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1. Introdyction and formulation of the problem

Investigating the coupled synchro- betatron oscillations in a ecircular accele~
rator or storage ring one usually assumes, that the transverse oascillation am-
plitude of the cireulating particle, measured with respect to a given closed
reference trajectory can be separated into two parts (y=x, z)

y(s) = n(s) Dy(s) + yg(s) (1.1)
- A

ns= EE
The first part takes into account the dispersion of the machine and the second
part describes the free betatron oscillationg about the instentaneous orbit
n °Dy(s). This decompositien is well Justified if n(s) is a weakly varying
function of s compared with Dy(s) and yﬁ(s). Even in the case that synchrotron
and betatron oscillations are coupled, this seperstion allows one to write
doun analytical expressicns for the complete revolution metrix of the trans-
verse and longitudinal oscillatiens, Knowing this revolution matrix one can
study problems like the stability of the particle motion oT gynchro- betatron
resonances. ((L), (2), (3))

But this decompesition, although appropriate for the investigation of many
questions, has the disadvantage that the symplectic structure of the transfer
matrices for the tranaverse and longitudinal oscillation emplitudes ias lost,
if these two degrees of freedom sre coupled, On the other hand this symplectic
structure of the transfer matrix alloys one in a straightforward menner to ex-
tend both the linear theory of Courant-Snyder (4) and the theoretical treat-
ment of radietive processes {influence of the radiation en the particle mo-
tien) to the general case of multidimensional coupled systems. The problem of
the coupled betatron ascillations has been treated already in this way ({5,
(&), (@,

A. Chao has proposed a method allowing for a simultensous inveatigation of the
coupled synechro- betatron cscillations without decomposing the oscillation ame
plitude aceording to (I.1). Using this method and a suitable set of variables
for the deseription of the particle motion, one can show that sven in the ge-
neral (coupled) case the symplectic structure of the transfer matrices is pre-
served in the thin-lens approximation {8). In this approximatien A. Chag has
investigated the influsnce of the synchrotron radiation gn the particle moticn
for the gemeral case of g coupling between the synchrotren and betatron oseil-
lations.



The purpose of the present report will be to review the linear theory of syn-
chro- betatron oseillations in conrneetien with the work of Chao, and especial-
Ly

1) to extend the theory of Courant and Snyder to the multidimensional

case of coupled synchro- betatron oscillations;

2) to demonstrate how to extend the investigations of A. Chao te thick
lenses in a systematic way.

All results will be deduced from the gemeral equatiens of motien (9).
The results obtained in this way can be used

a) to extend the computing code PETROS (10) to the six~-dimensional phase
space of the coupled synchro- betatren oscillations;

b) to develop a tracking program for the coupled synchro- betatron
oscillations, which enables cne to simulate and study for example the
linear (and by taking into account nonlinear cavity fields also nonli-
near) synchre- betatron resenances.

2. Derivation of the egquation of motion for the coupled svhchro- betatron

oscillations
2.1 Particle motion in an electromagnetic field

We start our investigation of the coupled synchro- betatron oscillation with
the derivatien of the corresponding egquations of motion.

In the presence of an electric field Tand a magnetic field B the relativistic
equation of motion for a charged particle with rest-mass m, reads

> e £ d ,E 4
€€ +_oTX BaRa o (Er T)

LefieD, (2.1)

vhere the energy of the particle £ is given by

ch .
r“““' s {2.1a)
1 ,+
1 —E:(I‘)z .
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and wvhere R is the radiation reaction force consisting of two parts

F-% . R, (2.15)

E =

a continuous part w0 (radiation damping} given by ({%), (11)):

2 + ¥, L
o2 2t @ L2 ED (2.10)
3 5 2
c ¢

and & stochastic part 3% caused by the quantum fluctuaticns of the radiation
field. 8% will be specified in detail in chapter 8 where we shall study the
influence of the synchrotron radiation on the particle motion.

Taking, instead of the time variable t, the arc length L of the particle tra-

jectory as independent variable (12):

d _di , d d

& “&a &’ Vil (2.2a)
E=v & (2.20)
N
-
T =V % (2.2¢)
-,
%+ d ér _ . du dr d3t
T o=V o (v 7 ) = v i A v el ‘ {2.2d)
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Making use of
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de)?® _
&) -1 (2.50)
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gr, d*r _ :
=> F'gw =0 (2.5b)

.
and multiplying eq. (2.4) with -g%- (scalar product) we get for the change of
energy of the particle: '

g§=ce-z+ By & (2.6)

Putting (2.6) into (2.4) wve finally obtain the equations of motion for a par-
ticle in an electromagnstic field (v wc, é’- » 1)

[le-Zs) $54.088 d’?_*}-{ ng
es*e+ R) E-E]-BI +E'W zer e+ K+edpxb. (2.7}

2.2 Reference trajectory and coordinate system

For our further investigations we shall assume that an ideal closed orbit
exists for a particle with fixed energy Eu, if we neglect the varistion of
energy caused by the radistion losses and the accelerating fields. This orbit
is also called reference trajectory or equilibrium orbit. We further assume
that this ideal closed orbit consists 61“ piece-wise plane curves either in the
horizontal or vertical plane, so that there is no torsion.

"Vectors lying on the reference trajectory will be called -;o(s), vhere s is a
parameter which is chosen as the are length of the equilibrium orbit. An
arbitrary particle trajectory is then described by its displacement &7 From
the ideal trajectory -fo(s): :

= ;o(s) + &rls)

In order to calculate this displacement vector 8% we define in the well-knoun
manner ((13), (14, (15), (28)) a system of ‘mutually crthogonal unmit vectors
moving along the equilibrium orbit with the congidered particle and consisting
of

the normal unit vector n(s),

the tangent unit vector £(s) and

the binormal unit vector B{s) = t(s) x ns).

We require the vector 1 to be directed outwards if the motion takeg place in
the horizontal plane and upwards if the motion takes place in the vertical
plane (). Choosing the direction of ™ in this way implies, that the curvature
K(5) appearing in the Frenet formulae

R dr
Ts) = T10s) = =23 (2.8)
%:fj= - K(s) « Rls) ;
g-g— =+ K(s) » E(a) F {2.9)
db
E = 0

is zlvays positive in the horizental plane and it is negative in the vertical
plane iff the centre of curvature lies above the reference trajectory.

Using this coordinate system we can describe 67 in termg of the so-called na-
tural coordinates, and it is obvious that enly two components are needed, na-
mely the projections of &T ento the direction of the normal and of the binor—
mal

§8(s) = (8F Py +Au (6T - ) - B,

But this representation of 4T has the disadvantage that the direction of n
changes discontinucusly if the particle trajectery is going over from the ver-
tical plane to the horizontal plane and vice versa. Therefore it is advanta-
geous to introduce nev unit vectors Ex(s) and -’éz(s) vhich change th:ir
direction continususly by putting

-r:(s), if the orbit lies in the herizontal plane;
Ex(s) =

g(S), (LI ] " " LU 1] vertical " s
B(s), if the orbit lies in the horizontal plane ;

3;(3)

]

*(S), "o t It non vertical tr .
Thus we obtain

Ts%y2) = Fols) + x(s)+8,(s) + 2(s)+¢,(s) ‘ (2.10)



1 . Lha L - 1 ;I' d _
end the Frenet formulae now read W fle+E+R)-T'1-T" + 0 = T = (21)2=
d -+
£ T (s) = K (s) + Els); (%.22 > RN *
d H = . . . .
S X X Eo'l"‘n [e EI—I-ﬁ]&nTO-:—(l—-:-ﬁT—' I"XE (2'15)
l d + - - -
ds ez(s) = Kz(S) -E(S)’ (2.21) Using (2.8), (2.11) and (2,12) the derivatives T' and ¥ are given by
L Hs) = K (s) + B (s) = K () = B (s) THe) = H ) x' e E, w20 e xe (Ko B 4 zeli e D)
b z X z (2.16a)
with e e -+
= (l-o-Kx'x + K. z) +t +x'te  +z'te;
Kx(s) s K (s) =0 {2.12)
T(s) = Koo x' K" x Kozt + Kt 2+t
where Kx(s}, Kz(s) deaignate the curvature in x-direction and z-direction N -
respectively. + Xt & * zne By
+(l+K'x+K'z)'(-Kx'~’é --K'qé)*-
2.3 The arc length = of the equilibrium orbit as independent variable X z x =z
+ wxt K o) vz ek B =
According to eq. (2.10) the vector r of the particle trajectory depends on the * z ‘
arc length s of the equilibrium orbit. Therefore we shall rewrite eq. (2.7) = (va Cx Kz 2K x e 2K ) b
in terms of this variable s (1l2). .
From +[x"_|<x.(1+|<x.x)].ex+
i
d _ Ld ith Lt = a +[z"- K, {1l + K+ z)] - e,. (2.1éb)
di - L' ds “ ds
Linearizing with respect to x, x', z, z' we obtain because of eq. (2.l6a, b)
it folliows N
= {42 dr} ®
w8
Q:.;, S < U -2 (2.13a) ds de
o = .
di T AT de Tk =L aK e x+K o2 w (x5 (21)0
¢t 1 ., d (&
Frcab iy =1+2Kx-x+2Kz-z+...;
1
- g - - - - c . .
- .(._)TE:!' . " _%I_ .« gt o T W 1 ZKX x 2KZ z 3
ld 2 = . . . .
R ST A S L L (2.13b) 73 Y 2 QK xw ke 2) Kye x w K x e Ko 28 Ko 20+
RO LI S D LR ’ : |
+ X'e %M 4 2%a 2N
Introducing the relative deviation of energy .n(s)
- - [ Te - ] ", .
E-%, iy ) 210 -(Kxx+Kx x> Ko z! + Ky Z) + ass}
nis) = =>E = L+n .
Eq 0 -zl-z--)—!-f" %g(g,')z—; (Koo x" + Kloex + K 2 +Ké-z)-'f+ . (2.17)
and taking into account (2.13a, b), eq. (2.7) can be written in the form _ . . .
L Q! —1+Kx x+Kz Z o+ aeel (2.18)



T x B ={1 + Kx-x - Kz-z) 1. x'-?:x + z"-éz] X

-+ -
X {Bt-f-r Bx- e, + Bz' ez}

=Ko xeK e2)e (B8 =BT - xte B+ %, +

+x'-Bz'T:+z'- Bt- Ex-z'-ax-¥=
=[)»:'-Bz -z"Bx] -t .

