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The properties of the dielectric tensor of a rconoclinic crystal are re-

viewed and the nature of transverse excitations i s pointed out.Keflection

equntion<; fnr norrral inridence on the (010)-clane and (001 )-Diane are presented,

by use of which füll Information on all tensor conponents rr.ay be ohtained fror,

reflection measurernents and Kramers~Kron.ig analysis. A reflection equatior. for

oblique incidence on faces (h ,0,h ) with plane of incidence (010) and trans-

verse ir.agnet ic polarization allovs the coTiparison of ref lectance sr.ectra c ~1-

culated frorr, the dielectric tensor conponents with respecti VP. expcr i-.ert^l

spectra. Simple ir.odel calculations related to exe i ton structures :r. Tr.olocuiar

crys tals and quasi onedimens ional materia1s are displaved.

* Work supported by Deuts ehe s ^ l ek t ronen- Synchrotron DE?Y and Deutsche For-
schungsgemeinschaft DFG

#* On faculty leave from Ames Laboratory-USAEC and Depar tmen t ^f Phys ics ,
Iowa State Universi ty, Ames, Iowa 50010

to be p u b l i s h e d in C h e m i c a l Phys ics



T. INTRODUCTION

The largest group of organic molecular crystals crystallizes in the mono-

clinic crystal System |j ]. Since the large oscillator strength of singlet

excitons makes absorption measurements in most cases difficult, opti cal investi-

gation of such crystals are usually performed by reflection spectroscopy. In

the last years, many reflection experiments have been done on different crystal-

lographic faces of the same crystal, e.g. J2J - i& . These spectra, however,

where not compared to each other on the basis of an unifying macroscopic di elec-

tric (or crystal-optics) theory.

On the other hand, the microscopic theory of exciton bands in molecular

crystals was faced with the probten of the convcrgence of dipole interaction

lattice sums. The longitudinal macroscopic fields were not always taken into

account properly, äs recently emphasized by Philpott and Lee l . The macrosco-

pic fields may be easily understood from the point of the dielectric theory

and are automatically included in calculations based on this theory |8|.

Tt also appeared to the authors, that in some work the difference between

the directional dispers ion of the excitons arising from the longitudinal

macroscopic fields and the spatial di spersion of exciton bands was not pointed

out in a clear way. For these reasons i t seems worthwhile t o cornpi le all the

Information on the dielectric properties and theory of monoclinic crystals,

though everything except the formulation of the reflection equations, fitted

for use by a Computer, may be taken from the literature.

The reflection equations (9), (10), (11), (12) and (24), presented in

Section IV, allow for the füll evaluaticn of all components of the dielectric

tensor. Once this tensor is known, the reflection equation (16) allows a com-

parison of calculated reflection spectra from the planes, contalning the mono-

clinic axis , with experimental data. The application of the dielectric theory

to the experimental analysis becomes simple, if the axial dispersion of the

tensor axis is negligible (Section IV) . Model calculations will be presented

and some relations to the interesting reflection spectroscopy of quasi one-

dimensional irat erials [9, l Oj will also be pointed out (Section VI).
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II. THE DIELECTRIC TENSOR IN MONOCLINIC CRYSTALS

The relation between the macroscopic electric field [l l] E_(w,k_) and the

macroscopic dielectric displacernent D (co ,k_) may be expressed by a dielectric

tensor c. . (w ,_k) , äs long äs 2r/ k] is small compared to the lattice con-
1 »J ~~

stants [12]. The dependence of ĵ  on k_, the wave vector of the fields, is re-

ferred to äs spatial dispersion.

