NOTE ON THE MEASUREMENT OF BEAM EMITTANCE

1. Measurement of beam envelope in a drift space

Using the notation of reference [1], the beam envelope $E(s)=\sqrt{\varepsilon} \sqrt{\bar{\beta}(\bar{s})}$ is given in terms of

$$
\beta_{0}=\frac{1}{\varepsilon} E_{0}^{2}, \quad \alpha_{0}=-\frac{1}{\varepsilon} E_{0} E_{0}^{\prime} \quad \text { and } \gamma_{0}=\frac{1+\alpha_{0}^{2}}{\beta_{0}}
$$

by the equation

$$
\begin{equation*}
\beta(s)=\beta_{0} C^{2}(s)-2 \alpha_{0} C(s) S(s)+\gamma_{0} S^{2}(s) \tag{1}
\end{equation*}
$$

where $C(s)$ and $S(s)$ are the cosinelike and sinelike pricipal trajectories, respectively, and β_{0}, α_{0} and γ_{0} the beam parameters referring to the point $s=0$.

In a drift space, we have

$$
C(s)=1 \quad \text { and } \quad S(s)=s
$$

and therefore

$$
\begin{equation*}
\beta(s)=\beta_{0}-2 \alpha_{0} s+\gamma_{0} s^{2} \tag{2}
\end{equation*}
$$

The amplitude function $\beta(s)$ has a minimum, i.e. the beam
.

has a waist at the point

$$
\begin{equation*}
s_{W}=\frac{\alpha_{0}}{\gamma_{0}} \tag{3}
\end{equation*}
$$

(see Fig. 1), and the beam width at the waist is given by

Figure 1: Amplitude function $\beta(s)$ in a drift space
For a given $\beta_{o}=\frac{1}{\varepsilon} E_{o}^{2}$ at $s=0$, the maximum distance of the waist from this point is obtained for $\alpha_{0}=1$ and has the value

$$
\begin{equation*}
s_{w, \max }=\frac{1}{2} \beta_{o} \tag{5}
\end{equation*}
$$

In this case, the amplitude function at the waist is

$$
\begin{equation*}
\beta\left(s_{W, \max }\right)=\frac{1}{2} \beta_{0} \tag{6}
\end{equation*}
$$

Due to equation 2, the beam emittance at $s=0$ as given by the beam parameters β_{0}, α_{0} and γ_{0} can be determined by measuring the beam envelope $E=\sqrt{\varepsilon} \sqrt{\beta}$ at different points s in the drift space and matching $\beta(s)$ to these measured values [2]. This method calls for measuring
points in the vicinity of the waist as well as further away from it, since for $|s| \gg \beta_{0}$ the last term in equation 2 is dominating and determines $\varepsilon \cdot{ }^{\circ} \gamma_{0}$, while the width and position of the waist determines $\frac{\varepsilon}{\gamma_{0}}$ and $\frac{\alpha_{0}}{\gamma_{0}}$, respectively.
2. Emittance measurement with quadrupole and fixed probe

In practice, instead of measuring at different points along the beam, it appears to be easier to move the beam waist across a fixed probe positron by means of a quadrupole lens, as reported in reference [3], where the beam width for different lens strengths was determined photometrically from glass plates darkened by the beam. Since, according to equation 5 , the maximum distance of the waist from the quadrupole is $\frac{1}{2} \beta_{\ell}$ (see figure 2), the probe distance L should be smaller than this value. Expressed in terms of the beam half width $E_{\ell}=\sqrt{\varepsilon} \sqrt{\beta_{1}}$ at the end of the quadrupole, this means

$$
\begin{equation*}
\mathrm{L}<\frac{1}{2 \varepsilon} \mathrm{E}_{\mathrm{l}}^{2} \tag{7}
\end{equation*}
$$

Figure 2: Emittance measurement with quadrupole and fixed probe

Ior example, for an emittance $\varepsilon=10^{-5} \mathrm{rad} \cdot \mathrm{m}$ and a beam half width of 1 cm , the probe distance should be of the order of $2-3$ meters only, and the quadrupole should be strong enough to produce a waist at 1 - 2 meters from its end.

In order to find the beam parameters at $s=0$, we now have to use equation 1 for matching β to the measured beam half widths E at point $s=l+L$ 。 Taking n different values E_{i} at different quadrupole strengths k_{i}, this yields the following system of linear equations for $\varepsilon \beta_{O}, \varepsilon \alpha_{O}, \varepsilon \gamma_{O}$,

$$
\left\{\begin{array}{l}
E_{1}^{2}+\delta_{1}=C_{1}^{2} \varepsilon \beta_{\circ}-2 C_{1} S_{2} \varepsilon \alpha_{\circ}+S_{1}^{2} \varepsilon \gamma_{\circ} \tag{8a}\\
E_{2}^{2}+\delta_{2}=C_{2}^{2} \varepsilon \beta_{\circ}-2 C_{2} S_{2} \varepsilon \alpha_{\circ}+S_{2}^{2} \varepsilon \gamma_{\circ} \\
E_{n}^{2}+\delta_{n}=C_{n}^{2} \varepsilon \beta_{\circ}-2 C_{n} S_{n} \varepsilon \alpha_{\circ}+S_{n}^{2} \varepsilon \gamma_{\circ}
\end{array}\right.
$$

