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I.Introduction

Two stored beams of electrons and positrons colliding in a storage ring

influence each other via electromagnetic forces. The effect is a growth of

transverse oscillation amplitudes of the particles and finally their losses

This space-charge limit was first described by Amman and Ritson .

Operating storage rings, however, have shown that this limit is much lower

than theoretically expected. Robinson suggested the nonlinearities to be

responsible for this discrepancy. With the aid of monte carlo camputations
2)

Courant could shc

the nonlinearities.

2)
Courant could show that the space Charge limit is in fact lower including

In the meantime several theoretical approaches have been made to calculate

the space Charge limit analytically using a two- or threedimensional particle

distribution in the bunches.

In these theories distributions of dQ-shifts are derived, the maximum of which

should correspond to the measured dQ-shift. All these theories, however,

give no quantitive results on the maximum dQ-shift.

Another approach will be made in this paper which gives quantitative results

with the aid of an assumption which seems not unreasonable, but could not yet

be proved.

In this model, the space charge effect will be understood äs an effect of a

nonlinear lens which gives rise to higher order optical resonances. The

following discussion, however, is restricted to the strengest nonlinearity

producing a fourth order resonance.

II. Electromagnetic Field of the Beam

For a gaussian charge distribution, the electromagnetic field was analyzed by

P.M. Lapostalle et.al. and J.E.Augustin .

Fig. l shows this field in the z-direction for various ratios x/ - width
z

to height - of the beam. In fig. 2 the same field without the linear part

is shown for °x/a = l and °x/a = 20. The linear part, that is the quadrupol
z z

term, will be regarded äs part of the linear storage ring optic and is
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therefore of no interest for the following discussions. The linear effect

can always be cornpensated by beam optical corrections.

The field,being antisymmetric,involves only odd powers in the transverse

coordinate.

(II. l) F/v s - a.s +3-5 - a7s +

s being the coordinate in units of Standard deviations(s= /n )

We mainly concern ourselves with the octupolar field of strength a~. The

approximation of the field shown in fig. 2 with only the octupole term given

by (II. 1) (a-, = -r to a,, = -g-) is rather poor. A better approximation is given

for a,.:̂ r to -pr- . That means that for nearly all particles up to some 3 Standard
1 1

deviations a pure octupolar field with a^ Ä- -̂  to -pr- approximates the real field

function rather well.

III. 1/4 - Resonance

7 } 8^
To analyze the effect of an octupole, the method of Kobayashi seems to be

very appropriate.

For the particle tnotion in phase space this method results in:

l ? 2 2 2 2 2 2
(III. 1) - j c (X +Y ) + F(X +Y ) -2EX Y" = const

with: e = 8 TT A Q

A Q being the deviation of the working-point Q

from the next quarter resonance

2 TT Q = (2Tfk+r.)/4 k integer value

F = B + (E-C)

= 7 hi
i

C = E cos 44) = ~ l hicos
i



34- P3 / P3 / P3 / P3 /
o? ' O C2I

l

Octupole fit

Multipole field

2l

Octupole fi

Field expansion 6.) 3.)

Field function without
linear pari

3 P l
Standard Deviation

Fiq. 2



- 3 -

(III.2) S = -E sin 4<|> = ~ l tu sin
i

octupole at point i

h . = Q-3?L ^ O l e „
l 1 1 OCt ^-r = -T g"

i 6 pc öi

3. : amplitude function

ip. : phase function t|j = / —

(III.3) n = X cos <f> + Y sin

n = -X sin 0 +Y cos

x: amplitude
/ß

With the working point Q, with p the number of interaction points and with

the assumption that all interaction points are optically ident ical (hi=const=h)

we get:

üj. = 2Ti - i i = 0 . 1 , 2 , ____ p-1
^ P

_ ,
p-1 sin (4TTQ) cos (4TTQ-2—

C = h l cos (Sir * i) = ~h - - - - E-
1=0 sin

S — -r- h

sin (4TT ̂
P

l sin 47rQ
E = 2 h - . Qsin 47T—

P

sin
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Eq.(XII.l.) will be simplified with two transformations