In a monoclinic crystal, the form of this tensor is given in a car-

tesian System, where the y-axis is directed along the second order axis

in class C0 and C_. o r perpendicular t o the svmmetrv plane in class C .
2 2h r J s

Later we will fix the x- and z-axis tangential and normal to crystal f aces ,

containing the <010> axis. In class C01 one has
0 2h

/e (uj.'̂ y t, (üj.k) e (w.k)
' xx — xy — xz —

(D £. (u,k) =1 xy —

and in classes C„ and C
2 s

(2) £. (w,k) = xy

yy

/e (u),k) e (o:, k)
/ xx — xv —

yy —

yz

xz —

e (co,k)
zz —

\ (üJ,-k) e (oi,-k)
\z — yz —

with all components usually complex.

For the development of e_((jJ,k) in powers of k_ in the three classes the

reader is referred to [\2\. T-Jhen spatial dispersion is neglected, the tensor

E(ÜJ) has in all the classes of the monoclinic system the form
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/E (to)
/ XX

f T> c- l'. ̂  -I.J; JLl^,» -

exz

e (u) 0yy

C (tu) 0 £ (to)
XZ ZZ /

In general, it will not be possible to bring this tensor into diagonal form, äs

the real part of JL would becorae diagonal for a different cartesian System of

axis x,z than the imaginary part of JL. The directions of the dielectric tensor

axes perpendicular to y for both, the real and imaginary part, will in gene-

ral depend on u>, a result known äs axial dispersion.

In its general form, 4X01) contains eight unknown functions of to. These

are the four real and the four imaginary parts of e , e , e and £ . When
0 J v xx xz yy zz

axial dispersion is neglected in a first order approximation, and the di-

rection of the dielectric axes x and z are known, the six unknown functions

e , e and & may be obtained from three suitable reflection spectra by
xx yy z z

Kramers-Kronig analys is, äs i s done in the following paper for anthrance [8__ .

More insight into a tensor of the form (3) can be obtained from a model

where the polarizability tensors of several oscillators, polarized parallel

to y and in different directions inthe xz-plane sum up to the dielectric

tensor [l 3] .

III. PURE TRANSVERSE EXC1TATIONS

If one extends the well known concepts of transverse and longitudinal plane

waves in isotropic media to inhomogeneous plane waves in anisotropic media, a

transverse wave, sometimes called solenoidal, is characterized by

div E_ = 0, E_ = E , a longitudinal wave, sometiraes called irrotational, by

curl E! = 0, E_ = _E . The wave equation for waves propagating with wave vector
A

_k and transverse electric field _E (E_ -k_=0)and longitudinal electric

field E_ (E_ =Epk_) with _k = Wjk_| is

2 9
(t \ f-c _L r \ î-( LI l —»i- P(h + h l = : L r H\~* J ^77 -t^VJ-'.1_TL'„ ) K. n^_
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For pure transverse excitations one has

'2 2 .(4a)
" k

This means, in pure transverse excitations E_ is an eigenvector of e_, and k

is perpendicular to E.

For monoclinic crystals, one eigenvector of £ points in y-direction, the asso-

ciated k_ vector has no component parallel to yt but may have any direction

perpendicular to y. The wave is a homogeneous plane wave, it is linearly po-
2 2 2

larized and has the dispersion to /c e = k . These transverse waves may

be excited by light striking on a crystal surface, containing the y axis

(e.g. (001)), with plane of incidence (010) and the electric vector parallel

to y (TE-polarization).

For the two eigenvectors perpendicular to y, the behaviour is more complica-

ted. Because the tensor cannot in general be brought to diagonal form for

both real and imaginary part, äs mentioned in Section II, the eigenvectors

Ê  have a real and imaginary part, which will differ in direction. The k_

vector perpendicular to 12 will therefore also have different directions for

the real and imaginary part, except when k_ is parallel to y.

