1	Internal	Report	
	DESY - H	15/2	
	June 196	9	

DESY-Bibliothek 24. JUNI 1969

ABERRATION OF 4-AND 3-LOOP-MONITORS

by

R. Rossmanith

ABSTRACT

The aberrations of several loop-monitors for measuring the displacement of an electron-beam in an accelerator are calculated. The picture produced by induced signal of an orthogonal lattice in a plan perpendicular to beam direction is distorted similar to distortion by optical lenses. The distortion can be reduced by using 8-Loop-instead of 4-Loop-Monitors.

INTRODUCTION

Usually pick-up electrodes or loop-monitors are used to detect the position of the electron beam in an accelerator relative to the ideal beam center line. With loop-monitors the magnetic field of the beam induces a signal to the loop, with pick-up electrodes on the contrary the electric field of the beam interacts with the electric field of the monitor. Though special formed pick-up electrodes with linear response are known ¹ the sensitivity is small conspared with loop-monitors. Two different 4-loopconfigurations are used ^{2,3} (fig. 1 and 2).

- ¹ Goldin, L. L.: Pribory i Technika Eksperimenta 1966, No. 4, pp 18 - 21 (CERN Translation 66-6)
- ² Anderson, B. and Matin, S. M.: Symposion on Beam Intensity Measurement, Daresburg 1968, pp. 280 - 291
- ³ Bergere, R., Veyssiere, A. and Doujat, P. Rev. Sci.Instr. 33 (1962) pp. 1441 - 1449

2

In figure 1 the horizontal and vertical displacement is detected by measuring the difference of the induced signals:

 $R_{HOR,1} = A - B$ (A, B, C, D: induced signals to (1) the loops a, b, c, d) $R_{VERT,1} = C - D$ In figure 2 the measured displacement is:

^RHOR,2 = E + F - G - H (E, F, G, H: induced signals(2) to the loops e, f, g, h)

 $R_{VERT,2} = E + G - F - H$

As shown later, both configurations give distorted response. With a 8-loop-monitor, that is a combination of both 4-loop-monitors, one exspects a reduction of distortion because the distorsion of configuration fig. 1 is negative, the distorsion of fig. 2 on the contrary is positive. The horizontal and vertical response is given by summarizing the responses of the 4 loop-monitors:

 $R_{HOR,3} = A + E + F - B - G - H$ $R_{VERT,3} = C + E + G - D - F - H$ (3)

CALCULATION OF THE LOOP-RESPONSE:

For calculation of the induced signal to a loop the electron beam is assumed to have small expansion compared with the distance to the loop. The induction of a current to a parallel wire of length 1 is well known:

$$\frac{L_{12}}{A} \cdot 2l \log \frac{l+\sqrt{r^{2}+l^{2}}}{r} - 2\sqrt{r^{2}+l^{2}+2r}$$
(4)

A constant
1 length of the loop
rbeam and loop

The distance between the electron beam and the loops can be derivated from fig. 3

$$\begin{split} \mathcal{F}_{1} &= \left(\left(x^{2}+y^{2}\right)^{\frac{1}{2}}+2\left(x^{2}+y^{2}\right)^{\frac{1}{2}}R\sin\left(\arctan\left(\frac{x}{x}\right)+T\right)+R^{2}\right)^{\frac{1}{2}}\\ \mathcal{F}_{2} &= \left(\left(x^{2}+y^{2}\right)^{\frac{1}{2}}-2\left(x^{2}+y^{2}\right)^{\frac{1}{2}}R\sin\left(\operatorname{anctan}\left(\frac{x}{x}\right)+T\right)+R^{2}\right)^{\frac{1}{2}}\\ \mathcal{F}_{3} &= \left(\left(x^{2}+y^{2}\right)^{\frac{1}{2}}-2\left(x^{2}+y^{2}\right)^{\frac{1}{2}}R\cos\left(\operatorname{anctan}\left(\frac{x}{x}\right)+T\right)+R^{2}\right)^{\frac{1}{2}}\\ \mathcal{F}_{7} &= \left(\left(x^{2}+y^{2}\right)^{\frac{1}{2}}+2\left(x^{2}+y^{2}\right)^{\frac{1}{2}}R\cos\left(\operatorname{anctan}\left(\frac{x}{x}\right)+T\right)+R^{2}\right)^{\frac{1}{2}} \end{split}$$
(5)

- x, y coordinates of the beam
- R dinstance between geometrical center and loops
 Υ angle between vertical-axis and loop-axis.
 In loop configuration fig. 1% is zero and in
 fig. 2% is π/4.

