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Longitudinal Instabilities

o£ Unbunched and Bunched Proton Beams

due to Resonators with High Q-Factors

R. D. Kohaupt



Introduction

The longitudinal motion of unbunched (coasting) and bunched beams can be

unstable if the coupling impedance of the equipment of the ring exceeds

critical values. In this context one wants to know to what extent

resonators with high Q factorscan be retained in electron machines

when protons are stacked or accelerated.

Scheme of deriving stability criteria

Since there is no radiation damping for proton beams, particles move

according to Liouville's theorem and the phase space density-function

satisfies Liouville's equation

9 3 - 3
+ p (s,U,t) = 0 (1)

3t '85 9U

where U, z; are canoncial variables

p (<;,U,t) particle density in phase space

5 azimuth

U P - P o

h harmonic number

P o average particle momentum

P particle momentum

From equation (1) follows that the total derivative of the density

vanishes along a particle trajectory. We want to cast (1) into a form

in which the interaction terms explicitely appear. We are interested in

the stability of some equilibrium distribution p against small perturbations
% __
p (t,C»U). Changing to variables r, , U of interaction-free motion we

obtain from (1)
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In this equation U., denotes the change of U due to the perturbation p

and the interaction

Ü~ F (p, Ü, ?, t)

Keeping first order terms only, we substitute

ü . -*- j ° m
UI 3U U

-
on the right hand side of (2) neglecting UT -JL

l du

\s leads to a linear equation for p if only linear terms

A — — ~i
of Ffp, U, Ci tj are retained.

F (p, ...) A, p (4)

Equation (2) together with (3) and (4) form the basic tool for stability

investigations .

The advantange of this procedure is:

1.) Solutions can be found at least approximately

2.) stability criteria at threshold can be given .

The disadvantage of this procedure is:
o»

1.) No stability linut of the form p < L, which

may restrict the perturbations if nonlinearties

are present, can be given.

2.) Equations (2), (3), (4) don't describe the environment

of the beam.

o.
Starting from the linear System for pertubations p of equilibrium

distribution p one can derive stability criteria at threshold for

unbunched and bunched proton beams.
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Unbunched beam

Since the stability of coasting beams according to equations (2), (3),

(4) is treated extensively in literature (l,2),only a summary is

given here,

p (£t u, t) in terms IaJ

obtains the f ollowing dispersion relation for to

Looking for Solutions of p (£t u, t) in terms of p (£, U) e IaJ one

iel Z (X+iY) dpo
8 w dW W-W,o J

h = harmonic number

l = beam current
o
Z = absolute value of shunt impedance at harmonic

number h

X+iY = phase factor of shunt impedance

tu /27T = revolution frequency

W = angular momentum

h —8W

(129)
Equation (5) has been solved taking p (P) from realistic beam

shapes , The result is an inequality relation for the coupling impedance

at the harmonic number h

particle velocity (in units of c)

]/Y2tr ~ '/Y2 (Y» Y a;ce particle and transition energv
in restmass units, respectively,

numerical factor (A is assumed to be near one in
this note)

AP APse
The relative spreads — and -••• - are defined in fig.l.



AP total spread at half height

AP low
G

— width of the low energy tail at half height

s 8 width of the high energy tail at half height

APse

AP
-4-̂  if X > 0

u- u
* hlgh if X < 0

se AP
For Qaussian-like distribution functions ~— • — can be replaced

by fAPt2, but this does not apply for distributions with flat top.In
If the coupling impedance is below the critical value of (6) the

instability is cured by Landau damping. If the impedance exceeds the

critical value an initial perturbation of the equilibrium distribution

increases.

Although the further motion cannot be described by (3), (4), (5), (6),

the environment of the beam can be sketched.

The increase of an initial perturbation leads to perfect seif bunching

at the harmonic number h , and the beam loses energy according to

P = I2 Re Z (7)o
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If there is no Landau damping (rectangular distribution for example)

the instability can occur for any Z. The complex frequency shift is

then given by

Au = f

The growth time follows from

— = Im A u
T

In the worst case one obtains

= frt -/
0 V

I e

PC

(8)

(9)

Using (8) and the critical impedance from (6) we get the growth rate

that is "compensated11 by Landau damping

-̂  = n f. 2fTß
AP APse /2 (10)

In order to avoid energy loss one has to restrict the coupling impedance

to (6) in storage rings with coasting proton beams.

In proton accelerators the spilt iparticles induce high voltages at the

harmonic number h

U - I Z
s o

after seif bunching, which in turn pertubates the Synchrotron motion of

the protons being accelerated.
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Bunched Beams

G la s s i f i cation of oscillation modes

In the case of bunched beams particles can perform phase oscillations

around the equilibrium state. The oscillation modes of a bunched beam

are classified by two mode numbers

< U, m > (11)

The first number denotes the mode of single bunch motion, the second

number describes the relative motion of single bunches within the beam.

For u = 1,2 °° we have dipole-, quadrupole-, sextupole-, octupole-,

etc. modes respectively. In the dipole mode a single bunch oscillates äs

a whole, whereas all other modes characterize bunch-shape oscillations.

Fig. 2 gives an Illustration of bunch shape oscillations up to octupole

oscillations.

For different m = 0, l, 2, , M-l (M number of bunches) the phase

difference of oscillations between two adjacent bunches is 2mn/M.

