summarized in table 8.1. These analyses cover difFerent aspects of multiparticle produc-
tion, depending on the studied variables and their dimensionality. The uumerical results are
presented in tabular form in the appendices A-C.

Transformation:
Normalization:

DT = l y
DT = 1 y,4>
DT = 3 y,<£,pl
DT = 3 pz/E^pjE^pJEl

None
vertical horizontal

+ +
+ +
— —

+

Ochs
vertical horizontal

+ +
-f- +

4-
— —

Bialas
horizontal

+
+
+
+

Table 8.1: Survev of inttrinittencv analvs.es.

The factorial moments in high energy multiparticle production have a complex structure.
This ineans on the one liand that the Interpretation is not straightforward; on the other hand,
it opens the possibility to study subtle details of the hadroiiization process. The strategy of
this aiialysis is to isolate iiidividual efFects, if possible directly froin the data, or by meaus of
Monte Carlo simulatioiis. This procedure proved very powerful in relatiiig the experiinental
observatious to known physical processes.

In this thesis I will not follow the cumbersome historical evolntion of intermittency analy-
ses but rather present the curreiit state of the art. The comparison with results froin processes,
other t hau e + c~ annihilatioii, is beyond the scope of this work; the interested reader may
consult review articles 52]. Intermittency studies from TASSO at PETRA and experiments
at LEP can be fouud in [56,57-59].

This chapter is divided int o five sections; the following sections 8.1 and 8.2 are dedicated
to one- and higher-dimeiisional analyses. using cylindrical coordinates defined by the anni-
hilatioii event. Sectioii 8.3 present s fürt her aspects of intermittency analyses. In section 8.4
a three-dimensioiial aiialysis in cartesian coordinates is presented. Finally the results are
summarized in section 8.5.

90



S.l. One-diniensioiinl a

8.1 One-dimensional analysis

The first iiitennittency aualyses were in every case one-diniensional, until the iinportance of
the phase space diiiiension was noted ^78 .

8.1.1 Füll rapidity ränge

At first the füll rapidity interval from -5 to -- 5 is considered for analysis, over which the
inclusive distribution varies stroiigly (figurc 5.3). This Situation is ideal to study the efTect
of a varying inclusive distribution on the factorial moments, and it further emphasizes the
effect of the difFerent iiormalizations implied by (7.3) and (7.4). äs well äs demoiistrating the
eifert raused by a variable transformation.

8.1.1.1 Horizontal normalization

0.5 -

0.0 -

0 l 4 5 6 7 8 0 1 2 3 4

1-D bisections [B]

Figure 8.1: Horizontal factorial moments in füll rapidity space: CELLO data (open symbols) are compared
to l he CELLO "toy" inodel (dotted lines) and to the Jetset 7.2 PS Simulation (solid lines).

Figure 8.1 compares the horizontal moments ( F q ) calculated from CELLO data to the cor-
respondiiig results from the CELLO "toy'" inodel (see section 5.4 on page 53 for a description
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of the model). This comparison makes it apparent that the fast initial rise of the factorial
uiomenf s is entirely due to the Variation of the inclusive distribution.

At B ^ 2 (6y •_[ 2.5) the onset of genuine particle correlations is sigiiified by almost
constant iiioiiients in the "toyv niodel. in contrast to the rising iiionients observed in real
experiment. This exteuds up to B — 4 (f>y ^ 0.5). after which a saturatioii of the momeiits
is observed both in the data and in the utoy" model.

Figure 8.1 displays also the results obtained froin the Jetset 7.2 PS Simulation, which are
seen to be in good agreement with the data.

8.1.1.2 Vertical normalization

4.0 ;

3.0 :

0.5 -

0.0 -

0 l 2 3 4 5 6 7 8 0 1 2 3 4 5 6
1-D bisections [B]

Figure 8.2: Vertical factorial moments in füll rapidity spare: CELLO data (open symbols) are compared to
the CELLO "toy" model (dotted lines) and to the Jetset 7.2 PS Simulation (solid lines).

The vertical momeiits (Fq}v are seen to behave completely differeiitly in figure 8.2. In this
case the local normalization (7.4) gives large weights to phase space regions of low particle
density, and thereby amplifies this contribution to the bin-averaged moments.

From the analysis of multiplicity distributions in chapter 6 it has become clear that
fluctuations in the low density region y > 2 are binomial. This translates, by virtue of



8.1. One-dimensioiifd analysix 03

the local normalization, iiito almost constant factorial moments (F'2) and {F3}. In fact , froin
the slight decrease of (F2) it is seen that fluctuatioiis are really smaller than Poissoiiian.

For higher raiiks (q — 4,5) the coiltribution froin the rapidity region y > 2 is drastically
reduced, at least in real data, leading to rising factorial moments. This is because factorial
moments of rank q receive contributions froin those bins only, which contain at least q parti-
cles. It is simply energy-momentiim conservation whichs makes it impossible to find four or
five particles in the rapidity region y > 2. Fluctuations in the utoy" model are Poissonian by
construction, with additional constraints imposed to reproduce the total multiplicity and the
inclusive distribution. This leads to the observed constancy or even decrease of the factorial
moments.

8.1.1.3 Variable transformation

4.0 E

3.0 f

0.5 h

0.0 h

0 1 3 3 4 5 6 7 8 0 1 2 3 4 5

1-D bisections [B]
7 8

Figure 8.3: Transformed factorial moments in füll rapidity space: CELLO data (open Symbols) are compared
lo the CELLO "toy" model {dotted lines) and to the Jetset 7.2 PS Simulation (solid lines).

In the case of a one-dimeusional analysis the transformation procedures of Ochs and Bialas
& Gazdzicki, discussed in section 7.2 are identical. Since their computational realization is
completely different the one-dimeiisional analysis serves äs a consistency check. Inspecting the

tables in appendix A it is seen that both procedures give in fact the same results. Furthermore,
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it is noted t hat the horizontal and vertical norinalization in case of the Ochs method yield
identical results. This is, of course, äs expected since the inclusive distribution is constant
alt er the variable transformation.

In figure 8.3 CELLO data are oiice inore compared to the "toy" model, which shows only
Poissonian deiisity fluctuations, indirated by constant factorial moments after the variable
transformation.. The description provided by the Jetset 7.2 PS Simulation is satisfactory. al-
though the model slightly underestimates the data. It is demoiistrated in the following section
t hat the description caii be considerably improved if Böse-Einst ein correlations are included
in the Monte Carlo Simulation. The significance of the Böse-Einstein effect for fluctuations
in the Jetset model has already been noted in the analysis of multiplicity distributions in

chapter G.

8.1.1.4 Hard gluon radiation

It is intuitively clear t hat hard gluon radiation induces strong fluctuations in rapidity space.
Fragments from a gluon radiated under an angle -d off a primary quark populate the (pseudo)-

rapidity region ?/ = — ln[tan(t?/2)].

0

ln<F3>

0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8

1-D bisections [B]

Figure 8.4: Transfornied factorial moments for two-jet events compared to the entire data sample in the füll
rapidity ränge: the total event sample {open circles) is compared to the two-jet selection (open squares). The
Jetset 7.2 PS and 7.2 PS-f BE simulations are indicated by the solid and dotted lines respectively.

This effect can be isolated directly from the data by means of the two-jet selection de-
scribed in section 4.1.1 on page 31. A marked difference is observed in figure 8.4, where the
transformed factorial moments from two-jet events are compared to the entire data sample.
The initial rise of the factorial moments up to resolution scales of <*>(/ % 0.5, exhibitecl by the
total event sample, is considerably reduced in two-jet events.

Another important observation is the apparent failure of the Jetset model in describing the
two-jet data. Since this discrepancy becomes visible after effects from hard gluon radiation
have been removed, it reveals its iion-perturbative origin. This effect has been studied in
detail in chapter 6 and is further examined in the following section.
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8.1.1.5 Multiplicity dependence

Following a Suggestion of Ochs the iiiultiplicity dependence of factorial moments lias been
studied [68,70]. The idea is t hat an inadäquate treatment of the hadroiiization process should
be emphasized in eveiits of low inultipläcity. In particular, it is conjectured tmder the as-
sumptioii of local partoii hadroii duality, t hat string models should underestimate particle
correlations due t o t-h ei r eitergy dissipating mechaiiism.
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Figure 8.5: Multiplicity dependence of factorial moments in the füll rapidity ränge. The open Symbols represent
the CELLO data, while the curves show the Jetset 7.2 PS+BE Simulation: (N) = 6.8 h-+ open circles and solid
lines: (N) = 9.9 *—* open squares and dotted lines: (N} — 13.5 t—» open diamonds and dashed lines.

To test this idea the total event sample is split in three sub-samples of mean multiplic-
ities (N) — 6.8, 9.9 and 13.5, coiitaining approxiniately the same number of events. The
transformed factorial moments froiu a oiie-dimensional analysis in the füll rapidity ränge are
presented in figure 8.5 and compared to the Jetset 7.2 PS+BE Simulation. Apparently the
higher multiplicity events are very well described, while a significant failure is observed for
very low multiplicity events. This observatioii supports the results from the factorial moment
analysis of two-jet events and is in füll agreement with the study of multiplicity distributions
in chapter 6.

It is expected that residual r pair events preferentially appear in the lowest multiplicity
sub-sample ( ( N ) — 6.8). Since these events are not included in the Monte Carlo Simulation,
it might be asked what their coiitribution to the factorial moments is. To reject any such
events it is required that at least one event hemisphere (defined by the sphericity tensor)
must contaiii a miiiimum of five charged particles. It is virtually impossible that a r pair
event passes this condition. The factorial moment analysis is then repeated, and it is fouiid
that the discrepancy between the CELLO data and the Jetset model remains, although at
a reduced level, which can be attributed to the increased meaii multiplicity implied by the
additional selection criterion. From this it is concluded that the observed discrepancy is a
real effect. This observation is further supported by DELPHI and OPAL at LEP [57,58].

The comparison of cluster and striug-based fragmeiitation models in figure 8.6 reveals
a marked difference between the two approaches. The general trend is that cluster models
show larger correlatioiis than string models due to the local hadroiiization mechanism in the
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Figure 8.6: C'omparison oftow multiplicity events (A: - 2-8) in cluster and string models in a one-dimensional
y analysis of (F2): Jetset 7.3 PS (solid line), Jetset 7.3 ME (dotted line), Ariadne 3.1 CD (dashed line) and
Herwig 5.0 PS (dash-dotted line).

former. If this figure is compared to the experimental data (figure 8.5) it can be concluded
t hat the cluster inodel provides an adequate description of particle correlations in rapidity
space, in line with the results obtained in section 6.4. The strong ordering in rapidity space
occurring in the Lund string niodel snioothes particle fluctuatioiis, which is apparently not
supported by the data. The Bose-Einstein effect partly removes this ordering and thereby
increases the fluctuations, äs is visible in figure 8.4.

8.1.2 Central rapidity ränge

z isIt was pointed out in chapter 6 t hat particle produotion in the rapidity region |
strongly affected by conservation laws. This rapidity region is excluded from the analyses
presented 111 this section. The difTerence between horizontal and vertical normalization is small
in this case because the rapidity distribution varies only slowly over the ränge considered here.
Therefore figure 8.7 shows only the horizontal factorial moments; for completeness appendix A
contaius all other results.

The comparison with the "toy" model reveals the füll strength of correlations present in
the data and inakes it clear t hat the factorial moment method is adequate to extract these.

From figure 8.7 it is immediately seen that the factorial moments of rank q — 2 , . . . ,5
rise linearly up to by ^ 0.5; after that, the moments bend over and approach a coiistant
value. In this context an important observation has been made by Ochs; namely that the
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Figure 8.7: Horizontal factorial moments for central rapidity: CELLO data (open Symbols) are compared
to the CELLO "toy" model (dotted lines), to the Jetset 7.2 PS Simulation (solid lines) and to the Jetset 7.2
PS+BE Simulation (dashed lines).

intermittent behaviour of a three-dimensioiial system remains eventually unresolved in one- or
two-dimensional analyses [78]. Therefore any conclusion about the existence of intermittent
fluctuations in e+e" aniiihilation xuust be the subject of lugher-dimensional analyses, whicli
are presented further below.

The resolution dependence of factorial moments can be compared to the observation made
in section 6.2, where the k'1 parameter for multiplicity distributions in central rapidity bins
was found to approach a constant value for 6y < 0.5, implying constant factorial moments of
all ranks. This result has been obtained under the implicit assumption that the multiplicity
distributions are of negative biiiomial type. This assumption is now supported by the direct
measurement of factorial moments, whicli iiideed show the expected constaiicy.

8.2 Higher dimensions

The results presented in this section are based o n the variable transformatioii due to Bialas
and Gazdzicki described in section 7.2. Results from other methods are available in tabular
form and can be consult.ed m the appendices B and C for reference.
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8.2.1 Phase space dimension

An importaiit fiiidiiig in intermittency studies is the significaiice of the phase space dimension.
It was showii by Ochs 78] that a three-dimeiisioiial intermittent System may hide this proper t y
if analysed in one- or two-dimensioiial projectioiis of phase space.

0 l 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7

bisections [B]

Figure 8.8: Transformed factorial moments (F2} - (F*) for increasing number of bins m = 2DT'B. The open
symbols represent the CELLO data, while the curves show the Jetset 7.2 PS+BE model. DT — 1; y analysis i—»
open circles and solid lines: DT — 2; y, </> analysis >—> open squares and dotted lines: DT = 3; j/, 0, p"j_ analysis
H-» open diamonds and dashed lines.

In the preceding section the one-dimensional factorial moments have beeil seen to saturate
after a s t roiig initial rise. From the analysis of two-jet events it h äs been concluded that
this initial rise of the moments is related to hard gluon bremsstrahlung, which causes strong
multiplicity fluctuatioiis in certain rapidity regions. What happens now in higher dimensions?

To ans wer this questioii, figure 8.8 comparcs the factorial moments from the one-
dimensioiial y. the two-dimensioiial y, (p and the three-dimeiisioiial y, <^, p\. Indeed,
the higher dimensional factorial moments of rank two and three apparently show a continual
rise up to the highest resolution scales, accessible with the given detector resolution. This
behaviour can alternatively be expressed äs a fractal dimension of the analysed System, äs
h äs beeil discussed in section 7.4 011 page 89. Figure 8.9 presents these fractal dimensions,
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Figure 8.9: Fracta] dimensions D^F and D\r increasing number of hins m = 2 *"*. The open Symbols
represent the CELLO data, while the solid and dashed lines show the Jetset 7.2 PS model with and without
Böse-Einstein correlations.

and it is clearly seen t hat the dimeiision of the multihadronic final state is smaller than the
topological phase space diniension. It is further noted that this property is observed only in
the higher dimensional analyses, revealing the importance of the phase space diniension.

The higher ranks g — 4,5 show a very differeut pattern: nrstly they are very siniilar in all
dimensions and secondly they bend over and approach a constant value. This implies that
there are 110 four- aiid five-particle correlations. A not very surprising result, siiice at 35 GeV
particle Systems of that size correspond to entire jets, of which at most three appear in one
event, leaving not much freedom for the development of a cascade with a fractal structure.

The complex behaviour of the factorial moments is further discussed in the following
sections. It is certainly due to conventional physics, siiice it is apparent that the Jetset 7.2
PS-f BE Simulation provides an excellent descriptioii in all dimensions.

8.2.2 TT° Dalitz decays and resonance decays

The contribution of resonance decays to the complex resolution dependence of factorial mo-
ments is best analysed by means of Monte Carlo studies. Their importance is demonstrated
in figure 8.10, wkere the dramatic change in the fractal diniension (see section 7.4 on page 89
for the definition) due to TT° Dalitz decays is shown. It should be noted that the Dalitz decays
are only visible in higher dimensional analyses and moreover they occur at scales where the
finite detector resolution becomes important, inakiug it impossible to see the füll strength of
the effect. However, äs shown in figure 9.2, there are maiiy other resonance decays at larger
correlation scales, which are easily accessible by the experiment and modify the factorial
moments äs well. Under these circumstances it is noteworthy that CELLO has measured
a variety of inclusive particle cross sections (see section 4.4) to be in good agreement with
Standard Monte Carlo models.
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Figure 8.10: Fractal dimensions Dj. and Z)£. The solid lines coirespond to the default Jetset 7.3 PS Simulation.
The open symbols show the same model. neglecting e+ e~ pairs froni TT° Dalitz decays and T T ^ T T " pairs froni
?/ — i TT+TT" TT° and i}' — ' 7r + 7r~ ?j decays.

8.2.3 Bose-Einstein correlations

In section 9.1 a direct measureinent of Bose-Einstein. correlations is presented. It is found
that the correlation length is C ~ 0.1 GeV , froni this an effect is expected at intermediate
and high resolution scales.

The analysis of like-sign charged particles provides niore inforniation on the significance of
Bose-Einstein correlations, since the effect of resonance decays is strongly reduced. For this
analysis positive and negative particles from one eveiit are considered äs two separate events.
The corresponding results are shown in figure 8.11. Obviously, the Monte Carlo including
Bose-Einstein correlations provides a very good description of the data. And furthermore,
the difference between the two Monte Carlo versions is much more pronounced than in the
analysis of all charged particles (figures 8.8, 8.9). This makes it clear that Bose-Einstein
correlations have to be incmded in the Jetset model to describe the factorial moments.

Bose-Einstein correlations are one reason for the discrepancy between TASSÖ data and
.Tetset version 6 [56], since this model does not include Bose-Einstein effects and fürt her does
not include a proper treatuient of TT° Dalitz decays 62].

8.2.4 Azimuthai anti-correlations

In section 6.4.2.1 particle production in the string model was discussed. There it was stated
that the one-dimeiisioiial nature of the striiig leads to azimuthal anti-correlations. These
correlations are expected to become visible in an analysis including the azimuthal angle
arouiid the jet axis, äs shown by Sjöstrand [69].

Here we present a one-dimensional analysis of the azimuthal distribution of particles
around the jet axis (see section 5.2). Only t wo-je t events are considered for analysis, since
liard gluon radiation would obscure the effect.

The results are presented in figure 8.12: anti-correlations. indicated by decreasing factorial
moments, are seen only at very coarse resolution in the data. Contrary to this, the factorial
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Figure 8.11: Factorial moments and fractal dimensions for like-sign charged particles. Lower plots: (F2) and
(.F3); the data are represented by the open symbols and the Jetset 7.2 PS + BE Simulation is indicated by the
curves. DT — 1; y analysis h~+ open circles and solid lines: DT - 2; y, <b analysis K-+ open squares and dotted
lines: DT = 3; y, $,p\s K-+ open diamonds and dashed lines. Upper plots: D2F and D*F. The open
symbols show the CELLO data while the solid and dashed lines correspond to the Jetset 7.2 PS model with
and without Bose-Einstein correlations.

moments from the Jetset 7.2 PS model decrease also at higher resolution and fail to describe
the data.

The initial decrease of the moments, at, coarse resolution, can be attributed to global p±
conservation in the entire event, while the decrease observed at higher resolution scales in
the Jetset model is due to the local p± conservation of quark-antiquark pairs produced off a
oiie-dimensional striiig.

An interesting observation is made when Bose-Einstein correlations are included in the
Jetset model: the azimuthal anti-correlations disappear and the model provides a very good
description of the data. This is understandable, since the strong anti-correlations induced by
local pi compensation are destroyed by the Bose-Einstein effect. Whether the parameteri-
zation of the Bose-Einstein effect in the model of Sjöstrand [9] is correct remains an open
questioii. However, this model provides an improved description of particle correlations and
fhictuations in the st ring model and therefore has physical sigiiificaiice at least in this context
(cf. section 9.1).
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Figure 8.12: Transformed factorial nionients for two-jet events in 4> space. CELLO data (open Symbols) are
compared to the Jetset 7.2 PS Simulation with and without Bose-Einstein correlations after detector Simulation,
shown by the solid and dotted lines respectively. The Lund string model (dashed line) is compared to the Herwig
cluster model (dash-dotted line) on the generator level.