+ Ez'-Bt - (1+Kx' X+ Ko z)- sz.-‘;x -
- [x'-Bt
[(eeBs K)oFr1eP12 [(e - & +RJ-Q +Roex s K ez)+

+ (e-ex +RJext 4 (e-ez +R )z ]

‘[(1+Kx-x+Kz' z}°%+x"-€x+z"-’é£ =

"

[(e-et+Rt)- (I+2Kx-x+2Kz'z)+

+

(e-ex-t-Rx)-x'+(e-ez+RzJ-z']-'£+
+(e-eh+Rt)-x' . 3x+

+ (e*g

Usirg (1 + M7 » 1 = 0 and substituting {2.16 - 2.20) into eq. (2.15) we find:

%;-(1 s {Eellere 4R (1w K e x w2 e 2) +
- (e-ct+Rt)-x' + (e-ez+Rz)-z'] -

+'§x . (e'et+Rt)-x' 4-32 -(e-£t+Rt)-z‘}+

+(K>‘<-x+Kl'_-z+2Kx-x‘+2KZ-z')--E+

! ->
—(1+Kx-x+Kz-z)-Bx]-ez; (2.19)

-+ .
e+ Rt)' FA e,. (2.20}

if

+ [x" - Kx(l + K x)]-"éx + [z - Kz(l +* I(z- z)] » ;‘.z -

(K, X! wKie x + Ko z' 4+ K1 2) g

%-;-(l -»n)-(l+2Kx'x+2Kz- z)'{(e'et+Rt}--E+

1}

+ e
+(e-ex-i-Rx)-ex-i-(e-€z+Rz)-ez}+
e . . . . . . - . T+
+Eu (1 -m (‘1+Kx x+Kz z) « {[x! Bz 2! Bx} 1
+|;z"Bt—(l-i-Kx'x+Kz'z)-Bz]'Ex-

-[x'-Bt-(1+Kx-x+xz-z)-sx] -‘Ez}. (2.21)

E:O.;ﬁ:o t n=20

-
H

_ nlol, . ale)
B, = B,>’; B, =8

we find, that because of the definition of the equilibrium orbit

X=x"=0

zz2'=0

is a selution of eq. (2,21), wvhich implies

.3 N S BN ()1« (ed3 3 .
“Heey - Ky, = - 3 {8; e = By eyt
or
k=280 k-8 (o)
X Eo z "z Eo Bx . (2.22)
Putting
I8 1B
B (8,%,2) :8(0)(300) + AB_(s,0,0) +x‘P—’5J +z-{—51 i(2.232)
X x " X ?xxzzzo P 2 hyazg
B B
B_(s,x,2) = B(o)(s 0,0) + 4B_(s,0,0) =+ x-[——z-] + z-E-—E] {2.23b)
e z " 2z axx:z-o azx:z:c
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we find in linear approximatian for the ?—component of eq. (2,21):

1 . - - " -
E: (e t:t-c-Rt) (1-+-2!<’< ><-1-2Kz Z «T) +

+ (Kpsx + Kyoz + K o= x! + 2K z') -

- (Kx' AN K;' x +Kz' 2" o+ Ké'z) =
l - - » L]
E:(l+2K X+ZK z=-m)*(e Et+Rt)+
B u[xte gio) . glo)

wgelxte B -2+ 8 ]
[+]

or
L K'z‘“'—-—-‘[x"B(o)—z"B(c)]
x Eo X

(satisfied because of eq. (2.22))}
The Ex-cumponent is given by

%-- (e« E:t+Rt)°x' + Xt -KX(J.+Kx-x) =

[u}
-1 - - L] - - -
-i (1~ W e x + ZKZ z -1 -{e g, + Rx) +
P fzte B, - (1+ 2K x4+ 2K z~n)eB0) _
E t X z z

8 y]:]
R U N
z x X=Z=0 32 X=Z=0

or taking into account (2.12) and (2.22) by

. . . - - - K2
E; (e g *+ Rt} %!« x" = Kx n Kx X
L} Y}
e z z
+—"{Z|'B-X'[—] —Z‘[ _ﬂB}-p
EC) t ax X=Zm0 z K=Z=0 z

1 el
+E—°-(1+2Kx.x+2}<z-z-n) (e e:x-p‘Rx)_

-
The ez—component now reads

--—-(e-et-n-Rt)-z'

- +z"-Kz(l+Kz'z)=

(z.24)

-1l -

=t - (1+2K x+2K +z=n)+(ere, +R)-

0

_,.E__..{xv.

B]
L
- 88, - x %

. . .ate)
Bt--(].-e-ZK)c X+ZK2 z =1 By

Y

X=Z=c ‘Z K=Z=0

or (using again (2.12) and (2.22))

2}

£..

E
o

_.(e.et+Rt).zl +2"'—'Kz'ﬂ—K;'Z"

{xt» By - x-[z—iil

8
_z.[ X

o -ABX} +

X=Z=0

YL e exe K rzomdelere, + R,

o]

(2.25)

Because of the Maxwell equations the components of the magnets_c field must

satisfy the

T

or

following conditions

]}
=
bz X=Z=0

iz

[Lﬁg] .
2z X=Z=0

so that eq's (2,24) and (2.25) can be put into the form

1
= (e-

]

S

-+

t

t]
) [:';E] X=Z=0 :

bBt

=0
s ]x=z:o

-k Hﬂ - }_B.é) - EB_*-} R
¥
2 vz ¥z s %=220

-5 w1,

=2=0

+Rt) -x'+x"+G1-x—2H-z'—(N+H')-z_

—Kx-n-%-—(l+2Kxox+2Kz-z—n)'(e-e:x-r.Rx):

= -2+ 1B

E
o

o]

23

(2.26a)
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t-(e-et+ﬁt)-z’+z"+G2-z+2H-x'-(N-H')-x—

L] 1 - -* I- - =
-Kz n-r;(l+2$<x >(+2Kz z=-n1s(e ez+Rz)-

- *E" 88, : © (2.26b)
R .
wvith the fellowing definitions
. 2B
G, = K +—'[-——]
1 X Eo 3X g ’
B
G, = K2 - £~ F z]
2 z Eo 3K x=2=0
38 (2.27)
1.e 1. e [ t] .
H= e B 3 H =2.5 | L ;
2R M e
N
zZ B, Ox "%

These twe equations contain three unknown functions

x(8), z(8) and n(s)

Therefore we need another relationship between x, z and n, which can be
obtained from eq. (2.8) by reuriting this equation in terms of the independent
_variable g and by introducing the relative deviatisnm of energy according to
eq. (2.14). Then, using (2.16a), we find

di-l - - - L] -
ds"E: de et-t-Rt) {1+Kx x+Kz z)+‘

+ (o € + Rx) ex' + (g €, + Rz) ez}, (2.26c)

Our next task will be to caleulate the slectric field produced by the cavities
and the radiation reaction force, This will be done in the mext two chapters,

2.4 Description of the electric field

Fer the sake of simplicity we sessume pointlike cavities situated in the
straight sections at the positions

8= s, vzl 2y vouy, N)

- field Ae in the longitudinal direction s

=13 -

so that the electric field can be written in the form

~

e_E-__e_ :"2':-5?:-‘-’- +sinl® + w(s, t)] L &(s - sv) : (2.28)
o o . v
K (s,) =K (s) = 0. (2.29)

Since a particle, circulating on the reference trajectory, has to traverse the
cavity always with the same phase, the phase function ¥z, t) included in eq.
{2.28) has to satisfy the fellowing conditions:

1) s, %) = ylo, o) for s < L;
2} (o, -E-) =yo, 0) = k=27 (k = integer)
{L = circumference of the equilibrium orbit).

Both requirements are satisfied by the "ansatz" (8):

yis, t) =ke2zmed (o - ct) (2.30)
The factor

¢(s) = (s - ct) (2,31)
is given by

s S
(el = [ds S ds
Q ]

s
Sds«[1 - 2t(s}]
a

n

s
- Sds LK {8) x + K (s)*z] (2.32)
o X z

where we have also taken into account (2,18)% For our later investigations of
the resonance excitation of the synchro- betatron cscillations it will be cone
venient to supplement the field (2.28) by an additional perturbing electric

e

3

-E—-Aezg--ne-?. . (2.33)
[*] Q

* For a particle moving on the reference trajectory with the phase ¢ relative
te the accelerating fleld the energy losses are exactly compensated by the
electric field (definition of &),
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By virtue of (2.28), (2.30}, (2.31) and (2.33) we get

~

-
e'e='E-Ey-sin[¢+k-2“-c(s)]'5 §{s w8 )=+
E E L v
o 0 v
B
+%-E + A
0

or after linearization with respect to o

-

-
%=§-\£{Sin¢+k-gl-c(s)'cos¢} L §(s-s) + - he;
E E L v E
o o v c
gg, e°* g
x z
2 — = (0,
Ea Ea

Teking into account the separation of [ into the parts ﬁo and sk according te
eq. (2.1b) and using the relationships {2}

D
[6Ry| << |RL]s
l63, ] << I8R.]5  [8R | << &R, |

ve obtain the following equations for (2.2éa, b, ¢):

-

eV .
x' * ssind « ¥ s -s5) +
Ec 9 v
Re
+x'-E-;+x"+Gl-x-2H-z'-(N+H')-z-Kx-n-
R .
-—E—-(l+2}<x-x+2Kz-z— n):-—E--- ABz; (2.34a)
o a
2+ 2Y sine - I S(s-s) +
o y
i
4 zte +z"+G2-z+2H-x'-(N-H‘)-x-Kz-n—
o
R .
T+ K *x 2K cz=m) =g 8B (2.34b)
o X o
n':e'u-{sin¢+c(s)-k %E cosd} « I 6(s-sv)+
o ‘ v
/2 §R,
+§: Ac +E;‘(1+KX'X+KZT.Z)+-?;+
D D
R R
o e T =gt (2.342)
Eo Eo
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Because of the new variable ¢ we have to supplement this system of differen.
tial equations for x, z and n by a fourth equation for o, which can be
obtained from (2.32) by taking the derivative with respect te s:

o' = - Kx(s)- X - Kz(s)- z (2.34d)
2.5 Caleulation of the radiation reaction foree

Now we want to determine the radiation reaction force (2>

D

g (R, R, R,
For this purpose we have to replace the time derivatives in eq. (2,la) by the
derivatives with respect to the arc length s.
By virtue of (2.5a, b) the following expressions can be found for the quanti-
ties {%)’ and ('IE Ar')’ appearing in {2.le):

3o L dv .2 s {d%r}?

(r)® = (v r LAY [‘&I:r . (2.353)
e SRRSO -

{r t)* = v (v - (2.35b)

Taking into account (2.1a), (2.14), (2.18) and (2.3) the term v S can
be vritten in the form :

vi.2
- z
e Mo
vag T m, ar
2 .6
T S
- E I’ ds
m;c:s :
= T (l—Kx-x-Kz'z—3n)' n'e (2.363)
o

Using (2.16b, 17 end 18) it follows frem (2.135)

dz-{'—'(l 2K 2K +z) « {(K+x' +Koz)et
@ar = S % z +

re -+
+ Ik e K Q4K X)) e +[ 2" - Kyl + K+ 2)] e e} =
= (Kx.x' +Kz-z')--1a:‘+ (% +K;' X - Kx)-gx +

-+
" . - - -
+ (2" + Koz Kz) 2,3

2 2
[%f:r} = K; - K (X" - K; = x) + K - ), - (z" + K; . 2) (2.36b)
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and from (2.2¢) we get by using (2,133, 18)

B ot 1=
TEvogE v-iT-r' =V-(1-Kx- x-—Kz- z) -

« {1+ Kx- X + Kz' z)+F +« xts Ex + 2zt Ez}

= v -{'E+><|-Ex+z'-'éz} . (2.37)
Putting (2.36a, b) into eq. (2.35) and putting (2.35, 37) inte (2.1e) we obtain
after linearization:

H
ED=__32_ %5- Y;-(l+4r;)-v °{-£+x‘-§x+z'-32} .

.yt e a . 2. z . z, -
v {Kx 2KX (x"-nKx x)+Kz ZKZ (z"+Kz z)} =

= e - (G 4 KE) (1w bn) - 2K o (< w KRe %) -

S22 e} e T e E KD [0 ez E] (2.30)
Wae , y=y,0+n)

The expressions

- 2 - 2-
Kx (x" + K3 x) and Kz(z" + K2 z)

which appear in eq. (2.38) can be taken frem (2.34a, b} by setting approximately

in these equations.