In general the states < u, m > are not states of the System (2), (3),

i.e. the modes < u, m > are coupled. If, however,all bunches have:

i. the same equilibrium shape

ii. the same particle number

iii. the same Synchrotron frequency

iiii. the same distance from each other
(3,4,5,6,7)

the states (11) are approximately uncoupled and eq. (2) can be solved

The dispersion relation for the complex Synchrotron frequencies w m

^ iüi
in p *J e u,™1- reads

Wy = d* ̂ £ r^> (12)Ao)y,m
Wu

apo .„

.

dr
H T* —tii-

w ~U
U ,m

0

2y

u C r )s
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p (r) equilibrium distribution of phase oscillation araplitude

u (r) undisturbed Synchrotron frequency äs a function of

amplitude

The complex shifts Acoy,m are given by the following expression

1 _ L̂ i i {Z+M+ r vM+ra - z" r

(13)
c

f (0) = u (0) / 2TT

U = mein peak voltage

? = phase angle (with respect to U )

Z" - coupling impedance at (v M±m) oj ± tu (0)
v M±m o

The coefficients follow from tabulated functions

Tu,vM±m = Fy (x)

with

X = T ' X-|VT- ± ?• (X bunch length in radians) (14)

The modes p are essentially excited i£ x «̂  M ̂  • At these values the

functions Fy (x) become

Fy (x) ̂ '— for x ̂ P ̂
AT

For x •*• 0 one nas

Ülxi ^-o for u > l
X

whereas

F1(X) - ! (16)
Y T
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Thus, for vanishing bunch length,i.e. B -> 0, x "*" 0» only the dipole mode

can be excited, which is plausible since bunch-shape oscillations can occur

only if the driving voltage varies within the bunch.

If there is no Landau-damping one obtains from 7

i.e. the oscillation frequency of mode M is near u u> (0).
B

In the case of a small bunch length (13) and (17) reproduce previous results

concerning the stability of bunched beams '

From (13) we learn that the stability is only governed by the real part of

the shunt impedances. For the growth or damping rates,respectively,we can write

t ' |n| vM+m y,vM+m vM-m w,vM-mJ
y ,m

Fig. 3 demonstrates the influence of resonators at different frequencies on

mode m.

From (18) follows that for n < 0 (above transition energy) a resonator at

(v M+m)üj excites (+) mode m while a resonator at (v + 1) M-m damps

(-) the same mode. For even M the mode m = M is always stable if the

resonator has its maximum impedance at tu < (v+y)Moj , The same is true for

M
m = 0. Let us call m - M-m the mirror mode of m. Then we find in the case

of a single resonator the following simple duality (see fig. 3, fig.4).

M
If m is stable, m is unstable.

M
If m is unstable, ia is stable.

Below transition energy (n > 0) the roles of X v M+m and X v M-m are

interchanged. Thus, if a resonator is moved through all multiples of the

revolution frequency we have a sequence of damping and antidamping for each

mode. The same is true in an accelerator where the revolution frequency is

changed during acceleration and a resonator is present at a high harmonic

number. If the acceleration time i s suf f icien-tly small, the increase of
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phase oscillation amplitude during acceleration is a second order effect,

It should be emphasized, however,that (18) is only valid if ALU « w(0)t

i.e. for"weak interaction". What happens in the case of "strong interaction"

can be demonstrated for u - l, m = 0, M = h. Instead of (13) and (17)

6)one has to solve

n
|n | cos

(19)

Writing AX =

Y++y~

the solution of (19) is

2Y

ü) = l

For weak interaction

-T-T-AXM
s 2 U cos i|c

( 2 l 3

r ^
- ± / LO2 2 -r-
) / S T

l Ib

• - 0 (AX2)
1 U cos ĵ

c

RpcDnd term in C2O1

(20)

cos
giving a real frequency shift, while the first term governs the stability

(7 V
behaviour according to (18). For strong interaction > l the

U COS l|l

second term can become imaginary, and the stability behaviour is no longer

determined by the real part of the shunt impedance only.

For stability one must have (above transition)

(10)

From

and therefore

AX

AX

< 0

< 0

(21)

follows Y > 0

X (10)

U cos
c

(22)

To study the effect of Landau damping we must go back to eq . (12) Using

realistic distribution functions p (r) the dispersion relation can be

solved numerically

characterized by

(7). The stability of the System can be roughly

sL
Aü) m

(23)
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where 6 u is the füll frequency spread within the bunch due to non-
S L

linear ity of the phase focussing force.

The Landau-spread 6 oj follows from the theory of non-linear
(&} S

oscillations . If the equation of phase oscillation is expanded

up to the cubic term in the phase

C + ü ) 2 C - t - a £ 2 + B C 3 = 0 (24)
D

a relation for the spread is obtained in the form

3ß 5 a2 l X2 ,_,
8^~T2^- Ä" (25)a s ;

The nonlinear equation for phase oscillations including an additional

Landau-cavity at the n-th harmonic with a driving voltage U reads

l + P2 {(sin £ - sin ̂) + ̂  (sin n c - sin t;oL)} = 0 (26)

c; phase angle with respect to main voltage U

r phase angle with respect to U_
oL L

Expanding (26) according to (24) and using (25) one arrives at

» * «„5 + „ (27)
b zUc cos £s J 48

In order to find the dependence of the critical shunt impedance on the

bunch shape mode we insert (13) into (23). Because of (15) we have

z ̂  y (27)

So the dependence of the critical impedance on the bunch-shape mode

for bunched beams is the same äs the dependence of critical impedance

on the self-bunching mode for coasting beams.
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Figure captures

AP APse
Fig.l Defination of relative spreads — , —^~—

Fig.2 Illustration of bunch shape oscillations

Fig.3 Mode-resonator correspondence

Fig.4 Mode-mirror mode relation
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