Finally it should be pointed out tliat the Herwig model fails significantly to describe
azimuthal correlations in the data (figure 8.12). It xnight be objected that the Herwig Simula-
tion does not include the Bose-Einstein effect. However, this objection does not apply liere -
particle correlations in the Herwig model remain almost uiichanged when Bose-Einstein cor-
relations are introduced accordiiig to the recipe of Sjöstrand. This holds for both azimuthal
and rapidity correlations, although the expected effect is visible iu the Q2 distribution. The
reason for this is twofold: firstly, Herwig contains fewer like-sign charged particle pairs thaii
Jetset, such that the generated correlation strength is weaker (see section 9.1). Secondly, the
disorder of the final state particles already beforc Bose-Einstein correlations are turned on is
larger in the cluster model. In other words, it is impossible to disorder für t her a completely
disordered System. In this point string and cluster model s differ significantly: while the for-
mer model produces an almost coherent System, the latter produces an almost disordered
final state.
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8.3 Aspects of intermittency analyses

In tliis section additional results from the above intermittency analyses are presented.

0 2 3 4 5 6 7 8 0 2 3 4 5 6 7 8

bisections [B]

Figure 8.13: Fraction of events contributing to the factorial moment measurement according to Bialas and
Gazdzicki. The open symbols represent the CELLO data and the curves show the Jetset 7.2 PS model. DT ~ 1;
y analysis •—* open circles and solid lines: DT ~ 2; y, 4> analysis •—• open squares and dotted lines: DT ~ 3;
y, 4>ip\s •— open diainonds and dashed lines.

Fraction of events: In figure 8.13 it is sliown how the fraction of events, contributing
to the measurement of factorial moment s, varies with the resolution scale. This is done for
diifereiit ranks q of the moment s and differeut topological dimeiisioii DT of the analysed
phase space. A strong Variation over four magnitudes is observed, making clear the need for
a precise Monte Carlo Simulation. The comparison with the Jetset 7.2 PS Simulation shows
excellent agreement in all diuieiisions and for all ranks.

Cluster multiplicity: The multiplicity distribution of clusters obtained during the facto-
rial moment analysis is presented in KNO form in figure 8.14 (cf. section 6.1). The multi-
plicity distributioiis are shown for B — 0, . . . ,3. corresponding to m = 1,2.4,8 bins in the
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Figure 8.14: Cluster multiplicity from the one-dimensional rapidity analysis and the two-dimensional rapid-
ity-azimuth analysis: the solid Symbols show the CELLO data and the Jetset 7.2 PS result is indicated by the
curves. B — 0; circles and solid lines: 5 — 1 ; squares and dotted lines: B = 2; diamonds and dashed lines:
B — 3; triangles and dash-dotted lines.

one-dimensional rapidity analysis and to m = 1,4,16,64 bins in the two-dimensional rapidity-
azimuth analysis. For m — l, of course, the ordinary multiplicity distribution is recovered;
for two bins in the one-dimensional analysis e.g. the multiplicity distribution of single event
hemispheres is obtained. The Jetset 7.2 PS model provides an excellent description also of
these distributions.

Correlation matrices: In figure 8.15 the correlation matrices C2 from the one-, two-,
and three-dimeiisional factorial moment analyses are shown (see section 7.3). Large positive
correlations are observed between all data points, showing that the same event contributes
to factorial moments at different resolution scales. These correlations have to be takeii into
account if the data are compared to the Monte Carlo. The largest correlations, even between

0 1 2 3 4 5 6 7 8 9 1 0 0 1 2 3 4 5 6 7 8 9 1 0 0 1 2 3 4 5 6 7 8 9 1 0

biseciions [B]

Figure 8.15: Correlation matrices C2 from one-, two- and three-dimensional analyses (left to right).
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very distant data poiiits. occur in the one-diinensioiial analysis. In the higher-diinensional
analyses niore Information is availablo. reducing the correlations, however, they are still
sizeable.

Inverse covariance rnatrices: The inverse covariance matrix (V 2 )" 1 (see section 7.3) from
the analysis of (F2) in one dimeiision is presented in table 8.2 and compared to the Jetset
7.2 PS-I-BE prediction. Apparently both matrires are very similar. again demonstratiiig
the high quality of the Monte Carlo. Interestiiigly they have an approximate tridiagonal
structure, which is, however. also t nie for the CELLO utoy" niodel without any genuine
particle correlatioiis. From this it can be conchided t ha.t the tridiagonal structure of the
iiiverse covariance matrix is a geiieral property of factorial mouient analyses.
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Table 8.2: Inverse covariance matrices: data ( lef t ) and Jetset 7.2 PS-t-BE (right). The matrix elements are
noimalized to V * .

8.4 Cartesian three-dimensional analysis

In this section a study of multiplicity fluctuatioiis of charged particles in Lorentz invariant
phase space is presented. For this the differential phase space elemeiit dLips is decomposed
accordiiig to (5.1). In contrast to the decomposition (5.2) this parameterization allows a
unique definition of a resolution scale. since all variables are of the same dimeiisioiiality. A
further advaiitage of this approach is the invariaiice of the factorial momeiits under rotational
transformations of the analysed variables, tlms making the definition of a preferred axis (such
äs the sphericity axis) unnecessary. The results presented below have been checked to be
identical if the variables are defined in the laboratory frame or by the eigeiivectors of the
sphericity tensor.

The factorial momeiits of the charged multiplicity distribution are evaluated at different
resolution scales according to the prescription given in section 7.1 on page 81. For reasons that
will become clear later, the original phase space volume ALips has been chosen to be thousand
times larger thaii the volume actually occupied by our eveiits, namely l / (27r) 3 - l /2-10 6 GeV2,

correspoiiding to a ränge of i50 GeV^ for the siugle variables pjE* (see figure 5.2). This
arbitrary choice influences the absolute value of factorial moments at a given scale, implying
a strong initial rise, but has no effect on the slopes at high resolution.

The analysis is performed with up to fourteen successive bisections B in every dimensioii,
yielding a maximum of m — 242 three-dinieiisional phase space cells. The scale B can be
related to the four-momeiitum traiisfer Q2 by:

B -
D

(8.1
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where A^p/£" — 106 GeV is the initial size of the phase space volume. Typical Q2 scales are
also iiidicated in the figures to ease the comparison to physical processes.

For tliis analysis a speoal smoothiug procedure is applied to reniove fluctuations caused by
the accidental settiiig of bin borders. This is accomplished by uioving the complete event at
random inside the large phase space volume. which for tliis purpose is coutiiiued periodically.
The factorial moments from each event are calculated a1 ten difFerent random positions and
the average is takeii. We have checked that the results are not mfluenced by tUis procedure.
except that artificial fluctuations are dampcd.
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Figure 8.16: Factorial moments in three-dimensioiial phase space. The open symbols show the data (statistical
errors are typicaily smaller than the symbol size and are omitted for clarity) and the dotted and solid curves
correspond to the'Jetset 7.2 PS Simulation prior to and after detector Simulation. The dashed curve indlcates
the Jetset 7.2 PS+BE inodel and the dash-dotted curve represents the CELLO "toy" model.

In figure 8.16 the factorial moments are displayed: difFerent slopes are seen at difierent
resolution scales. A very interesting beliaviour is observedfor (F3), which after a strong initial
rise flattens out, but then starts to rise again. The results from a Monte Carlo Simulation
with the Jetset 7.2 parton shower model, with default parameters after inclusion of initial
state radiation are seen to be in good agreement with the data. Including Bose-Einstein
correlations in the Simulation improves the descriptioii. Similarly the Jetset 7.2 ME model
provides a good description of the data. It is also visible in figure 8.16 that detector effects
are of minor importance in this analysis.

The comparison with the CELLO "toy" model (consult section 5.4 for a description of
the model) shows that, the fast initial rise of the moments is entirely due to the Variation of
the inclusive distribution, which is very strong due to the choice of the large initial phase
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spare volume. However. for B : 5 tlie moments from t, he "toy" inodel are seeii to beiid
over and sattiratr. This is in contrast tu t he experimental data and also to the Monte Carlo.
both contain genuine particle correlations, which cause rising factorial momeiits at certain
resolution scales.

8.4.1 Local fractal dimensions

Figuro 8.17 shows the fractal dimension D2F (cf. ( V . 16) on page 89) inferred from (F2) for
increasing resolutioii. The errors showii are propagated from the measurement of (F3) using
the covariance matrix (7.12).

On top of figure 8.17 the geoinetrical meaning of the fractal dimension is indicated. For
very coarse resolutions the eveiits appear point-like (DF -- 0). This liinit could only be
reached with a very large initial value for ALips* which is the justification for this particular
choice. With increasing resolutioii the structure begins to emerge: first along the jet-axis and
tlien also transverse to the jet-axis. At very small scales all dimensions are fully resolved, and
in the geoinetrical Interpretation one expects D\ 3. The data, however, show a maximum
dimension D2F ^ 2.5 followed by a decrease to about D2F ^ 2.0. This reductioii of D2F is the
manifest ation of the streng rise of (F2) at ultra-fine resolutioii. This complex behaviour is
well reproduced by the Jetset 7.2 PS Monte Carlo Simulation, both with and without detector
Simulation.

8.4.1.1 Multifractal objects

In the geoinetrical Interpretation given above one would expect the fractal dimension derived
from factorial moments to be independent of the rank g, i.e. one expects <f>q / ( q — 1) — const.
This relation does not apply to multifractal objects. To search for a possible multifractal
behaviour the slopes <pq obtained from (F^} of rank q at a given resolution scale m are fitted
to the expression:

' (8.2)

where x = 0 indicates geoinetrical scaling aiid j' = l corresponds to the scaling law predicted
by the a-model; i.e. a simple cascade model [75]. The fitted x values are shownin figure8.18: a
clear deviation from the simple geoinetrical scaling law is observed äs the resolution increases.
This behaviour is well described by the Monte Carlo expectatioii, both with and without
detector Simulation, again demonstrating the small iiiflueiice of detector effects on this type
of analysis. The reason for the observed multifractal behaviour is the interplay of processes
with different correlation lengths. occuring e.g. in the resonance region.

8.4.2 Monte Carlo studies and discussion

Given the success of the Lund model in describing the data, we have undertaken some gen-
erator studies in order to isolate the effects contributing to the observed complex behaviour
of the fractal dimension and the scaling law. The corresponding (F2) and D7F curves are
displayed in figures 8.19 and S. 20.

• The simplest case considered consists of primary particles produced in qq events with
110 transverse degrees of freedom. i.e. (p\ — 0. These events exhibit a one-dimensional
structure once the jet structure is resolved (solid line in figure 8.19). It is interesting
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Figure 8.17: Fractal dimension D*F äs a function of B. The open Symbols show the data with errors propagated
frora (F }. Superimposed, äs the dotted and solid lines are the corresponding results from the Jetset 7.2
parton shower calculation prior to and after detector Simulation. The dashed line shows the Jetset 7.2 PS+BE
Simulation, while the CELLO "toy" niodel is indicated by the dash-dotted line. Displayed above is a pictorial
view of the fractal dimension at four typical scales. Upper row: plane along the sphericity axis. Lower row:
plane perpendicular to the sphericity axifi. This picture has been prepared using 400 Monte Carlo events.
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Figure 8.18: Anomalous scaling law. The open symbols show the data with errors propagated from the
factorial moments. The dotted and solid curves correspond to the Jetset 7.2 PS Simulation prior to and after
detector Simulation. The Jetset 7.2 PS-t-BE Simulation is seen äs the dashed line and the CELLO "toy" model
is represented by the dash-dotted line. a1 = 0 indicates geometrical scaling.

to note that although the Lund string fragmentation mechaiiism is an iterative process
no deviation from a one-dimensional object is seen in the high resolution limit, tlius

excluding it. äs a source of intermittency. In fact, since the Lund string is an almost
coherent System the magnitude of nuctuations is even below that of Poissonian noise,

äs h äs been discussed in section 6.4.

An important property of string fragnientation is its iterative character. To exhibit

a fractal structure a fürt her property is required; namely self-siniilarity. The latter
property is abseilt in ordinary fragmeiitatioii mechaiiisms since differeiit z values are
used at each iteratioii. The self-similar character is rectified by the fragmeiitatioii
finictioii:

/ (*)=*(*-a) (8.3)

where the parameter a takes a fixed value in the ränge m „ /Et>earri < a. < 1. This
t reatmen t leads indeed to a fractal behaviour äs is indicated by an increase of D2F

(dotted line in figure 8.19). It should be emphasized that the events, in the geometrical
sense, are still oiie-dimensional without aiiy transverse degree of freedom.



11(1 S. Intrrmittenc

3 -

o

0 6 7 8 9 10 11 12 13 14

3-D bisections [B]

Figure 8.19: Jetset model generator studies of (F2} and Dp with primary particles. If not stated otherwise, the
Lund Symmetrie fragmentation function is used. Transverse st r ing fragmentation is completely suppressed; i.e.
(PX) = 0. Solid line: primary particles fr o m qq events: dotted line: dit to, but using a self-similar fragmentation
function with a = 0.45: dashed line: primary particles froni an O(o|) matrix element (ME) Simulation:
dash-dotted line: ditto, using the parton shower (PS) algorithm: thick solid line: ditto, using the colour dipole
approximation (CD). The thick dashed line shows the behaviour of a point-Iike object.
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Figure 8.20: Jetset model generator s tudies of (F2) and D\, Solid line: final stable particles in a default PS
Simulation: dash-dotted line: ditto, but neglecting e+e " pairs from the TT° Dalitz decay: dotted line: primary
particles from qq events with with (p\ — (0.35 GeV) 2 : dashed line: final stable particles from qq events with

(p2 ) = {0 GeV) 2 . The thick dashed line shows tlie behaviour of a point-üke object.
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In case of tlie fragmeiitation fnnction (8.3) the immber of steps 5 in the fragmentatioii
chain for a single jet is given by the following expression:

In
C __ l _

ln(l -o)

where e — Emi„/E{,eam and £„,,„ is the energy where the process stops. The multiplicitv
is given by (AT) = 2S -f l and the varianre of this distribution is strictly zero. The
maximum fractal dimension D2F obtained in this way does not depend 011 a, but occurs
at higher resolution the smaller the a parameter is.

• The iuclusion of initial state QED radiation was found to give a very slight increase of
the fractal dimension,

• The effect of gluon emission is seen after inclusion of QCD radiation; (dashed line in
figure 8.19) according to C?(a|), (dash-dotted line) according to the leading log approx-
imation (parton shower) and (thick line) according to the colour dipole approximation.
The first approach leads to a maximum fractal dimension of D~F ^ 1.35. The parton
shower leads to a higher fractal dimension of D2F ^ 2, very similar to the colour dipole
approach. The reason for this behaviour is t hat every eniitted gluon adds a kink to the
string and thereby increases its "length". Coniparing the matrix element to the parton
shower, it is observed that the mahl increase of the fractal dimension comes from soft
gluon radiation. This topic is also discussed by Anderssoii et al. in [67].

• Unfortunately, a straightforward distinction between the difFerent perturbative QCD
descriptions is hindered by transverse degrees of freedom, äs is made clear after giving
the quarks the Standard (p2±) of (0.35 GeV)2, which leads to a fast rise of D\s
three (dotted line in figure 8.20).

• The innuence of resoiiance decays is demonstrated by the dashed line in figure 8.20.
which corresponds to qq events with (p\] — 0, where resoiiances are allowed to decay.
A very interesting structure is observed: at intermediate scales the fractal dimension
appears much larger t hau one, almost reaching three. followed by a decrease towards
one. This behaviour implies the existence of correlated two-particle production up
to the highest resolution. This sounds rather interesting; however. the explanation is
simple. The Dalitz decay TT° —» c + e~~. has beeil identified äs the source of this effect.
This is demonstrated by a comparison of the default parton shower Simulation (solid
line in figure 8.20) and the same Simulation just neglectiiig the TT° Dalitz decay (dash-
dotted line). It is obvious that the rise of (F2} observed in the high resolution limit
and t, hu s the decrease of D2F is caused by the Dalitz decay of neutral pioiis, which is the
only source for correlated two-particle production in this limit. This is understandable
since the c+e~ invariant inass distribution (and t hu s its correlation function) is almost
(up to the small electron mass scale) singular at threshold, leading to an intermittent
behaviour (for the coimection between two-particle correlation function and factorial
nioments see e.g. [83,76]). A similar effect is produced by photon conversion (-) —+ c4 t ~ )
in the beam pipe.

• A study of Bose-Einsteiu correlations äs implemented iiito the Jetset 7.2 program re-
vealed a sigiiificant rise of the factorial momeiits at intern^ediate and high resolution
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scales. The size of tlns eifert is of the nght order of niagmtude to improve fürt her the
agreement of the data and the Monte Carlo conceming the factorial momeiits. Also the
frartal dimension is rednced by Böse-Einstein correlations, since the pion phase spare
is effertively decreased. It is apparent in tigure 8.17 tliat this effect is present in the
data.

Fiiially. it is clear that these different eifert s clo not siniply add in the dimension, such t ha t
we cannot argiie in favour of one or the othrr QCD approach. The parton shower and the
iiiatrix elenient an sät z with default parameters both describe our data.

Monte Carlo studies of the s rainig coeffirient ,r (cf. (S.2) and figure 8.18) iiidicate that
the deviation from geonietrical scaling at low resolution scales is due to the jet structure of
the eveiits. The stroiig violation of the geonietrical scaling law at high resolution can be
attributed to particle decays.

It may be criticized tliat the particular choice of variables |5.1), and more importantly
the choice of a very large initial volume, lead to strong variatioiis of the inclusive distribution
and the large initial slopes are thus trivial. This particular choice has been inade to reach
the zero-dimensional limit, and does not invalidate the results derived in the high resolution
limit, since for small bin sizes the inclusive distribution is constaiit to a good approximatioii.
The sensitivity of this approach for genuine density fluctuations, äs well äs the quality of
the data is demonstrated by the observatioii of a strong eifert due to TT° Dalitz decays and
7 conversions in detector material. Moreover, a Variation of the inclusive distribution at
intermediate scales is inherent in e + e" annihilatioii, independent of the choire of variables.
This is due to the iiiixture of events with different kinematics and topology, such äs light aiid
lieavy quarks or hard and soft gluon radiation. In addition, the presentation of local slopes
(or equivalently dimensions) äs a function of the resolution scale clearly shows that there is
a smooth traiisition, rather thaii a simple power law, äs is implied by the usual straight liiie
fit s, whose results of course depend on the fit ränge choseii.

8.4.3 Transformed variables

In this section the three-dimensional aiialysis according to the phase spare decomposition
(5.1) is repeated: however, with variables transformed according to the recipe of Bialas aiid
Gazdzicki described in section 7.2. In this rase the original phase space volume covers only
the ränge artually occupied by the events. The results from this aiialysis are presented in
figure 8.21. Compared to the aiialysis according to the derompositioii (5.2), presented in
figure 8.8, a murh strenger rise of the factorial monieiits is seen. The influenre of the non-
constaiit iiirlusive distribution is completely removed äs can be seen from the "toy" model
result.

8.5 Summary on intermittency

In summary we have presented intermittency analyses in one- and two-dimensional projections
of phase space and in three-dimensional phase space itself, usiiig various methods to calrulate
the factorial moments. The signifiranre of fartorial moments in e i +e~ annihilatioii and their
sensitivity to rertain asperts of the complex hadroiiization process have been discussed in
detail. The niain results and conclusioiis are:
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Figure 8.21: Transformed factorial inoments in three-dimensional phase space. The open Symbols show the
data and the dotted and solid curves correspond to the Jetset 7.2 PS Simulation with and without Böse-Einstein
correlations. The Iower curves indicate the results from the CELLO "toy" niodel (solid curve i—* (F2), (dotted
curve t—» (.F3), (dashed curve ^-» (F4), (dash-dotted curve •—. (F5)).

• The factorial moment analysis of the total event sample is dominated by the occasional
occurrenceof hard bremsstralüungs gluons, which populate a certain phase space region.
Their contribution is so strong that it completely conceals the soft hadronization phase.
For this reason various QCD iiispired hadronization models all give the same result.
The effect from hard gluons is seen in all dimensions and caiinot be circumvented by a
variable traiisformation.

