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NOTE ON THE MEASUREMENT OF BEAM EMITTANCE

1, Measurement of beam envelope in a drift space

Using the notation of reference [ﬁ], the beam envelope

E(s) = /e /B8(s) is given in terms of
S 4 2 Y R _ A#al
P T Bp1 % =7 Bofla EROY,  SpE

by the equation

B(s) = By C2(s) - 2a,C(s)S(s) +y _S2(s) (1)
where C(s) and S(s) are the cosinelike and sinelike
pricipal trajectories, respectively, and B,, a, and Y g

the beam parameters referring to the point s = O,

In a drift space, we have

C(s) = 1 and S(g) = @
and therefore
B(s) = B_ = 2a s + ¥ 32 (2)
o o o

The amplitude function B(s) has a minimum, i.e. the beam






has a waist at the point

3

s =
W

(3)

<
(o}

(see Fig. 1), and the beam width at the waist is

given by
=1
p@)? B(s ) = Yo (4)
4 A=
Yo
: = e
s=0 S, = 285, S

Figure 1: Amplitude function B(s) in a drift space

For a given B, = % Eg at s = 0, the maximum distance of
the waist from this point is obtained for B = 1 and has
the value
o |
Swymax 2 Bo (5)

In this case, the amplitude function at the waist is

B(s ) = % Bo (6)

Due to equation 2, the beam emittance at s = 0 as given
by the beam parameters B8,, a5 and yo can be determined
by measuring the beam envelope E = /e/B at different
points s in the drift space and matching B(s) to these

measured values [2]. This method calls for measuring
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points in the vicinity of the waist as well as further
away from it, since for ls| >> BO the last term in

equation 2 is dominating and determines €°y ;, while the

* N . a
width and positlon of the waist determines 5- and 79 ’
. o o
respectively.

2. Emittance measurement with quadrupole and fixed probe

In practice, instead of measuring at different points
along the beam, it appears to be easier to move the beam
waist across a fixed probe positron by means of a quadru-
pole lens, as reported in reference {?:l where the beam
width for different lens strengths was determined photo-
metrically from glass plates darkened by the beam. Since,
according to equation 5, the maximum distance of the
waist from the quadrupole iS<% 82 (see figure 2), the
probe distance L should be smaller than this value,
Expressed in terms of the beam half width ER = /e /EI

at the end of the quadrupole, this means

L < %.E.Ei (7)

Figure 2: Emittance measurement with quadrupole and fixed probe
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-5 radem and a beam

lor example, for an emittance € = 10
half width of 1 cm, the probe distance should be of the
order of 2 - 3 meters only, and the quadrupole should

be strong enough to produce a waist at 1 - 2 meters from

its end.

In order to find the beam parameters at s = 0, we now
have to use equation 1 for matching B to the measured
beam half widths E at point s = { + L. Taking n different
values E,; at different quadrupole strengths ki’ this
yields the following system of linear equations for

eBO, EQ s EY o

2 LD 2

E1 + 61 - CisBO - 2C182eao ks S1 eyo

E2 + 6, = C2eB_ - 2C.S,ea_ + 52 A
2 g = Loty ™ 2 Yo (8a)

!

2 | 2 2

En + Gn = CneBo - 2CnSneao + Sn €Y 5

For the n matching parameters éi one would, for instance,
demand

n &3 2
) —L = minimum
i=1 \Bi

which, by partial differentiation with resgect to Bos Oy

and v yields the additional equations

n
g 1L cg 6, = 0
1=1 Ei

B9

.}51 -E?' Clsiéi = 0 (8b)
1= i

n

1 2
T S, & = 0
21 E? i %
i






The principal trajectories C; and S; at the probe position
depend on the quadrupole strength ki as follows:

a) focusing case:

1 .
Ci S 1 L cos¢i VEi sin ¢i

1t Q1 il s .
Ci Si 0o 1 /k131n¢1 cos ¢.

= /_— ) (9a)
- ki31n¢i cos¢i
with ¢; = i /E;
b) defocusing case
C:. S 1 L coshé. 1 sinh¢.
: ) ) i 7Ei i
] 1 T e
Ci Si 0 1 /ki51nh¢i cosh¢i
cosh¢i + L/F;sinh¢i 7%7 sinh¢i + L cosh¢i
= = (9b)

/kisn.nhd:i coshé

with ¢; = [/E;

Thus, the system of linear equations 8 can easily be solved

for eBo, ea
then follows from the relation

and €Y, by a computer, and the beam emittance

e? = (eB)(ev) - (ea )’ (10)






3, Emittance filter

The smallest prarallelogram enclosing the beam ellipse
touches the ellipse in 4 conjugated points (see reference
(1], p. 175, and figure 3, where A and B are conjugated
points). Therefore, if one wants to most efficiently
restrict the beam emittance by means of two slit colli-
mators positioned at s = 0 and s = Sq respectively, the

phase function @(s) should increase by %-befween them:

S1 3

al
O(s,) = ds, & (11)
1 é‘Ea(s) 2

This can be achieved by placing a focusing lens between

the collimators.

The setup, then, may also be used to measure the beam
emittance by determining the beam half width Eo in the
first collimator and, in addition, the half widths B1
in the second collimator for various strengths of the
quadrupole. Observing the product

= |+ E (12)

as a function of quadrupole strength, it will assume a
minimum for a certain pair of values EI‘and ST, and the

beam emittance is then given by

! X
€ = ;;- EO El (13)
1
This may easily be seen as follows: The two factors in
(12) are the "half widths" in y'- and y-direction of
the phase plane parallelogram which is defined at point Sq

by the combined action of the two slit collimators (see






figure 3)., The emittance of the inscribed maximum ellipse,
therefore, is equal to the product (12), and whenever this

product assumes a minimum, the maximum ellipse is equal

to the beam ellipse., \\?
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Figure 3: Phase plane parallelogram defined by two slit

collimators.
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