Therefore, in general, one arrives at nonhomogeneous elliptically pola-

rized plane waves. For k//y one has two homogeneous elliptically polarized

plane waves with k vectors given by (5) and (6)

(5) k,-(OtklfO), k. - . - (e +e + (C -e
C v 2 \ ZZ XX ZZ

(6) k =(0,k„,0),
2 + e -(c -e

xx zz xx zz

2 y/2
xz )

~7T~, T~\2
xz

and electric fields given by (7) and (8) respectively

(7) E. = E

(8) F = F
-2 L

(e -e
XX ZZ

(2(e -e )
XX Z Z

(2e , 0, exz

(2(e -e )
ZZ XX

-t- /(e -c
XX Z Z

2+2(e -e
XX Z Z

- e
Z Z XX

- - 2«zz

)~ + 4e ",0,2e )xz' ' xz
, y — ^i 2' 2 \ v (e -e ) +4e +8e ) )

XX ZZ XZ XZ '

/(e - e ) + 4e )
XX ZZ XZ

/ 2 2 ')/ / \- / *-/(e -e ) + 4e +
XX XX ZZ XZ

1/2

2 x l / 2
xz /



If in an experiment one wants to excite pure transverse waves, where

e i s not involved . these two waves are the only possible one s. because their
yy
direction of propagation is fixed parallel to the y direction and does not chan-

ge with frequency. In order to excite these pure transverse excitations light

has to strike normal on the (010) face of the crystal [5J , with any polarization

direction. In general, both of the elliptically polarized "eigenwaves" will be

excited. Only the intensity ratio of these two waves will vary with the pola-

rization of the incident light beam.

IV. REFLECTIVITY

To the knowledge of the authors, the reflectivity from absorbing aniso-

tropic crystals has first been calculated by Berek |j4J. As his result can-

not easily be used in a Computer pro gram, which should Start from the dielec-

tric tensor (3), we re calculated the normal incidence reflection from the (010)

plane (Section IV. l ) and the TH-ref lectivity for the plane of incidence (010)

and non normal incidence (Section IV. 2) .

*

The reflectivity from the (010) -plane (equivalent t o the xz plane) for

normal incidence i s given in terms of a reflectivity tensor r_ , which connects
inr ine ine

the transverse electric field E = (E ,O.E ) of the incident wave with
— x z ref ref ref

the transverse electric field of the reflected wave E = (E »O.E ).
— x z

Tn this way, we have the most general solution, which allows to calculate the

absolute reflectivity and ellipticity of the reflected light for any polariza-

tion of the incident light.

ref, E ref) = xx r*z
r r
ZX 2Z

ref ref
The problem is solved for the four unknown variables E . E and E. . E0

x x 1 2
(equations (7) and (8)) by making use of the four independent boundary condi-

tions for the tangential electric and magnetic fields in the x and z direction.
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The final result is

(10)

(11)

xx

zz

(12) r -r =
W(A+B+C+1)

with abbreviations

l

(e -e )(B-A) - W(C-l)
XX Z Z

W(A+B+C+1)

(e -e )(B-A) - W(O1)
Z Z XX

W(A+B+C+1)

2 e (B-A)xz

v (e + e + W)
XX Z Z

^ (e -»- e - W)
XX Z Z

12

12

1/2
c

••

(e e - e )
xx z z xz

XX ZZ XZ

For the case that JL may be diagonalized and the x and z axis are chosen

parallel to the axes of the diagonalized tensor, (10), (11) and (12) reduce

t o

(13)

(14)

xx
"xx 1/2

XX

l-
zz

1+ e
ZZ

(15) r =r = 0
xz zx

IV. 2 TH-ref lectivit^_at_non_normal iB£^-§§HE£_Hi^'1 12121

incidence

The calculation for the TH-ref lectivity for (010) äs plane of incidence and

non normal incidence is straightforward. It proceeds along the lines of the

derivation for an uniaxial crystal and the reflection at a plane normal to the

optical axis, the socalled basal plane, äs given by Mosteller and Wooten [15],



With 6 äs the angle of incidence, the result is

2 1 / 2 2 1 / 2
cos9-(e -sin 9) /(e e -e )

