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Abstract

Photoelectron energy d i s t r ibu t ion curves from solid acetylene were neasured

for excitation energies up to 30 eV using Synchrotron radiation. The partial

cross sections arc discussed in comparison to theory and other e x p e r i m o n t s .

The Itc valence band crcss section shows a pronnunced auCo ion i sa t i on resonanee
u

v/ i th a shoulder and a peak 2.5 and 5.0 eV abovc thc vacMium level which origi-

nates from thc resonant decay of the 2(T -* lIT valence exc i ta t ion ( d i s c r c t c

shape resonance).

W o r k supported in par t by B u n d e s t n i n i s t e r i u m für Forschung und Technologie

(BMFT) from Funds for Research wi th Synchrotron Radia t ion

now at : Max-Planck-Inst i tut für Fes tkö rpe r fo r schung , Heisenbergstr . l ,

D-7000 S tu t tga r t 80, Germany.
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l . In t roduc t ic in

Studies of molecular photoemission cross sect ions over extcnded cncrgy regions

have enhanced nur und erstand ing of f i n a l s t a te e f f e c t s generally and have

n t imula tcd a f r u i t f u l and intense cotnpetition between theory and experiment

in e lucidat ing the dynaraics of the phoCoionisa t ion proccss [l]. In th i s

general area, photoemission f rom acp ty l ene (C H ) has been the subject of

a number of recent s t nd i e s [2-SJ. Experimental ly, for the gas phase a Sharp

minmuiü in the par t ia l cross sect ion of the llf -level h.-is heen ohsorvod

at hy ^ 14 f.\', a fnw eV above threshold and d i f f e r e n t explanations involving

( w o t ransi t iot is have been suggested for the resul t ing tuo peak s t ructure

l_3-7 |. However, in a rer.ent ca lcula t ion including electron r . n r r c l n t i o n e f fec ts

the cross section daLa and the raininmui obscrved in photoemission asyrametry

paraneter for the Iff -photoionisation have been i d e n t i f i e d äs ar is ing Irom

one sincle autoionisa t ion resonance (2T -•> I]T ) / 8 I.
u g L j

In th i s l o L t e r we describe the results of photoemission experiments f rom

solid C„H , which are part of a larger project concerned wi th f inal state

e f f e c t s and resonances in Condensed gases l 9 , I0 j . Cross section dctermi-

n a t i o n s close to threshold for s o l i d gascs are generally not hampered by

degenerate au to ion iz ing ftudberg s tates which can make such measuirements

and their interpretat ion rrtore d i f f i c u l t in the gas phase. Thus in sol id

gases higher e;;cited non Rydbt.rij s t ra tes and shape resonances are dominat ing.

Indeed for solid acetylene onr experinent shous s imi lar to the gas phase

clear evidence for a pronounced aut oioni^.at ion resonance in the photoioni-

zation cross section :if the ITT -o rb i t a l w i t h a shoulder and peak 2.5 and
u f

5.0 eV above th resho ld . Thi s <?] early Supports the viewpoint that th i f i struc-

ture o r ig inä re s f rom the resonant decay of the 2*" —> iTtr vaier.ce excitat ion.

In a simple HO pic ture we locate the empty 1IT v i r tua l MO involved in the

autoionisa t ion about 2.0 - 3.0 eV belou threshold. Fur thermore , we arrive

at a consistent descr ip t ion of this f ina l state resonance in X-ray absorp-

tion-, UPS- nnd cl ectron sca t te r ing-cxper iments by correlat ing the energies

of thc d i s c r e t e chape resonance observed in X-ray abSorpt ion l 11, 13 ,

the energy of the empty valence MO involved in thc UPS experiments and the

IX -shape resonance observed at 1.8 - 2.6 eV k i n e t i c energy in electron
E

scattering experiracnts J _ I 4 , l 5 j

submitted to Chem. Phys. Let ters
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2. Experlmental Details

We used our previously described apparatus [!OJ at the DORIS II storage

ring äs a Synchrotron radiation source with a 3 m normal incidence monochro-

mator at HASYLAB in Kamburg- Angle integrated photoelectron energy dis t r i -

bution curves (EDC's) vere measured with a double pass cylindrical mirror

analyzer (CMA) for exc i t a t ion energies ranging f rom hv - 10 eV up to 30
4 -1

eV. The count rates were r-10 s for the C.H, valence bands wi th an overall

resolut ion (monochromator and electron analyzer) of G - I - 0.2 eV, which

was found to be suff icient for an accura te determinat ion of EDC features

which have typical widths of 1 .1 - 1.6 eV ( f w h m ) .

Research grade C„H„ gas was Condensed under UHV condit ions (pressure before
-10and a f t e r condensation r -3 x 10 Torr) on a helium-cooled gold substra te .