(X,Y) => (V,W) => (p,x>

Xv =

and

V = - /ß ; W=-/ß

V = p c o s x ; W = p s i n x

Eq.(III.l) and (III. 4) thus give:

0 O

(III. 5) - | E p2 + | hp —- p14 + l E y- p4 cos 4X = const

Now we introduce the octupole:

a = -V£?(with n2 9 to 12)
3 n

It follows from (II. l ) that for p = n the quadrupole field and the

octupole field just cancel:

k n a = Q (na)3

9)
From general beam optics,the quadrupole strength k is given by:

P
(III. 6) öQ - - 4- kßds^> - -J— k ß L

o

With (III. 6) the octupolar field is related to 6Q. xhis is convenient for

comparison because all measured space charge limits are given in terms

of 5Q:

Eq.(III.7) with (III. 5) gives:

4 I rrt P4 sin4TrO
- - -^-- -- * •

,cos 4x = const
2 n^ . , 0

s in4 Ti-1-
P
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For all electron-positron storage rings 6Q >o, because the space-charge at

ehe interaction point acts like a focusing lens. The value r is negative for

q < Q <- q + —. For q - -r < Q < q there is e > 0 but in the formula (III. 1)

we have to replace t. by -E. So for

we have:

q integer value

(III.8) U = o j/-i P tn P sin 4"nQ ,-/ A
jnöQ —y - TröQ —7- — cos (4x) = const.

n n*- . , (j
s in 4 TT—

In this ränge of working points we find all storage rings except VEPP-2

in the horizontal plane.

From (III.8) we get the phase diagram of fig.3. The fixpoints of this

phase diagram result frorn :

n A n-— = 0 and -r— = 0
dp 3\:

fig. 3

0 = 2 p c - 6TröQp - 2TT6Q s n cos 4X
s n

O = sin 4x => x = m T"

fixpoints:

FQ : p - 0 ;

( 71 \ = 4- (2m) J 0 , 1 and cos 4x - +'

m = 0, l , 2
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and cos

From that:

P 1.2
3p±

sin ATT-*
P

To come back to normal beam dimensions s «= —» the tilt of eq (III.3) has toa
be reversed . So we get for the inner fixpoints F :

(III.9) s2 M

2Tt6Q 3p
sin 4irQ-\

sin ATT-*-
P,

with

M = max (cos2*, sin2*)

We distinguish now in the phase diagram an inner part within the separatrices

and the inner fixpoints and the part outside of these limits. In the inner

part we have a beat factor „ p(/4) , - ,, . - * . .. -j
B - • -(o) < l for all particles»whereas outside

of this region all particle trajectories have a ß > l,

At this point we need the assumption mentioned in the introduction, which,

äs said, could not yet be proved:

Up to the space charge limit we assume that most of the particles - up to

about 2,5 to 3,5 Standard deviations - are within the inner part of the

separatrices. So we assume the space Charge limit to be given by:

(III.10)

s. < n

This assumption corresponds with observations: Up to the space charge limit

no growth in beam dimensions - because of 3 < l - is observed.



Outside the inner fixpoints we have to consider a general multipole field

instead of a pure octupole. We assume that in this part of the phase diagram,

i.e. at large amplitudes, the stable trajectories change to instable ones due

to higher order resonances.

If the beam current is increased over the limit (III.10) a rapidly increasing

percentage of the beam intensity moves outside the separatrix, causes a beam

enlargement because of 3 > l and will soon be brought to large amplitudes and

instable trajectories due to quantum fluctuations.

In accordance with observations only one beam, the weaker one, will be lost.

The stronger beam produces the multipole and is itself not influenced by the

weaker beam because the space charge limit is not yet reached for the stronger

beam.

Assuming that the assumptions made are in some agreement with reality, we get

from (III.10) and (III.9) the following limit for the maximum current that

can be stored:

M1
(III. 11) <$Q < ?

2ir 3p+
sin Air—

with the well known dependence of 6Q on the beam current

IV. Comparison with measurements

Equation (III. 11) involves only the number p of interaction points and the

workingpoint of the storage ring. These values äs well äs the measured and

computed values for 6Q are shown in table l for the various storage rings.