Then we find by virtue of (2.27) and (2.29)

B
Koo(x" + K2ax) 2 K o {2 zl cx+ 20z 4
X X X Eo ™ I
+(N+H')-2+Kx-n-§-—-ABz} 3 {2.3%a)

Eo
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B
K'(Z"+K='z)=K-{+£-[—-zJ vz - 2Hex' +
* z z ED x X=Z=0
g
+ (N = H") z+Kz n+ g ABX} (2.398)

o]

and eq. (2.38) can be written in the form

D 2
R =-% ezy'; S(RL o+ KDY e xT; (2.402)
) 2
R, =-% ez'\(; -(K; + K;) =z'; (2.400)
R = - 2 onyY o (KT K2) - (14 20) - K -[—-‘.’—[3—8-%] «x
t 3 Q X z X to k] x=z=0

+ ez 4 (N+H')-z-§;-aaz] -

e DBz
-2K-[+-—-{-—-—J *z = 2Hex' + (N - H) ax +
z Eo X o—
e
+-§: . ABx]} . (2.40c)

2.6 The equations of motion for the coupled synchro~ betatron oseillations

Putting (2.40a, b, ¢) into (2.34) and linearizing with respect to x, z, ¢ and
nwe get the linearized equations of motion for the coupled synchro- betatrom
oscillations in their fimal and most gereral form, namely:

~

eV . 1 . .y =
x's £ sin ¢ Es(s-s\})+x'+;§l X (N+HY)=2
o] Vv
e
- 2H -2 -Kx"r] =-E; . ABZ; {2.41a)
z'-%‘isinQ'EvS(s—s\,)+z"+-G2'z-(N-H')-x+2H-x'-
o v
- B . .
- K, ne s 88, ; (2.41b)
o'+ K oox 4 Kz- z = 0; (z.41c)

-~

n'-c(s)-ﬂ-k--g”--cosq)-ﬂ G(S-s)u-e—“:-sin@.ZG(s—S)#-
E T v “E v
v ¢} v
e = 6Rt
« (K2 2y o S - . o . - . - —_— =
“* Cl (Kx + Kz) Eo Ae ZCl En (Kz ABx Kx ABz) Eo
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18
oC.e = 4 9l -
- X Cl [KX(K; + K;) + ZKX £ [bx ]x_z=o - ZKz(N - HY)]

o

~ 20 [K_(K® + K2) - 2K_« = ‘z] - 2K_(N + HOT -

1 z'% z z Eo x %=2=0 b
. . . . . o M - - 2 2

-x! 4Cl Kz M+ 2z 4{:1 Kx H - 2n C]_(KX + Kz) (2.41d)

vhere we have defined
v
2.2 0
ey =%e E, (2.42)

Eq.'s (2.41a) and (2.41b) describe the betatren oscillations in x-direction
and z-direction, respectively, while (2.41c, d) deseribe the synchrotron
oscillations. Synchrotron and betatron escillations are coupled because of the
curvature of the reference trajectory. This coupling vanishes for

(which means that in a first spproximation the betatron and synechrotron oscile
lations are decoupled in a linear accelerator). There is also a coupling
between the horizontal and vertical betatron oscillaticns which is caused by
the fields of rotated quadrupoles (factor N in eg. {2.41)) or by the fields of
nolenoids (factor H, H' in eq. (2.41)).

In addition to these coupling mechanisms the differential equations for the
betatren oscillations contain a damping term of the form

~

eV .

y't g vsin ¢ -+ L 8(s - sv}
[+] v

{y = %, z)

originating from the electric fields of the cavities. Cne can calculate the
influence of the accelerating fields on the betatron motion by integrating eq.
(2.41a, b) from s, = 0 te 8, + 0, wvhere 8, designates the positien of the v-th
cavity. Then we get (y = x, 2):

A

oy s\,+o : sv+0
g v sind- S dsey'(s) + 8(s -8) + J dse y"(s) = 0 ;

o sv-ﬂ sv-O
%E +sind +y'(s, - 0) + L y'(s, +0) -y -] =0
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or

-~

y'(s, + 0) = El--g-:-sin 01 =y'(s, - O (2.43)

Since the quantity g_\!_ sin¢ which desecribes the relative gain of energy of a
particle traversing g cavity satisfies the inequality
el

0<—L=-~sin¢ << ]
[}

the tangent vecter of the particle trajectory is rotated by a small amount
towards the equilibrium orbit by the presence of the electric fields. This is
equivalent to a damping of the oscillation amplitude,

In many cases one is allowed to neglect these damping terms for the calecula~
ticn of the particle dynamics and to consider among those terms describing the
emission of photons only the constant factor

o2 v
Cl (Kx - :(z)
which just describes the influence of the radiation on the equilibrium particle

{x = z = n= 0). Making these simplifications the equations of motion far the
tundamped" synchro- betatron oscillations can be cbtained from {(2.41):

X'+ Gox o (N+H)ez - 2Hez' =K + 7 :-%—-ABZ : (2,44a)
Q

204 Gyrz - (N-H)exxw 2Hex' =K o n =+ §=+ 8B ; {2.44b)
[+]

o' 4K rx K cz2=0 ; (2.44¢)

n' _5(3).%‘{.;(.211. cosde I 6(3-5\}):

o L .

A sin0 « T8(s-8) -0, oK+ KDY+

- E{J 9 Y 1 Ed z

- L8 . - .

+T-:'°' Ae+2C1 E (Kz 8B, - K _» 4B) ., {2.44d)

These equatio'ns can be written in canonical form by using the Hamiltonian

a :-% {Gl°x*+62'z= ~ 2N* xz + (px+Hz)‘ +(p2-Hx)2} -

-3 0 Eo k == +cos ¢ 55(3-5\))-0()( x-c-Kz z) Py =

-

~o - (L sin0 - 28ls -5 ) - Cpr (KE+KDT+ 8=« sew
=] hY o

LB . - s A L. gl
+ 231 EQ [K ABZ Kz Bx ]} + X E-o- ABZ z E; ABX (2.45a)
with

PgEn (2.45b)
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Putting X as defined in (2.45) into the Hamilton equations of motion

Py T OTH ix
z" =b—j-c— 3 opl =_)_1f; . . (2.46)
P, z bz
[T NS
we find in matrix rotation:
> < -+ ‘
y' = Ay 4+ 0y (2.47)

with the fellowing definitions

Y = (% Pys 2y Pyy 05 By) 5 ' (2.48a)
& =0,9,0,0,n¢, _E% sind + I s - s)) = C (K2 + K2 (2.48b)
&=, - £08, 0,808, 0, §de =20, £IK 4B, - K +4B, 1)(2.480)
and fo] ] [+] [x]
0 1 H o} 0 ' 0
- (Gl + H2) O N H. 0 Kx
‘Az| -H 0 0 1 0 0 | (2.480)
N ~H - (G, H) D 0 K,
- K, 0 -k, 0 0 0
0 0 o} 0 %g- k -%-T-T ccsd\-iﬂ(s - Sv) 4]

(2.47) reprensents a system of linear differential equations of first order
vhich contain besides the quantities x, z, ¢ and n the momentum variables

Py = X' =Hez ; {2.49a)
'+ Hex 3 ' (2.49b)

Pz

(The relationships (2.49a, b) are equivalent to the Hamilton equations

IR U
®omo— s ozt oz,
3P op,
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Eliminating the variaples p, and p_ in eq. (2.47) we indeed rediscover (2.44).
On the other hand we can get (2.47) from (2.44) by introducing Py and p, as
additional variables and by transferming the differential equation of second
order (2.44) inte a differential equation of first order. In this respect the
two equations (2.44) and (2.47) are equivalent. For our further discussions it
will be convenient to use the equations of motion (mostly) in the form (2.47).
The canonical structure of these equations will play an importent role in our
later investigations.

Rewriting the general equations of motion for the synchro- betatron oscilla-
tions (2.41) in terms of the variables X5 Pys Zy Pur Gy Py Z n we have to
supplement the matrix A by a perturbation matrix SA and we have to add a third
inhomogeneous term 63, so that we get

Vra@a+ Ry + 2 + &) + 68 (2.50)

vhere §A is defined by:

A = ((8A,0)

Vo
8y, = =S gin d + L &s -8) ;
22 E, v V2
SRy = Bl 5

M:]
SA., = = Cy o« [(K2 4+ K33 K+ 2K » [—-Z-] +
61 1 x z X X o VX x=2=0

rﬂ'ra

e

s H2 - . -
+4Kx H ZKZ (N « H')]

8A

1]

40 K H

)
-0, s [(K? « K)o K -2K-—E—-E—z] +
3 X z Z z E_ [x | x=z=0

+4KZ-H’ - ZKx- (N +HY)D

62
§A

i

&3

GAsa:-QCl' KX'H H
- e .
6A66 T - 201 (Kx - K;) H
GAik = 0 (othervise) (2.512)

and §¢ is given by
&R
587 = (o, 0, 0, 0,0, - (2.51b)
o
Eq.'s (2.47) or (2.50) uniquely define the particle motion in a ecireular
accelerator or storage ring. These equations will form the starting “point
for our further discussions.
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3. Introduction of a new reference orbit.

3.1 Equation of motion for the new reference trajectory

The equatioﬁs of motion for the coupled synchro-betatron oscillatiecns (2.47)
and {2,50) form a system of linear and imhomogeneous differential equations
with the inhomogensous parts 6'5, 30 and '51. The inkamogeneous term 8% is due
te quantum fluctuations of the radiation field and '50 is due to the variaticn of
the energy of the circuleting particle because of radiation losses and the
presence of accelerating fields while the vector El originates from fields
ABX,ABZ and Ae , which can be interpreted as field errors or (time-dependent)
external fields.

For our further discussions of the particle motien it is advantageous to eli-
minate the inhomogeneous part Eo of eq. (2.50). This is achieved in-the
vell-known manner by looking for the (only) periodic soluticn ;0 aof the inho-
mogeneous equation

Jro= A+ 8BV + 3, (3.1)
namely

V5 = A+ SR, + 8 : (3.2a)

Yo (g + 1) =¥ (s,) (condition of periodicity). (3.25)

Then the general solution of (2.50) can be separsted into
+ =

Yy sy, +¥

wvhere the vector ,)a; describes the synchro-betatren oscillations about the nevw

closed equilibrium trajectory 370, which we shall call "six-dimensional closed

arbit" in the following.

3.2 Description of the closed orbit by the enlarged transfer matrix

The closed orbit is uniquely defined by eq. (3.2a, b). For an approximate cal-
culation of this new reference trajectory we are allowed to neglect the per-
turbation matrix SA im eq. (3.2), and thus eg. (3.2a) {or (3.1) reduces to the
simpler equation

y' :Ay 4 o (3.4)
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of the undamped synchro-betatron oscillations. We further assume, that the
functions Gl(s), Gz(s), N{s}, H(s), Kx(a) and Kz(s} appearing in the coeffi-

cient matrix A(s) are piece-wise constant, so that the s-axis can be divided
into segments

S]J-<S<S|J-"'l

vhere A is a constant matrix
A(8) = const., A'{s) = G {3.5a)

f‘orsu<s< su+l'

And sinee in this case

K>< = const.

K, = const.,

eq. (2.48b) implies that

-+ 4
¢, = const. (s,‘1 <8 < Sy v 1) {3.5b)

so that eq. (3.4) represents a linear differential equatidn with constant
coefficients in the intervals su< s < su .17 except at the_ positions where
the cavities are situated. But assuming pointlike cavities (see eq. (2.28)) the
integration of the equations of motion can eagily be performed for the aceele-
rating fields because of the presence of the §-functions in (2.48b) and
(2.48¢).

The solution of eq. (3.4) can now be written in the form

[N Fsg)
= _P:I_(S, 80) 1 (3.6)

vhere the "enlarged” transfer matrix ﬁ is defined by
s, s ) 'n:(s))

(s, s :( ‘ (3.7
= e 0 1 )

(s, so) represents the (simple) transfer matrix belonging to the homogeneous
equation :

-

V= A

and satisfying the following conditions

3—5 Hs, 50 = AN, s.) ; (3.8a)

(™

s, ) = (3.8b)
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while the vector mle) in eq. (3.7) iz a special solution of eq. (3.4)

g—sﬁ(s) = Am(s) + '50 (3.92)

with the initial value
fis,) = 0 . (3.5b)
For the special case of an infinitesimal transfer matrix ﬁ(s + As, s8) we get
from (3.4)
. [1+ A(s) » As] EIE
M(s + &s, 8) = . (3.10)
a 1

Making use of (3.6) and (3.7) the condition of periodicity (3.2b} then takes

the form .
Ms, + L, s) (s, L)) ;o(so)) ] ?o(so))
o i 1 1

from which we can calculate the "initial vector" of the closed orbit ?(so}:
Vos) = [L-Ms +L,s)] (s +L) (3.11)
0l T R T LM g ' %o c - )

Using this equation and eq. (3.6) we tan determine the closed crbit at each
position s, if the transfer matrix M(s, so) is known everywhers around the
© ring.

3.3 Calculation of the transfer matrices
3.3.1 The transfer matrices for special types of lenses

Because of (3.5a, b} it is possible to caleulate the transfer matrices for the
most important types of lenses explicitly.