zz xx zz xz
7 1 / 7 9 1 / 2

cos9+(e -sin 9) ' /(e e -e ) '
ZZ XX ZZ XZ

Note, that the cartesian System x,y,z is fixed to the orientation of the sur-

face, which is the xy plane. If reflectivities from a different face parallel

to y are to be calculated, the tensor e(0) (3) has to be transformed like

(17) £(<(,) = s(4>) e(o> s'1 ($)

with r • \* 0 -SITKP \

(18) S(<|>) = i 0 l 0

0 cos
J

$ is the angle of rotation of the plane, with respect to which e(0) is de-

fined, into the new plane, for which R is to be calculated. <f> is taken äs po-

sitive for a right h and rotation around the y-axis.

For normal incidence and K ftx , x being the unit vector in x direction,
— o o

(16) becomes

l - x e x
(19) R = ~° = -°

-l
+ x e x
—o = —o

For normal incidence on the (001)-%plane (^b-plane) of a monoclinic crystal
— r -and E_|| \ ̂ equation (19) has already been published in |_16j.

Although the tensor e is not Symmetrie with respect to a reflection at

z-plane. e changes its sign, R(9) is symmet"
xz

(16), which yields the same result for +9 and -9.

the yz-plane. e changes its sign, R(9) is Symmetrie, äs may be seen from
xz

Let us now assume, that e is diagonalized in an axis System, which is ro-

tated with respect to the xyz-system by an angle - aaround the y-axis, where

it has the form

1
0

0 e b
0
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We then have via transformation (17) for the components of e(0)

(21) e
2 . 2

= e. cos a + e, . sin a
xx -L

e e,yy b
2 2

e = e. sin a + e. . cos et
zz l

xz
1/2 sin2a

Using «quation (21), equation (16) yields

RTH(0.0)(e) *

2 1/2 -1/2
cos6-(e -sin 9) ' (e.-e. )

zz II _L
. .̂

cos6+(e -sin 9)
z z

,l.

This is physically the same äs the TH-reflection frotn an uniaxial crystal with

the optical axis (extraordinary tensor component e.,) at an angle -ot from the nor-

mal of the reflecting plane, and the plane of incidence containing the optical

axis. Therefore, for a=0 (22) yields

(23> Vbasal Plane(9) =

cos9-(e.-sin 9)
-1/2

2 1/2
cos9+ (e..-sin 9)

- 1 /2

Equation (23) for the TH-reflection from the basal plane of an uniaxial crystal

appears also in [l5J, [l7]-[l9J and [28]. Bulaevskii and Kukharenko [l9] have

also presented an equation valid for the geometry of equation (22). The re-

flection is however given in a more complicated way, from which it is not ob-

vious that R(6) = R (-6).

It should be noted, äs follows from (22), that normal incidence reflection

spectra measured from a plane with angle -af between the normal and the di-

electric axis are not equivalent to reflection spectra from a plane with angle

-et1' and an angle of incidence 9 = (a'-ot'1), positive for right handed rotation

around y. This is the reason why, for instance, the oblique incidence TH-po-

larized spectra from the (001) plane of anthracene with plane of incidence (010)

cannot be compared directly with normal incidence spectra of artificially cut

planes of anthracene cut parallel to the <010>axis and with E_ 1<010> äs mea-

sured by Hymowitz and Clark [_20}.



The e component of the dielectric tensor mav be obtained from a normal
77 2

incidence reflection ]r spectrum from faces (h,,0.h0) and E II y.
yy —

l(241 r = -
( }

,
l

yy
If , in a reflection Experiment a t near normal incidence , one wants t o

avoid longitudinal excitations it is better to use TE- than TH-ref lection [5] ,

äs the longitudinal field E„ will in general be smaller for TE-polarization,
— A,

especially, if the electric vector of the incident radiation lies roughly in

the direction of a dielectric tensor axis. In this approximation, we assume

that the dielectric tensor can be diagonalized. For any other mode of excita-

tion of the crystal longitudinal fields E_ are involved L5] .