• Two-jet events are ideal to test the non-perturbative hadronization phase. An iniportant
observation is the failure of the Lund string model to reproduce the rapidity correlations
aud fluctuations in these events. In line with the analysis of multiplicity distributions
in chapter G the Herwig cluster model provides a good description of this property. The
reason for this is the space-time structure underlying the string model, which leads to a
regulär pattern in rapidity space for hadrons produced off a string. In contrast to this
the cluster model preserves, via its local hadronization mechaiiism, the fluctuations
occuriiig during partoii shower evolution. From this it is concluded tliat the 11011-
perturbative hadronization process is really of a local nature, giviug Support the idea
of local parton-hadron duality.

• Aziinuthal anti-correlatioiis. predicted by the string model due to local p± coiiservation
are not observed with the same strength in the data. However, the inclusion of the Böse-
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Einstein eifert in .'J string model diniinishes these anti-correlations and this inodel
provides a good description of the data. The Herwig düster model fails to describe the
azimnthal correlations. The model behaviour is not rectified after inclusion of the Bose-
Einstein effect. The reason for this difference between cluster and string inodels is the
regulär pattern of particle prodnction in the latter, compared to a disordered particle
state in the former. From this it is understandable tliat the Bose-Einstein effect has

practically 110 mfiueiice 011 particle fhirtuations in the cluster model.

The importance of the phase space dimeusion is seen in the higher-dimensional analyses,
which yield factorial uioments growing äs a power with the resolution scale. This is,
however, only observed for the moments of rank two and three and has a rather trivial
origin in Dalitz clecays and other resoiiance decays. The moments of higher rank do
not show this power law behaviour and it is also not expected that objects of t hat size
should develop a fractal structure at the energy of this experiment.



Chapter 9

Two-particle correlations

9.1 Bose-Einstein correlations

In tlie previous discussion of multiparticle prodiiction the relevaiice of particle correlations lias
been pointed out. In this context the analysis of Bose-Einstein correlations is important, äs it
gives access to the space-tiine structure underlying particle production in e + c~ aniiiliilation.
In addition. such an analysis allows us to determiiie the corresponding paraiiieters of the
Jetset model.

9.1.1 Introduction

It is a general belief that Bose-Einstein correlatioas in e + e~ aimihilation occur äs a con-
sequence of quantum-mechaiiical interference amoiig identical bosons. This effect becomes
visible äs an enhancement in the correlation function

n , ftÜhiPa)
Ca(pi,pa) = —;—:—:—r (9-1)

Pl(Pl)Pl(P2)

of two identical pions with 4-iiioiiientuin p^ and p2 respectively. The analysis is done äs a
function of the Lorentz invariant Q — J—(pi — Pt}2 •> which is the momentum difFereiice in

the centre of inass of the pair, and is equal to J M2 — 4r77^ if bot h particles are pions.

Neither the nunierator nor the denominatoi of (9.1) can be determined directly from the
data: p^(Q] receives unwanted coiitributions from iion-identical particle pairs, such äs pion-
kaon pairs. Furthermore, a certain fraction of particle pairs coiisists of electro-weak decay
products; e.g. from Z)°, Kg and ?/ decay8. It is not expected that particle pairs coiitammg such
electro-weak decay products experience Bose-Einstein correlations with an effective radius
sniall enough to be observed experimentally [85]. These two effects result in a reduction of
the original enhancement.

The denominator in (9.1) is not directly accessible, but can be approximated by p^(Q).
i.e. by the density of oppositely charged particle pairs. with inherent problems.

In the case where the eniission is completely incoherent and comes from a Gaussi an shaped
source the correlation functioii takes the form:

C2(Q) = l + Arfi3<?3 . (9.2)

The parameter A allows for partial coherent eniission and for other effects, causing an apparent
reduction of the real enhancement. The parameter R is related to the ine an square radius RQ

of the source; i.e. R0 — ftcR.
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9.1.2 Analysis

The basis for the present analysis is a sample of 18,543 multihadronic annihilation events.
t he selection of which has been described in section 4.1. In addition, V° pairs identified äs
secoiidary A'° or A decays or plioton conversion in detector material are rejected (see [23,33^
for details of the V° Identification).

Two difFereiit refercnce samples. determined eiitirely from the data, are used in tllis anal-

ysis:

I. Neutral pairs from the sartie cvent: these have the kiiiematical aiid topological fea-
tures in common with the like-sign pairs. This reference sample is strongly affected by
resonance production. requiring sizeable Monte Carlo corrections with their iiiherent
uncertainties.

II. Neutral pairs from mixed jcts: in this case correlatioiis among particles of opposite
charge (e.g. due to resonance decays) are circumvented by reflectiiig all positively (or
negatively) charged particles at a plane perpeiidicular to the sphericity axis. By meaiis
of this jet mixing, correlations due to unlike-sign particle pairs are destroyed, while
like-sign correlations are retained and moreover the eveiit topology is preserved. This
niethod has been developed in the course of the present work 61,62] and was recently
applied by the ALEPH collaboration [87]. It works ideally for t wo-je t. events, since
hard gluoii radiatioii tends to invalidate this reference sample, requiring a Monte Carlo
correctioii. This correction is comparatively small and moreover does not depend on
details of resonance production, the latter being niodeled only crudely in the Monte
Carlo. Therefore systematic uncertainties are reduced, aiid thus the results obtaiiied
from this niethod appear to be more reliable.

1.8 0.2
Q [GeV]

1.8

Figure 9.1: Raw correlation functlon: reference sample I ( lef t ) and reference sample II (r ight) . The curves
represent the fit results: Gaussian fit (dashed curve) and exponential fit (solid curve); the dotted ränge is
excluded from the fit.
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The correlation functioiis, using the two reference saniples, are presented in figure 9.1. In
extracting the parameters A and RQ, ilnperfections of the reference sample can be accounted
for by multiplying (9 .2) with a linear function of Q:

Gaussiaii C(Q) (a, + o 2 Q ) ( l 4- X ( - ) . (9.3)

Exponential C(Q) (o, + a 2 Q)(l 4- Ar~ß < ? ) , (9.4)

where the ß.j are free parameters. In addition to the Gaussian function (9.3) the exponential
function (9.4) is used in this analysis - the fit s to these functioiis are indicated in figure 9.1. Q

values below 0.08 GeV are generally excluded from the fit to reduce systematic uncertaiiities,
which may arise from the strong detector effects in this region. In addition, for reference
sample I the Q region 0.3 — l GeV, which is heavily affected by resonance decays, is excluded
from the fit (figure 9.1). More importantly, just underneath the expected Böse- Einstein
enhancement, strong contributions from ?/ and r/' decays occur. äs is visible in figure 9.2.

l O4

l O2

101

K°

-6 -5 -4 - 3 - 2 - 1 0
Log10(Q2[GeV2])

Figure 9.2: Q2 distribution of e+e and TT+TT pairs, obtained from the Jetset 7.3 PS Simulation.

Detector effects tend to cancel in the correlation function, provided the tracking efficiency
is identical for like- and unlike-sign particle pairs. The remaining difference can be corrected
with the function £i(Q) = CMC/&MCI where the Monte Carlo need not necessarily contain
Bose-Eiusteiii correlatioiis. In this analysis the detector correctioii £i(Q) has beeil computed
from both Monte Carlo versions with and without Bose-Einstein correlatioiis. As expected,
these gave very similar results (see table 9.1).

Imperfectioiis of the reference sample are unfolded by normalizing the corrected correlation
function to the correlation function generated by the Monte Carlo with the Bose-Einstein
effect switclied off.
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Correlation function

Data raw

Data corrected0'

Data corrected

Fit
Reference sample I

A Strength i 7?0 Radius

Gauss. 1 0.55 m O.OG
Exp. 1.32 :± 0.22

Gauss.

Exp.

Gausb.
Exp.

0.20± 0.04
0.31 ±0.08

0.21 x 0.04
0.38± 0.09

fm]

1.09 ± 0.09
2.14 ± 0.27

0.75- 0.12
1.13 ±0.31

0.84 ±0.17
1.38 ±0.27

Reference sample II
A Strength RO Radius fm]

0.52 ± 0.03 i 0. 50 ±0.03
1.05 ± 0.05 0.75 ±0.02

0.23 ± 0.02
0.43 ±0.04

0.25^ 0.03
0.41 ± 0.04

0.55 ±0.05
0.66 ±0.06

0.73 =t 0.09
0.70 ±0.16

Table 9.1: Bose-Einstein results: a) detector correction with Jetset 7.2 PS, 6) detector correction with Jetsei
7.2 PS-fBE; the corrected correlation functions are notmalized to Jetsei 7.2 PS.

The corrected correlation function C2(Q) is presented in figure 9.3 and the fit results are
summarized in table 9.1. In our case the fit slightly favours the exponential function (9.4)
from the Gaussian function (9.3). For the final values of A and R0 the results from the two

1.4 -

G
o

-Jj
o
G
3

«4-.

c
o

.—•p
o

.2 ^

.0 -

CD

0-8IM
o
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0.2 0.6 1.0 1.4 1.8 0.2
Q [GeV]

0.6 1.0 1.4 1.8

Figure 9.3: C-orrected correlation function: reference sample I (left) and reference sample II (right). The curves
represent fit results: Gaussian fit (dashed curve) and exponential fit (solid curve); the dotted ränge is excluded
from the fit. The structure al Q ^ 0.75 GeV in the left hand plot is due to a p° mass shift of == 20 MeV.

reference samples are combined. This yields:

Gaussian A = 0.22 ± 0.03, R0 = 0.61 ± 0.08 fm
Exponential A = 0.40 ± 0.05, R0 = 0.71 ± 0.10 fm

These results do not include Coulomb corrections nor iion-pion corrections. Similar values
of these parameters are reported by TASSO ( A - 0.35 ± 0.03, R0 - 0.80 ± 0.06 fm) [86] and
ALEPH (A = 0.28 ± 0.01, R0 - 0.51 ± 0.02 fm) [87].

Jetset Bose-Einstein niodel: The parameters required by the Jetset Böse-Einstein model
to reproduce our data were determined to:
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A = 2.4 i- 0.3
J?„ - 0.60-0.08 fm

Höre, tlie exponential function was used to describe the sliape of the Bose-Einstein eiihaiice-
nient, which is slightly favoured by our data. These values are in good agreemeiit with those
obtained by the OPAL collaboration a t LEP; i.e. A - 2.5. 7?() == 0.60 fm [88]. This caii be
regarded äs a success for the Bose-Einstein inodel of Sjöstrand 9], insofar äs it provides a
descriptioa of the effect, independent of the centre of iiiass energy. The radius of the pion
source. inferred from Bose-Einstein correlations is in remarkable agreemeiit with the trans-
verse extension of the Lund string of 0.56 fm (see section 6.4.2.1). However, the large value
required for A (^ 2.4), which is supposed to be sinailer t h an one, indicates that Bose-Einstein
correlations are still not understood in the scope of this model.

1.0

ÜO
G
o
u

0.8

0.6

0.4

0.2

0.0
0.0 1.0 2.0

correlation strength (input)

3.0

Figure 9.4: Comparison of input /output correlation strengtli in Herwig (squares) and Jetset (circles).

In this context, the relatioii between input and Output correlation strength in the Jetset
Bose-Einstein model is analysed. It is found that the Output strength (using jet-mixiiig, and
normalizing to the model prediction without Böse-Einstein correlations) is approximately 1/5
of the input strength in case of the Jetset 7.2 PS Simulation, and eveu smaller (l/S) in the
Herwig 5.0 PS Simulation (see figure 9.4). The weaker response observed in Herwig is due to
a lower rate of like-sign charged particle pairs withiii the effective Bose-Einstein radius.
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0 meson mass shift

An interestiiig structure is seen in figure 9.3, where the two-particle correlation function
obtaiiied from the data is iiormalized to the corresponding function from the Monte Carlo
Simulation without Böse-Einstein correlations. At, Q ^ 0.75, i.e. in the p° resonance region. a
Variation of the correlation function is observed, which can be attributed to an apparent shift
of the p° meson mass of ^ 20 MeV. This observation is supported by data from PETRA [86]
and LEP [87], which all show the same structure (figure 9.5).

G.2 Oilj "öflÄ l? H U l! 2.0
Q2 [GeV]2 Q [GeV]

Figure 9.5: Two-particle correlation function C2(Q) from TASSO [86] at PETRA and ALEPH at LEP [87],
normaüzed to the corresponding Monte Carlo prediction without Bose-Einstein correlations: a clear structure
is seen at Q2 % 0.56, Q ^ 0.75, which is attributed to an apparent shift of the p° meson mass of % 20 MeV.

This effect is seen more directly if the Q distribution of TT+TT" pairs from the Monte
Carlo Simulation is subtracted from the data. Since the Monte Carlo contains a Standard p°
Breit-Wigiier, the mass shift is clearly revealed (figure 9.6).

Surprisingly, the Bose-Einstein model of Sjöstrand produces an effective p° meson mass
shift of the same order of magnitude, äs is indicated in figures 9.6 and 9.7. Since this
model does not contain specific assumptions 011 the TTTT strong interactions, but is rather a
parameterization of the Bose-Einstein effect, the occurrence of a p° mass shift in this model
is considered äs the consequence of kiiiematical constraints.

In figure 9.7 the iiiterference term:

_ — m

777

(9.5)

is also indicated. This iiiterference term provides an explanation for the p° meson mass shift
observed in p° photoproduction 90); however, it does not describe the effect observed in c+c~
annihilation.
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0.004

-0.004
0.8 1.2

Q [GeV]

Figure 9.6: Q distribution of TT+JT pairs, with the Jetset 7.2 PS prediction subtrarted. The histogram shows
the Jetset 7.2 PS+BE Simulation, with the Jetset 7.2 PS prediction subtracted.

9.2.1 model

In the above analysis two differeiit effects wcre identified in the data: the well-knowii Bose-
Einstein effect - and a new efFect, revealing itself äs an apparent shift of the p° meson mass.

We note that in both cases charged pions are involved which take part in the strong
interaction. In this section a simple model is presented, which demonstrates that the two
effects are intimately connected and in fact have a common origin.

The simplest final states in e+e~ annihilatioii, of relevance for the present investigation,
are of the following type:

7T, 7T.> 7T-. Ji

where either the Tf^ir^ or the 7r^~7T3 can form a p° meson.
To study this process three-pion phase space events are generated with a distribution in

total energy accordiiig to p°7r+ combinatioiis in the Lund model. The events are produced
with the following matrix elements:

(9.6)

(9.7)

where BW(mij) is the p Breit-Wigner:

(9.8)
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TT+TT~ mass [GeV]

1.0 1.1

Figure 9.7: p° meson mass shift induced by Bose-Einstein correlations in the Jetset model: the solid curve
shows the Breit-Wigner generated by Jetset 7.2 PS. After Bose-Einstein correlations are included äs a classical
force, acting on the final state pions, the dashed curve is obtained. The dotted curve shows the difference of
the two and the dash-dotted curve indicates the interference term (9.5) .

The niatrix eleinent A4no„ _3yrn corresponds to the Situation iu hadronization models, where
particle production is described äs a stochastic process, completely neglecting quantum me-
chanical interference. In contrast. the matrix element A4,yrn is Symmetrie under exchange of
the identical pions ?TJ and TT? , preserving the interference stmcture.

In figure 9.8 the two-particle correlation function C2(Q12) = fayrn(Qi2)/fnon~'ym(Qi2) of
the two identical pions TT^ aiid TT^ is shown. A clear eiiliaiicemeiit is seen at low Q values,
correspondiug to a strength A = 0.7 and a radius R0 = 2.4 fm. The enhaiicerneut is well
described by the exponential form (9.4), with an additional quadratic term to describe the
decrease at large Q values.

In addition, the TT+TT" invariant mass distributioii is modified by the symmetrized matrix
elenient. This is iiidicated in figure 9.8, where the mass distributioiis /no"~aym(T??13,m^) and
/syiTt(7T?i3,TT?23) äs well äs the difference of the two are shown.

This model thus provides a qualitative description of both the Bose-Einstein effect and
the p° meson mass shift, äs observed in e+ c~ annihilation. These two effects have a common
origin. namely the interference term in (9.7).

It did not escape our attention that the apparent p° meson mass shift must be taken iiito
account, jf the inclusive p° production cross section is to be deteniüned.
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Figure 9.8: Correlation function and mass distribution, obtained froni the p°7r4 model (see text). The
dashed curve in tlie right hand plot is obtained froni the symmetrized matrix element (9.7) and the solid curve
corresponds to the non-symmetric matrix element (9.6); the dotted curve is the difference of the two, i.e. the
interference terni.

9.3 Rapidity correlations

Complementing the analyses of the preceding sections, an analysis of rapidity correlations is
presented. For this purpose, the rapidity correlatkm functions are defined äs follows [83],

(9.9)

where the square brackets indicate the average over all events, and the sum runs over all
rapidity bin s 6.

Here we preseiit results in terms of the reduced cuinulant:

(9.11)

Apparently ^2(3/1, i^2) vanishes in the case where the two variables become statistically inde-
peiident. In figure 9.9 the CELLO data on ^2(1/1 ,^ /2) are plotted for the total event sample
and for selected two-jet events. Strong correlations with a ränge of one uiiit in rapidity
are observed. These are seen to be much weaker in the two-jet sample, which indicates
their origin due to hard gluon radiatioii. In addition strong long ränge correlations due to
eiiergy-momeiitum coiiservation are observed. The correspondiiig projectioiis aloiig the main
diagonal are displayed in figure 9.10 and compared to the Lund model, which is seen to re-
produce the data quite well. As in the factorial moment analysis the Monte Carlo including
Böse-Einstein correlatious gives a better description of the data at small 6y. It is also seen
t hat the correlations are larger for y < 0, i.e. in the event hemisphere opposite of the most
energetic jet, which is likely to contain additional particles from gluon Jets.
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0.4

0.2

0.0 -

Figure 9.10: Reduced cumulant fcsfplitft) averaged over \y\ yi\ 0.6 for the entire data sample (upper
plots) and for selected two-jet events (lower plots). The left plots correspond to negative values of y± and 1/2
and the right plots to positive values. The data (open circles) are compared to the Jetset 7.2 PS model with
(solid lines) and without (dotted lines) Bose-Einstein correlations.



Chapter 10

Summary on multiparticle production

We have presented detailed investigations of multiparticle production in e +c aiinihilation.
Correlations and fluctuations among the final state particles were used to give Information on
t he perturbative and iion-perturbative phase of e^e" aiinihilation. This procedure provided
access to the underlyiiig production mechanism and allowed us to distinguish between cluster
and string fragmentation models. Tlie basic results and conclusions are summarized here:

• Correlations and fluctuations depend strongly 011 rapidity: owing to phase space con-
straints and other conservation laws, fluctuat.ioiis of the particle density are of binomial
type fless thaii Poissouian) for \y\. In contrast, the central rapidity region is char-
acterized by gluon radiation aud particle decays with negative binomial fluctuations
(larger thaii Poissoniaii).

• In an analysis of the total eveut sample, multiplicity fluctuations are to a large extent
caused by the occasional appearance of hard gluons, concealing other efFects. For this
reason, various OCD based hadronization models all give the sanie result, such t hat
thcy cannot be distinguished by the experiment.

• Access to the non-perturbative phase is provided by a two-jet selection: here clus-
ter and string fragmentation differs significaiitly, where the formet is favoured by the
experimental data.

The Lund Symmetrie fragmentation produces particles off the string with a regulär
pattern in rapidity and azimuth, such t hat density fluctuations occuring during
partoii shower evolution are smoothed and underestiixiate the data.

— Owing to the local nature of particle production in the Herwig cluster model. den-
sity fluctuations froin the parton shower are transferred to the cluster distribution.
This model provides a good descriptioii of the data. which supports the hypothesis
of local parton-hadron duality.

— Further, it. is noted t hat the mass spectrum of primary particles in the string model
is considerably softer t hau the corresponding cluster mass spectrum. As this is no
genuine property of the string model. but rather due to our Imiited knowledge of
the higher resonances, it. is suggested t hat the mass spectrum should be modified
to reproduce the primordial resonance mass spectrum, äs is the case in the cluster
model. Still this does not guaranlee larger correlatioiis, since the Lund Symmetrie
function would order heavier particles more stnctly.
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- Evidence for a string-like nature of particle production comes from the requirement
of string-like fission of heavy clustcrs, without wliich the cluster model would also
fail t o describe the data.