3.3.1.1 Synchrotron magnet

N:H:H':G:O; (3.12)

K; + K; = const, £ 0
Ke(s)= K (s) =0 ;

K ED

Kz £ 0 curvature in z-direction ;

Gl =
In this case the
x' =

L
Py =

z' =
LI
p, =
gt =
n' =

The elements of

~

"

ﬁlZ
ﬁllé
|\7417
r:&21

Y22

Mg

-

Moy

-

M3z

- 725 -

curvature in x-directicn ;

’

const. (£ 0 for Ky £ 0), G, = const. (£ 0 for K, £ 0).

equations of motion (3.4) and (2.48) read (po, S

Py 3

—Gl-x+Kx-n;

-Gz-z+Kz- n

“r

-K -x-K .23

-C -{K’+K)

(3.13)

the enlarged transfer matrices are given by:

= cos E/E'l'(s -5

Hmlxx ﬁ Ir—-
= =

Gy

sin [VG (s - s )] ;

{i—cns[-/—-(s-s)} ;

€, K (K2 + K)o {ls - o) - f—;zsinr/q(s - s 0

- ‘/Fl *sin [fEI(s -5

it

£

o] =
NJN o)~
N

1

Gy

cos [sz(s -8 ;

cos [fG—z(s ~s.)]

. z 2
Cl KZCKX + Kz)

?

sin {/_(s-s)]

K
X «sin [/51‘(5 - su)]‘ H

?

+ {1 - cos [f[;(s - s )1}

{(s - s )_

- -é-—-f.‘l-Kx(K; +K2) e {1~ cos [VEj(s - s)]} ;

Gz

1

I

—= - sin [/m(s -3 )3},



=2

43

=y =

=Y

47

=

51

=

52

=

53

=2

o4

=

55

=

>

=

57

Meg

-~

Mgq

~

Mix

If the quantities G

- 26

- /T, -sin [fcg(s -]

cos [fﬁ;(s - SD)] ;

K
= }E-f-sin [/ Gy (s - sl s

= {1 - cos E/E;(S - 30)3} H

H

“r

2
s - -é; C e K (K2 + K2)
=_]|{%-E_ sin [VE{s =51 ;
-_-—-éf {3 = cos [ /G (s - &)1}
=-;z~§ sin[/q(s-so)] ;
:-G—:- {1 - cos [VBy(s - s )]}
=1;
K 1
:-E-J; {(s -5 _/HGT_.L“Sln [@(s—so)]}-
-.G? {(s-so)-#sin [/G(s -1}

Gy

Lo e Lrapez zy.sl
+G2 C, Kz(l( K){ (S—S
=1=Mys

-G (KK (s -8

0

vse of the following relationships

cos [V =G (s - 5)] = cosh[AGT (s - 501 ;

/o

sin [/=TG] (s = s )] =

é;- Cp KE(K2 + KM {2 (s = 5 )% + %T cos[VEL(s - s )1~ &=} »

)2 +—cos[f"(s -s )]..—-},
2

otherwise . {3.14)

1 and G2 are negative, which may be the case, we can make

(3.15)

1 .
sinh ¥[G] (s - ¢ )].
i o

3.3.1.2 Quadrupole

N=H=zH=
with
G = - (hBZ
ED
The equations of motion
x' = Py
;,'J)'c == BG.x
z' = P, 3

-y

0
0

e

with the transfer matrix

M= ()

f

ﬁlz = }—E sin
My = = VT
iy =

s =

ﬁ% =1/—i;a gil
i =

iy, =

ﬁss =13

-

M66 ]
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KX=K =V=0 ,8 =+0

5—)(—) £ 0 (see eq. {2.27)).
K=Z=0

now read

H

), = cos [/-':1_(3—30)] ;

VEls -8 3 5

sin [VG(s - 5] ;

cos [V G(s = sg) 1 s

cos [V—st-so)] :

nl/ =Bl - 8] ;

-V T sin [V = Bls - s3] 3

cos [V T Bls -8)] ;
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~

M

]
[
-

77 ©

M., = 0 otheruise {and see eq. (3.15)) . (3.1}

Fl

3.3.1.3 Rotated quadrupole

NAG.

The equations of motion are given by (see eg. (3.4) and (2.48))

X' =P,
p>'< =N~z
z':pz
(3.17)
p:'z =z Nex
gt =0
' =0

vhich means, that the betatron oscilla%ions in x- and z-direction are coupled:

X" =Nz

Zm o= Noex. (3.18)
It fellows from (3.18)

(¢ +2)" = N{x + z) ;

{x = 2)" = « N{x - z).

In this form the differential equations are decoupled and they can be inte-
grated easily. Thus we obtain the following expressioms for the matrix elements
of the transfer matrix Ms,, s):

lclll = ~21- {cos [V~ N{s - s )] +cos [V+N(s - 8,01}
! 1\7112 = -%-{-%-msin [n/. - N(s - sD)] +$ sin [v+ N(s = So) 13

=

13

=

14

21

=

22

=

23

24

=

31

=>

32

=y

33

=

24

41

=

42

=

43

)

=

55

=

66

=

77

=2

ik

1
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%{cos [v = N(s = So)]- cos [v + N(s = Sn) 1 ;

2

i: sin [V N(s - 53] -

- N %+ N

sin [v '+ N(s - s}s

—%{V— N sin [v'~ N(s - SO)J +¥Y+ N gin [v+ N(s - so)j};

M1 s

- % {/TW sin [V (s - s)]= Y W sin [/ 5 Ws - s )0} ;

M
13

M3

-y

My, 3
My s
My 3

Mas

s

My 3
Hyy 5

M

il

0 otherwise.

(.19
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2.3.1.4 Solenoid

Gl:GzzN:szk =V =20
H = const. £ 0.

The equations of moticn are written in the form

Y'=87% (3.20a)

vhere the matrix B is given by (cempare vwith eq. (2.48))

0 1 H 0 0 0
~H* o 0 H s}
-H 0 g i 0 0
8= (3.20b)
0 -H =H®* D 0 0
Q 0 o} 0 Q 0
] 0 0 0 0 Q
Making the "ansatz"
Y = D(s) » x{s) (3.21)
eq. {3.20a) is transformed into
Xte pt.(8D - DX (3.22)
Choosing the following matrix for D(s)
cosf 0 sing@ a 0 D\
0 cosB 0 sinB 0 0
-sin@ 0 cosB e 0 0
D = (3.232)
0 -sinB 0 cosB o 0
¢ 0 a o 1 0
0 o 0 0 0 1]

vhere we have put

B(s) = H(s ~ 30) {3.23h)

we obtain from

- (VTN bt
n 1

-
1

1
XG—

- 31 -

(3.22) (%' = (X1 Xgs wnns Xg))

2
= - H%. .
” = x] = H X1 3
- . %
1
%4
no. % .
. = xf = - H X33
- H* - x
3
U
0. (3.24)

The solution of eq. (3.24) can be written as

X(s) = Cls, s.) %(s,) (3.25a)
vith '

cosé i 0 0 0 o

- Hsing cosB ‘ 1} s} 1] 0

o] 0 cosB % sinB 0 0
C(s,so):

0 0 ~ Hsin®  cos8 0 o |’

0 0 0 Q 1 9

\o 0 0 0 0 !

(3.25b)

Putting {3.25a) into (3.21) we get

yis)

This equation
is given by

= D(s) - Cls,s,) k(s )
= D(s) » g(s,sa)- g“(so)' ;(so)

= D(s) + Lls,s,) - T(s ) (3.26)

implies that the {(simple) transfer matrix Mis,s,)

H(s,s,) = D(s)-C(s,s.) {3.27)
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Taking into account (3.23a) and {3.25b) we can calculate the elements of the

enlarged transfer

Ml,l =

=)
1t

3]
X
.

=)
1"

=»

I
X
i

vhere B has to be

matrix gﬂ_(s,so)

+(1 + cos 28);

gra ST (2]

» gin 28

7

2 o

o
b

~ u }

[
N

1 @

]

&

I3

o)

m

~

-

|
T
.
|
0
A
p= ]
3
@

?
~

M1y

- H-% (1 ~ cos 28);

=

|
w
"

e

4] otherwvise

taken from eq. (3.23b)

(@D, 18, 9, 260,

(3.28)
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3.3.1.5 Cavity

x'=p. ;3
Py =03
z' = p, ;
Pp=C;
o' =0 R
el

sV, 2T, .
n' =oeg kL cosd ¢ I a(s-s\,)»,

[=3 v

eV

3
o]

rs

sin¢ * Z §{s = g)
v v

and the following expressions are found for the matrix elements of

_f:'l_(sv +0, 8, - 0):

Mg =l fork=l, 2, ..., 7
Més‘z k i cos ¢

]

~
-~

Mé‘i :E—U sin &
[s]

M. =20

erwi .
ik otherwise

3.3.2 Approximation Shemes

(3.29}

In the foregoing chapters we have derived explicit expressions for the enlar-
ged transfer matrices for the mast important types of lenses (ses eq's (3.14),

(3.16), (3.19), (3.28), (3.29)).

However in more complicated ¢ases one has to apply suitable approximation

simple schemes of caleulation,

3.3.2.1 Series expansion

.schemes for calculating the transfer matrices. Now we want o describe tuwo

Because of (3.5a, b) the equations of motion for each lens are given by linear

differential equations with constant coefficients .



And therefore we can write down the following expressions for the simple
transfer matrix M(s, s ) and the vector m(s) defined in (3.7):

ﬁ(s, s,) = e Ale=sy) ¢ %1 52(s-s°)n ; (3.30a)
n=0 )
LORYEN L A Aes )M B, (3.300)
n=

vhich can easily be verified by putting (3.30a, b) into the equations for
M (eq. (3.8a. b)} and m (eq. (3.9a, b}). Thus ve have cbtained a series ex-
;;nsion allowing for an approximate calculation of M, % and hence of the enw
larged transfer matrix ﬁJ if we terminate the expsnsion after a finite number
of terms. The terms taken into sccount determine the accuracy of the approxi-
mation. It is also worthwhile mentioning that the vector ﬁ(s) can be put in
the form

-I'E

fi(s) = [M(s, s ) = 1) A" €,

if det (A) £0  (existence of A”! ).

£
In this case we only need the matrix M for a caleulstion of the vector m.
3.3.2.2 Decompusition of a magnet into thin lenses

If the conditions (3.5a, b) do not hold, for example if we take into account
the perturbation matrix §A in eq. (3.1}, we can divide the given lens into
small (infinitesimal) segments and according to (3.10) we can calculate the
infinitesimal transfer matrix ﬁﬁs+&s, s). Multiply%pg the single infinitesimal
transfer matrices we obtain the transfer matrix Mls + 1, s ) for the vhale
length 1 of the magnet elemeni.

This approximation is used in the computing cede SLIM (31).

3.4 The free synchro- betatron oseillations

Having set up the transfer matrices for the different types of lenses we are
able to determine the six-dimensional closed orbit y {s), wvhich then means
that we know the first component of the oscillation amplltude ¥(s) which has
been decomposed according to eq. (3.3). Therefore wgzcan restrict ocur further
discussions to the investigation of the second part ¥ in eq. (3.3).
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Putting eq. (3.3) into (2.50) and taking into account (3.2a) we obtain the

following equation for'y
i

. :
=R+ Y+3 48 (3.31)

where the 1nhamogeneaus part c has indeed disappeared as requ;red, and where
only the vectors c (due to the fields AB ABz’ A ) and ¢ {due tc the
quantum fluctuatzons) are left over.

Eg. (3.31) can be used to study the influence of small external fields
(time-dependent or independent of time) on the particle motion. We shall con=-
sider these prcblems in chapter 8.1 (presence of ﬁB ﬂB Ae because of mis-
alignment errors) and in chapter 7 (ﬂB AB Ae t;meudependent external dri-

ving fields; resonance excitation of the synchru- betatron cscillations (27)).
As a preparation for the more general case

(88,, 8., 2¢) £ (0, 0, 0)

ve want to discuss the ideal machine at the moment (no misalignment errors or

perturbing external fields, ABX = ABZ = 8¢ = 0). In this cese eq. (3.31) re-
duces to
-

+ éc . : (3.32)

-+

~
1

Y

<1+

= (A + 8A)

Eq. {(2.32) describes the "free" synchro- betastron escilletions around the
six-dimensional closed orbit., For a first approximation it is also reasonable
to neglect the small perturbing terms appearing in the matrix SA and the
vector &6 and anly to congider the squations of motion

& =Ay (3.33)
of the "free and undamped" synchro- betatren oscillations. The influence of §A
and & cen be calculated in perturbation theory showing that SA generally is
lntrnduclng a damping end &% is introducing a stochastic excitation of the
synchra- betatron oscillations {see chapter 8 for more details). The solution
of the unperturbed eguation of motion (3.33) can be expressed in the form

el el
¥(s) = M(s, sg) ?(3 ) . (3.24)

vhere the (simple} transfer matrix M(s, s ) is knoun already from chapter 3,3:

Mis, s } is a submatrix of the enlarged transfer matrix M(s, s ) so that ve
have

Mie = My (i, k=1, 2, «c., &),
All characteristic features of the synchro~ betatron osecillations are con-

tained in the structure of the matrix M. Therefore our next task will be to
study the properties of this transfer matrix,
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4, The free and undamped synehro- betatroen oscillations.