V. Kramers-Kronig relations and sum rules

The evaluation of the dielectric constants E , e and e , when equa-
xx yy z z

tions (13), (14) and (24) are applicable, is a well known procedure.

In principle füll Information on e , c and e should be obtainable
XX 22 XZ

from equations (10), (11) and (12). When only absolute intensities of the
i 1 2 i 1 2 2 i 2

reflectance |r ; » ]r ] = r > r are measured (note, that this may
xx • xz zx zz

be done in any x - z coordinate System perpendicular to y), the phases of r
xx'

r and r must be evaluated from ,r , !r and r by a Kramers-Kronig
XZ ZZ XX ' XZ zz
analysis. This is possible, since r . r and r describe linear and causal

xx xz z z
relationships between incident and reflected fields.

The problem of additional pole contributions in the Kramers-Kronig ana-

lysis, äs it is weT l known for TH-polarized light at oblique incidence (e.g.

L21j, _22j) and the accuracy of the method needs further theoretical consider-

ation.

The Kramers-Kronig relations for an anisotropic material are applicable for

every component of the |(w,k) tensor separately J 2J , [23]. Ey use of the sum

rules [23̂  (25) or, neglecting spatial dispersion (26), an n ff . (w) may be

defined by equation (27).

(25) l j Im e..(u/,k) + Im c. . (o/, -k) cudw = ^̂
J L ^ J ~ !-J — J T
o



(26)
2

Im £ . . ( t i ) ) todoj = •=- 10 ' 6 . .
J 1J P ij
)

ATT Nne
with u " = » where N is the density of molecules, n the number

p m
of electrons per molecule and e and m charge and mass of the free electron

respectively:

(27) neff(i(") - Im e. . (u) w dto

n f f . (co) may be roughly interpreted äs the number of electrons of one mole-

cule, which can be transferred to higher energy states up to a frequency to for

the electric vector in the direction i.

For molecular crystals formed by hydrocarbons, where one has a signifi-

cant energy Separation between the Hls, C2s and C 2p electrons on the one hand

and the Cls core electrons on the other hand n . (to) should saturate betweener f ,1
about "hw = 50 to 100 eV at the number of Hls, C2s and C 2p electrons, indepen-

dent of the direction i.

VI. REFLECTIVITIES FOR A SIMPLE DIELECTRIC MODEL

In order to illustrate the results obtained above, in particular equa-

tion (22) for the reflectivity, numerical calculations were performed. For the

sake of simplicity a simple dielectric model was used:

= A

(28)

, x]- (—)
wo tu

o

e = constant

with the following expression for £ in equation (22)
.2 2 zz

e - e . sin a + en cos a,
zz ±

and A » 1. B • 2, Y - 0.1 and to = 4.55 eV,
-iut°

The time dependence is taken to be e

Figure l shows the spectra for real and imaginary part of e äs given by these

equations.



We have chosen this particular model for various reasons. First, it is

very simple and one might therefore hope to get a better insight in the complex

reflectance behaviour of monoclinic crystals. Secondly the parameters are

such that the model roughly represents the dielectric behaviour äs obser-

ved experimentally for anthrance single crystals (see Fig. 4 o£ the following

paper [8]). Anthrance seems to be a repräsentative case since the electronic

spectra of a number of organic molecules are dominated by one allowed

T-T transition with large oscillator strength, which in the crystal gives rise

to a strong metallic like reflectance band for one particular crystal face

and polarization.

Further in a rough approximation this model reflects the dielectric proper-

ties of quasi onedimensional solids, the optical properties of which have

received considerable attention recently p ], L'^J ' ' l 8 J.

Reflectance spectra have been calculated by use of equation (22) for

different angles a,, where a is the angle between the transition moment of the

oscillator described by (28) and the normal of the reflecting surface.The

plane of incidence of the TH-polarized light contains these two directions

äs shown in the inserfe of Fig. 2. In Fig. 2 the results for various angles a

are displayed for normal incidence (0 = 0) keeping e.= 2 + i.