The temperature of the Substrate was -20 K. To avoid charging problems dur ing

photoemission, the sample thickness was l imited to roughly 10 nm.

For the determination of photoemission intensities the EDC's for each excitation

energy have been normal i zed to the i n t e n s i t y of the photon f lux impinging

on the sample. Secondly a smooth s t ructure less background was subtracted

from direct etnission peaks to account for electrons originating f rom the

aged gold substrate and for scatterd electrons. Finally, the area under
each primary emission peak in the EDC' s was determined by f i t t i ng the experiraen-

tally determined four peak s tructure by gaussians. It turned out that in

all cases a fit wi th one gaussians for each peak was s u f f i c i e n t (see Fig. l).

As we discussed elsewhere in detail [ lOj , the largest uncertaini ty in the

cross section determinat ion rests in the unknown transraission func t ion of

the electron analyzer at low k ine t ic energies (<_ 4 e V ) . It. contributes most

of the total errors in the relative cross sections which we es t imate may

be äs high äs 30 %.

3. Resul t s and Discussion

Acetylene is a small linear unsaturated hydrocarbon (point group D . ) ,

isoelectronic with H,. Compared to the l a t t e r , however, two additional un-

occupied M O ' s are present which are derived from the two hydrogen 1s o r b i t a l s .

The following electron configurat ion, including the lowest vir tual M O ' s

results:

occupied valence HO's empty M O ' s

The occupied s ta tes of the molecule are well understood Jj6-19] and the

photoelectron spectrum is e a s i l y interpreted. In Fig. l a comparison is

shown of an EDC ohtained for solid C „ M with the gas phase photoelectron

spectrum. All four occupied valence levels are visible and a clear one-to-one

correspondence to the gas phase photoelectron spectrum emerges which is

typical for monomolecular van der Uaals solids \_9,lOj. Thus it is easy to

assign the peaks for solid C H to the photoemission from the valence bands

forned by the Ht , 3? . 2 P" and 2f" HO's of the molecule respect ively. The
u ' g1 u g

27.5 eV conf igura t ion interact ion sa te l l i t e which is clearly visible in

XPS spcctra j I8,20j has a vanishing in tens i ty for photon energies belou

h-; < 50 eV. The binding energies and widths of the valence bands together

wi th the assignments are cö l lec ted in t.ible l where also the gas-phase results

L16-19J are given for comparison. The resu l t ing gas-to-solid sh i f t s are

0.6 cV for the vert ical ionization poten t ia l s and 1.7 eV to 2.3 eV for

the adiabat ic Ionisation potent ia ls . These re laxa t ion s h i f t s are mainly

due t o screening of the hole in the solid MO I . We note in pass ing that

these values, repräsentative for bulk ace ty lene , are by about 0.9 eV lower

than those reported for ar.etylene on Ni-oetal sur faces l 2 ij . Probably in

the lat ter case the f i lm thickness was sti l l fa i r ly low and stronger screening

via metal electrons may have been ac t i vc .

Here we are p a r t i c u l a r l y interested in the h-J-dependence of the par t ia l

photoionisation cross sections for the valence bands. In Fig. 2 a family

of EDC' s is shown measured at d i f f e r e n t photon energies . In this plot peaks

originating from the same initial s ta te , i .e. having the same binding energy,

move to higher I t inc t ic energies when the photon energy is increased. From

these spectra the relative pa r t i a l cross sections were determined by f i t t i n g

each peak with a gaussian a f te r suitable background subtract ion. The resul t

of this analys is is shown in Fig. 3 and may be d i rec t ly compared to gas

phase partial cross sections for ace ty lene f2-5,8_[. For each orb i ta l we

observe marked changes of the pho to ion i sa t ion cross section with photon

cncreies. In the followina we discuss these cross sections in more d e t a i l .

Ilt - Orbi ta l . For gaseous acetylene the cross section of the l ^ t - o r b i t a l^ - B u
, the largest and derivcs most of its in tens i t

channel , It shows a double peak s t ructure in the

is, similar to the K -case, the largest and derivcs most of its in tens i ty

f rom the atomic 1t ->

10-20 eV ränge with a sharp minimum at around 14 eV. Our solid state cross



section shows a vety similar behavionr w i t h a strong pealt a t h^1 = 16 eV

and a dip around 14 eV, while ehe f i r s t mar.imum is broadened and on ly visible

äs a shoulder at h\ = 13.5 eV,

This s t ruc ture in the Itr -cross sect ion has been a t t r ibu ted to at least

one autoioniz ing valence state, naiaely 2& —> l ü~ | _3 ,4 ,22] , but add i t iona l

au t o Ionisa t ion processes have been proposed inc lud ing ehe 36" —^ 3t"" £ 22 J

and 2 ET -"i 46" M.M valence t r ans i t i ons , shape resonances ] 5 l and the 3(T
u S L J "- J g