4.1 Hamiltonian form of the equations of motion

In order to study the structural properties of the transfer matrices ve take
into account, that the free and undamped synchro- betatren oscillations are
the solution of the homogeneous part of the complete equations of motion
(2.47). We have already shown in chapter 2.6 thet the inhomegeneous differenw
tial equations (2.47) can be written in canonical form with the Halmiltonian
defined in (2.45a). But this implies, that eq. (3.33), as a special case of
(2.47}, can also be expressed in canonical form. The corresponding Hamiltonian
%} is obtained by neglecting in (2.45a) all terms linear in x, zZ, O, px, p, and
Py 1 which were respensible for the inhomogenecus parts co and cl oF eq.
(2.47) and by renamlng the components Xy Pys Zy Pyy O, p,  of the vector ;
vhich are called now x, p N z, pz, d, p and whlch are the components of a
vector §

~a o - .. K ey -
g2 = Wexz + (p + G2)* + (p, = Gx)*}

- 211 ~ A

Gt ekt cose - 5 (s = 5) - (K, X+ K,2) g, (4.1)

so that ¥ is just a quadratic polynomial of ¥, Ex’ z, Ez’ & and E;.
4.2 Symplectic structure of the transfer matrices

All properties of the transfer matrices relevant to the investigation of the
stability of the particle moticn can now be obtained from the canonical struc-
ture of the equations of moticn (3.33). One of these properties playing an im~
portant role in our further caleulations is the socalled symplectic structure
of the matrices M(s, so) stating that

ﬁT(s, Sgt S-Mls, s) =8 {4.2a)
wvith § given by

0 1 0 )] C 0
1 0 o] C o 0
o] 0 0 -1 0 0
S= (4.2b)
0 0 1 4] 0 .
c o] 2 0 0 =1
0 ] 0 ] 1 c
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Then the following thecrem holds:

Thevzem 1: The transfer matrices of a canonical, linear and homageneous system
of differential equations are symplectic.

In order to prove this theorem ve write doun the most general Hamiltonian for
linear homogeneous differential equations with the variables

9 X,95%,0a,50,p 35,55, ,p; 30,
3 3 3
X =2 I 8 _qq+32 I C, pp + I D PG, {(4.3a)
3 i,k=1 ik itk T 2 i,k=1 ik Fi%k i,k ik itk
{B, =B, -
ik ki (4.3b)
Cik = Ot -

The corresponding canocnical equations now read:

1% 3 3
G = 55, =k Cuper I DA
i kel k=1 (.
3% 3 3 -
1o — - -
Pi= g, =L Badk o Dles Pi

or in matrix notaticn

% = _K_-)’E (4.58)
wvith
*T = (ql’ Qs Az Pys Pos P3) H (4.5b)
*} g .
5_ = ‘E _BT ' (4.5¢c)
B2 ((By)) ; (4.5¢)
C= () ; (4.50)
D= {(D,0) (4.5f)

and where, because of (4.3b), the faollowing relationships are valid
8 =8 j
(4.8)
CT =L .

From eq. (4.52) ve get

*(s + 48) = [1+K(s)s a8 1%(s). ‘ {4.7)
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Rewriting this equaticn in terms of the vector
-
§3

P, O Fy)

%, 3
= W Py 25 By (o}

vhere the components have been arranged in a different way and using
+ .

V=X . 4.8)
with
1 0 o] 0 0 0
0 0 0 1 0 i}
0 1 0 i} 0
Pz (4,86
- 1} 0 D ] 1 o
0 o] 1 o] ‘0 [
4] 83 0 o] o] 1
wve get
X pe
¥(s + 88) = P - [1 + K(s) + &s] P7I¥ls) . (4.9)

But this equation implies that the infinitesimal transfer matrix M(s + As, s)
can be written in the form

M{s + 88, 8) =2 [L+K(s)e As]P72, (4.10)
Taking into account the following relationships

pm =£T {4.11a)

PlsP=y uith (4.11b)
23 - l3

Jd = and

) i3 05

K'd+JdK =0 (eq. &.5¢, 4.6) ' (4.11c)

ve find, by putting {4.10} into (4.2a), that the symplectic condition is ine
deed fulfilled for the infinitesimal transfer matrices:

ﬂT(s + As, s)+ 5 -Mls + &s, s)
PIL+K(s) as )T PT SR [L+K(s) as1p
= P-Plegep-p]

+asPIK 343K 1P {eq. {(4.1lla, b))

$ {eq. (4.11e)) . (4.12)

-39 -

But the group character of the symplectic condition then implies, that "fini-
te" transfer matrices are also symplectic; q.e.d.

One consequence of theorem 1 is, that all tramsfer matrices calculated in
chapter 3.3 satisfy the symplectic condition (4.2). .

In order to complete thess considerations we went to prove the converse of
theorem 1:

Theorem 2: If the transfer matrices of a linear and homogeneocus system of difw
ferential equations of first order are symplectic one can write the differen-
tial equations in canonical form.

Proof: Given a linear and homogeneous system of differential equations

P =

¥ =AY (4.13a)
et

Yy = (qli pls qu pz’ Q3| P3) (4.130)

and the corresponding transfer matrix M(s + £, s) satisfying the symplectic con-
dition (4.2a). This implies that the infinitesimal transfer matrix

M(s + &g, 8) = 1 + 45 Als)
is symplectic

D=[L+8sAls) ) S[L+asAls)] -5

(1]

2s TAT(s)+S + S-A(s)]
so that the matrix of the ceefficients A(s) must fulfill the conditien
AT(s)+5 + 5+ Als) = 0. (4.14)

- -
Transforming the vector ¥ to the vector x

>T =

X = (q]_, qu Q31 plr Pas p3) , (4.15)
by applying the permutation matrix P defined by (4.8b)

&

- - - T :
b

y=Px,x=P (4.16)
we can write {4.13a) in the form

k¥ (4.17a)
with

k=plap . {4.17b)

Egs. (4.17) and (4.13a) are equivalent. Therefere it is erough to show, that
one can find a Hamiltonian of the form of (4.3a, b) such that the correspon-
ding cenonical equations (4.4}, also written as



- 40 -

>+
+

L= % (4.18)

are identical with eg. (&4.17a).
Therefore we rewrite the relationship (4.14) for the matrix Als) in terms of
the matrix K(s). We then obtain

K'3 +3K=0

vhere J is given by {4.11b). By putting

.Iil Kz
K =
- ﬂ} 5&
QSY Z 3 x 3 submatrices)
we get
Ky = K,
K5 = K
Ky = -k

which means that eq. (4.17a) is of the form of (4.18) if one makes the fellowing
replacements

E‘l — D
Ky — E
Ky ey - B

and in acdditien the relationships (4.3) are satisfied ; q.e.d.

The theorems 1 and 2 tegsther state, that the canonical form of the equation
of motien and the symplectic structure of the transfer matrices of linear and
hemogeneous differential equations are equivalent terms.

Proving these two theorems we have restricted curselves tc the sixdimensional
case (three spatial coordinates 935 9y 93 and three mementum varisbles Pys
Pos pj). Hovever it is not difficult to extend these considerations to the gew-
neral case of an arbitrary number of varisbles.

In Appendix I we shall derive a necessary and sufficient condition for the ca.
nonical structure of genersl (linear or nonlinear) systems of differential
equations of first order, implying the theorems of this chapters as special
Cca3ses.
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4.3 Conclusions from the symplectic structure of the transfer matrices
4.3.1 The eigenvalue spectrum of the revelution mairix ﬂ(so + L, So)

The symplectic condition (4.2) for the transfer matrix ;Eplies thgf a constant
of the motion can be formed of two arbitrary solutions ?fs) and 9&(3) of the
equations of motien for the free and undamped synchro- betatron eoscillations

(3.33). This invariant, also ealled "Lagrange-invariant™ is defined by
-~

-> - -+
ACACI I SR BAS
with

WIFLS), Tp(] = s, o) Fyplsy) 1T- 5+ Litts, 55) * 9155

aT T vl
=Y. (s ) M(s, s ) S+Mis, s)+¥,(a)
J2M8l T D48 3g0t 20 Alsy 5,0y, (s,

]

~T ~
-~ 5e
yz(;o) 2 _3’:1{30)
W [yl(so), ¥5(8,31 = const. (4.19)

(1]

Using this invariant we can study the eigenvalue spectrum ef the revolution
matrix ﬂ(so + L, 30): ’
- -

Mls, + L, s,) Vu(so) = lu Vu(sn) ; (4.20}

(=1, 2, sauy 6).
And this spectrum of the eigenvalues A {(u = 1, 2, «ery 6) allows one to in=
vestigate the stability of the coupled synchro- betatron oseillations,
We make this investigation in several steps ((4), (3), (I)):

1} We form the Lagrange-invariant with twa arbitrary eigenvectors tu(so) and
ﬁv(so) of M = ﬂ(so + 1, so) and we obtain

W50y Tyls)] = w1 (s ), 1Y (s )]
=W DA, Y Gsgd, A, Vs

Au Av.w [%J(sc), vv(so)]

vhich implies

- = T >
)‘u.h\) Ale=> W[ Yy Yy, 12vs) § vu(so) =0 ;
Wis ) Vls) £0 =>0 e, =1 (4.21)

so that the eigenvectors of M can be divided into 3 groups
G, V) k=1,11, I
with the properites

- -
My, = Vig MV = A v s At A—k =1 (4.22a)
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Vsl = -Uesed, f0
. - (4.22b)
\Y

v = 0 otherwise i

For our further consideratiens we put

A, = e 2w 0,
A= et 20

(k = I, II, II1) .

{4.23)

Using (4.22a) we get

O =- Qk . (4.24)
vhere the quantity Qk can be a real or complex number.
2) Egs. (4.22a) or {4.23) imply that the eigenvaluss of the matrix
ﬂ(so + L, so) alvays appear in reciprocal pairs

!

Oy 0 A = 2/ 2

(k =°I, II, III)
If A is an eigenvalue, A* is also an eigenvalue because ﬂ(su + L,so) is a real
matrix.
With these statements we find the following possibilities for the eigenvalue

spectzum of the matrix M(s_ + 1, s ):

a) all of the six eigenvalues are complex and lie on the unit cir-
cle in the complex plane

g =l =1 (4.25)

and we have
O, = real ; (4.26a)
A=A (4.260)
Vo=V (4.26¢)

b) one reciprocal pair is real, the remaining eigenvalues lie on the
urit eircle

» _1
Ap = Aps Ap=hg s 1_1 =~/ Ao
* .
K-II = AII ; MIII = |A-II[ =1 {a.27)
*
Argr = ror s Il e Pl =1
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¢) two reciprocal pairs are real and the third pair lies on the
unit circle

*

= - ; =1 ;
Ap=A 5 oAg=Al o5 Ag= A g

_ * R _ * R _ l
Ar e sAar = s /Mg (4.28)
* . .
‘a2 hrr o Dl o= Pl =1
d} all reciprocal pairs are real

A

* -

- - — - - l .
RSh 3 A= Ay A= A (4.29)
(k = I, I1, 1I1) i

e} one eigenvalue, for example AI, is complex but does not lie on
the unit cirele
*
|XIE 21 ; AI £ AI . | {4.30)

Then the follewing condition must be valid

21
A-I =/ AI (4.31)
and (with an appropriate choice of the eigenvalues)
*
AMr Ao
1, % {4.32a)
Ay = / A
or
1, . *
Ap= A :
* (4.32h)
A = Ar .
=11 I

The third, remaining pair must lie on the unit cirele or on the
real axis.
Later on we shail show that the particle motion is only stable in case a).
3) If we define
<+ -+
vu(s) = N(s, s.) Vu(so) i {4.33}

then ﬁu(s) is an eigenvector of the revolution matrix



M(s + L, =) belonging o the eigenvalue Au |

Hes + 1, 8) T a) = 2, T go) . : (4.38)

\
Proof: .