• Azimuthai anti-correlations, predicted by the string model due to local p± conservation,
are not observed with the sanie strengt h in the data. However. the inclusioii of the Bose-
Einsteiu effect äs a classical force in the string model diminishes these anti-correlations
and t Ins model provides a good description of the data. The Herwig cluster model
fails to describe the azimuthal correlations, hidicatiug that isotropic two-body decays
of clusters may be too poor an approxiination of reality. The model behaviour is not
rectified by inclusioii of the Böse-Einstein effrct.

• The significaiice of Bose-Einstein correlations is completely different in the Luiid string
and the Herwig cluster model. This is for two reasons: firstly. Herwig contains fewer
like-sign particle pairs within the effective Bose-Einstein radius of the model. And
secondly, particles are produced coherently off the string, while cluster fragments are in
a disordered state. Therefore, the Böse-Ernstem effect causes a strong disruption of the
initial orderiug of particles produced off the string. Since this ordering iiever existed,
among cluster decay products, only a negligible effect results in this case.

• The importance of the phase space dimensioii is seen in the higher-dimensional intermit-
tency analyses. which yield factorial momeiits growing äs a power with the resolution
scale. This is observed only for the moments of rank two and three, however, and h äs
a rather trivial origin in Dali t. z decays and other resoiiance decays. The moments of
higher rank do not show this power law behaviour and it is also not expected that
objects of that size should develop a fractal structure at the energy of this experiment.

• Bose-Einstein correlations are observed with a strengt h A = 0.2 — 0.4 and an associated
radius of J?0 = 0.6 — 0.7 fm, depending on the assumed shape of the correlatioii function.

• A iiew phenomenoii is observed in the data, namely an apparent shift of the p° meson
mass of approximately 20 MeV.

An explanation for bot.h the Bose-Einstein effect and the p° meson mass shift is provided
in terms of interfereiice in a three pion System, where two p° meson combinations are
possible.



Appendix A

Factorial moments in one dimension

The results tabulated here and in the following appeiidices are entirely written by a Computer
program. In addition to tho CELLO data the correspoiiding results from Jetset 7.2 PS aiid
Jetset 7.2 PS-f BE are presented. The Monte Carlo results are given both on the generator
level (indicated äs g) aiid on the detector level (indicated äs d).
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(F2,) one-dimensional analysis (füll y)

Transformation:
Nornial izat ion:

CELLO 1
J 7.2 PS+BE d 1
J 7.2 PS+BE g 1

J 7.2 PS d 1
J 7.2 PS g 1

CELLO 2
J 7.2 PS+BE d 2
J 7.2 PS+BE g 2

J 7.2 PS d 2
J 7.2 PS g 2

CELLO 4
J 7.2 PS+BE d 4
J 7.2 PS+BE g 4

J 7.2 PS d 4
J 7.2 PS g 4

CELLO 8
J 7.2 PS+BE d 8
J 7.2 PS+BE g 8

J 7.2 PS d 8
J 7.2 PS g 8

CELLO 16
J 7.2 PS+BE d 16
J 7.2 PS+BE g 16

J 7.2 PS d 16
J 7.2 PS g 16

CELLO 32
J 7.2 PS + BE d 32
J 7.2 PS+BE g 32

J 7.2 PS d 32
J 7.2 PS g 32

CELLO 64
J 7.2 PS+BE d 64
J 7.2 PS+BE g 64

J 7.2 PS d 64
J 7.2 PS g 64

CELLO 128
J 7.2 PS+BE d 128
J 7.2 PS+BE g 128

J 7.2 PS d 128
J 7.2 PS g 128

CELLO 250
J 7.2 PS+BE d 256
J 7.2 PS+BE g 256

J 7.2 PS d 256
J 7.2 PS g 256

CELLO 512
J 7.2 PS+BE d 512
J 7.2 PS+BE g 512

J 7.2 PS d 512
J 7.2 PS g 512

Nont-
vertical horizontal

0.984 ± 0.005 0.984± 0.005
0.978 ± 0.004 0.978 + 0.004
1.040± 0.003 1.040+ 0.003
0.979± 0.002 0.979+ 0.002
1.042± 0.006 1.042 i 0.006
0.975 i 0.005 0.981 ± 0.005
0.971 ± 0.004 0.975± 0.004
1.077± 0.003 1.077 i 0.003
0.966 ± 0.002 Ü.971 ± 0.002
1.069 ± 0-006 1.070 ± Ü.006
0.981 ± 0.007 1.542 ± 0.009
0.968± 0.006 1.544 d: 0.007
1.139± 0.005 1.772 ± 0.006
0.963± 0.003 1.549 ± 0.004
1.122± 0.008 1.763 ± 0.011
0.980± 0.050 1.674 ±0.010
0.861 ± 0.023 1.673 ±0.009
1.148± 0.027 1.948 ±0.007
0.886± 0.017 1.668 ±0.005
1.256 ± 0.057 1.930 ± 0.013
0.893± 0.024 1.793 i 0.012
0.843 ± 0.015 1.783 ±0.010
1.767 ± 0-261 2. 069 ±0.008
0.843± 0.010 1.765 ±0.006
2.602± 0.865 2.036 ± 0.014
0.865± 0.022 1.834 ± 0.014
0.844± 0.015 1.821 ±0.011
3.667± 1.379 2.124 ± 0.009
0.841 ± 0.011 1.802 ±0.006
10. 087 ± 8.454 2.080 ± 0.015
0.837± 0.017 1.848 ± 0.016
0.832± 0.016 1.827 ±0.013
7.492 ± 4.352 2. 147 ±0.010
0.833± 0.016 1.812 i 0.008
7.943± 6.319 2.102 ± 0.017
0.828± 0.019 1.848 ± 0.020
0.854± 0.028 1.847 ±0.016
8.619 ± 6.016 2.168 ± 0.011
0.839± 0.028 1.824 i 0.009
5.481 ± 4.008 2.114± 0.020
0.808± 0.026 1.815 ± 0.026
0.878± 0.046 1.849 ±0.022
4.011 ± 2.523 2.191± 0.014
0.801 ± 0.014 1.824 ±0.012
6.480 ± 5.115 2.135 ± 0.024
0.821 ± 0.039 1.840 ± 0.036
0.952± 0.103 1.851 ± 0.029
5.441 ± 4.285 2.213 ± 0.018
0.803 ± 0.021 1.813 ±0.016
1.489 ± 0.334 2.170 ± 0.032

Ochs
vertical horizontal

0.984 ± 0.005 0.984+ 0.005
0.978 ± 0.004 0.978± 0.004
1.040± 0.003 1.040± 0.003
0.979± 0.002 0.979± 0.002
1.042 i 0.006 1.042± 0.006
0.975 ± 0.005 0.975± 0.005
0.971 ±0.004 0.971 ± 0.004
1.077 ± 0.003 1.077± 0.003
0.966± 0.002 0.966± 0.002
1.070 ± 0.006 1.070± 0.006
1.064 ± 0.006 1.064 ± 0.006
1.055 ± 0.005 1.055± 0.005
1.176 i 0.004 1.176±0.004
1.044 i 0.003 1.044± 0.003
1.159± 0.007 1.159± 0.007
1.122 ±0.007 1.122± 0.007
1.105 ±0.006 1.105±0.006
1.246 ±0.004 1.246± 0.004
1.089 ± 0.003 1.089± 0.003
1.220 ± 0.007 1.220 ± 0.007
1.148 ±0.008 1.148±0.008
1.125 ±0.006 1.125± 0.006
1.278 ±0.005 1.278± 0.005
1.107 ± 0.004 1.107± 0.004
1.244 ± 0.008 1.244 ± 0.008
1.150 ±0.009 1.150± 0.009
1.135 ±0.007 1.135± 0.007
1.296 ± 0.005 1.296± 0.005
1.116 ±0.004 1.116± 0.004
1.262 ±0.009 1.262 ± 0.009
1.142± 0.011 1.142±0.011
1.145 ±0.009 1.145± 0.009
1.307 ±0.006 1.307± 0.006
1.121 ±0.005 1.121± 0.005
1.271 ± 0.011 1.271 ±0.011
1.121 ± 0.015 1.121 ±0.015
1.153±0.012 1.153± 0.012
1.318± 0.007 1.318± 0.007
1.125± 0.007 1.125± 0.007
1.270 i 0.013 1.270 ± 0.013
1.127 ±0.020 1.127± 0.020
1.141 ±0.016 1.14I± 0.016
1.322 ± 0.010 1.322±0.010
1.111 ±0.009 1.111 ±0.009
1.274 ±0.017 1.274 ± 0.017
1.137± 0.028 1.137±0.028
1.132 ±0.022 1.132± 0.022
1.344 i 0.013 1.344± 0.013
1.106 ± 0.013 1.106±0.013
1.285 ± 0.023 1.285± 0.023

Bialas
horizontal

0.984 ±0.005
0.978 ± 0.004
1.036 ± 0.003
0.979 ±0.002
1.038± 0.006
0.975 ±0.005
0.971 ±0.004
1.073 ±0.003
0.966 ±0.002
1.066 ±0.006
1.063 ± 0.006
1.055 ±0.005
1.171 ±0.004
1.044 ±0.003
1.155± 0.007
1.122 ±0.007
1.105 ±0.006
1.241 ±0.004
1.089 ±0.003
1.216 ±0.007
1.148 ±0.008
1.125 ±0.006
1.274 ±0.005
1.107 ±0.004
1.240± 0.008
1.150 ±0.009
1.135 ±0.007
1.291 ±0.005
1.116±0.004
1.257 ±0.009
1.141 ±0.011
1.146 ±0.009
1.302 ±0.006
1.121 ±0.005
1.265 ±0.010
1.126± 0.015
1.155 ±0.012
1.311 ±0.007
1.125 ±0.007
1.266 ±0.013
1.137± 0.020
1.141 ±0.016
1.310 ±0.009
1.114 ±0.009
1.280± 0.017
1.155 ±0.028
1.118 ±0.022
1.335 ±0.013
1.108 ±0.013
1.281 ±0.023

Table A.l: (F2) one-dimensional analysis (füll y}.
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(F ) one-dimeiisional analysis (füll y)

Transformation:
Normalization:

C'ELLO 1
J 7.2 PS + BE d 1
J 7.2 PS+BE g 1

J 7.2 PS d 1
J 7.2 PS g 1

CELLO 2
J 7.2 PS4BE d 2
J 7.2 PS+BE g 2

J 7.2 PS d 2
J 7.2 PS g 2

C'ELLO 4
J 7.2 PS+BE d 4
J 7.2 PS+BE g 4

J 7.2 PS d 4
J 7.2 PS g 4

CELLO 8
J 7.2 PS+BE d 8
J 7.2 PS+BE g 8

J 7.2 PS d 8
J 7.2 PS g 8

CELLO 16
J 7.2 PS+BE d 16
J 7.2 PS+BE g 16

J 7.2 PSd 16
J 7.2 PS g 16

CELLO 32
J 7.2 PS+BE d 32
J 7.2 PS+BE g 32

J 7.2 PS d 32
J 7.2 PS g 32

CELLO 64
J 7.2 PS+BE d 64
J 7.2 PS+BE g 64

J 7.2 PS d 64
J 7.2 PS g 64

CELLO 128
J 7.2 PS+BE d 128
J 7.2 PS + BE g 128

J 7.2 PS d 128
J 7.2 PS g 128

CELLO 256
J 7.2 PS+BE d 256
J 7.2 PS+BE g 256

J 7.2 PS d 256
J 7.2 PS g 256

CELLO 512
J 7.2 PS+BE d 512
J 7.2 PS+BE g 512

J 7.2 PS d 512
3 7.2 PS g 512

None Ochs
vertical horizontal vertical horizontal

0.960 ± 0.008 0.960± 0.008
0.942 ± 0.006 0.942 ± 0.006
1.116 + 0.005 l . H 6 ± 0.005
0.945 ±0.003 0.945 ±0.003
1.120± 0.009 1.120± 0.009
0.942 ±0.009 0.955± 0.008
0.928± 0.007 0.939 ±0.007
1.206 ± 0.006 1.206 ± 0.006
0.915 ±0.004 0.926± 0.004
1.174 ±0.010 1.174± 0.010
0.866 ± 0.013 2.786 ± 0.030
0.851 ± 0.011 2.786± 0.025
1.277 ± 0.011 3.792+0.023
0.840± 0.007 2. 770 ±0.014
1.236 ± 0.020 3.694 ± 0.039
0.887 ± 0.013 3. 379 ±0.048
0.875± 0.010 3.406 ±0.039
1.711 ± 0.307 5.003± 0.041
0.843± 0.006 3.370± 0.023
1.110±0.015 4.841±0.069
0.954± 0.021 4. 037 ±0.067
0.934± 0.018 4.018 + 0.055
1.386 ± 0.133 5.753± 0.051
0.882± 0.010 3. 879 ±0.030
1.183± 0.028 5.451 ± 0.083
1.031 ± 0.037 4.337±0.104
0.943 ±0.024 4.193± 0.072
1.472+ 0.185 6.190±0.064
0.932 ± 0.014 4.158± 0.043
1.230 ± 0.066 5. 765 ±0.105
1.017± 0.060 4.306±0.134
0.934+. 0.031 4.194 + 0.104
1.272 ± 0.030 6.381 ± 0.083
0.966 ±0.037 4.182± 0.062
1.323 ± 0,101 6.047± 0.138
1.166± 0,166 4.420± 0.222
0.925± 0.040 4. 309 ±0.167
1.301 ± 0,055 6.512±0.116
1.046 ± 0.069 4.330± 0.102
1.325 ± 0.169 6.101 + 0.205
1.431 ± 0.493 4. 163 ±0.366
1.065 ± 0.085 4.943 ± 0.362
1.293 ± 0.055 6.676± 0.188
1.181 ±0.253 4. 310 ±0.176
1.252 ±0.106 6.435± 0.336
0.810± 0.199 3.794± 0.816
0.981 ±0.132 4. 943 ±0.614
1.285 ± 0.096 6.973± 0.335
1.925 ± 1.024 4.310± 0.328
1.352 ± 0.299 6.771 ±0.588

0.960 ±0.008 0.960± 0.008
0.942± 0.006 0 .942± 0.006
1.116± 0.005 1.116± 0.005
0.945 ±0.003 0.945 ± 0.003
1.120±0.009 1.120± 0.009
0.942 ±0.009 0.942 ±0.009
0.927 ±0.007 0 .927± 0.007
1.207 ±0.006 1.207 ± 0.006
0.913± 0.004 0.913+ 0.004
1.174 ±0.010 1.174 ± 0.010
1.243 ±0.017 1.243 ±0.017
1.223 ±0.013 1.223 ± 0.013
1.603 ±0.012 1.603 ± 0.012
1.188 ±0.007 1.188± 0.007
1.522±0.019 1.522± 0.019
1.428 ±0.023 1.429 ± 0.023
1.380 ±0.018 1.380 ±0.018
1.840±0.014 1.840 ±0.014
1.328 ±0.010 1.328 ±0.010
1.714 ±0.023 1.714 ±0.023
1.503 ±0.030 1.503 ±0.030
1.463 ±0.024 1.463 ±0.024
1.971 ±0.018 1.971 ± 0.018
1.407 ±0.013 1.407 ±0.013
1.809 ±0.029 1.809 ±0.029
1.543 ±0.046 1.543 ±0.046
1.515 ±0.035 1.515 ±0.035
2. 049 ±0.024 2.049± 0.024
1.467 ±0.020 1.467 ±0.020
1.907 ±0.038 1.907 ± 0.038
1.503 ±0.065 1.503 ±0.065
1.569 ±0.059 1.570 ±0.059
2. 088 ±0.035 2.088± 0.035
1.507 ±0.033 1.507 ±0.033
1.958 ±0.058 1.958 ±0.058
1.436 ±0.105 1.436 ±0.105
1.649± 0.099 1.648 ± 0.099
2.170±0.056 2. 170 ±0.056
1.517 ±0.054 1.517 ±0.054
1.932 ± 0.090 1.932 ± 0.090
1.392±0.211 1.396 ± 0,212
1.536 ± 0.161 1.532 ± 0.160
2.110 ± 0.090 2.110 ± 0.090
1.438 ±0.093 1.437 ± 0.093
1.956 ±0.164 1.956 ± 0.164
1.265 ± 0.365 1.265 ± 0.365
1.523 ±0.317 1.516± 0.316
2. 562 ±0.202 2.554 ± 0.201
1,609 ±0.201 1.606 ± 0.200
2. 145 ±0.306 2.145± 0.306

Bialas
horizontal

0.959± 0.008
0.942 ±0.006
1.107 ± 0.005
0.945 ±0.003
1.112±0.009
0.941 ±0.008
0.927 ±0.007
1.197±0.006
0.913 ±0.004
1.166± 0.010
1.241 ±0.017
1.222±0.013
1.590±0.011
1.188±0.007
1.512±0.019
1.426 ± 0.023
1.380±0.018
1.825 ± 0.014
1.328±0.010
1.701 ±0.023
1.501 ±0.030
1.463 ±0.024
1.955± 0.018
1.406±0.013
1.795 ±0.029
1.536 ±0.045
1.512±0.035
2. 037 ±0.024
1.466 ±0.020
1.890± 0.038
1.497± 0.065
1.571 ±0.059
2. 073 ±0.035
1.508 ±0.033
1.942 ±0.057
1.415± 0.104
1.672 ±0.099
2. 126 ±0.054
1.520±0.054
1.887 ±0.087
1.421 ±0.214
1.565±0.162
2.084 + 0.093
1.447 ±0.093
2. 025 ±0.161
1.264 ±0.365
1.384 ±0.302
2.318±0.188
1.542 ± 0.197
2. 171 ±0.306

Table A.2: (F3) one-dimensional analysis (füll y).
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(F4) one-diniensional analysis (füll t/)

Transformation:

Nornialization:

CELLO 1
J 7.2 PS+BE d 1
J 7.2 PS-f-BE g 1

J 7.2 PS d 1
J 7.2 PS g 1

CELLO 2
J 7.2 PS+BE d 2
J 7.2 PS+BE g 2

J 7.2 PS d 2
J 7.2 PS g 2

CELLO 4
J 7.2 PS+BE d 4
J 7.2 PS+BE g 4

J 7.2 PS d 4
J 7.2 PS g 4

CELLO 8
J 7.2 PS+BE d 8
3 7.2 PS+BE g 8

J 7.2 PS d 8
J 7.2 PS g 8

CELLO 16
J 7.2 PS+BE d 16
J 7.2 PS+BE g 16

J 7.2 PS d 16
J 7.2 PS g 16

CELLO 32
J 7.2 PS+BE d 32
J 7.2 PS+BE g 32

J 7.2 PS d 32
J 7.2 PS g 32

CELLO 64
J 7.2 PS+BE d 64
J 7.2 PS+BE g 64

J 7.2 PS d 64
J 7.2 PS g 64

None
vertical horizontal

0.934± 0.011 0.934 ± 0.011
0.898+ 0.009 0.898 + 0.009
1.230+ 0.008 1.230+ 0.008
0.905+ 0.005 0.905+ 0.005
1.237 ± 0.015 1.237 i 0.015
0.915+ 0.014 0.933 + 0.014
0.887±0.011 0.902+ 0.011
1.414+ 0.011 1.411 ± 0.011
0.862+0.006 0.877 + 0.006
1.327 + 0.018 1.327+0.018
0.753 ± 0.019 5.382 ± 0.100
0.754 ± 0.016 5.341 ±0.079
1.434+ 0.023 8.928 + 0.086
0.737 ±0.012 5.21 0 ± 0.043
1.376+0.045 8.366± 0.137
1.199±0.044 8.067±0.261
1.166±0.032 8.125 ± 0.208
1.806 ± 0.027 16.436 ± 0.270
1.084±0.017 8.058±0.120
1.589 + 0.042 15.213+0.427
1.428 + 0.062 10.977+0.414
1.374 ± 0.052 10.892 ± 0.350
2.063 ± 0.054 20,570 ± 0.388
1.251 ± 0.027 10,186±0.185
1.715± 0.057 18,240+0.589
1.807 + 0.153 13,528± 1.032
1.458 ±0.082 11.491 + 0.533
2.308 ± 0.073 23.799 ± 0.601
1.550 ± 0.065 11.973+0.369
1.936 + 0.102 20.336+ 0.901
1.474 + 0.160 11.919± 1.275
1.485+ 0.152 11.232± 1.002
2.434+ 0.164 25.370 + 0.965
1.604+ 0.146 11.935± 0.697
2.125± 0.170 22.458 ± 1.383