Combining the equations (4) and (5) the response for each configuration can be calculated. A rectangular lattice is constructed in the x-y plane (fig. 4). The distortion of the loop response of the lattice is demonstrated in fig. 5, 6 and 7. The indices of 1 and R refer to the loop-configurations of fig. 1. and 2. In table I the distortion of the different

- 4 -

loop-configurations are compared. As to be seen from fig. 7 the lattice distances increase with increasing distances from the axis. This deviation is shown in fig. 8.

Acknowledgement:

I wish to thank Mr. H. Wiedemann for helpful discussion.

- 5 -

	relative $x - distortion$ between $x = 1$ and $x = 19$ mm 4 - loop - configurations		
y= const (mm)	config. fig. 1 (%)	config. fig. 2 (%)	8-loop-config.
$ \begin{bmatrix} 1 \\ 3 \\ 5 \\ 7 \\ 9 \\ 11 \\ 13 \\ 15 \\ 17 \\ 19 \\ 21 \\ 23 \\ 25 \\ 27 \\ 29 \\ 31 \\ 33 \\ 35 \\ 37 \\ 39 \\ 41 \\ 43 \\ 45 \\ 47 \\ 49 \\ 49 $	$\begin{array}{c} - 9, 9 \\ - 9, 0 \\ - 9, 1 \\ - 9, 1 \\ - 9, 2 \\ - 9, 4 \\ - 9, 5 \\ - 9, 7 \\ - 9, 9 \\ - 10, 1 \\ - 10, 4 \\ - 10, 7 \\ - 11, 1 \\ - 11, 5 \\ - 12, 0 \\ - 12, 5 \\ - 13, 1 \\ - 13, 7 \\ - 14, 4 \\ - 15, 2 \\ - 16, 1 \\ - 17, 1 \\ - 18, 2 \\ - 19, 4 \\ - 20, 8 \end{array}$	13,3 13,3 13,4 13,6 13,8 14,1 14,5 14,9 15,4 16,0 16,6 17,3 18,0 16,6 17,3 18,0 18,7 19,4 20,2 20,9 21,6 22,3 20,9 21,6 22,3 22,8 23,3 23,7 23,9 24,0 24,0	$ \begin{array}{r} 1, 0 \\ 0, 96 \\ 0, 97 \\ 0, 98 \\ 1, 0 \\ 1, 0 \\ 1, 0 \\ 1, 0 \\ 1, 1 \\ 1, 0 \\ 1, 1 \\ 1, 0 \\ 1, 1 \\ 1, 0 \\ 1, 1 \\ 1, 0 \\ 1, 1 \\ 1, 0 \\ 1, 1 \\ 1, 0 \\ 1, 1 \\ 1, 0 \\ 1, 1 \\ 1, 0 \\ 1, 0 \\ 1, 1 \\ 1, 0 \\ 1, 3 \\ 0, 93 \\ 0, 93 \\ 0, 93 \\ 0, 93 \\ 0, 93 \\ 0, 62 \\ 0, 38 \\ 0, 06 \\ - 0, 36 \\ - 0, 89 \\ - 1, 6 \\ - 2, 4 \\ - 3, 3 \\ - 4, 5 \\ - 5, 8 \\ - 7, 3 \\ $

Table 1: Relative distortion of 4-loop- and 3-loop-monitors

ו ה

T

Fig. 1 4-Loop-Monitor. The loops are situated in the horizontal and vertical planes

Fig.2 4-Loop-Monitor. The loops are shifted by 45° compared to Fig.1

Fig.3 Beam position and geometrical center with 4 loop configuration

Fig.4 Rectangular lattice in x-y plane (on quarter of the total plane)

Fig.5 Response of the rectangular lattice Fig.4 produced by a loop configuration according to Fig.1 (R₁=72mm, l₁=28mm)

Fig.6 Response of the rectangular lattice Fig.4 produced by a loop configuration according to Fig.2 ($R_2 = 72 \text{ mm}$, $l_2 = 21 \text{ mm}$)

Fig. 7 Response of the rectangular lattice Fig. 4 produced by a 8 loop monitor (R₁ = 72mm, R₂ = 72m^m, l₁ = 28m^m, l₂ = 21mm)

Fig.8 Lattice distance versus distance from axis (8 loop monitor)