—)3pC Rydberg t ransi t ion | 6_|. Ilowever, according tu the c a l c u l a t i o n by

Machado et al. j _ 4 J, the two proposert valence t r a n s i t i o n s are too fa r o f f

in energy so that bcsides the 2G -i ITT valence t rans i t ion only ehe proposed

Kydbetgy t rans i t ion remains äs n plausible second candidate for the autoioni-

zat ion. The s in t i l a r i ty of the cross sections for gas and solid mak.es i(

h i g h l y unlikely that a Rydberg s t a t e , which is expected to he heavi ly quenched

in ehe s o l i d , is responsible for the au to ion iza t ion . Thus we conc lude , that

only one, nanely the 2G -*1 JT valenrc t ransi t ion (di screte shape resonance)

causes the a t ruc tu re in ehe ITT -cross sect ion. This is in complete agreement

wi th the recent ca lcu la t ion by Levine and Soveti f ä j , where the authors f i n d ,

thac a single Fano-autoionization prof i l e is s u f f i c i e n t Co explain the I j -

cross section. Moreovcr, the calculation shows, that nsc i l l a to r s t rength

of ehe discrete 1IT -~> llü vale.nce t rans i t ion is sh i feed to tlnc concinuous
u g

part of the spectrum and con t r ihu tes Co the ob.scrved resonance -

This last poine Ißads us to b r i e f l y cnmraent on the occurance of shape reso-

nances in C„H,. Froia a naive point of vicu four resonances rorresponding

to the. empty llt , 4(J , 3ft" and 4(?" MO' s coiild hp expected. Onlv the llt -shape
g g u u * - g

resonance is well charactetized both in X-ray absorpt ion (_ l l -13J where it

occurs 5.4 -f 0.2 eV below thresbold, and in electron sr.ittering [ l4,!5J.

As discussed ahove ehe sarae MO forms ;i discrete shape resonance ( --ff*

valence t ransi t ion} about 2.0 - 3.0 eV bclow threshold when the 2tT~ orbi ta lu
is exc i t ed .

According to dipole selection rules both ehe llt and 4J" shape resonances

can be reached fron the If -orbi tal , bu t , up to now, these e rans i t ions have

not jet been ident i f ied unequivocal l y in ehe äcetylene VUV-absorpt ion spectrur

( e . g . [23]) . The calculation by Hachadn et al. i 4 ] does not include the

ÜL —> llt t ransi t ion while the ITT -> 4 '•" L r ans i t i on is assigned to the so
U J> « S

cal led D-band at 9 .2 eV which in turn has been assi^ned by Äsbrink et al.

|23l on the basis of eheir HAM calculacion to the ITC -> [TL t r ans i t ion .
L J u g

Thus , at present the absorption Spect rum is poor ly imderstood and does not

yield fu r the r i n s i g h t in the ass ignment .

3 ^ - O r b i t a l . In the 3C cross seccion the 3!~ and 46* shape resonances raight—g — g u u '
be expected. OUT data (Fig. 3) show large values close t a th rcshold and

a smooth decrease to higher photon ener^ies wi thout any s i g n i f i c a n t s t ruc tu r

Th is be.haviour i s in general agreement w i t h the gas phase resu l t s j_ 3 J and

the c a l c u l a l i o n by Hachado et a l .^Jwti ich iuen t i f i e s the high i n t e n s i t y

close to L h r e s h n l d wi th the 3- -shape resonance. We note, however, that
u r

the 3';i and 26' cross sec t ion s coulil not be determined c lose t o threshold
B u

(no dat;i points in Fig. 3) because of the back^round 01 scat tered e lec t rons .

In the expe r imen t no i n d i c a t i o n of the addi t ional 4<T -shape resonance is

found.

25" - O r b i t a l . Our data shou a sraooth decreasin" cross scc t ion in aereenienC_.u ^

^.'ith the gas phase |_3j- From the 2<7 -orbital the IT ~ and 4C"- shape reso-

n^nces can be reached. The aiHoi o T i i z a t ion of the forner and its inf luence

on the IJf rross section has already been discussed above. According to

the ca lcu la t ions bv Machado et al . ) 4 l 2<7 —> 4 b~ forms a discrete t r a n s i t i o n
L -> u g

at h\ = 1 7 . 7 eV which has not been i d e n t i f i e d experimental ly. It is expected

to contr ibute to the d iscre te spect rum close to threshold.

In Fig. 4 we have plot ted the energies of shape resonances äs observed in

X-ray absorpt ion [_M-]3_ | , gas- and solid-phase photoemission and electron

K c a t t e r i n g l 14, 1 5 l . For the photoeinissinn the occupied valence M O ' s and

the derived valence bands respectively are a lso shown, together with the

resonant. autoionizat ion process involving the 20' —> llT t r a n s i t i o n .