Ochs Biatas
vertical horizontal horizontal

0.934 + 0.011 0.934+ 0.011
0.898 ±0.009 0.898+ 0.009
1.230±0.008 1.230+ 0.008
0.905+0.005 0.905± 0.005
1.237 ± 0.015 1.237 ± 0.015
0.919+ 0.015 0.919+ 0.015
0.885+0.011 0.885± 0.011
1.414+0.011 1.414+ 0.011
0.859+0.006 0.859 + 0.006
1.328±0.018 1.328 + 0.018
1.725 ±0.057 1.725+0.057
1.645 + 0.036 1.645 ± 0.036
2. 665 ±0.039 2.665+ 0.039
1.559±0.020 1.559 ± 0.020
2.372±0.059 2.372 ± 0.059
2.230 + 0.093 2.230± 0.093
2.079+ 0.064 2.079+ 0.064
3.326 + 0.057 3.326± 0.057
1.953 ±0.035 1.953 ± 0.035
2. 855 ±0.089 2.855± 0.089
2.415± 0.139 2.415+ 0.139
2.389+0.111 2.390 + 0.111
3. 828 ±0.088 3.827 + 0.088
2. 248 ±0.065 2. 248 ±0.065
3.166±0.126 3.166±0.126
2.737+0.319 2.736± 0.318
2.601 + 0.216 2. 600 ±0.216
4.228+0.146 4.227±0.146
2.619 + 0.135 2.620 + 0.135
3.430±0.197 3.430± 0.197
2.312± 0.382 2.311 ± 0.381
2. 973 ±0.638 2.976± 0.640
4.373 + 0.320 4.374± 0.320
2. 784 ±0.385 2.785± 0.385
3.922+0.416 3.920±0.416

0.933± 0.011
0.898± 0.009
1.215+ 0.008
0.905+ 0.005
1.223± 0.015
0.917± 0.015
0.885± 0.011
1.396 ± 0.011
0.859+ 0.006
1.313+ 0.018
1.721 ± 0.057
1.644+ 0.036
2.628± 0.039
1.559+ 0.020
2.347± 0.059
2.214+ 0.091
2.079± 0.064
3.285± 0.057
1.953 ± 0.035
2.828± 0.089
2.395± 0.136
2.392± 0.111
3.779± 0.087
2.248± 0.065
3.135+ 0.125
2.619+ 0.298
2.572± 0.214
4.204± 0.146
2.614+ 0.135
3.387+ 0.196
2.263± 0.378
2.974± 0.640
4.301 ± 0.313
2.784 ± 0.385
3.800± 0.405

Table A. 3: one-diniensional analysis (füll y).
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Transformation:
Norinalization:

CELLO 1
J 7.2 PS-t-BE d 1
J 7.2 PS+BE g 1

J 7.2 PS d 1
J 7.2 PS g 1

CELLO 2
J 7.2 PS+BE d 2
J 7.2 PS+BE g 2

J 7.2 PS d 2
J 7.2 PS g 2

CELLO 4
J 7.2 PS+BE d 4
J 7.2 PS+BE g 4

J 7.2 PS d 4
J 7.2 PS g 4

CELLO 8
J 7.2 PS+BE d 8
J 7.2 PS+BE g 8

J 7.2 PS d 8
J 7.2 PS g 8

CELLO 16
J 7.2 PS+BE d 16
J 7.2 PS+BE g 16

J 7.2 PS d 16
J 7.2 PS g 16

CELLO 32
i J 7.2 PS+BE d 32

J 7.2 PS+BE g 32
J 7.2 PS d 32
J 7.2 PS g 32

(F5} one-dimensional

None
vertical horizontal

0.911+ 0.017 0.911 ±0.017
0.850± 0.012 0.850 + 0.012
1.391 ± 0.014 1.391 ± 0.014
0.862 ±0.007 0.862 + 0.007
1.400+0.025 1.400 ±0.025
0.906± 0.025 0.923 ±0.023
0.857± 0.018 0.871 ± 0.017
1.741 ±0.022 1.735 + 0.022
0.818± 0.011 0.831 ± 0.010
1.548+0.033 1.549 ±0.033
0.787± 0.025 10. 818 ± 0.333
0.766+0.019 10.550± 0.257
1.705 ±0.043 22.483+ 0.334
0.732±0.018 10.046± 0.140
1.565 ±0.078 19. 922 ± 0.496
2.197±0.169 22.893± 1.540
1.989 + 0.124 22.357± 1.336
3.453 ± 0.099 65. 974 ± 1.945
1.773 + 0.064 22. 509 ± 0.759
2.693 + 0.126 57. 194 ± 2.974
2. 724 ±0.240 33.848 ± 2.549
2.627 ± 0.250 33.906 ± 2.359
4.288± 0.171 89.329± 3.394
2.239+ 0.110 30.596± 1.218
3.346± 0.251 71.764 ± 5.078
4.839±0.956 57.880 ± 11.173
2.869± 0.388 34.673± 3.786
5.170+ 0.305 112.194 + 6.993
3.418 ± 0.330 42.455 ± 3. 456
3.972+0.419 86.748± 8.589

analysis (füll y )

Ochs
vertica] horizontal

0.911 ± 0.017 0.911 + 0.017
0.850 ± 0.012 0.850+ 0.012
1.391 + 0.014 1.391 + 0.014
0.862+ 0.007 0.862+ 0.007
1.400+ 0.025 1.400+ 0.025
0.922 ± 0.027 0.922 ±0.027
0.854+ 0.018 0.854+0.018
1.742 ± 0.022 1.742 ± 0.022
0.813±0.010 0.813± 0.010
1.549+ 0.033 1.549+ 0.033
2. 976 ±0.209 2.977± 0.209
2.576± 0.110 2.576± 0.110
5.398± 0.143 5.398+ 0.143
2.380+ 0.061 2.380± 0.061
4.412 ± 0.205 4.413 ± 0.205
4.399±0.415 4.400± 0.415
3.746 ± 0.257 3.746 ± 0.257
7.333± 0.270 7.333± 0.270
3.503±0.144 3.503± 0.144
5.692 ± 0.439 5.693 ± 0.439
4.726± 0.675 4.726± 0.675
4.824+ 0.529 4.825± 0.529
9.261 ±0.503 9.261 ± 0.503
4.558 ±0.392 4.558 ± 0.392
6.635 ± 0.623 6.635 ± 0.624
7.123+ 2.475 7.113±2.470
5.620+ 1.447 5.615± 1.445
11.084 ± 0.962 11.084 ± 0.962
6.649 ± 0.963 6.650 ± 0.964
7.037 ± 1.061 7.035± 1.061

Biaias
horizontal

0.909 ±0.017
0.850 ±0.012
1.368 ±0.013
0.861 ±0.007
1.379 + 0.024
0.920 ±0.027
0.854 ±0.018
1.711 ±0.022
0.812 ±0.010
1.525 + 0.033
2.965+0.209
2.575±0.110
5. 293 ±0.140
2. 379 ±0.061
4.352+0.202
4.300 + 0.397
3. 743 i 0.257
7.221 ±0.266
3.503 + 0.144
5.649 + 0.439

4.596±0.654
4.828+ 0.529
9.110+0.496 S
4. 558 ±0.392
6. 590 ±0.618
6. 127 ±2.328
5.502± 1.442
11.074 ±0.960
6.648 + 0.964
7. 024 ±1.051

Table A.4: (F5) one-diniensional analysis (füll y).
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(F~) one-dimensional analysis (central y)

Transformation:
Nornialization:

CELLO 1
J 7.2 PS+BE d 1
J 7.2 PS+BE g 1

J 7.2 PS d 1
J 7.2 PS g 1

CELLO 2
J 7.2 PS+BE d 2
J 7. 2 PS+BE g 2

J 7.2 PS d 2
J 7.2 PS g 2

CELLO 4
J 7.2 PS+BE d 4
J 7.2 PS+BE g 4

J 7.2 PS d 4
J 7.2 PS g 4

CELLO 8
J 7.2 PS+BE d 8
J 7.2 PS+BE g 8

J 7.2 PS d 8
J 7.2 PS g 8

CELLO 16
J 7.2 PS+BE d 16
J 7.2 PS+BE g 16

J 7.2 PS d 16
J 7.2 PS g 16

CELLO 32
J 7.2 PS+BE d 32
J 7.2 PS+BE g 32

J 7.2 PS d 32
J 7.2 PS g 32

CELLO 64
J 7.2 PS+BE d 64
J 7.2 PS+BE g 64

J 7.2 PS d 64
J 7.2 PS g 64

CELLO 128
J 7.2 PS+BE d 128
J 7.2 PS+BE g 128

J 7.2 PS d 128
J 7.2 PS g 128

CELLO 256
J 7.2 PS+BE d 256
J 7.2 PS+BE g 256

J 7.2 PS d 256
J 7.2 PS g 256

CELLO 512
J 7.2 PS+BE d 512
J 7.2 PS+BE g 512

J 7.2 PS d 512
J 7.2 PS g 512

N one
vertical horizontal

1.047± 0.008 1.047 i 0.008
1.049+ 0.006 1.049+ 0.006
1.114 + 0.005 1.114 ± 0.005
1.048+ 0.004 1.048+ 0.004
1.113 i 0.008 1.113±0.008
1.094± 0.008 1.096± 0.008
1.104± 0.007 1.105 + 0.007
1.204 + 0.005 1.211 ± 0.005
1.087+ 0.004 1.089+ 0.004
1.182 i 0.009 1.190+ 0.009
1.166± 0.010 1.165± 0.009
1.171 ± 0.008 1.166+ 0.008
1.272+0.006 1.279 ± 0.006
1.144 ±0.004 1.138+ 0.004
1.237 ± 0.010 1.247 + 0.010
1.215 ± 0.011 1.216±0.010
1.215± 0.009 1.213± 0.008
1.314 ±0.006 1.331 + 0.006
1.179± 0.005 1.177+0.005
1.272 ±0.010 1.292±0.011
1.238 i 0.013 1.23IU 0.012
1.234 + 0.010 1.233 ±0.010
1.331 ±0.007 1.350± 0.007
1.193± 0.006 1.193±0.005
1.285+ 0.011 1.309+0.012
1.246 ± 0.015 1.245 ± 0.014
1.253+ 0.012 1.249+ 0.011
1.340+ 0.007 1.361 ±0.007
1.202 ± 0.007 1.202± 0.006
1.299± 0.012 1.322± 0.013
1.235 ±0.018 1.231 ±0.017
1.257 + 0.015 1.252 ±0.014
1.354 ± 0.008 1.376± 0.009
1.203 ±0.008 1.203 ± 0.008
1.305± 0.014 1.328± 0.015
1.252+ 0.024 1.241 ±0.022
1.243± 0.019 1.234 ± 0.018
1.364 ± 0.010 1.388± 0.010
1.203 ± 0.010 1.203 ±0.010
1.315± 0.018 1.340± 0.018
1.284 ± 0.032 1.276 ± 0.030
1.226 ±0.025 1.220 ± 0.024
1.374 ± 0.014 1.402±0.014
1.194±0.014 1.194±0.013
1.321 ± 0.023 1.348 ±0.023
1.271 ±0.045 1.262± 0.042
1.252 ± 0.036 1.257 ± 0.034
1.386± 0.018 1.412± 0.018
1.187±0.019 1.183±0.018
1.309 ± 0.032 1.334 ±0.032

Ochs
vertical horizontal

1.047± 0.008 1.047 ±0.008
]. 049x0.006 1.049 + 0.006
1.114 ± U. 005 1.114± 0.005
1.048 ±0.004 1.048+ 0.004
1.113±0.008 1.113± 0.008
1.095 ±0.008 1.095 ±0.008
1.104 ±0.007 1.104+ 0.007
1.206 ±0.005 1.206 ± 0.005
1.087 ±0.004 1.087 ± 0.004
1.186 ±0.009 1.186± 0.009
1.156± 0.009 1.156 ±0.009
1.158 ±0.008 1.158± 0.008
1.275 ±0.006 1.275 + 0.006
1.133 ±0.004 1.133± 0.004
1.245 ±0.010 1.245 ±0.010
1.198±0.010 1.198±0.010
1.196 ±0.009 1.196± 0.009
1.318 ±0.006 1.318 ± 0.006
1.166 ±0.005 1.166±0.005
1.279 ±0.010 1.279 ± 0.010
1.215 ±0.012 1.215 ± 0.012
1.214 ±0.010 1.214 ±0.010
1.340 ±0.007 1.340 ± 0.007
1.182 ±0.005 1.182±0.005
1.295±0.011 1.295±0.011
1.219 ±0.014 1.219 ±0.014
1.227±0.011 1.227±0.011
1.350 ±0.007 1.350 ±0.007
1.187 ±0.006 1.187 ±0.006
1.302 ±0.012 1.302 ±0.012
1.221 ±0.017 1.221 ±0.017
1.248 ± 0.014 1.248 ±0.014
1.357 ±0.008 1.357 ±0.008
1.197 ±0.008 1.197±0.008
1.310±0.015 1.310 ±0.015
1.203 ±0.022 1.203 ±0.022
1.245 ±0.018 1.245 ± 0.018
1.368 ±0.010 1.368 ±0.010
1.198±0.010 1.198±0.010
1.320 ±0.018 1.320± 0.018
1. 233 ±: 0.029 1.233 ± 0.029
1.232 ±0.025 1.232 ± 0.025
1.377±0.013 1.377 ±0.013
1.190±0.013 1.190± 0-013
1.311 ±0.023 1.311 ±0.023
1.219 ±0.041 1.219 ±0.041
1.258 ±0.034 1.258 ±0.034
1.414 ±0.018 1.414± 0.018
1.179 ±0.018 1.179 ±0.018
1.316±0.031 1.317±0.031

Biatas
horizontal

1.047 ± 0.008
1.049± 0.006
1.114± 0.005 !
1.047± 0.004
1.113± 0.008
1.095± 0.008
1.104± 0.007
1.206 ± 0.005
1.086± 0.005
1.186± 0.009
1.156± 0.009
1.158± 0.008
1.275± 0.006
1.130± 0.005
1.245± 0.010
1.198± 0.010
1.196+ 0.009
1.317± 0.006
1.165± 0.006
1.280± 0.010
1.215± 0-012
1 . 2 I 4 ± 0.010
1.339± 0.007
1.184± 0.007
1.295± 0.011
1.220± 0.014
1.227 ± 0.011
1.350± 0.008
1.191± 0.008
1.302± 0.012
1.220± 0.017
1.248± 0.014
1.356 ±0.009
1.198± 0.010
1.311± 0.015
1.203± 0.022
1.244 ± 0.018
1.366 ± 0.011
1.192± 0.012
1.321 ± 0.018
1.245± 0.030
1.229± 0.025
1.361 ± 0.014
1.183± 0,017
1.310+ 0,023
1.257 ± 0.042
1.222± 0.033
1.405± 0.019
1.144± 0.022
1.310± 0.031

Table A.5: (.F2) one-dimensional analysis (rentrai y).
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(F3} one-dimensional analvsis (central y)

Transformation:
Normalization:

CELLO 1
J 7.2 PS + BE d 1
J 7.2 PS4BE g 1

J 7.2 PS d 1
J 7.2 PS g 1

CELLO 2
J 7.2 PS+BE d 2
J 7.2 PS+BE g 2

J 7.2 PS d 2
J 7.2 PS g 2

CELLO 4
J 7.2 PS + BE d 4
J 7.2 PS+BE g 4

J 7.2 PS d 4
J 7.2 PS g 4

CELLO 8
J 7.2 PS+BE d 8
J 7.2 PS+BE g 8

J 7.2 PS d 8
J 7.2 PS g 8

CELLO 16
J 7.2 PS+BE d 16
J 7.2 PS+BE g 16

J 7.2 PS d 16
J 7.2 PS g 16

CELLO 32
J 7.2 PS+BE d 32
J 7.2 PS+BE g 32

J 7.2 PS d 32
J 7.2 PS g 32

CELLO 64
J 7.2 PS+BE d 64
J 7.2 PS+BE g 64

J 7.2 PS d 64
J 7.2 PS g 64

CELLO 128
J 7.2 PS+BE d 128
J 7.2 PS + BE g 128

J 7.2 PS d 128
J 7.2 PS g 128

CELLO 256
J 7.2 PS+BE d 256
J 7.2 PS+BE g 256

J 7.2 PS d 256
J 7.2 PS g 256

None
vertical horizontal

1.164 ±0.015 1.164= 0.015
1.162 ±0.012 1.162± 0.012
1.372 ±0.010 1.372it 0.010
1.159 ±0.007 1.159± 0.007
1.364 ± 0.017 1.364± 0.017
1.317 ± 0.018 1.321 ±0.018
1.344 ±0.015 1.347 ± 0.015
1.664 ±0.012 1.698±0.013
1.290 ±0.008 1.292 ±0.008
1.571 ±0.020 1.606± 0.020
1.619 ±0.033 1.552± 0.026
1.632 ±0.024 1.556 ± 0.020
1.978 ±0.018 2. 001 ±0.0)8
1.538 ±0.013 1.464 ±0.011
1.798 ±0.027 1.848±0.028
1.814 ±0.042 1.758± 0.037
1.813 ±0.033 1.746± 0.028
2. 170 ±0.022 2. 256 ±0.022
1.691 ±0.018 1.635± 0.016
1.941 ±0.033 2.044± 0.035
1.911 ± 0.058 1.853± 0.051
1.885 ±0.045 1.822 ±0.039
2. 244 ±0.026 2.342± 0.027
1.756 ± 0.024 1.709 ±0.022
2. 035 ±0.043 2. 159 ±0.045
1.907 ± 0.082 1.849± 0.073
2.031 ± 0.073 1.924± 0.059
2.257 + 0.035 2. 367 ±0.036
1.794 ±0.039 1.741 ±0.032
2. 125 ±0.058 2.237 ± 0.060
2. 067 ±0.143 1.912± 0.116
1.992 ±0.120 1.821 ±0.090
2. 290 ±0.049 2.415 ±0.051
1.796 ±0.061 1.739±0.052
2.130± 0.086 2.237± 0.085
1.842 ± 0.259 1.717±0.206
2. 232 ±0.200 2.027± 0.173
2.311 ± 0.081 2.446± 0.083
1.931 ±0.128 1.782± 0.095
2.206± 0.147 2.362± 0.150
1.513 ±0.407 1.561 ± 0.441
1.509 ±0.291 1.602± 0.279
2.612±0.168 2.756±0.169
2.076±0.225 1.819±0.172
2. 015 ±0.232 2.122±0.234