Hs Ly 9) (60 = s + L, ) (s, 5 ) T (o)

s+ Ly 5+ L) Hls  « L, s) ¥ (s)

-
M(s, so) -ﬂ(so + L, so) uu(so)

(because M(s + L, s + L) = M(s, s,))

= lu Ms, so)- V“(su) (eq. (4.20))
= Au V“(s) (eq. (4.33))
g.e.d.

The eigenvector 3&(5) has the same eigenvalue as vu(so) which means that the
eigenvalue is independent of s .

4) Defining

'ﬁu(s) = 'ﬁu(s) et L (4.35a)
we find

-+ -

uu(s + L) = uu(s) (4.350)

"Proof: Putting (4.35a2) into (4.34) and using (4.23) we obtain
s + L

5+ - )
tu(s wl)y et 2m Qu Lo piw Qu. Eu(s)‘e_l Zn Qu L

Dividing both sides by
s + L s
ol 27 Gu L = gl 2m Qu e~k 2T Qu L

we get (4.35B). g.e.d.

€q. (4.35) is called Floquet-thearem, It states: the vectors v (s) are speeial
solutions of the equations of motion (3.33) and they can be written as the
product of a periodic function Uu(s) and 8 (generally aperiodic) harmonic
function s

e-i n Qu L

5) The general solution of the equations of motion is a linear combination of
the special solutiens (4.35a) and can be written in the form
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s s
IO (A O i S SN S I R U I (O )
ka=I,11,
111
This equation implies that the amplitudes of the synchro- betatron oscilla-
tions remain bounded (stable motion) only if the quantities Qk are real nume-
bers, which alse means, that the eigenvalues lie om the unit circle, as we
have mentioned already:

I = la ] =1 {4.37)
(k = I, II, ITI} (stability critecion).

If at least one of the exponents Qk is complex, Qk or Q-k has a positive ima-
ginary part. In this case the components of y{s) growv exponentially anc the
particle motion becomes unstable.

6) For the following we always assume that the stability criterien (4.37) is
satisfied.
Then it follows from {(4.26b)

V=0
-k = Yk

(k = 1, II, III)
and eq. (4.22b) reduces to (v* = (V1)
e -
- V-k(sc)' s v_k(sn) £0 (4.38a)

e - - .
Vu(sc)' Su,(sy) =0 otheruise. (4,38b)

+4 -
V(s w8 v ()

The terms
b -
vu(so) §vu(s°)
appearing in (4.38a) are purely imaginary:
4 + + _ .ot - - Fe T
[, (s,) Sy ()" = vyls ) 5 vu(so) = [vu(so) s v (sl
because S = -5
sc that the fellowing normalizing corditions can be used for the vectors Vk(so)
and V_ (s) (k= 1,1I, ITI)
++ - .+ - -h+ - .-’ -y
Vilsgl Sy () = = v (s ) +8 v (s) =i (4.39)
(k = I, 1I, III).

The validity of the symplectic condition (4.2) then implies that the eigen-
vectors 3%(3} and G;k(s) {k = I, II, III) at the position s elsa satisfy the
cenditions (4.38b) and (4.39):



- 46 -

-\71:(3} --S.- .Gk(S) = - -G:k(s) . _‘:l--{;‘_k{s) = 3 ; (4.40)

'\7;(5) . _S_-‘Gv(s) =0 otherwise .
4.3.2 Special case of the completely decoupled machine
4.3.2.]1 Properties of the revolution matrix

For the limiting case of a vanishing coupling between the synchro- betatron
cscillaticns we want o calculate the eigenvalues and eigenvectors explicitly.
There are two reasens why it is interesting to study this special case:

1) to rediscover the notatiocns and results of the thecry of Cou-
rant-Snyder;
2) to investigate the influence of the coupling mechanisms on the parti-
cle motion.

If there is complete decoupling the coefficient matrix of the equations of mo-
tion (3.33) takes the form

a o o]
=X ~z ']

A= ._U_._2 E’Z Q= (4.42)
o, L &

80 that the equations of motion split ints three separate systems
{y = %, z, @)

£ (y ): & [y ) (4.42)
dsle, [ 2y le, /-

The revolution matrix M{s + L, s) can then be written in the form

s+, s) g, g,
Mis + L, s) = 8, m (s +L,s) 9 (4.43)
gz 8, Bgls + L, 2)

where the 2x2 submatrices m, »m_  and m, are Just the transfer matrices
of eq. (4.42),
The symplectic condition (4.2) now reads

nls .m =8 (4.5a)
Y =27y T2
wvith Ez defined by

5 = (4.44b)
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or
det (Ln_y) = 1. {4.45)
Generally the corresponding submatrices

M M

11 2
Maa My
M3z Mgy
Mz My
Bes Mg
_d._(7 =
Mes  Mgg

of the revolution matrix for the coupled synchro- betatrom ‘oscillaticn have
determinants differing from 1.
So we can consider the difference

det (gy} - det (gy)_ = det (gy) -1

of the determinant det (d )} from the value 1 as a measure for the coupling
strength of the betatron and synchrotron oscillations at the position s,
Applying (4.44) to the infinitesimal transfer matrix

gy(s + A8, 8) = 1 4+ Asigy

ve find the following condition for the coefficient matrix gy(s) of eq.
(4.42)

T _ . _
iygz.*'s‘:iy—g:@Spﬁy—o
which means that a, must be of the form
R F
a4 . = .
2, . (4,46}
. -G -R

According to Courant-Snyder we can write for the revolution matrix
nls+l,s) &



2 . .
ces ﬂQy + ay(s}sznZﬂQy ﬁy(s)31n2wﬂy

ﬂy(s +1l, 8) = (4.47a)

- yy{s)sinZﬂQy cos2n0y - my(s)sinZwa
with ,
- 2 - : -
B v, - of =1 (4.47b)

vhere we have used (4.45).

In addition we require

Gy(s) 2 0. (4.47c)

Knouing the matrix elements of m = Ey(s + L, s)
11 M2
21 22

ve can determine Q, &, 3, and y according to

cosZnﬁ:lSpﬂ i

2
> g, if Ryp > o
sin 2n Q
< 0, if m o, < o
1
O o= T (. e m,,) -
2sin2rg L 2!
m
8 = 12 }
3inZrQ
m
ye - —2
sin2nQ)

(stability considerations do not allov Q to be an integer; see chapter &)-

Using the representation (4.47) of the transfer matrix m (s + L, 8) we can
calculate the normalized eigenvectors (see eq. (4.39)) of the revolution ma-
trix (4.43)

w45 o

-+T T - -
vp o= (Ex, o, 0, 0, 0) V1 = Vg
-
;II z (o, o, Gz, e, 0) ; E_II = Vyg (4.48)
+T -+~ i

+T
Vrrr = €05 9y 0, 0y V) 5V ppp RVppg

vith the eigenvalues

Ap o= et 27 Oy
Apzet TG (4.49)
_ =iz Q
M = e ¢
and where the vector -\.I;y (y = x, z, ¢) is given by
By(s) )
% (s) = 1 e-l\ry(s) (4.50)

Y
Zﬁy g - [uy(s) - J.]

Comparing (4.49) and (4.23) we can make the following identifications for the
decoupled case

f'}I > Qx '

QII = Qz

GIII «—> Qc .
The stability condition {4.37) nov reads

Qx’ Qz’ Q0 real
or using (4.47a)

-2 < 5Sp ."ly< + 2. (4,513
Taking inte account (4.33), namely

Uls + 48) = M(s + s, 8) U(s)
cr equivalently

s + As) = mis + As, s) W(s)

(A + As-a) W(s)
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and

d

-CE-\E(S) = a.u(s)

the following differential equations can be obtained for «, B andy :
) 3

yr= £ (4.52a)
8" = 2-(R6 —Fa) : ‘ (4.52b)
8% « '8 w Fe? = F (4,52¢)

where we made use of (4.46).

For the case of decoupled betatron oscillaticns with

2 1
as= = R:o,F:l
-G 0

{compare with eq. (2.48e))

one finds for example the following relaticnships
1

Y=g
8' = - 2¢

607 + 208" - £ 8% = 1
vhich have been derived already by Courant and Snyder. (Another special case,
namely the decoupled synchrotron oseillations, will be inmvestigated in Appen=
dix II1).

4.3.2.2 Phase-plane ellipses

Now we want to show that the functions a(s), B(s), y{s) and y(s) describe the
focussing properties of the decoupled machine.

Therefore we define at the position s = s, an ellipse in the phase-plane which
can be written in the form ((Z), (16))

y(so, &) 2 ) . _
=Y (3 (s ¢ 4 itsy) &) (4.53a)
py(so, &)
or if wve put
I

- 51 -
(4.53) is given by
Y(S 3y 8)
° +(y) +(y) -
= v2 €y { N (s, coss <5 (so)°sm6 1 (4,53b)
PY(SO’ 8

(o568 <2m.

This ellipse in the phase-plane which is assumed te describe an ensemble of
particles is generated by the two linearly independent wvectors 'El(so) and
32(30}.

During the motiom of the partieles the ellipse {4.53) is transformed into
another phase-plane ellipse of the form

y(s, & z . .
=)/ =l +wy(S) el +°\5:(S) e 3 (4.54a)
p},(ss 8)
ot
& 8 e ) 2(y) :
= 2ey {cly {s) * cos§ + czy (s)*sing } (4.54b)
py(s, 8}

where the vectors 'u’;y(s), -\T.':(s) and Egy)(s), Eéy)(s) are defined by

> +
wy(S) = ,n_iy(s, 8,0 wy(so}

e A (4.552)
wy(s) = my(s, o) wy{so)

and
) 2 m (s, 50 3 (s )
() ¢ +y) (4.55b)
Cy {s) = _r_n_y(s, so) 1 (Sc) .

Using the relationship
gy(so + 1, 8) Tuy(su) = g™k oM Qy-‘ﬁy(so) (4.586)

one finds that (4.53) transforms into itself after one revoluticn.

The "generating vectors" ~El(s) and —52(5) represent two special particle tra-
Jjectories (comp. with eq. (4.55b)). In this vay these two trajectories deter-
mine the complete motion of the particles defined by the phase-plane ellipse
(4.53).

Because of (4.50) and (4.55b) we have
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/ ﬂzﬁ) cos \y (=)

El(S).: o), cosy(s) - —E— siny{s) | ; o
0] vIET ’
/_sz_—a)_sin yls)
E S gingte) + = cos e e
/Z8(s) V28(s)
which implies that
(s} = 2 [e];(s) + ¢3,(s)] (4.58a)
vis) = 2 [e],{s) + c3,(s)] (4.58b)
als) = = 2 [eg;(8)ep,(s) + Cpq (8)e 0y, (s)] (4.58¢)

with
+>T
(e310 €120 =0

_ T
(egyr €993 = &

so that the determination of the particle trajectories El(s) and 32(3) allows
to caleulate the functions al(s), B(s) and y{s).
Knowing B(s} we can determine the remaining function y(s) with the help of
% F(sn)
\y(a? = q{so} + . I gE ds (4.59)
o

vhich follows from (4.52a).
Eliminating the parameter & in {4.54b) and tsking into acecount (4.57) we can
alse find the following expression for the phase-plane ellipse (4.54)

Yy y' o+ 6 ‘R + 200 yp

y = E:y. {4.60)

Y

Fig. 1 shows a plot of this ellipse and it illustrates the significance of the
quantities a; 8 and vy.

