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1. Introduction

Bunch lengthening due to RF cavities in electron storage rings and some of the

effects associated with it have been considered in Ref. 1. In particular, results

were given for the bunch shape, the potential well, the focusing electric field,

the variation of the synchrotron frequency v , and the Fourier spectrum of the
a

synchrotron oscillation.

This work is now extended to include the distribution function for the ampli-

tude of the synchrotron oscillations.

2. Outline of the procedure for finding the amplitude distribution function

In synchrotron phase space with the phase T and the suitably scaled energy error

t as coordinate axes the particle density is described by a distribution function

^(e,t). The integral of this function over e is known, it is the bunch shape

+CO

KT) = ] KE,T) dt (1)

+ 00

The trajectories for particles which cross the T axis a time T - ~ before

the synchronous particle are also known. Since the system has an invariant

Hamiltonian (which does not depend on time explicitly), the trajectories divide

phase space into "rings". Particles in one ring stay in it forever when slow

stochastic instability is neglected.

From the calculation of the synchrotron frequency v it is also known where a

particle is on its trajectory n time steps At after it started on the T axis.

The trajectories and the lines of equal time divide the phase space into small

areas, each bordered by 2 trajectories and 2 time lines as shown in Fig.1.
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Since the Hamiltonian is conservative, the areas enclosed between tow traj ec-

tories are all equal, and the particle density along a traj ectory is conserved.

Hence, all the areas in a given ring contain the same number of particles. To

obtain a complete knowledge of the distribution function ijj (e, T) it is there-

fore sufficient to know the trajectories and to calculate the density along

them. The amplitude a is defined by the time difference (T - T ) between the
o s

crossing print T of the T-axis and the synchronous time T ' T is ahead of T .
o s o s

From the calculation of the bunch shape I(T) it is known how many particles

are inside a strip of synchrotron phase space which covers the interval

T . i T - T- and all the energies.

Such a strip is also shown in Fig.1. It is clear that only rings which are at

least as far away from T as the strip can contribute to the current within

that strip. The contribution of a particular ring is proportional to the

product of the number of the areas from that ring which fall within the strip,

and the number of particles within each area.

For infinitesimal distances AT between the trajectories and infinitesimal

time steps At, the areas become polygons (quadrilaterals and triangles), and

tje first factor above is obtained by a simple geometrical calculation, in which

the number of areas which are completely inside a strip is counted, and the

contribution of those areas which are only partly inside the strip is obtained

by assuming that the paricle density inside an area is constant. The outcome

of this calculation is a matrix M. Its elements M., are the number of areas
ik

from the k-th ring which fall into the i-th strip. The elements M., vanish for
ik

i k, i.e. M is an upper triangular matrix.

Let the population of an area in the k-th ring be A, . The total current in the

i-th strip, I., is then given by

I. = M.. A, (2)
i ' . ik k

k=i
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There is one such equation for each strip. If the number of strips and rings

is made equal a system of linear equations is obtained which can be solved

for the populations A . Multiplying these numbers A^ by the number of areas
K K

in a given ring, given by the synchrotron frequency v(a) which will be

plotted later on.

Since all the information necessary for this calculation is only known in the

form of tables inside the computer program, the infinitesimal areas are

necessarily finite, and all the assemptions made (polygons , constant density,

etc.) approximately true. The stepsizes which were used to obtain the results

given below have been determined by trial and error.

3. Results

The result of the calculation of the amplitude distribution p (a) is shown in

Fig, 2 and 3. The parameter on the curves is q , which determines the bunch

lengthening.

q = - (3)

2^ V t
o rf

Here, Q is the bunch charge, Z is the impedance of free space (Z = l,20ir £}) ,

a is the unperturbed bunch length in time units, and V f is the derivative

of the RF voltage applied. The curves were obtained for d = g/co = 10. Here

g is the length of the cavity and c is the velocity of light.

Fig.2 and 3 differ by the width of the histogram bins chosen, all other

parameters are the same. At the smaller bin width a numerical instability exists

at large values of q and small amplitudes, while for higher amplitudes there

is excellent agreement between the two distribution functions. When the bunch

charge is increased the peak of the distribution function moves towards higher

amplitudes, and the density at small amplitudes is reduced. The bunches become

hollow. At small bunch charges there is excellent agreement between the computed

density distribution and the expected Maxwell distribution. Thi s is demonstrated
-4

in Fig. 4 for q = 10 and d = 10.
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