In addition to the computed values 6Q(I:[I j^.there are also so called

corrected values 60 In the derivation of (III. l ) there was made the
corr .

approximation sin |- ̂  ~ which was for some cases very poor. So we set:

sin
5Q /TTT ...
corr X(III. l l ) E/,



Table l

1.)

2.)

3.)

4.)

Storage Ring

Stanford (500 MeV)

A C 0

A C 0

ADONE

ADONE

VEPP-2

VEPP-2

Q

0,88

0,845

0,845

3,15

3,07

0,8356

0,8356

P

1

2

4

2

6

2

4

ÄQ(III.I

0,13

0,050

0,032

0,053

0,030

0,045

0,029

1) 6\orr

0,11

0,045

0,028

0,049

0,024

0,043

0,027

%

0,1

0,04

0,027

0,04

0,026

} 0,03 ?

5.) C E A 6,81 l 0,060 0,059 0,06

6.) Stanford (500 MeV) 0,88 (J.=l,6mrad 0,013 0,012 0,01

-H
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This procedure, is mathematical_^oy not correct, but it gives the

direction of the correction.

In fig. 4 the measured values <5QM are shown against the values ^Qcorr- Not

for all points it was easy to get a complete set of measured values

(Q,P»<5QM); we thus have to make some remarks on the different points.

To 1.)

All three values Q,p and 6Q are known from HEPL-366 (1965).

To 2.)-

Most measurements with ACO are made with Q = 0.845. The value 6Q = 0,04z M
for p = 2 got known by private communication (M.Sands) in February 1969.

12)In an early paper the current ratio for p = 2 and p = 4 was reported

to be:

I (p=2) _ 1,5
I (P=4) l

This gives for p = 4 the value 6Q = ' = 0,027
n. i j j

To 3.)
13)

For p = 2 a value <5Q = 0,04 was given in LNF - 69/31 . The working

point at that time with Adone was Q =3.15. During the informal meeting

on storage, rings in Frascati (1970) for p = 6 and Q = 3,07 a value

<5Q = 0,026 was presented.

This year in Chicago the Frascati people showed an energy-dependence

of the Q-shift. Also,only a weak dependence on p was observed. Those

measurements cannot be described with the model (pure octupole

approximation)discussed in this paper.

To 4.)

In Erevan a value 6Q = 0.03 was reported. From other publications on

VEPP-2 the working point seems to be Q = 0,8356. It is, however, not
Z

known whether p = 2 or 4.
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To 5.)

Measurements with different crossing angles of the two beams were
14)

described in Cambridge . For these cases, eq.(III.ll) has to be

modified by a well known factor containing the crossing angle 20.

For vertical crossing we get:

«W. o" äQz6Q(iii.n)' .̂ r̂ S (°*+a^
z s " ' |0x+ az+ös

As a whole, we get a rather good agreement of calculated and measured values

except for the most recent observations with Adone.

V. Conclusion

In spite of the relative good agreement of theoretical model and measurements

there is a series of questions open:

1.) The octupole model described here does, by itself, not produce instable

traj ectories. Looking for such traj ectories, we should know the real

multipole field. Assuming a gaussian intensity distribution, the phase

diagram was coraputed for the general multipole field. The result was

only an increased beating of amplitudes but no real instability. If

however one assumes an intensity distribution over 6 Standard deviations

which is somewhat narrower than the gaussian, one gets resonances. So it

would be very interesting to have measurements of the beam intensity

over at least 4 to 6 Standard deviations.

2.) The p-dependence of the value 6Q is given correct for the ACO case, but

not for the recent measurement at Adone. So one should know the exact

beam parameters äs bunchform, intensity distribution, luminosity values

at the different interaction points and the measured working point for

different values of p.

3.) The observed energy dependence at Adone principally cannot be described

by optical resonances assuming a constant multipole strength. On the other

hand, the multipole field depends on the intensity distribution over the

bunch volume, which could give an energy dependence.
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To test this model »the dependence of the value <5Q on the working point

at different values p should be measured. In accordance with the results

of Bassetti and observations at Adone one should get an increasing

space Charge limit for electron positron storage rings going from

higher values nearmost to an integer working point. For proton-proton

or electron-electron storage rings a working point just below an integer

value seems to be the Optimum.
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