For the lii shape resonance a e lear regulär energy shif t i s observed going

fron: X-ray absorption where the restinance is 5.4 j _ 0 . 2 eV below threshold

to electron scat ter ing uhere it occurs r-2.Q eV above threshold. T h i s increase

r c f l e c t s the increasing Coulombic repu ls ion of the e lec t ron. Sini lar trends

for the shape resonances have been observed and discussed for H and CO

9 , I O J . F ig . 4 exp l a in s v/hat is meant by the tero discrete shape resonance |24| .

where the t rans i t ion reaches an o rb i ta l , that lies below the corresponding

threshold for photoemission. In th is respect llf fo rms a d iscre te shape

resonance in x-ray absorp t ion . In photoemission f rom the valence shell it

becomes only detectable via the autoionizat ion process.



Furthermore, inspection of Fig. ^ suggests, that the hi thet to unassigned

ITT —5 ITT (H*lL*) valence t rans i t ion (discre te shape resonance) can be expec-
u S

ted about 2 - 3 eV below threshold. A plausible candidate for this t rans i t ion

would be the D-band at h\ « 9.2 eV £23j. This assignment is supported by

the absotption spectruct of the solid and the mat r ix isolated species, which

both show a braod absorption band in Chis region. The higher lying resonances

are not well characterized for acetylene and the assignraent in Fig. 4 for

the 3G~ and the ^<r resonances is en t i r e ly based 011 a co~Darison wiih t h e o r y / 4 ) .u g - J L J

In summary we have determined the partial cross sections for photocmission

out of the valence Orbi ta ls of solid acetylene. The lii ctoss sect ion shows
u

a broad and strong auto ioniz ing resonance uhich is due to the 2C~ —11JTT

discrete shape resonance/valence transition. This behaviour is similar tn

the gas phase. Our resul ts raake it very probahly, that ooly one valence

t rans i t ian is responsible for the observed s t ruc ture , because non-valence

t ransi t ions arc expected to be only weak in the solid phase.

The energy of the ITT vir tual orbi ta l shows a regulär s h i f t in going f rom

x-ray absorption via valence band photoemission to electron sca t te r ing .
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g

Solid

( this wotkl
IP FWHM

vert

[eV] [eV]

1 1 . 0 4 1 . 1 6

16.24 1.32

17.99 1.61

22.83 1 . 1 4

1Pad

/eV]

9.7

1 4 . 7

16. 1

2 1 .5

Gas

R e f . [16, 19l

IP * IP /vert ad

[eV] JeV]

1 1 . 4 9 1 1 - 4 0

16.7 16.36

18.7 18.38

23.5

Sh i f t

IP TP .
vert ad

[eV] [eV]

0.45 1 .7

0 .5 1 .7

0 .7 2 .3

0.7

Table Vertical (IP ) and adiabatic (IP .) ionisation potentials ,
vert ad

fü l l width half maximum (FWHM) and energy s h i f t hetween gas and

solid acetylene. For the solid phase the adiabat ic ionisation

potential has been determined according to the forraula

IP ^ = IP H - ( 1 - 2 K FWHM)
ad vert
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Figure Captions

Fig. l Comparison of the gas phase photoelectron spectrum (f rom R e f .

J J7 , !8J , lipper panel) with a photoelectron energy d is t r ibu t ion

curve for solid acetylene (this uork, louer panel). The deconvolu-

tion of the ET1C for solid acetylene into four bands is also

shown. Crosses mark the measured EDC whlle the solid liiie gives

the sum of the individual bands.

Fig . 2 Photoelectron energy dis t r ibut ion curves for polycrysta l l ine

solid C.H for excitation energies ranging between 10 and 30

(38) eV. In this plot the saute initial s ta tes follow inclined

lines. The four valence bands are denoted by the one-electron

MO-notation.

Fig. 3 Relat ive partial Ionisation cross sections for the lir -derived,

3ö" -derived and 2<T derived valence bands of solid acetylene.
6 u

The arrows mark the onset for photoemission frora these bands.

Fig. 4 Schema t ic energy schetne for the electronic st ruc.ture of acetylene .

In the l e f t column sbape resonances observed in X-ray absorption

are shown [ 4 , l l -13 j. In the middle part the electronic band

structure of gaseous and solid acetylene äs derived from photo-

emisaion experiments is de.picted. In the r ight part results

from electron scattering on gas phase acetylene j J4 ,15Ja r e

shown. In this picture energies are refered to the vacuum level

(E = 0 ) and negative energies denote d i sc re te shape re-vac t f.
sonances below threshold or in i t ia l energies of occupied valence

bands. The resonant autoionisation involving the 2G~ —^ 1T" tran-
u g

sitioti is also indicated.
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