Ochs
vertical horizontal

1.164± 0.015 1.164± 0.015
1.162± 0.012 1.162± 0.012
1.372± 0.010 1.372± 0.010
1.159± 0.007 1.159± 0.007
1.364 ± 0.017 1.364 ± 0.017
1.320+ 0.018 1.320± 0.018
1.343 ± 0.015 1.343 + 0.015
1.673 ±0.012 1.673 ± 0.012
1.287 ± 0.008 1.287 ± 0.008
1.584 ± 0.020 1.584 ± 0.020
1.581 ± 0.030 1.581 ± 0.030
1.585 ±0.022 1.585 ± 0.022
1.990 ± 0.018 1.990± 0.018
1.487 ± 0.012 1.487 ± 0.012
1.832 ± 0.027 1.832 ± 0.027
1.732 ±0.037 1.732 ± 0.037
1.737 ±0.029 1.737 ± 0.029
2.181 ± 0.022 2.181 + 0.022
1,628 ± 0.016 1.628 ± 0.016
1.985 ±0.033 1.985 ± 0.033
1.799 ± 0.050 1.799 ± 0.050
1.814 ± 0.040 1.814 ± 0.040
2. 296 ±0.027 2.296 ± 0.027
1.704 ±0.022 1.704 ± 0.022
2.074 + 0.042 2.074± 0.042
1.783 ±0.076 1.783 ± 0.076
1.860 ± 0.059 1.860 ± 0.059
2.350±0.036 2.350± 0.036
1.740 ±0.033 1.740± 0.033
2.136± 0.057 2.136 ± 0.057
1.859± 0.110 1.859 ± 0.110
1.936±0.100 1.936 ± 0.100
2.342 ± 0.050 2.342 ± 0.050
1.717 ± 0.051 1.717 ± 0.051
2.148± 0.088 2.148 ± 0.088
1.523± 0.208 1.522 ± 0.208
2.160± 0.212 2.161 ± 0.212
2.317±0.085 2.317 ± 0.085
1.660± 0.088 1.660± 0.088
2.259± 0.148 2.258± 0.148
0.858± 0.259 0.859 ± 0.259
2.090 ± 0.326 2.088+ 0.325
2. 522 ±0.155 2.521 ± 0.155
1.730 ± 0.168 1.730+ 0.168
2.252± 0.241 2.252± 0.241

Biatas
horizontal

1.164± 0.015
1.162± 0.012
1.370 ± 0.010
1.158± 0.008
1.364± 0.017
1.320± 0.018
1.343 ± 0.015
1.673+ 0.013
1.284 ± 0.010
1.584± 0.020
1.581 ± 0.030 j
1.585 ±0.022
1.986 ±0.018
1.472 ± 0.014
1.832± 0.027
1.732± 0.037
1.737 ± 0.029
2.175±0.022
1.625 ± 0.019
1.985 ±0.033
1.802± 0.050
1.813 ± 0.040
2.289± 0.028
1.727 ±0.027
2.073± 0.041
1.785± 0.076
1.858 ± 0.059
2.351 ± 0.038
1.775 ± 0.041
2. 135 ±0.057
1.839±0.109
1.936± 0.100
2.345± 0.052
1.736 ± 0.064
2.151 + 0.087
1.522± 0.208
2.161 ± 0.212
2.306± 0.088
1.638 ±0.112
2.252± 0.147
1.249± 0.413
2.088 ±0.325
2.413 ±0.153
1.888± 0.248
2.278 ±0.242

Table A.6: (F3) one-dimensional analysis (central y).
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(F4) one-dimensional analysis {central y)

Transformation:
Nonnalization:

CELLO 1
J 7.2 PS+BE d 1
J 7.2 PS+BE g 1

J 7.2 PS d 1
J 7.2 PS g 1

CELLO 2
J 7.2 PS+BE d 2
J 7.2 PS+BE g 2

J 7.2 PS d 2
J 7.2 PS g 2

CELLO 4
J 7.2 PS+BE d 4
J 7.2 PS+BE g 4

J 7.2 PS d 4
J 7.2 PS g 4

C'ELLO 8
i J 7.2 PS+BE d 8

J 7.2 PS+BE g 8
J 7.2 PS d 8
J 7.2 PS g 8

CELLO 16
1 J 7.2 PS+BE d 16

J 7.2 PS+BE g 16
J 7.2 PS d 16
J 7.2 PS g 16

CELLO 32
J 7.2 PS+BE d 32
J 7.2 PS+BE g 32

J 7.2 PS d 32
J 7.2 PS g 32

N7one
vertical horizontal

1.374 ±0.029 1.374 ± 0.029
1.351 ±0.021 1.351 ± 0.021
1.838 ±0.020 1.838 ±0.020
1.347 ±0.012 1.347 ±0.012
1.815 ±0.035 1.815 ±0.035
1.723 ±0.042 1.731 ± 0.041
1.769 ±0.033 1.775 ±0.033
2.574 ±0.030 2. 679 ±0.032
1.639 ±0.017 1.642±0.017
2.286 ± 0.045 2.389 ± 0.048
2.765 ±0.148 2.351 ±0.089
2.676 ± 0.088 2.303 ± 0.059
3.748 ±0.071 3.794± 0.069
2.463 ±0.053 2. 112 ±0.036
3.052 ±0.086 3.220± 0.092
3.345 ±0.199 3. 049 ±0.164
3. 236 ±0.141 2.880± 0.100
4. 449 ±0.103 4.752± 0.104
3.009± 0.094 2.701 ± 0.076
3. 520 ±0.144 3.872± 0.153

3. 799 ±0.315 3.528± 0.270
3. 527 ±0.236 3. 194 ±0.191
4. 669 ±0.132 5. 003 ±0.137
3.229 ±0.141 2.987± 0.128
3. 938 ±0.232 4.357 ± 0.243

3. 310 ±0.580 3.179± 0.546
4.048 ±0.703 3.370± 0.418
4.779± 0.247 5.129 ± 0.235
3.617 ±0.460 3.109 ± 0.243
4.219±0.342 4.537±0.358

Ochs
vertical horizontal

1.374 ± 0.029 1.374 ±0.029
1.351 ± 0.021 1.351 ±0.021
1.838 ± 0.020 1.838 ±0.020
1.347 ± 0.012 1.347±0.012
1.815± 0.035 1.815 ±0.035
1.735 ± 0.043 1. 735 it 0.043
1.766 ± 0.033 1.766 ±0.033
2.601 ± 0.031 2.601 T 0.031
1.630 ± 0.017 1.630-0.017
2.317± 0.046 2.317 + 0.046

2. 652 ±0.123 2. 652 ±0.123
2.552± 0.080 2. 552 ±0.080
3. 783 ±0.070 3. 783 ±0.070
2. 283 ±0.041 2. 283 ±0.041
3.158 ±0.088 3. 158 ±0.088
3.102± 0.162 3.102 ± 0.162
3. 002 ±0.112 3.002± 0.112
4. 463 ±0.097 4.463± 0.097
2.748± 0.075 2.748± 0.075
3.661 ± 0.127 3.661 ±0.127
3.293± 0.254 3. 292 ±0.254
3.280± 0.203 3. 280 ±0.203
5.016± 0.150 5. 016 ±0.150
2.999± 0.113 2. 999 ±0.113
3. 973 ±0.190 3. 973 ±0.190

3. 419 ±0.634 3. 418 ±0.633
3. 342 ±0.385 3. 342 ±0.385
5.284± 0.246 5. 285 ±0.246
3.273± 0.224 3.273 ± 0.224
4.262± 0.348 4.263 ± 0.348

Bialas
horizontal

1.374 ±0.029
1.351 ±0.021
1.833 ±0.020
1.345 ±0.015
1.815±0.035
1.735 ±0.043
1.766 ±0.033
2. 603 ±0.032
1.622± 0.021
2.317±0.046

2. 652 ±0.123
2. 552 ±0.080
3.761 ±0.070
2. 223 ±0.044
3.159±0.088
3.101 ±0.162
3.002±0.112
4.438 ±0.100
2. 729 ±0.086
3. 664 ±0.127

3. 319 ±0.258
3. 279 ±0.203
4. 992 ±0.153
3. 121 ±0.145
3.971 ±0.189
3.418 + 0.633
3.342 ±0.385
5.311 ±0.256
3. 362 ±0.278
4. 268 ±0.348

Table A.7: {F4} one-diniensional analysis (central y).
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(F*} one-diniensional analysis (central y]

Transformation:
Normalization:

CELLO 1
J 7.2 PS+BE d 1
J 7.2 PS+BE g 1

J 7.2 PS d 1
J 7.2 PS g 1

CELLO 2
J 7.2 PS+BE d 2
J 7.2 PS + BE g 2

J 7.2 PS d 2
J 7.2 PS g 2

CELLO 4
J 7.2 PS+BE d 4
J 7.2 PS+BE g 4

J 7.2 PS d 4
J 7.2 PS g 4

CELLO 8
J 7.2 PS+BE d 8
J 7.2 PS + BE g 8

J 7.2 PS d 8
J 7.2 PS g 8

CELLO 16
J 7.2 PS+BE d 16
J 7.2 PS+BE g 16

J 7.2 PS d 16
J 7.2 PS g 16

CELLO 32
J 7.2 PS+BE d 32
J 7.2 PS+BE g 32

J 7.2 PS d 32
J 7.2 PS g 32

None
vertical horizontal

1.712 + 0.063 1.712 ± 0.063
1.627± 0.03£ 1.627 ± 0.038
2.637+ 0.042 2.637 ± 0.042
1.625+ 0.021 1.625+ 0.021
2.585 + 0.074 2.585 ± 0.074
2.406 + 0.099 2.412 ± 0.096
2.448 + 0.078 2.458 ± 0.078
4.331 ±0.079 4.605± 0.084
2.184 ± 0.040 2.183 ± 0.039
3.554± 0.107 3.804± 0.114
6.019 + 0.773 4.108±0.360
5.019 ± 0.354 3. 676 ±0.196
8.559 ± 0.338 8.571 ±0.316
4.735± 0.274 3.445 ± 0.156
5.968± 0.311 6.478± 0.344
7.522± 1.002 6.496 ± 0.797
6.468± 0.675 5.101 ±0.368
11. 066± 0.605 11.975 ± 0.590
6. 829 ±0.608 5.556 ± 0.490
7.562± 0.873 8.612 ± 0.900
8.657± 1.460 8.161± 1.289
7.323± 1.121 6.184±0.938
11.191 ±0.766 12. 225 ±0.798
7.202± 0.995 6.565± 0.990
9.579± 1.562 10. 742 ± 1.659
8.196 ± 3.404 8.783± 3.927
13.251 ±6. 620 7.535 ± 2.984
12.836 ± 1.975 13.276 ± 1.628
13.623 ± 6.901 7.428 ± 2.309
9.011 ± 1.972 9.917± 2.305

Ochs
vertical horizontal

1.712 ± 0.063 1.712 ± 0.063
1.627± 0.038 1.627 ± 0.038
2. 637 ±0.042 2.637± 0.042
1.625± 0.021 1.625± 0.021
2.585± 0.074 2.585 ± 0.074
2.451 ±0.103 2.451 ± 0.103
2.437± 0.074 2.437± 0.074
4.407± 0.085 4.407± 0.085
2.157± 0.038 2.157± 0.038
3.613± 0.106 3.612± 0.106
5.580 ± 0.600 5.580± 0.600
4. 753 ±0.345 4.753± 0.345
8.635± 0.333 8.635± 0.333
4.101± 0.174 4.101± 0.174
6.256± 0.311 6.256± 0.311
6.658±0.710 6.658± 0.710
5.770±0.438 5.770± 0.438

10.969±0.512 10.970±0.512
5.705 ± 0.463 5.705 ± 0.463
7.729± 0.555 7.729 ± 0.555
6.771 ± 1.316 6.770± 1.316
6.798± 1.009 6.798± 1.009
13.589 ± 0.884 13.590 ± 0.884
6.250± 0.666 6.250 ± 0.666
8.732± 0.897 8.731 ± 0.897
0.000 ±0.000 0.000± 0.000
6. 879 ±2 . 339 6. 880 ±2. 339
14.267± 1.742 14.268± 1.742
7.524± 1.441 7.524± 1.441
9.485±2.296 9.486± 2.297

Bialas
horizontal

1.712 ± 0.063
1.627 ±0.038
2. 623 ±0.043
1.623 ±0.026
2. 585 ±0.074
2.451 ±0.103
2.437 ±0.074
4.415 ±0.089
2.141 ±0.047
3.613 d 0.106
5. 580 ±0.600
4.753 ±0.345
8. 506 ±0.319
3.820± 0.150
6.257± 0.311
6.658 ±0.710
5. 770 ±0.438
10.884 ±0.533
5. 498 ±0.472
7.740 ±0.556
6.953 ± 1.334
6.798± 1.009
13.491 ±0.892
6.783 ±0.840
8.731 ±0.897
0.000 ±0.000
6.880± 2.339
14.526 ± 1.834
7.616 ± 1.745
9.486 ±2. 297

Table A.8: (F5) one-dimensional analysis (central y).
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(F2} two-dimensional analysis (füll y,4>)

Transformation:
Normalization:

CELLO 1
J 7.2 PS+BE d 1
J 7.2 PS+BE g 1

J 7.2 PS d 1
J 7.2 PS g 1

CELLO 4
J 7.2 PS+BE d 4
3 7.2 PS+BE g 4

J 7.2 PS d 4
J 7.2 PS g 1

CELLO 16
J 7.2 PS^BE d 16
J 7.2 PS+BE g 16

J 7.2 PS d 16
J 7.2 PS g 16

CELLO 64
J 7.2 PS+BE d 64
J 7.2 PS+BE g 64

J 7.2 PS d 64
J 7.2 PS g 64

CELLO 25f,
J 7.2 PS+BE d 256
J 7.2 PS+BE g 256

J 7.2 PS d 256
J 7.2 PS g 256

CELLO 1024
J 7.2 PS+BE d 1024
J 7.2 PS+BE g 1024

J 7.2 PS d 1024
J 7.2 PS g 1024

CELLO 4096
J 7.2 PS+BE d 4096
J 7.2 PS+BE g 4096

J 7.2 PS d 4096
J 7.2 PS g 4096

CELLO 16384
J 7.2 PS+BE d 16384
J 7.2 PS+BE g 16384

J 7.2 PS d 16384
J 7.2 PS g 1(5384

CELLO 65536
J 7.2 PS+BE d 65536
J 7.2 PS+BE g 65536

J 7.2 PS d 65536
J 7.2 PS g 65536

None Ochs
vertical horizontal vertical horizontal

0.984 i 0.005 0.984 ± 0.005
0.978 + 0.004 Ü .978± 0.004
1.040+ 0.003 1.040+ 0.003
0.979 i 0.002 0.979 ±0.002
1.042 ± 0.006 1.042± 0.006
0.933+ 0.005 0.937 ±0.005
0.933 i 0.004 0.937 ±0.004
1.037± 0.003 1.037± 0.003
0.923± 0.002 0.927 ±0.002
1.022 ±0.005 1.022 ± 0.005
0.888 ±0.011 1.404 ±0.010
0.889 ± 0.009 1.433 ± 0.008
1.075 ±0.006 1.683±0.006
0.870± 0.005 1.399 ±0.004
1.031 ±0.011 1.635±0.011
1.107±0.163 1.849±0.017
0.819±0.022 1.923 ±0.015
1.472 ±0.107 2. 260 ±0.011
0.848 ±0.051 1.800 ±0.008
2.295 ±0.321 2. 105 ±0.018
0.941 ± 0.046 2. 282 ±0.032
0.875± 0.037 2. 355 ±0.027
7.342± 3.080 2. 779 ±0.018
0.810±0.019 2.151 ±0.014

26.373 ± 15.928 2.491 ± 0.029

0.985± 0.061 2.683±0.061
0.874± 0.040 2. 662 ±0.052
4.185± 1.491 3. 225 ±0.031
0.825 ±0.027 2. 369 ±0.027
16.369± 8.839 2.859±0.051
1.058 ±0.082 3.043±0.126
0.980± 0.091 3. 038 ±0.105
6. 730 ±3. 058 3.949 ± 0.062
0.904 ±0.060 2. 605 ±0.054
6.629± 2.892 3. 469 ±0.102

1.155 ±0.174 3. 452 ±0.271
0.939 ±0.103 3. 403 ±0.217
4.971 ± 1.709 5.293±0.137
0.915± 0.093 2.817±0.111
3.675 ± 0.933 4.768 ± 0.236
0.895 ±0.241 4. 085 ±0.577
0.532 ±0.089 3. 187 ±0.414
3. 814 ±0.554 7. 858 ±0.333
1.006 ± 0.174 3, 309 ±0.240
1.974 ± 0.289 6, 280 ±0.540

0.984 ±0.005 0.984 + 0.005
0.978 ±0.004 0.978 ±0.004
1.040± 0.003 1.040-0.003
0.979± 0.002 0.979 ±0.002
1.042x0.006 1.042 ±0.006

0.932± 0.005 0.932 ±0.005
0.933 ± 0.004 0.933-0.004
1.037 ±0.003 1.037 ±0.003
0.922± 0.002 0.922x0.002
1.022 ±0.005 1.022 ±0.005
1.012 ±0.007 1.012 ±0.007
1.026 ±0.006 1.026 ±0.006
1.179 ±0.004 1.179 ±0.004
0.982 ±0.003 0.982 ±0.003
1.125 ±0.007 1.125±0.007
1.176±0.012 1.203 ±0.012
1.178±0.010 1.207 ±0.010
1.369 ±0.007 1.397x0.007
1.092 ±0.005 1.114 ±0.005
1.249 ±0.011 1.273 + 0.011

1.333± 0.024 1.374 ±0.023
1.310±0.019 1.359±0.019
1.532±0.011 1.578±0.011
1.176±0.010 1.212 ±0.010
1.353± 0.018 1.394±0.018
1.438 ±0.046 1.506 ±0.045
1.401 ±0.037 1.476 ±0.037
1.783 + 0.021 1.836 ±0.021
1.279 ±0.020 1.311±0.019
1.527 ±0.036 1.577 ±0.036
1.599 ±0.097 1.751 ±0.097
1.619 ±0.080 1.722 ±0.077
2. 278 ±0.048 2. 335 ±0.047
1.341 ±0.041 1.381 ±0.039
2. 002 ±0.083 2. 049 ±0.078
1.781 ±0.218 2. 145 ±0.215
1.774 ±0.204 2. 039 ±0.172
3.302± 0.116 3.399±0.110
1.557 ±0.091 1.607 ±0.084
2.745 ± 0.209 3.001 ± 0.189
0.903 ±0.258 1.879 ±0.392
0.903 ±0.240 1.729 ±0.305
5.198 + 0.318 5.655 + 0.282
1.587 ±0.179 1.864±0.180
2.178 + 0.283 4. 341 ±0.451

Bialas
horizontal

0.984+ 0.005
0.978± 0.004
1.036± 0.003
0.979± 0.002
1.038 ±0.006

0.931 ±0.005
0.932+ 0.004
1.033 ±0.003
0.922± 0.002
1.019± 0.005
1.011 ± 0.007
1.025 ± 0.006
1.174± 0.004
0.982 ±0.003
1.122± 0.007
1.179±0.012
1.187±0.010
1.372± 0.007
1.094 ±0.005
1.250± 0.011

1.348 ±0.023
1.315±0.018
1.536 ± 0.011
1.181 ± 0.010
1.357±0.018
1.447 ± 0.044
1.421 ± 0.036
1.785 ± 0.021
1.253 ± 0.019
1.531 ± 0.035

1.710± 0.095
1.566± 0.074
2.300+ 0.046
1.364 ±0.039
2.005± 0.077

1.654± 0.190
1.647 ±0.157
3.334 + 0.108
1.502 ± 0.081
2.727± 0.179

1.388± 0.337
1.188± 0.253
4. 977 ±0.264
1.620 ± 0.168
3. 084 ±0.376

Table B.l: (F2) two-dimensiona) analysis (füll y,4>).
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{F3} two-dimensional analysis ( fü l l y,<p)

Transformation:
Normalization:

CELLO 1
J 7.2 PS+BE d 1
J 7.2 PS+BE g 1

J 7.2 PS d 1
J 7.2 PS g 1

CELLO 4
J 7.2 PS4BE d 4
J 7.2 PS+BE g 4

J 7.2 PS d 4
J 7.2 PS g 4

CELLO 16
J 7.2 PS+BE d 16
J 7.2 PS+BE g 16

J 7.2 PS d 16
J 7.2 PS g 16

CELLO 64
J 7.2 PS+BE d 64
J 7.2 PS+BE g 64

J 7.2 PS d 64
J 7.2 PS g 64

CELLO 256
J 7.2 PS+BE d 256
J 7.2 PS+BE g 256

J 7.2 PS d 256
J 7.2 PS g 256

None
vertical horizontal

0.960 + 0.008 0.960 ±0.008
0.942 ±0.006 0.942 ±0.006
1.116 ±0.005 1.116± 0.005
0.945 ± 0.003 0.945± 0.003
1.120 ±0.009 1.120±0.009
0.843± 0.009 0.850± 0.009
0.838 ±0.007 0.844± 0.007
1.090 ±0.006 1.089± 0.006
0.808 ± 0.004 0.815 ± 0.004
1.036±0.010 1.036± 0.010
0.664 ±0.035 2.147± 0.035
0.725 ±0.030 2.304± 0.030
1.056 ± 0.023 3.318 ± 0.026
0.633±0.016 2.093± 0.015
0.981 ±0.044 3. 004 ±0.039
0.843±0.046 4.415± 0.162
1.011 ± 0.046 5.250± 0.131
1.307 ± 0.028 7.900± 0.105
0.770± 0.021 4.329± 0.065
1.062 ±0.052 6.356±0.153
1.284 ± 0.191 8.089± 0.550
1.323 ±0.140 10. 463 ±0.629
2.258 ± 0.246 15.829 ± 0.404
1.134 ±0.158 7.786± 0.262
1.329 ±0.110 11. 555 ±0.564

Ochs
vertioal horizontal

0.960± 0.008 0.960± 0.008
0.942± 0.006 0.942+ 0.006
1.116±0.005 1.116± 0.005
0.945 ±0.003 0.945± 0.003
1.120 ±0.009 1.120± 0.009
0.839±0.009 0.839± 0.009
0.837 ±0.007 0.837± 0.007
1.090 ±0.006 1.090 ± 0.006
0.808± 0.004 0.808± 0.004
1.036 ± 0.010 1.036 ± 0.010
1.074 ±0.023 1.075 ± 0.023
1.128 ±0.018 1.128 ±0.018
1.604 ±0.015 1.604 ± 0.015
0.999 ±0.009 0.999± 0.009
1.385 ± 0.022 1.385 ±0.022
1.651 ± 0.082 1.747 ± 0.078
1.739± 0.064 1.888 ± 0.067
2. 576 ±0.046 2.738 ± 0.046
1.402 ±0.032 1.502+ 0.031
1.940 ±0.069 2.081 ± 0.069
2. 366 ±0.389 2.371 ± 0.283
2. 938 ±0.262 3.493± 0.295
3.934±0.192 4.323± 0.183
1.992 ± 0.124 2.208±0.127
2.514 ± 0.195 2. 881 ±0.233

Bialas
horizontal

0.959 ±0.008
0.942 ±0.006
] .107±0.005
0.945± 0.003
1.112± 0.009
0.839 ±0.009
0.837 ±0.007
1.081 ±0.006
0.808 ±0.004
1.029±0.010
1.069± 0.023
1.126±0.018
1.590±0.015
0.998 ±0.009
1.376 ±0.022
1.602 ± 0.068
1.754 ±0.063
2. 608 ±0.044
1.450± 0.032
1.966 ±0.065
2.606±0.327
2.701 ±0.266
4.095±0.187
2. 044 ±0.120
2. 714 ±0.204

Table B.2: (F3) two-dimensional analysis (füll y,
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(F } two-dimensional analysie (füll y, 0)

Transformalion:
Nonnalization:

CELLO 1
,1 7.2 PS+BE d ]
J 7.2 PS-lBE g ]

J 7.2 PS d 1
J 7.2 PS g 1

CELLO 4
J 7,2 PS+BE d 4
J 7.2 PS+BE g 4

J 7.2 PS d 4
J 7.2 PS g 4

CELLO 16
J 7.2 PS+BE d 16
J 7.2 PS+BE g 16

J 7.2 PS d 16
J 7.2 PS g 16

CELLO 64
J 7.2 PS+BE d 64
J 7.2 PS+BE g 64

J 7.2 PS d 64
J 7.2 PS g 64

None
vt r i i ra ] horizontal

0.934± 0.011 0.934 ± 0.011
0.898± 0.009 0.898 ± 0.009
1.230.: 0.008 ] .230± 0.008
0.905 ± 0.00.r> 0.905 ± 0.005
1.237+ 0.015 1.2371 0.015
0.771 ± 0.019 0.776 + 0.018
0.741 ±0.012 0.749 + 0.012
1.186+ 0.011 1.183 + 0.013
0.693+ 0.007 0.699 + 0.007
1.052+ 0.017 1.052+ 0.017
0.417 ± 0.018 3.363 + 0.138
0.484 + 0.026 3.838+0.118
1.114 + 0.076 7.200+0.129
0.399+ 0.017 3.119 + 0.058
0.972+ 0.192 5.711 ±0.154
1.223 + 0.239 14.684+ 3.392
1.618+ 0.233 17.479+ 1.416
2.523+ 0.169 38. 132 ± 1.399
0.887 ±0.072 12.763+0.734
1.699+ 0.314 25.625± 1.929

Orhs
vertiral horizontal

0.934 ±0.011 0.934+ 0.011
0.898+ 0.009 0.898+ 0.009
1.230+0.008 1.230± 0.008
0.905 ± 0.005 0.905± 0.005
1.237±0.015 1.237±0.015
0.766± 0.018 0.766± 0.018
0.747±0.012 0 .747± 0.012
1.186±0.011 1.186± 0.011
0.694 + 0.007 0.694± 0.007
1.052+ 0.017 1.052+ 0.017
1.320 + 0.088 1.321 + 0.088
1.400+0.063 1.401 + 0.063
2.668+0.066 2.666+ 0.066
1.122+0.034 1.123+ 0.034
1.923 + 0.073 1.924+ 0.073
3.140+0.834 3.172+ 0.785
3.355+0.474 4.289 + 0.563
7.350+0.510 7.958+ 0.436
2.346+0.219 2.589+0.211
4.877+0.801 5.299+ 0.711

Biaias
horizontal

0.933± 0.011
0.898± 0.009
1.215+ 0.008
0.905+ 0.005
1.223+ 0.015
0.764+ 0.018
0.748+ 0.012
1.171 ± 0.011
0.694± 0.007
1.040+ 0.017
1.310+ 0.088
1.393+ 0.062
2.629+ 0.065
1.119± 0.034
1.917+ 0.080
2.172+ 0.424
3.483 ± 0.488
7.458+ 0.421
2.716+ 0.252
4.797+ 0.650

Table B.3: (F4) two-dimensional analysis (füll y,

{F5} two-dimensional analysis (füll y, <$>}

Transformation:

Nonnalization:

CELLO 1
J 7.2 PS+BE d 1
J 7.2 PS+BE g 1

J 7.2 PS d 1
J 7.2 PS g 1

CELLO 4
J 7.2 PS+BE d 4
J 7.2 PS+BE g 4

J 7.2 PS d 4
J 7.2 PS g 4

CELLO 16
J 7.2 PS + BE d 16
J 7.2 PS+BE g 16

J 7.2 PS d 16
J 7.2 PS g 16

None
vertical horizontal

0.911 ± 0.017 0.911 ±0.017
0.850+ 0.012 0.850 + 0.012
1.391 ± 0.014 1.391 ±0.014
0.862 ± 0.007 0.862 ± 0.007
1.400+ 0.025 1.400 ± 0.025
0.751 ± 0.046 0.746 + 0.045
0.649± 0.020 0.656 + 0.019
1.349 ± 0.023 1.344 + 0.023
0.597+ 0.014 0.598 + 0.013
1.076+ 0.029 1.076 + 0.029
0.393+ 0.048 5.213 + 0.565
0.457± 0.037 6.392 + 0.467
1.077+ 0.056 17.434+0.940
0.318± 0.019 4. 626 ±0.254
1.323± 0.653 11. 081 ±0.664

Ochs
vertical horizontal

0.911 ±0.017 0.911 ±0.017
0.850±0.012 0.850± 0.012
1.391 ± 0.014 1.391 ± 0.014
0.862 ±0.007 0.862+ 0.007
1.400+ 0.025 1.400+ 0.025
0.745±0.041 0.745+ 0.041
0.674 + 0.022 0.674+0.022
1.350 ±0.023 1.350 ± 0.023
0.604 ±0.013 0.604+0.013
1.076± 0.029 1.076 ± 0.029
1.915±0.419 1.912+ 0.418
1.898 + 0.222 1.905+ 0.225
5. 461 ±0.384 5.452± 0.384
1.461 + 0.167 1.466+ 0.170
2.961 + 0.270 2.964+ 0.271

Bialas
horizontal

0.909+ 0.017
0.850+ 0.012
1.368+ 0.013
0.861 ± 0.007
1.379± 0.024
0.742+ 0.041
0.675+ 0.022
1.326 ± 0.023
0.605+ 0.013
1.060 ± 0.029
1.903 ± 0.417
1.856+ 0.215
5.348± 0.377
1.451 ± 0.169
3.066± 0.376

Table B.4: (F5} two-dimensional analysis (füll y,<ft).
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Transformation:
Normalization.

CELLO 1
J 7.2 PS+BE d 1
J 7.2 PS^BE g 1

J 7.2 PS d 1
J 7.2 PS g 1

CELLO 4
J 7.2 PS-BE d 4
J 7.2 PS+BE g 4

J 7.2 PS d 4
J 7.2 PS g 4

CELLO 16
J 7.2 PS+BE d 16
J 7.2 PS+BE g 16

J 7.2 PS d 16
J 7.2 PS g 16

CELLO 64
J 7.2 PS+BE d 64
J 7.2 PS+BE g 64

J 7.2 PS d 64
J 7.2 PS g 64

CELLO 256
j J 7.2 PS+BE d 256

J 7.2 PS+BE g 256
J 7.2 PS d 256
J 7.2 PS g 256

CELLO 1024
J 7.2 PS+BE d 1024
J 7.2 PS+BE g 1024

J 7.2 PS d 1024
J 7.2 PS g 1024

CELLO 4096
J 7.2 PS+BE d 4096
J 7.2 PS+BE g 4096

J 7.2 PS d 4096
J 7.2 PS g 4096

CELLO 16384
J 7.2 PS+BE d 16384
J 7.2 PS+BE g 16384

J 7.2 PS d 16384
J 7.2 PS g 16384

CELLO 65536
J 7.2 PS+BE d 65536
J 7.2 PS + BE g 65536

J 7.2 PS d 65536
J 7.2 PS g 65536

( F 2 ) two-diniensional analysi

N o m-
vertica) horizontal

1.047± 0.008 1.047 ± 0.008
1.049 i O.OOC, 1.049 ± 0.006
1.114 ± 0.00,r, 1.114± 0.005
1.048± 0.004 ] .048± 0.004
1.113± 0.008 1.113± 0.008
1.065 + 0.008 1.066 + 0.008
1.080 ± 0.007 1.081 ± 0.007
1.173± 0.00.1 1.180± 0.005
1.051 ±0.004 1.052 ± 0.004
1.140 + 0.009 1.147± 0.009
1.167± 0.012 1.154 ± 0.011
1.204±0.010 1.186 ± 0.009
1.317 ±0.007 1.324± 0.007
1.111± 0.005 1.100± 0.005
1.223 ± 0.011 1.235 ± 0.011
1.347 ±0.025 1.499 ± 0.020
1.383 ± 0.021 1.552 ± 0.017
1.481 ± 0.010 1.686 ± 0.011
1.236± 0.010 1.383 ± 0.009
1.305 ±0.016 1.494 ± 0.017
1.481 ±0.049 1.808 ± 0.038
1.451 ±0.039 1.807 ± 0.032
1.656 ±0.018 2.013 ± 0.018
1.351 ± 0.020 1.605 ± 0.016
1.406± 0.028 1.721 it 0.029
1.642 ±0.108 2.058± 0.076
1.511 ±0.073 2.020± 0.062
1.985± 0.036 2.376± 0.034
1.450 ±0.040 1.760 ± 0.032
1.676 ±0.056 2.042 ± 0.055
1.734 ±0.209 2.273± 0.157
1.726 ±0.147 2.369± 0.129
2.646± 0.083 2.993 ± 0.072
1.603 ±0.094 1.826 ± 0.063
2.321 ±0.139 2.674± 0.122
1.491 ±0.351 2.506± 0.342
1.676 ± 0.293 2.536 ± 0.265
3.963± 0.221 4.400± 0.171
1.891 ± 0.184 2.085 ± 0.135
2. 880 ±0.328 3.509 ± 0.273
0.721 ±0.231 3.059 ± 0.721
0.919 ± 0.312 2.118± 0.486
5.639 ± 0.670 6.898 ± 0.426
2.268 ± 0.438 2.745 ± 0.309
2.096± 0.383 4.989 ± 0.648

s (central y, füll ti>)

Ochs
vertical horizontal

1.047 ± 0.008 1.047 ± 0.008
1.049 ±0.006 I .049± 0.006
1.114 ±0.005 1.114 ±0.005
1.048 ± 0.004 1.048 ±0.004
1.113± 0.008 1.113± 0.008
1.065 ±0.008 1.065 ± 0.008
1.080 ±0.007 1.080± 0.007
1.175± 0.005 1.175± 0.005
1.050 ± 0.004 1.050 ±0.004
1.144 ±0.009 1.144 ±0.009
1.145±0.011 1.145± 0.011
1.180± 0.010 1.180±0.010
1.320 ±0.007 1.320 ±0.007
1.094 ±0.005 1.095 ± 0.005
1.231 ± 0.011 1.231 ± 0.011
1.327 ± 0.019 1.344 ± 0.019
1.363 ±0.016 1.383 ±0.016
1.513 ±0.010 1.536 ±0.010
1.214 ±0.008 1.230 ±0.008
1.345 ±0.015 1.363 ±0.015
1.505 ±0.035 1.529 ±0.034
1.527 ±0.029 1.562 ±0.029
1.711 ±0.016 1.752 ±0.016
1.322 ±0.015 1.343 ±0.015
1.475 ± 0.026 1.507 ±0.026
1.752 ±0.072 1.835 ±0.071
1.691 ±0.058 1.742 ±0.057
1.989 ± 0.031 2.031 ±0.031
1.439 ±0.029 1.458 ±0.029
1.710 ±0.051 1.754 ±0.051
2.015± 0.154 2.166±0.152
1.876 ±0.118 2. 048 ±0.120
2.549 ±0.068 2.600 ± 0.067
1.544 ±0.060 1.576 ±0.059
2.302± 0.117 2.394±0.114
1.792 ±0.293 2. 379 ±0.323
2.127± 0.317 2. 508 ±0.264
3.889 ±0.175 4. 019 ±0.164
1.725 ±0.127 1.876 ± 0.127
2.711 ± 0.255 3. 298 ±0.268
0.906 ± 0.285 2. 549 ±0.658
1.123 ± 0.330 2. 564 ±0.534
5. 199 ±0.408 6. 399 ±0.409
2.006 ± 0.280 2.606 ± 0.301
2.350 ±0.362 5.580 ± 0.686

Bialas
horizontal

1.047± 0.008
1.049 ±0.006
1.114± 0.005
1.047± 0.004
1.113± 0.008
1.065 ± 0.008
1.080 ± 0.007
1.175± 0.005
1.049± 0.005
1.144± 0.009
1.146± 0.011
1.180± 0.010
1.319± 0.007
1.094± 0.006
1.232± 0.011
1.339±0.019
1.370± 0.016
1.516± 0.010
1.226± 0.010
1.350 ± 0.015
1.509 ± 0.034
1.543 ± 0.028
1.725 ± 0.017
1.332± 0.018
1.480 ± 0.025
1.795± 0.070
1.663 ±0.055
2.008± 0.032
1.434 ±0.035
1.674± 0.050
2.198± 0.154
1.916±0.118
2.549± 0.068
1.573 ± 0.072
2.315± 0.112
1.912± 0.285
2.006± 0.236
3.643± 0.161
1.670± 0.149
3.128± 0.266
0.000± 0.000
1.338± 0.386
5.665± 0.399
1.817± 0.312
3.213± 0.521

Table B.5: (F2) Iwo-dimensional analysis (central y, füll <j>).
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{F3} two-dimensional analysis (central y, füll <f>)

Transformation:
Normalization:

CELLO 1
J 7.2 PS-t-BE d 1
J 7.2 PS+BE g 1

J 7.2 PS d 1
J 7.2 PS g 1

CELLO 4
J 7.2 PS+BE d 4
J 7.2 PS+BE g 4

J 7.2 PS d 4
J 7.2 PS g 4

CELLO 16
J 7.2 PS+BE d 16
J 7.2 PS+BE g 16

J 7.2 PS d 16
J 7.2 PS g 16

CELLO 64
J 7.2 PS+BE d 64
J 7.2 PS+BE g 64

J 7.2 PS d 64
J 7.2 PS g 64

CELLO 256
J 7.2 PS+BE d 256
J 7.2 PS+BE g 256

J 7.2 PS d 256
J 7.2 PS g 256

None
vertical horizontal

1.164 ± 0.015 1.164± 0.015
1.162 ± 0.012 1.162± 0.012
1.372± 0.010 1.372+ 0.010
1.159 ± 0.007 1.159± 0.007
1.364 + 0.017 1.364+ 0.017
1.224 + 0.020 1.227+ 0.020
1.268 ± 0.016 1.270± 0.016
1.554 + 0.012 1.584+ 0.013
1.172 ±0.008 1.174+ 0.008
1.417 + 0.019 1.447+ 0.020
1.628+ 0.054 1.497+ 0.042
1.778 + 0.041 1.647+ 0.034
2.160+ 0.026 2.182+0.025
1.420 + 0.020 1.333+ 0.017
1.727 + 0.034 1.770+ 0.034
2.495+ 0.402 2.971 + 0.164
2.654+ 0.220 3.284+ 0.148
3.299+ 0.101 4.570+ 0.093
1.957+ 0.087 2.631 ± 0.071
2.159± 0.105 3.252+ 0.127
2.478+ 0.498 5.620+ 0.810
2.768+ 0.642 5.438+ 0.621
4.722+ 0.364 8.334 + 0.411
2.400+ 0.369 4.554+ 0.317
3.053+ 0.461 5.875+ 0.686

Ochs
vertical horizontal

1.164 + 0.015 1.164+ 0.015
1.162 + 0.012 1.162 + 0.012
1.372 ± 0.010 1.372 ± 0.010
1.159+ 0.007 1.159+ 0.007
1.364 + 0.017 1.364 + 0.017
1.224 + 0.020 1.224 + 0.020
1.265 + 0.016 1.264+ 0.016
1.562+ 0.012 1.562± 0.012
1.170 + 0.008 1.170+ 0.008
1.429 + 0.019 1.429+ 0.019
1.497 + 0.043 1.496+ 0.043
1.687 + 0.037 1.687 + 0.037
2.170±0.025 2.171 ±0.025
1.348 + 0.017 1.348± 0.017
1.777 + 0.037 1.776 ±0.037
2.294 + 0.166 2.351 ±0.144
2.647±0.129 2.771 ±0.134
3.442 + 0.079 3.586+ 0.080
1.867 ±0.057 1.973+ 0.060
2.438 + 0.111 2.525+ 0.112
3. 002 ±0.559 3.122± 0.562
3.545+0.480 3.787+ 0.460
5.672 + 0.352 6.113 + 0.349
2.482 + 0.206 2.662 + 0.211
3.387 + 0.388 3.675+ 0.441

Bialas
horizontal

1.164 + 0.015
1.162 + 0.012
1.370 + 0.010
1.158+ 0.008
1.364 + 0.017
1.223 + 0.020
1.265+0.016
1.561 ± 0.013
1.165 + 0.010
1.429+0.019
1.494 + 0.043
1.689+ 0.037
2. 167 ±0.026
1.343 ±0.020
1.778 ±0.037
2. 259 ±0.139
2. 646 ±0.134
3. 450 ±0.081
1.888 ±0.068
2. 459 ±0.108
3. 122 ±0.493
3.399 + 0.439
5.644 + 0.385
2.456 + 0.249
3.184+ 0.325

Table B.6: (F3} two-dimensional analysis (central y, füll
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1

{.F4} two-dimensional analysis (rentral y. füll <p)

Transformation:
Normalization:

CELLO 1
J 7.2 PS+BE d 1
J 7.2 PS + BE p 1

J 7.2 PS d 1
J 7.2 PS g 1

C'ELLO 4
J 7.2 PS + BE d 4
J 7.2 PS+BE g 4

J 7.2 PS d 4
J 7.2 PS g 4

CELLO I t i
J 7.2 PS + BE d 16
J 7.2 PS+BE g 16

J 7.2 PS d 16
J 7. 2 PS g 16

None
vertical horizontal

1.374 ±0.029 1.374 + 0.029
1.351 - 0.02] 1.351 ± 0.021
1.838 r- 0.02(1 1.838 i 0.020
1.347- 0.012 1.347* 0.012
1.815 ± 0.035 1.815+ 0.035
1.547± 0.058 J .548+ 0.057
1.572 + 0.031-i 1.576+ 0.036
2.275 + 0.031 2.363 + 0.032
1.375 ±0.020 1.375+ 0.019
1.877 ±0.042 1.955+ 0.044
2. 879 ±0.355 2.181 ± 0.207
2.959+ 0.187 2.471 ± 0.138
4.320+ 0.139 4.356± 0.142
2.081 ±0.106 1.756+ 0.075
2. 713 ±0.130 2. 786 ±0.125

Ochs Biaias
vertical horizontal horizontal

] . 3 7 4 d 0.029 1.374 ±0.029
1.351 + 0.021 1.351 + 0.021
1.838+ 0.020 1.838 + 0.020
1.347+ 0.012 1.347 + 0.012
1.815+ 0.035 ].815±0.035
1.547 i 0.057 1.547± 0.057
1.569+ 0.036 1.568 + 0.036
2.295+0.031 2.295 + 0.031
1.369+ 0.019 1. 309 + 0. 019
1.904 + 0.043 1.904 ±0.043
2.295±0.220 2.291±0.219
2.695± 0.162 2.693 + 0.161
4.342+ 0.132 4.343±0.132
1.834+ 0.076 1.836 ±0.077
3.019 + 0.202 3.015 + 0.202

1.374+ 0.029
1.351 ± 0.021
1.833+ 0.020
1.345 + 0.015
1.815 ±0.035
1.545 ±0.057
1.571 ± 0.036
2.293 + 0.033
1.359 ±0.023
1.904 ± 0.043
2.277+ 0.219
2.714 ± 0.162
4.309± 0.131
1.773+ 0.081
3.019 ± 0.202

Table B.7: (P4) two-dimensional analysis (central y, füll

(F*) two-dimensional analysis (central y. füll <f>)

Transformation:
Normalization:

CELLO 1
J 7.2 PS+BE d 1
J 7.2 PS+BE g 1

J 7.2 PS d 1
J 7.2 PS g 1

CELLO 4
J 7.2 PS+BE d 4
J 7.2 PS+BE g 4

J 7.2 PS d 4
J 7.2 PS g 4

C'ELLO 16
J 7.2 PS+BE d 16
J 7.2 PS + BE g 16

J 7.2 PS d 16
J 7.2 PS g 16

None
vertical horizontal

1.712±0.063 1.712+ 0.063
1.627 ±0.038 1.627+ 0.038
2.637 + 0.042 2.637± 0.042
1.625 + 0.021 1.625 ± 0.021
2. 585 ±0.074 2.585± 0.074
2. 190 ±0.199 2.173 ± 0.192
1.964 ± 0.082 1.974 ± 0.082
3. 584 ±0.083 3.794 ± 0.088
1.670+ 0.055 1.662+ 0.051
2.582± 0.096 2.746+ 0.102
6. 992 ±2 . 502 3.733+ 1.192
5.028± 0.726 3.665± 0.476
10.523± 1.041 10. 622 ± 1.111
3.822± 0.748 2.702±0.438
4.443 ± 0.493 4.425±0.438

Ochs
vertical horizontal

1.712± 0.063 1.712± 0.063
1.627+ 0.038 1.627+ 0.038
2.637+0.042 2.637+ 0.042
1.625± 0.021 1.625± 0.021
2.585 + 0.074 2.585± 0.074
2. 193 ±0.195 2.191 ± 0.194
1.979 ± 0.084 1.978± 0.084
3.628± 0.086 3.628± 0.086
1.660± 0.051 1.660± 0.051
2.641±0.100 2.642±0.100
4.192± 1.229 4.172± 1.222
4. 536 ±0.690 4. 525 ±0.686
10.488 ± 0.866 10.494 ± 0.865
2. 808 ±0.431 2.827± 0.442
6.659± 1.509 6.629± 1.520

Bialas
horizontal

1.712 ± 0.063
1.627 ± 0.038
2.623+ 0.043
1.623+ 0.020
2.585+ 0.074
2.187+ 0.194
1.987+ 0.085
3.624± 0.089
1.634 ± 0.053
2.642± 0.100
4.172 ± 1.222
4.607± 0.687
10.163 ±0.793
2.380± 0.350
6.608± 1.518

Table B.8: (Fb) two-dimensional analysis (central y, füll



Appendix C

Factorial moments in three dimensions

145



14G Appendix C. FarforiaJ monieiils in ihrer dimensions

y, ö, PJ analysis (Ochs method)

Dataset

CELLO
J 7.2 PS+BE d
J 7.2 PS+BE g

J 7.2 PSd
J 7.2 PS g

CELLO
J 7.2 PS+BE d
J 7.2 PS+BE g

J 7.2 PS d
J 7.2 PS g

CELLO
J 7.2 PS+BE d
J 7.2 PS+BE g

J 7.2 PS d
J 7.2 PS g

CELLO
J 7.2 PS+BE d
J 7.2 PS+BE g

J 7.2 PS d
J 7.2 PS g

CELLO
J 7.2 PS+BE d
J 7.2 PS+BE g

J 7.2 PS d
J 7.2 PS g

CELLO
J 7.2 PS+BE d
J 7.2 PS+BE g

J 7.2 PSd
J 7.2 PS g

CELLO
J 7.2 PS+BE d
J 7.2 PS+BE g

J 7.2 PS d
J 7.2 PS g

Bins

2°
2°
2°
2°
2°

23

23

23

23

2*
26

2°

2C

29
2«

212
212

2"
2»
215

21B

215

2»

2ifi
216

218

(F2}"
0.984 ±0.005
0.978 ± 0.004
1.040± 0.003
0.979± 0.002
1.041 ±0.006
(1.972 -_i. l U l O t i
0.966 ±0.005
J.074 ± 0.003
0.954± 0.003
1.057 ± 0.006
1.121 ± 0.011
1.131 + 0.010
1.307 ± 0.006
1.064 ±0.005
1.230±0.011
1.542 ± 0.033
1.581 ± 0.028
1.928 ± 0.017
1.413 ± 0.015
1.701 ± 0.028
2.006 ±0 .103
2.076 ±0.087
2.816 ±0.052
1.786 ±0.045
2.361 ±0.087
2.450 ±0.316
2.944 ±0.286
4.174 ± 0.174
2.325 ± 0.143
3.186± 0.274
3.267 ± 1.033
4.321 ±0.966
6.678 ±0.612
3.413 ± 0.487
6.095 ± 1.060

(F*)h

0.960± 0.008
0.942± 0.000
1. 11« i 0.005
0.945± D. 003
1.120 ±0.009
0.964 ± 0.014
0.94G± 0.011
1.231 ±0.008
0.903 ±0.006
1.158±0.013
1.460 ±0.067
1.533 ±0.052
2.248 ±0.039
1.353 ±0.028
J . 9 0 2 ± 0.055
4.109± 0.752
5.404 ± 0.715
8.734± 0.474
3. 253 ±0.272
6. 518 ±0.670

-

-

-

(F4}"
0.934 ± 0.011
0.898± 0.009
1.230 ± 0.008
0.905 ±0.005
].237±0.015
1.039 ±0.048
0.971 -0.026
1.545- 0.022
0.880± 0.013
1.322± 0.029
2.446 ±0.389
2. 064 ±0.313
5. 563 ±0.413
1.879 ±0.175
3.498 ± 0.324

-

-

-

-

Z (f1*}* D
0.910±0.017
0.850 ±0.012
1.391 i 0.014
0.861 ±0.007
1.400 ±0.025
1.361 ±0.213
1.043 ± 0.064
2. 135 ±0.071
0.894 ±0.034
1.543 ±0.068

-

-

-

-

-

Table C.l: y, d>, p\s (Ochs method).
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y, G>, PJ_ analysis (Bialas method)

Dataset

CELLO
J 7.2 PS + BE d
J 7.2 PS+BE g

J 7.2 PS d
J 7.2 PS g

CELLO
J 7.2 PS+BE d
J 7.2 PS+BE g

J 7.2 PS d
J 7.2 PS g

CELLO
J 7.2 PS+BE d
J 7.2 PS+BE g

J 7.2 PS d
J 7.2 PS g

CELLO
J 7.2 PS+BE d
J 7.2 PS+BE g

J 7.2 PS d
J 7.2 PS g

CELLO
J 7.2 PS+BE d
J 7.2 PS+BE g

J 7.2 PS d
J 7.2 PS g

CELLO
1 J 7.2 PS+BE d
J 7.2 PS+BE g

J 7.2 PS d
J 7. 2 PS g

Eins

2fl

2°

*

(F2)*
0.984 ±0.005
0.978± 0.004
1.036 ± 0.003

2° j 0.979 ±0.002
2°
l6

23

23

2'
23

26

26

26

2*
26

2*
29

29

2y

29

2 1 J

212
212

2U
212

21&

215

215

215

215

1.Ü38± 0.006
0.972± 0.006
0.965 ± 0.005
1.066 ±0.003
0.953 ± 0.003
1.049± 0.006
1.062± 0.011
1.075 ± 0.009
1.277 ± 0.006
1.011 ± 0.005
1.192± 0.010
1.286 ± 0.030
1.293 ± 0.025
1.656 ± 0.015
1.162± 0.013
1.417 ±0.024
1.603 ± 0.091
1.570 ± 0.074
2.262± 0.047
1.414 ± 0.040
1.801 ± 0.074
1.919 ± 0.280
1.674 ± 0.212
3.180 ± 0.153
1.524± 0.115
2.301 ± 0.229

(Fz}h (F*)h

0.959 ± 0.008
0.942 ± 0.006
1.107 ±0.005
0.945 ±0.003
1.112± 0.009
0.965 ±0.014
0.943 ±0.011
1.202 ±0.008
0.903± 0.006
1.132 ±0.013
1.198 ±0.060
1.306 ±0.049
2. 100 ±0.038
1.146 ±0.026
1.729 ± 0.053
2.106 ± 0.471
2. 504 ±0.406
5.295 ±0.330
1.774 ± 0.207
2. 922 ±0.429

—
—
-
—

-
—
-
-
—
-

0.933zi 0.011

0.898± 0.009
1.215 ± 0.008
0.905 ±0.005
1.223± 0.015

1.043 ±0.048
0.969 ±0.026
1.473 ± 0.021
0.881 ± 0.014
1.265 ± 0.028
1.991 ±0.415
1.902 ±0.309
5. 212 ±0.404
1.700 ±0.170
3. 169 ±0.320

-
-
-
-
-
-
-
-
—
-
-
-
-
-
-

(-f15)"
0.909± 0.017
0.850± 0.012

1.368± 0.013
0.861 ± 0.007
I .379± 0.024
1.378± 0.213

1.040 ±0.063
1.988 ±0.065
0.899 ±0.036
1.437 ±0.061

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

Table C.2: y, <p, p\s (Bialas method).



Appendix C. FarfuriaJ moments in rhree dimensious

Cartesian three-drniensional analysis (Bialas nicthod)

Dataset

CELLO
J 7.2 PS+BE d
J 7. 2 PS+BE g

J 7.2 PS d
J 7.2 PS g

CELLO

Bin s

2°
2°
2°
2°
2°
2*

J 7.2 PS+BE d ! 23

J 7.2 PS+BE g
J 7.2 PS d
J 7.2 PS g

CELLO
J 7.2 PS-tBE d
J 7.2 PS+BE g

J 7.2 PS d
J 7.2 PS g

CELLO
J 7.2 PS+BE d
3 7.2 PS+BE g

J 7.2 PS d
J 7.2 PS g

CELLO
J 7.2 PS+BE d
J 7.2 PS+BE g

J 7.2 PS d
J 7.2 PS g

CELLO
J 7.2 PS+BE d
J 7.2 PS+BE g

J 7.2 PS d
J 7.2 PS g

23

23

23

2fc

26

26

2fi

26

2W

29

2e

2y

29

2 ia
212

2,2

2U
212

jTI

215

216

215

21S

{F2}"

0.984± 0.005
0.978± 0.004
1.037+ 0.005
0.979-0.002
1.038 i 0.005
1.715 ± 0.009
1.716± 0.008
1.737± 0.009
1.637* 0.004
1.693^0.009
3.211 + 0.022
3.157 + 0.038
3.317± 0.021
2.924± 0.010
3. 199 i 0.020
4. 813 ±0.061
4.710 + 0.048
5. 288 ±0.052
4.278± 0.026
5.092+ 0.050

6.313+ 0.184
6. 096 ±0.143
7.281 + 0.153
5. 512 ±0.078
7. 100 ±0.146
7.390 + 0.553
6.616 + 0.422
7. 928 ±0.420
6. 174 ±0.233
8.276+ 0.425

<F')'

0.959 i 0.008
0.942+ 0.006
1.109 i 0.009
0.945 + 0.003
1.110+ 0.009

3.421 ± 0.037
3.422+0.031
3. 676 i 0.037
3.094 + 0.016
3.456+ 0.034
14.042 = 0.273
13.898-0.241
16.556 + 0.282
11.804 + 0.117
15.379 + 0.244

36. 010 ± 2.287
32.086^ 1.695
51.068-2.207
28. 623 ±0.910
50. 026 ±2. 094
74. 126 ±22. 343
0.000+ 0.000

141. 987 ±26. 532
40.558 + 7.403

138.765 + 24.045
-
-
—
—

-

(n*
0.933 + 0.011
0.898 + 0.009
1.220+0.015
0.905 ±0.005
1.219+ 0.015
7.002+ 0.145
7.033± 0.123
8.376+ 0.152
5. 946 ±0.058
7.495+ 0.126

60.870+ 3.131
68. 483 ± 3.284
97.759+ 4.673
50.409 ± 1.400
83.730+ 3.181

254. 886 ± 76.828
205.770+ 53.114
684.786± 132.591
174.919 ±33. 867

647.135+ 101.305
—
—
-
—
-
—
—
—
_

-

(F^
0.909+ 0.017
0.850± 0.012
1.378± 0.024
0.861 ± 0.007
1.372+ 0.023
14.148+ 0.580
14.519+ 0.485
19.795 + 0.647
11.280+ 0.222
16.546 + 0.474

216. 309 ±30. 254
345.173 + 42.983
670.729 + 93.836
205.541 ± 15.848
462.511 ±41.069

—
—
—
—
-
—
—
—
—
-
-
—
—
_

. . —

Table C.3: Cartesian three-dimensional analysis (Bialas method).
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Gartesian three-dimensional analysis

Dataset

CELLO
J 7.2 PS+BE d
J 7.2 PS+BE g

J 7.2 PS d
J 7.2 PS g

CELLO
J 7.2 PS+BE d
J 7.2 PS+BE g

J 7.2 PS d
J 7.2 PS g

CELLO
J 7.2 PS+BE d
J 7.2 PS+BE g

J 7.2 PS d
J 7.2 PS g

C'ELLO
J 7.2 PS+BE d
J 7.2 PS+BE g

J 7.2 PS d
J 7.2 PS g

CELLO
J 7.2 PS+BE d
J 7.2 PS+BE g

J 7.2 PS d
J 7.2 PS g

CELLO
J 7.2 PS+BE d
J 7.2 PS+BE g

J 7.2 PS d
J 7.2 PS g

Eins

2°
2°
2°
2°
2°
2*
23
23

23

23

2*
26

26

26

26

2H

2fl

29

29

29

JT3
212

212

212

212
2li>

215

215

«16

215

(Fi}h

0.98-10" ± 0.21-10- 2

0.98-10°+ 0.17-1Ü-2

1.0410° rtO.25-10-2

0.98-10° + 0.95-10-3

1. 04-10° iO.24-10-2

7.4&10U±0.16-10-1

7.42-10° + 0.13-10-1

7.94-10°±0.20-10-1

7.44-10° ±0.76-10~2

7.94-10°±0.19-10-1

5.65-101 ±0.13-10°
5.63-101 ±0.10-10°
6.05-101 ±0.15-10°

5.64-101 iO.60-10-1

6.05-101 ±0.15-10°
4. 06-102± 0.99-10°
4. 05-102± 0.80-10°
4.39-102± 1.18-10°
4. 06-102± 0.46-10°
4.39-l02± 1.14-10°
2.60-10J±7.02-10U

2.6M03± 5.71-10°
2. 88-l03± 8.40-10°
2.62-l03±3.29-10°
2.88"103±8.1MO°
1. 34-10* ±3.9llÖl

1.36-104±3.33-101

1.55-104 + 4.9M01

1.36-104± 1.90-101

1.53-104±4.74-101

(F3)"
0.96-10°± 0.34-10^^
0.94-10°+ 0.26-10-2

1. 12-10° ± 0.42-10^2

0. 95-10° ± 0.15-10-2

1. 12-10° ± 0.41-10-2

5.67-101 ± 0.21-10U

5.58-10^ 0.16-10°
6.68-101 ± 0.26-10°
5.61-10^ 0.94-10'1
6.67-101 ± 0.25-10°
3.35-103± 1.29-101

3.30-103± 1.02-101

3.97-103± 1.62-101

3.32-103±5.87-10°
3.98-103± 1.57101

1.82-1 05 ± 7.67-102

1.80-105± 6.07-102

2.20-105± 9.71-102

1.81-105± 3.49-102

2.20105±9.36-102

8.25-10b±4.04-10^
8.22-10G±3.21-104

1.04-1 07 ± 5.24-104

8.26-106± 1.86-1 04

1.03-107±5.04-104

2.50-10fe± 1.51-10°
2.57-10&± 1.25-1 06

3.42-108±2.11-106

2.56-10fe± 7.14-105

3.35-106± 1.98-1 06

g£
0.93-10" ±0.51-10-2

0. 90-10° ±0.38-10~2

1. 24-10° ±0.68-10-2

0. 90-10° ±0.22-10^2

1. 23-10° ±0.66-10-2

4.35-102±2.49-10°
4.19-102± 1.87-10°
5.83-102±3.38-10°
4.23-102± 1.08-10°
5.81-102± 3.24-10°
2.02-10S± 1.21-103

1.96-105±9.21-102

2.73-105± 1.65-103

1.98-105±5.30-102

2.73-105± 1.59-1 03

8. 51-10' ±5.60-105

8.25-107±4.28-105

1.18-10&±7.7M05

8.33-107±2.45-105

1.17-108±7.4M05

2.84-10lü± 2.25-106

2.77-1010± 1.70-108

4.13-1010± 3.22-106

2.80-1010± 9.94-107

4.10-1010± 3.05-1 08

5.42-1012±5.98-1010

5.58-1012±4.64-1010

8.99-1012±9.40-1010

5.55-1012± 2.68-1010

8.67-1012± 8.59-1010

(F5)"

0.91-10° ± 0.76-10-2

0.8S100 ±0.54-10- =
1.40-10° ± 0.11-10-1

0. 86-10° ±0.31-10-2

1. 39-10° ± 0.11-10-'
3.36-10J± 2.97-101

3.14-103± 2.10-101

5.25-1 O s± 4.33-101

3.20-103± 1.20-101

5. 20-103 ±4.12-10'
1.23-1 07 ± 1.13105

1.16-107± 8.26-104

1.95-1 07 ± 1.68-105

1.18-107± 4.67-104

1.94-107± 1.60-1 05

4.07-1010±4.15-106

3.83-1010± 3.02-106

6.58-1010±6.24408

3.90-101Ü± 1.70-1 08

6.51-1010± 5.91-106

1.02-1 014 ± 1.30-1 012

9.69-1013± 9.04-1011

1.76-1014± 2.03-1012

9.91-1013± 5.31-1011

1.7M014± 1.89-1012

1.30-1017± 2.70-1015

1.32-1017± 1.77-10"
2.65-1017± 4.47-1015

1.32-1017± 1.05-10"
2.50-1017± 3.95-1015
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