When the transition moment of the oscillator is parallel to the surface

(a = 90 ) one ohtains the well known reflectance band between the transverse

(u ) and longitudinal frequency (LO ) of the oscillator. When it is perpen-

dicular to the surface (a = 0), the oscillator cannot be excited with light

at normal incidence.

The shift of the reflectance band due to the change of a is clearly de-

monstrated in Fig. 2. Note that in our model the Ic dependence of e is comple-

tely neglected. The change of the reflectance band is entirely due to the

anisotropy of the dielectric tensor. It is merely caused by the longitudinal

fields äs discussed in connection with equation (4). We refer to this effect

äs directional dispersion and do not want to call it spatial dispersion, äs for

instance done in Ref. [22].
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The directional dispersion is equivalent to the nonanalytic behaviour of

the exciton bands in the case X -*- 0 at the T point of the Brillouin zone äs

pointed out in [s] and calculated in the microscopic theory [7]( [24], [25].

Including the dependence of e not only on to but also on k_ (spatial dispersion)

is equivalent to have the exciton frequency depend not only on the direction

but also on the magnitude of k. In this way exciton band structure calcula-

tions are related to the dielectric tensor model e(üj,k). Such band structure

calculations have been performed for instance for anthrance in Ref. [26], and

[27] .

In Fig. 3 we have displayed the results of our model calculations for

ct= 90 , 60 , 30 and 0 for various angles of incidence 0. In addition to the

directional dispersion discussed in connection with Fig. 2 (0 = 0 spectra) one

observes shifts and intensity variations in the reflectance bands for a given

a when the angle of incidence 0 is changed. From one set of reflectance bands

with fixed a it is not easy to deduce the pure directional dispersion. This is

because at non normal incidence the directions of the real- and imaginary part

of the k_ vector are different and may not easily be compared to the direction

of k_ in normal incidence measurements from a set of different reflecting fa-

ces (Fig. 2), where k is always normal to the surface.

One might suspect that for a given a^ 0 spectra at angles +0 and -0

should be different (e.g. Ref. [22"] , p. 273), since the directional dispersion

of excitons in monoclinic crystals is not Symmetrie with respect to reflection

on the yz-plane. It is clear from equation (22) and the above discussion that

this is not the case, rather the reflectance is independent from the sign of

t). This again demonstrates the difficulties of probing directional dispersion

of exciton bands in monoclinic crystals in oblique angle of incidence experi-

ments.

The spectra in Fig. 3 with a = 0 represent the case where the oscillator

is oriented perpendicular to the reflecting surface. The dependence of the

reflectance on the angle of incidence 0 shows close similarities to the expe-

rimentally observed reflectance at non normal incidence with TH-polarized light

from quasi onedimensional single crystals of K2 [Pt(CN),J Br_ „ x 3 H_0 by

Brüesch [iß] for those crystal faces where the platinum chains are perpendi-

cular to the reflecting surface. The model calculations of Brüesch starting



from anequatlon equivalent to equation (23) describe bis experimental results

very well.

The possibility to apply a macroscopic dielectric or crystal optics theo-

ry to materials äs different äs molecular crystals '8j and quasi onedimen-

sional solids shows the usefulness of this approacb.
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Figure Captions

Fig. l Real part (solid line, left scale) and imaginary part (dashed line,

right scale) of the dielectric function e.. (equation (28)) used for

the calculation of the reflectance.

Fig. 2 Normal incidence reflectance for various orientations a of the

model oscillator (Fig. 1) and e. = 2+i with respect to the re-

flecting surface calculated with equation (22).

Fig. 3 Reflectance spectra calculated according to equation (22) for the

same orientations of the model oscillator äs in Fig. 2. Additio-

nally the angle of incidence 6 of the TH-polarized light was

varied.
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