- 53 =

¥

A
b Fig.1

According to fig. 1 the maximum extension of the ensemble of particles descri-
bed by the phase-plane ellipse (4.54) or {4.60) at positicn s is given by

Ey(s) =V 5 v Gyfsﬁ. (4.61)

£ is called beam envelope.
The area of the ellipse (4.60) is given by

J=Te . (4.62)

Since € is independent of s, Jis & constant of the motion. Eq. (4.60) and
{4.61) now imply that once the area of the phase-plane ellipse is given the
maximum amplitude of the oscillation of the particle £ (8) becomes the
smaller, the smaller By(s) is, The maximum of the function By(a) arourd the
Ting

%= Max {B_(s)} (4.63}
5 Y

can therefore be considered as a measure for the focussing strength of the
lens system.

Since the phase-plane ellipse of fig. 1 transforms into itself after one re-
volution the functions a, 8 and vy must be periodic:
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oc(so + 1) = a(so) ;
By + L) = B(s_J; {4.64)
Y(so + L) = Y(so) .
Using (4.50)< and (4.64) it follows from (4.56)
xk(so + L) - ‘f{so) =27 Q. (4.65)

Finally we want to mention that because of (4.50) and (4.54a} the general so-
lutien of the equation of motion (4.42) can also be written in the form

y(s) = Ja v B 233 cos ['Ly (s} - 6] {4.66)

wvhere € and § are constants of integration and where B (s) andﬂ.y (s) are de-
termined by (4,58a) and (4.59). 8 is called amplitude Funct,wn and “wis called
phase function. This equation implies that cnee the "emittance™ !-:y is given
the maximum amplitude of the oscillation y{(s)} is given by the beam envelope
£ (s) vhick has been defined in eq. (4.61).

A similar expression with another, generally different constant & is obtained
for the momentum py

py(s) = & ey #yy(sj - ccs(\ry(s) - E) (4.67)
from vhich one gets
Ip,| s /e vy (s)
b4 ¥ ¥
so that the function

Ay(s) = /ey J‘yyfsi

could be called "momentum envelcpe" (see fig.l).

I.1
Appendix I

A _necessary and_ sufficient condition for the canonical structure of the
equations of motion (symplecticity of the Jacobian matrix).

Consider a mechanical system with n degrees of freedom described by the 2 n
variables

(815 Pys Qg5 Py =oen Qs pnj O T Xon_1? *2p) (1.1)
X; = xi(s) (I.2)
(8 = motion variable).
Using the Jacobian matrix

J(s+8 s) = ((Jik (s+2, s))),
3xi (s+2) : (1.3)

J K (S+§,, s)= 1 W

wve vant to show that one can find a necessary and sufficient conditiom for the
cancnical structure of the cerresponding equations of motion.

It follows from the chain rule

3* () ax (8" dx (s7)
(S) = ‘axm(s') : 2%, (s}
oT
J:LI((S", s) © Jim(sﬂ, s') -Jmk(s',s)

that the Jacobian matrix obeys the same decomposition law as the transfer
matrix

Jd{s", 8) = J(s", s}~ J (s, s). (I.4)

Far linear equations of motion the Jacobian mafrices are eguivalent to the
transfer matrices :
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X, (s »2) = Mie® %k {s) ; : (I.5a)

n
=

Jgp (s+4e) ik (1.5b)
We first prove

Theorem 1: The cancnical structure of the equations of motion implies the
symplecticity of the Jacobian matrices.

Supposition: There is a Hamiltonian
X = j((qiy Pis s)

s0 that the equations of motion can be written in the form

d PR

r qi (s} = ,‘a-'a-; ] (I.8a)
LR S

5, (8 ol (1.65)

(i=1,2, ...m).

"Propositjon: The Jacobian matrices describing the motion of the mechanical
system are symplectic, which meams (see eq. (4.2))

2(s48, &)+ 53 (sebys) = § (1.7

Proof: It is sufficient to prove the symplecticity for infinitesimal matrices
3 (s+bs, 8)

because & finite maetrix cen always be represented by a product of infinitesi-
mal matrices and because a preduct of symplectic matrices is also symplectic.
Therefore we first show that the following Poissen-bracket relationships

(s q ) = oy, p) = 0 -,
1.8

1

(py» g, S5k

I.3
with
n 77,9 32, %
TR s
<7V ka1 R ig 9 dny
. E (3?4 ?7{5 _ >?4 '1)79 3
=l Do ey P M
n b}
S SRR L LS, (1.9)
iygksl %y K
are invariant under the infinitesimal transformation
. qu
9 (8) —> g (s+as) = q (s) + Ldsg=
2
= g {s) -f-As-i-:—c {eq.I.52)
ke
o, (1.20)
Pi {5) —> P (s+48) = Pi {(s) «+ 48
b
= p (8) - AS.SEI‘; (eq.I.6b)
which means (21)
{q,(s+as), q, (s+ss)) = 0 ;
(pi(s-r-ds), Py {s+ss)) = 0 (I.11)

(pi {s+4 8), g, (s+3)) = §,

In fact, substituting (I.10) into the left hand side of eq. (I.11) and taking
into account (I.8) we get

] ?
(a; (s+a8), g (s+as)) = (q (s -l-AS"é"g{i- y G (8) +As-a—;i')

W WX
(o 80 + e G a0 + (a0

L w}
Qs 4 *‘S'{W T, "5, 9y

(a;0 ) 2 0
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1

(py(s+is), p, (s+28)) = (p;(s) -a s-%-—x-—, P, (8) - 55.?)1.) rom this equation we finally obtain the condition of symplecticity (I.7) we
83 RN vanted to prove, if we take inte account
. DS i } ‘
= (pyy P ‘”'i(ﬁg » P+ (g, ﬁ"k‘) {det (1 (s+as, s})}% = 1 # 0  (see eq. {I.13)}
3 v . . o
= (pi, pk} -As-{- -?-a:% +Eilk } ] (existence of the inverse matrix J 1 (s+d3,8) }.
= (p, p)z0; We only have to multiply eq. (I.13) from the left with § Q_l and from the
= i, k - 3

right with §_T J so that we obtain

(pi(S-H!IS) ' qk(s—»ns))

(pi{s) --.as-)l r 9 ls) +as-§-g£l:)

3o, s3%283-5"3 = sytss'
2% o N ; : T
= (pi’ qk) "53'{%71 ) qk) - (Pi! SB;) oT (\I.'J.th_S_ = = l L é = 'E)
= {p., q,) AS.{)_i?i L E_jf_} QT (s+ss, s} 8§ J (s+ss,8) = § (1.14)
7 7k IR TR TS
q.e.d.
= (Pi, qk)E Eik .
The converse of theorem 1 is also true.
We can write the relationship {I.11} in the form
Theorem 2: The symplecticity of the Jacobian matrix implies that the
(x, (s+ns), xp(sras)) = S*ﬁ . (I.12} equations of motion can be written in canmonical form,
Supposition: The Jaccbian matrices
For the left side of (I.12) we also obtain
'Bxi (s+4,8)
in Ex‘((sa-ns) '}xﬂ(s-n-m) 3 (s+8s) with J;, (s42,8) = =S
(x, (s+85), x,{s+28)) = ik . 9 kaS)
p i,%=1 ¥x,(s) 3 %, (s)
10 satisfy the symplectic condition
= > i 33 (s+as,s)-3ﬁk(s+ns,s) :
i,k= .3 (s+h,s) » 5+ (s+2,s) = § (1.15)
In T
= "El 3 ;(e+es,8) Sik"]kfi (s+s3,8) Propasition: Thers is a function
ik=
so that ve get from (1.12) A= Ulgg, py, 8
T
3 (s+as,8)-8 -3 (s+ss,8) = 5 . _ (1.13) so that the equations of motion can be written in the canonical form
d _ k.
P qk(s) = W }
3y (1.16)
d Pt S
ey pk(s) =

"'aqk
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Proof: Because of (det J (s+g,8) )%=1 4 0 (existence of the inverse
gfl(s+£,s)) eq. {I.15) implies that

T

3s-3 -1 T -1

s'=35°5-23

53-2 s’

or

353 =5. (1.17)

Taking into secount this relationship ve obtain for the Poisson-brackets

defined in eq. (I.9)

in
(X, (5028, xplavsad) = 5 Sik')x‘(s+as) ) 3xp(s+As)
S PRI, P
In
= i{.—.-l Sik'Jéi(s+As,s)- ka(s+as,s)
. in T
= e q‘i {s+p8,8) . Sik'Jkp {s+as,8)
= S‘p
or
(pi (s+as), Py (s+45)) = 0 ;
(q; (s+bs), q (a+ss)) = 0 ; (1.18)
(pi (s+as), = (3+a8)) = Gik .
Putting

p; (swes) = p.(s) +is- pils);
95 (s+8s8) = qi(s) +4s8 " qi(S)

and using {I.9)

1.7

(p;(s), p(s)) = (9;(s), qs)) = 0 ;

(pi(s}, q.(s))

: ik

cne gets from (I.18)

o
n

(p'i(s), pk) + (pi, ME2))
(1.19a}

‘B T ) 1 -
= —yq-k-piCS) +:5-a~i~pk (s) ;

0 = (q"i(s), Q) + (qi. aels))

(1.15b)
>

35, als)

} ]
= SE; qi(s) -

0 = (pils), q) + (pyr gLls)) ( )
I.1%¢c

3 L] D ]
= 5?§: i(S) + 53; ae{s) .

Eg. (I.19a) implies that the n functions pi(s) form an irrotational vector
field in the space of the S and therefore they can be expressed in this
space as the gradient of a function £ (qk, pk) (22):

?
pels) = 53; Flae, 2 . (1.20a)

Because of eq. (I.19b) a similar expression holds for the n functions qi(s)
in the space of the P

?
q&;s) = i-;; G (qk’ pk). (I.20b)

Substituting (I.20s, b) into the remaining expressions {I.19c) we get:

L

(Fa+B) = 0
> p 0

vhich means that (F + G) is a linear function of the variables Py Gt

F G = . . .
+ a E'(?“ q. + <2, 3
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In eq. (I.20a) we can express F by G Appendix II
piI(s) = - }_ﬂ Calculation of the eigenvalues and eigenvectors of the transfer matrix
k8 b =55 € - —
k
Using the relationships 1. Eigenvalues
bk — %__,( -3b q); For the calculation of the eigenvalues of the transfer matrix
G p LIS
a =
0 :W(—Zbuqu) ﬂ—ﬂ(so*'l-!so)
u
ve can finally write with a single function ve use the fact, that besides the eigenvalue equation
X=6-Tb g ; MY o= AT (11.1)
u e
ql = EE&. . also the "inverse" equation
¥
ke 20,
ol =_P..Z.. E’I:l Tos oAty {I1.2}
K bqk

is valid {1 # 0).
vhence we have proven the canonical structure of the equations of motion.

