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Introduction

In investigating beam-loading effects one usually assumes that the rf-accele-

rating field is radially homogeneous. This is approximately satisfied, if the

diameter of the cavities is sufficiently large.

In the case of a machine with superconducting cavities there are mainly two

reasons making an investigation of inhomogeneities necessary:

ir The radius of superconducting cavities should be smaller as usual

i.i. The circumferential voltage for such machines exceeds 1 GV (PETRA)

i.i.i. The shunt, impedance is in the iOOO G!>-range.

In this note single particle effects on the phase oscillation are discussed and

the excitation of coherent phase-instabilities is studied.

I. Sing1e particleeffects

First we introduce a right handed coordinate system (x, s, z} as shown in

fig.l

The particles are moving in the positive s direction. We assume that the

electric rf-£ield in a cavity is of Lhe form:

E = 10. E , Of sin ,;t, (1)

where ~ is the radio frequency. The phase angle (above transition) is then
2n

defined by

tut = TI - $ (2)

Nov; we make use of the fact, that E _ is not radially homogeneous. I t for

simplicity «,.• consider the horizontal direction oul>, L lit' H^ld E i-an hi.-

written as:

E = E n + k x
s sO s ' i

From (l)i (3) and Maxwell's equations we obtain for the magnetic field:

and the horizontal force y"ields

I - J

This force causes a kick with an angle

eC k

(5)

(6)

where d is the length of the cavity and E is the beam energy. If there is a

horizontal dispersion D in the cavity, the closed orbit gets lengthened by

a horizontal force according

(7)• L

Thus we arrive at

of motion:

eC k d D

(8)

For the description of phase motion wo introduce 4 = ij> - $ the deviation

from the equilibrium phase angle and = 'E/E the relative energy deviation.

Using the i ields (8) the t'quat ions of mot ion are :



n = A • C
e k d • f

ec k d D (9)

Here a denotes the momentum compaction factor and B is defined as

(10)

The synchrotron frequency f is given by

f = ~ , n - A • B
s 2ir s

and f is the revolution frequency, A is defined by ( I I ) . If we keep only

terms l inear in ; and n we obtain from (9)

e k d f
,. s o

r = &<? + —;r—— D • n sin d

ec k, d D
=-Bn —- -^ 4 sin

ex uE

(12)

The second terms on the right hand side in the first and second equation of

(12) cause a change of Che single particle damping rates. However,these two
(2)terms cancel. This is due to a general proof given by K.W. Robinson and

is established here in a special case. The "damping" term in the first

equation is due to the fact that the energy gain of the particles is different

for different horizontal (radial) positions.

Differentiating the second equation of (12) with respect to time one obtains

from (12) a single differential eouation:

e k D d
5 X

(13)
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Although there is no effect on the damping rates of a single particle a

defocussing frequency shift remains present.

Estimate of the single particle frequency shift:

The electric field of the fundamental mode of the cavity can roughly be

written as:

(14)

where t, is the radial (hor i zon ta l ) displacement and r ia the cavity radius,

approximately.

If there is a closed orbit d t v i j t i o n x w i t h respect i_o the symmetry axis of

the fundamental modi.' we o b t a i n f rom ( l i )

x2 2x
+ . . , ) (15)

and
2

(16)

(17)

Since E • d is the ordinary cavity voltage U one finds

k d = g U (18)

and (13) leads to

= A sin

r 2

(19)

U = beam energy in Volts.



Numerically one obtains:
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PETRA ( superconducting cavities)

From these numbers one concludes that the single particle effects can be

negleted even for smaller cavity radii.

II. Coherent instabilities, equations of motion

In this section <J and n denote the coherent phase- and relative energy

deviation of the bunch. The equations of coherent motion are then:

n = A $ + e f L' (I, ;3>,
o b

(20)

Here I, denotes the beam current, 11(1,; $,n) describes Che induced voltage
D o
ALx

while (I. ;t,n) describes the orbit lengthening due to the induced fields.
L b

In order to solve (20) we keep only terms linear in $ and n and the pertur-

bations. Then the solutions is of the form

(21)

with n near il .
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From (20) then follows:

e U. (T ) e U (I.)
= A *. + f -s-: *_ + f

o o E o o E

b o

(22)

Induce d fields

The current component at radio frequency of a beam performing coherent

phase osci Hat ions is given by

_ T i nit + i 4 -i wt -I = Ib |e (23)

According to the 1 inear approximation we have confined to we can write

I - L (24)

The induced electric field at least linear in $ and n follows from (24)

and the field impedances dr

(25)

,
P - 0, e + k x, 0os s

The impedances^ are related to the shunt impedances Z by

(26)

and from (25) we obtain:



(V ' - i V2, -
(27)

Using Maxwell's equation we derive an expression for the magnetic field:

1*"' + "Jt *•- -i<<« ~
UJ O 1+ -

Jl

) r f c^ *•'
X 0 , S21+ -

l - «
(J

^ + p t ) 5-! _ i (
si e1 —

(28)

u - fl)t.\)h jo.o,
1 V

o
k

From this equation one derives:

R ALV MZ +1-i o (I ) =-f A_JL
a L b o ..

(29)

where use has been made of

If in addition to the definition of the B- in (29) we define

- lf

the system (22) becomes

(30)

(31)

With

j = (32)

we have to look for solutions of D = o in .;

Putting Q = Si + Mi and keeping only linear terms In AQ, A-, B.; i = 1,2
s 1 1

one obtains finally;

s 2A (33)

The first term of equ. (33) is well known and describes Robinson-damping

(antidamping).

The second term describes an instability due to the magnetic field and corres-

The third term corresponds to a change of the coherent damping rates. In the

case of coherent instabilities there is no cancellation as in the single par-

ticle case. This can be seen by the tact that the "damping terms" are of

different origin in the case of coherent oscillations:

in the single particle case the lengthening term proportional to $ comes

about because of the phase dependence of the magnetic field.

In the case of coherent oscillat ions the lengthening term proportional Lo ?

comes about since the magnetic field at ; is dependent on * due to the

excitation of the cavity according to phase oscillations t (t),

The damping rates for the effects of an inhomogeriious rf field can be derived

from the corresponding imaginary parts of (33).
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Instability due to magnetic field:

VR- -
M s U, (34)

Change of coherent damping:

Ib(R.

U

(35)

R = real part of shunt impedance

q = Hormonic number

T = rise time

From (34) follows that the beam is stable if the cavity is tuned above the

radio frequency (R > R_)> in contrast to the Eobinson-Instability.

From (35) follows that the beam is stable or unstable depending on the sign

of D ' X irrespective of the tune around the radio frequency. Numerically

one obtains:

DORIS: PETRA:

I, = 200 mA
b
a = 0,018

il J2v = 40 kHz

q = 480

R = 24 Mf.

U, = 2 GV
b

T,, = 200 Msec

160 mA

0,002

10 kHz
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I GQ

7,5 GV

29 sec

10 msec

12
Calculating T from (35) for a superconducting structure of 10 !: one has to

emphasize that the impedance Z is a rapidly varying function of the frequency

because of the high quality factor (Q ~ 4 ' 10 ). So one has to account for the

fact that Z depends on the frequency shift AR:

PETRA (superconducting structure):

I, = 40 mA
b

a = 0.002

f! I 2 r , = 10 kHz

q = 3840

R = 1000 GS2

U, = 7 .5 GVo

Thus also from the instability point of view there is no major danger

connected with the inhomogeneities of the rf field.

The author is grateful to discussions with K.G. Steffen.
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