For the n matching parameters δ_{i} one would, for instance, demand

$$
\sum_{i=1}^{n}\left(\frac{\delta_{i}}{E_{i}}\right)^{2}=\text { minimum }
$$

which, by partial differentiation with resfect to β_{o}, α_{o} and γ_{o}, yields the additional equations

$$
\left\{\begin{array}{l}
\sum_{i=1}^{n} \frac{1}{E_{i}^{2}} c_{i}^{2} \delta_{i}=0 \tag{8b}\\
\sum_{i=1}^{n} \frac{1}{E_{i}^{2}} c_{i} S_{i} \delta_{i}=0 \\
\sum_{i=1}^{n} \frac{1}{E_{i}^{Z}} S_{i}^{2} \delta_{i}=0
\end{array}\right.
$$

The principal trajectories C_{i} and S_{i} at the probe position depend on the quadrupole strength k_{i} as follows:
a) focusing case:

$$
\begin{align*}
\left(\begin{array}{cc}
c_{i} & s_{i} \\
c_{i}^{\prime} & s_{i}^{\prime}
\end{array}\right) & =\left(\begin{array}{ll}
1 & L \\
0 & 1
\end{array}\right)\left(\begin{array}{lll}
\cos \phi_{i} & \frac{1}{\sqrt{k_{i}}} & \sin \phi_{i} \\
-\sqrt{k_{i}} \sin \phi_{i} & \cos \phi_{i}
\end{array}\right) \\
& =\left(\begin{array}{cc}
\cos \phi_{i}-L \sqrt{k_{i}} \sin \phi_{i} & \frac{1}{\sqrt{k_{i}}} \sin \phi_{i}+L \cos \phi_{i} \\
-\sqrt{\bar{k}_{i}} \sin \phi_{i} & \cos \phi_{i}
\end{array}\right) \tag{9a}
\end{align*}
$$

with $\phi_{i}=\ell \sqrt{k_{i}}$
b) defocusing case

$$
\begin{align*}
\left(\begin{array}{cc}
c_{i} & s_{i} \\
c_{i}^{\prime} & s_{i}^{\prime}
\end{array}\right) & =\left(\begin{array}{ll}
1 & L \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
\cosh \phi_{i} & \frac{1}{\sqrt{k_{i}}} \sinh \phi_{i} \\
\sqrt{k_{i}} \sinh \phi_{i} & \cosh \phi_{i}
\end{array}\right) \\
& =\left(\begin{array}{cc}
\cosh \phi_{i}+L \sqrt{k_{i}} \sinh \phi_{i} & \frac{1}{\sqrt{k_{i}}} \sinh \phi_{i}+L \cosh \phi_{i} \\
\sqrt{k_{i}} \sinh \phi_{i} & \cosh \phi_{i}
\end{array}\right) \tag{gb}\\
\text { with } \phi_{i} & =\ell \sqrt{k_{i}}
\end{align*}
$$

Thus, the system of linear equations 8 can easily be solved for $\varepsilon \beta_{0}, \varepsilon \alpha_{0}$ and $\varepsilon \gamma_{0}$ by a computer, and the beam emittance then follows from the relation

$$
\begin{equation*}
\varepsilon^{2}=\left(\varepsilon \beta_{0}\right)\left(\varepsilon \gamma_{0}\right)-\left(\varepsilon \alpha_{0}\right)^{2} \tag{10}
\end{equation*}
$$

3. Emittance filter

The smallest prarallelogram enclosing the beam ellipse touches the ellipse in 4 conjugated points (see reference [1], p. 175, and figure 3, where A and B are conjugated points). Therefore, if one wants to most efficiently restrict the beam emittance by means of two slit collimators positioned at $s=0$ and $s=s_{1}$, respectively, the phase function $\varnothing(s)$ should increase by $\frac{\pi}{2}$ between them:

$$
\begin{equation*}
\emptyset\left(s_{1}\right)=\int_{0}^{s_{1}} \frac{1}{E^{2}(s)} d s=\frac{\pi}{2} \tag{11}
\end{equation*}
$$

This can be achieved by placing a focusing lens between the collimators.

The setup, then, may also be used to measure the beam emittance by determining the beam half width E_{o} in the first collimator and, in addition, the half widths E_{1} in the second collimator for various strengths of the quadrupole. Observing the product

$$
\begin{equation*}
\left(\frac{E_{0}}{S_{1}}\right) \cdot E_{1} \tag{12}
\end{equation*}
$$

as a function of quadrupole strength, it will assume a minimum for a certain pair of values E_{1}^{*} and S_{1}^{*}, and the beam emittance is then given by

$$
\begin{equation*}
\varepsilon=\frac{1}{S_{1}^{*}} E_{o} E_{1}^{*} \tag{13}
\end{equation*}
$$

This may easily be seen as follows: The two factors in (12) are the "half widths" in y^{\prime} - and y-direction of the phase plane parallelogram which is defined at point s_{1} by the combined action of the two slit collimators (see
figure 3). The emittance of the inscribed maximum ellipse, therefore, is equal to the product (12), and whenever this product assumes a minimum, the maximum ellipse is equal to the beam ellipse.

Figure 3: Phase plane parallelogram defined by two slit collimators.

$R e f e r e n c e s$

1 K。G。Steffen，High Energy Beam Optics（Wiley 1965）
2 M．Placidi，private communication

3 FoW。Brasse，G。Hemmie and W．Schmidt，DESY 65／18（1965）