.e.d.
9 Because of the symplectic condition

Theorems 1 and 2 show that the symplecticity of the Jacobian matrix {I.3)

T

M 5 M = §
is a necessary and sufficient condition for the canonical structure of - -
the equations of motion. In the special case of lirear equations of

the inverse matrix ﬂfl can be expressed in the form
motion this implies thecrems 1 and 2 of chapter 4.2.

vl . _E.'pf"s_ (11.3)

vhere we have used

$ = -1,
Writing
By By By
Bo= | B By Ay (12.4)

f31 b3 g
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. ; ' and
(5-1” 2 x 2 submatrices)}
— 1 R — > -— - _
% % 0 By ~5D %+ By X, + By % = 0 (I1.12a)
§ = o] 1 0 T = I1.5 — _ -
= -2 - =2 - (l ) ¢ ) Ay X+ By, - %i) ?2 + Agy ?(‘3 = 0 (I1.11b}
% & 1
- -+ - - l -+ _
Ay Xp o+ Boy Xy + (Byy - 3 1) x; = 0 (I1.11¢)
and
' Taking into account (II.B) and adding (II1.10) and (II.11) one finds the
By = ~TAT . (II.6) following equations
ve get from (11.3) - + T y: T T -
g ( (Sp Ayy =00 xp o+ (Byy + Bpyd Xy + (g +B70) % = 0 (I1.128)
i, &, & , B, % -0 % B % =
\ 41 fo3 fs1 (Agy +App) %+ (Sp Boy N X, + (Aps + A5p) X3 = 0 (I1.12b)
M = ! R A A ' (11.7)
- ~12 -Z2 32 . - -
= - 3 (Agp + Epp) %y o+ (Agy + Apg) %, + (Sp Ay =N %3 = 0 (IL.120)
213 B3 A5
where we have set
The following relationships are valid for am arbitrary 2 x Z matrix K:
- H= 2 +% . {11.13)
K+KE = 1+35K ; , (I1.8a),
With the help of eq. (II.12a, b} we can eliminate the vectors )?2 and 3:3
K+*K = KoK = 1-detk . (11.8b) and we obtain .
Putting %, = Ep %y (II.14a)
*
R _Pl . with
-
v = Xq s x; = (xil, xiz) (11.9) N
-+ -
% Fpy == ——x  (Il.1)
[s0 gy ~D)CSp Aj3- D) = det (ayy + 5]
ve get from (II.1) and (II.2)
. . ” x §0sp 3 =B (Byy + Byp) = Chyy + Byp) gy + By
Ay =2 LKy + Ay Xy + Az Xy = 0 (11.10a)
- - > and
Aoy xp o+ (Bgpmdel) X, + Ays %z = 0 (11:101)
@ -
% % E A ¥z 5 Fay x) {11.15a)
By X+ Ay Xy + (B35 - A1) %5 = 0 (II.10c)
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with Know:;ngf\k according to {II.17) we finally find for the eigenvalues }ik
1 of the revolution matrix M
Fry == flhy v Ep) + (B, +Eg) o For b (I1.150)
=31 =31 =13 =32 T =237 =214 -
(Sp Agz - A) ' LRI LA Y SN (1I.18)
Substituting {(II.14) and (I1I.15) into (II.12a) we finally find with
F@Y-% = 0 (11.168) . -
1 | . X-k = 1 .

where F(A) is defined hy

@) = (Sp Ay ~AXSp Ayy ~D(Sp Agy - ) =

_ 2. Eigenvectors
- (Sp Ayy -8 det (A, + By - . _
We want to describe two methods for caleulating the eigenvectors. We

- (sp Asn ~D\) det (.5.13 + 331) = assume that the eigenvalues are known and non-degenerate

- (Sp Ayy =D} det A, + Eyy) + Method 1:

+ Sp [(ﬁlz + Ry ) (Ayy + Byn) Ay, + 313}] . (11.16b) Still using the symplectic structure of the transfer matrix M ve get

from (Il.14a), (II.15a) and (II.10a)
Together with (II.14a) and (II.15a) equation (II.16a) implies that there

are only nenvanishing vectors 17 satisfying (II.12) if

PX =0 (11.1%8)
FM) = 0 {11.17) with
where ¥ (f\) is given by (II.léb). - 7. . -
(t g ¥ Po= (A ~AD) + APy + AsFy o ® (PL) (11,1%b)

Equation (II.17) defines the eigenvalues A\ of the matrix But from (II.29a} it follovs that

No= et )
% = (11.20)
Since (II.17) represents a cubic equation, we get three different 'Pll :
eigenvalues ‘

vhich means that we have determined ;1. Substituting (II.20) inte (II.l4a)}
and (II.15a) we can get the other components of the eigenvector Y.

bI' [\II 4 AIII ¢




Method 23

Here we make use of the Cayley-Ramilton theorem which states that an arbitrary
nxn matrix M obeys its cun characteristic equation

EaM-3, DM -3 M =-20 =0, (II.21)
For the special case that the eigenvalue spectrum is non-degenerate (which

means that the system of eigenvectors must form a complete set) eone can easily
prove this theorem by applying § to an arbitrary vector ;

expanded in terms of the eigenvectors T?,, .
Defining matrices
G, = (M=2p-Do(M e DM =), .. (-0 21 (11.22)
(v = 1,2 .00 n)

¢iffering from G by the single factor (1 - A -1) ’

6§ = G, - M=- 2D (11.23)
ve get
-~ n -
Gy = 1 ¢, G, (0-21 v,
vzl

n
o

because bl

From
-

Gy

Q for all ;

I1.7
we finally find that G must vanish iderticazlly g.e.d.
In erder to construct the eigenvectors we first show that the matrices Gy

(v =1, ... n) are alvays different from zero. This is shown by applying
Gy to an eigenvector 3; and one obtains

GV, = (M=) Deee (=2 DM -0, o De M- L) 5
SR PR VIO O M TP WIS & S W RS
SO R IR G WL NEPIS WES WIS ORI S WES W RS
} C
because
(A, -lu) # 0 for p=1, ...y-l,v+l... n,
and hence
G, 3 0 - (II.24)

From (IX.24) ve can conclude that §  has st least one nonvanishing column
-+
vector 95 °

- - -

E? = (glv ) 92\,---- gnv) H (11.25)
" 1

Iiv £0.

But such a column vector is just an eigenvector of M belonging to the
eigenvalue },, because we have

0= 8 = (M-2-1E,;

0 = (Pi-)\,-i)@lv s ees E.i.v Em) {(I11.26)

and especially

M- 2.1 9., = 0 g.e.d.

iv
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In this way ve can construct an eigenvector to each eigenvalue Ao Appendix ITI

The method described above is valid for all nxn matrices with |
non-degenerste eigenvalues. It can alse be applied to non-symplectic Introductiqn of the dispersion function into the equations of motion.
matrices. Amplitude and phase function of the decoupled synchrotron oseillation.

Starting from the general equaticns for the synchro-betatron oscillations
(3.33) and making additional assumptions we want to show that it is

possible toc derive simpler equations, which are usually used in linear
accelerator theory.

Therefore we first eliminate Ex and Ez in eq. {3.33) and ve get

32"4-[;1%'- (N + H") Z - 207" KA =0 (I1I.2a)

E"+Gz Z - (N«HDY X+ 2 -%,% =0 ; £II1.1b)

' - Kx-?f + Kz-.z" = 0 i . (111,10

[ eG 2w _

3 -6(sdg—kTcosd-F3(s-s) = 0. (III.id)
2] v

Now we irtroduce the dispersion functions D,(s) and b,(s) defined by

D' + G, D = (N4+H)D -28D' - K = 0
X Lox z X (111.2a)
- — K _ - .
by + G, O, (N-H )DX + 2RO - K, 0
D, (s +L) =D (s )3 D_ {s+) =D_ (5);:
X "o x'To’? Tz o z To’? (IT1.2b)
D;c (so+L} = D)‘((so); D} {so-o-L) = Dé (sc).

These functions describe the closed (periodic) trajectory of a particle
with energy deviation

-?f:l.
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If % is a constant in eq. (III.iz) and (III.1b), we can write the fol-
leving expressions for the amplitudes % and % of +he betatron
oscillations:

% = n-D, + X

g’ (111.3)

o= q-Dz + 25,
where % and zy are solutions of the homogeneous differential equations

xg * Gl-x(3 - (N + H'}~zB - 2H-zé = 0 ; (II1.4)

zg - 52-26 - (N - H')-XB + ZH-xé = 0.
This decompesition of the amplitude X into the terms g and "u}'-Dx and of
the z amplitude into z; and -','-Dz is also possible if %{s) is varying
slovly compared with Dx(s) and Dz(s) (which is true in most cases).

The coupled betatren oscillations of eq. (III1.2) and (III.4) without the
variable 3;' have been investigated in an earlier report (7). So we can
restrict the following consideratiens o the synchrotron oscillation
alone, described by eq. (III.le) and {III.ld).

»

(Putting (IIL.3) into {IIl.lc) we get
€ = - Kx-(D*-, + xa) - Kz'(D‘z'J + ZB).

The rapidly oscillating amplitudes Xg and Zg having , positive and
regative values, do not cause a systematic change of the phase o y S0
that we can approximately write dewn the equations for the synchrotron
oscillations in the form:

g g 0 - KXDX - KZDZ &
ds = o
5 %—\i-k--z-g-cos¢ Yi(sms,) o 5
=} v

In this equation the synchrotron oscillation is completely decoupled from
the betatron oseillation and the coefficient matrix has the form

. (III.5}

1I1.3
(4.46) with
R(s}) = 0 ; (III.6a)
Fls) = - K, D, = K, D, 3 (III.6b)
6(s) = -E—G-k-ﬁg}-cosé-zi(s-s,,) (I11.6c)
] v

so that the tramsfer matrix for eq. (III.5) fulfills the condition (4.442)
or (4.43), which means that the transfer matrix is symplectic.

For the infinitesimal transfer matrix D (s +as, s) we get with (III.5)

1 -(KxDx + KZDZ)'A 5
n, (s+as,3) = . (1117
E-E-k~2—“-ccs+ 2s-s )25 1 ’
E L v
o] v
From this we obtain the transfer matrix for a cavity (s = 5,3 Kx = Kz = 0}
) ° )

8 +0 - = 111.8
m‘( , +0; 3, =0 . . ( a
wvhere A is defined by

e \Af 2

A = E-;“ k- —L-cus+ . (I11.8B)
The transfer matrix gs(s", §') for an interval

s' £s5% s"
vithout cavities is given by

1 B (s", s")
m (s", g') = {II1.9)
¢ 0 1

with



II1.4

Ul

s
B (s", 8" = - [ de-fK (a)D, (&) wk ()0, (&)}  (1r1.9m)
S‘

If KX=K

.

2 0 fer s'"%£ g% s" vwe have

-r-n-r (S",.S') = -;.

If there is only a single cavity at the position s = 8, VE obtain from

(II1.8) and (II1.9) the transfer matrix for a complete revolution (9), (20):

L (so—0+L, so-o) = ﬂ‘(su«m—L, So+0)'ﬂ;(sc+0’ 30-0)

1-A-L-x - L=
) A 1

vhere ve have set

s +L .

L[ oefk 00, @)+ i, (50, ()]
x:-ffds-xs-xs+zs-zs

%a

{momentum compaction factor).

(1r1.100

(I11.11)

(If there are several periodically distributed cavities, eq. (III.10)

is still valid if we replace L by the periodicity length).

Using the fact that % is generally > 0 and using eq. (4.51) the stability

condition for the synchrotron cseillation reads
A>Q (stability conditicn) .
Comparing (1I1.10) with (4.47a) one finds {23):

1 .
ces ZTIQG. = I-EA-L-‘R :

1

sin2m0 = - YAx-(2 - LA
SALx
Aol = 73mzng,

(IT1.12)

(I11.13a}

(IT1.13b}

(II1.13c)

I11.5

- L2

8 (5 -0 = sw7nq, ¢

H

- A
Y% -9 = T,

Taking into account the relation

U, (s = p (s, 8)eU, (s)

(III.134)

(I11.13e)

(see eq. (4.33)) and eq's (4.50), (4.52), (4.57) and (111.13e, d, e)

wve obtain:

dg (SD +0) = - &c(so -9 ;

Belsy+0) = B.(s -0) 506, (s))
Yels, =00 = v, (s, -0) 2 : Ye(sy)
Yels, + 0 = 4y (s, ~0) = Yelsy) -

{Traversing the cavity the function &£ changes sign while the
tities B, y and y remain unchanged).

For s> s, ve find

(111.14a}

(1I1.14b)

(III.14c)

(111.14d}

cther quan-

Beg(s) = 8, (so) +28B (s,so) - (s -0) + Bz(s,sc)~):_(s°) i (I11,158)
Yelsd = Y. (s) ; (111.158)
Aels) = - (s5,-0) ~B (s, 537 .(s) ; (III.15¢)
W‘(s) S (sn) -:{ ds' . KX(ST) “ Dx;i'zST)KZ(S‘)'DZ(S‘) (III.15d)

wvith 8(s, so) from eq. (III.9b).

The differential equations for « , 8 and \ now take the form



I11.6
Kx-Dx + KZ-Dz

VI e S S . : (III.16a)
e

Be = 2{KeD +KyD )< g (I11.18b)

d" + (KX-Dx + KZ-DZ)‘XC =0 ; {s}% sd) (IIT.l6c) |

It is remarkable that the quantity r}is a constant everywhere in the
ring.

Finally we vant to mention that the funetions & and ; can be written
in the follewing form:

§ts) =9e - Yp () cos (yls) -5) | (111.17a)
7 (s) =Ye, * V¥(s) cos (y(s) -5 . (I11.17b)

(a1

(12)

(13)
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