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Preface

These lecture notes give an alwmost self-contained exposition of relati-
vistic quantum field theory from a relatively modern but still pragmatic
standpoint. They lead frow the principles of canonical quantization

over some stages to the renormalization of quantum electrodynamics and
of neutral vector meson theory. However, many topics of practical
interest are owitted, e.g. discrete symmwetry operations, calculation

of cross sections, and in particular discussion and computation of
Feynman integrals. The reader will find the material of these lectures
more easily cowmprehensible if he has sowe pre-~knowledge of QFT such as
transmitted in introductory courses. He is referred to the standard

textbooks, e.g. those given on page 182,
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1. Canonical Formalism

In this lecture we derive the canonical commutation relations from their analogy

to Poisson brackets. Hereby we shall find that the elementary rule

[q, o= L1_ = ik | (1.1)
+
does not always hold. However, in any case the Peierls—- and the closely related
Schwinger principle, which we shall explain, allow to circumvent the complexities

of the elementary quantization approach.

1.1 Commutation Relations

~ We shall only consider Lagrangians which are linear in time-derivatives and have

the simple form (cf. e.g. [1])

L{4, q, t) = q G g - H(g, t) (1.2)

where all variables are combined into a real N-component variable g, G 1is a
constant real N x N matrix, and H is a real function of q and t . (For the
time being we consider (1.2) classically.} We call the Lagrangian in (1.2) a
first order Lagrangian and speak of a first order formulation in contrast to a
second (or higher ) order one where Lagrangians quadratic (or higher non-linear)

in time-derivatives are used. The reasons for the above choice are

1. theories with second order Lagrangians can be formulated in terms of such
first order Lagrangians and

2. this form appears in quantum field theory (QFT), e.g. for the Dirac field,
and the usual Bose field Lagrangians can be brought into this form

(cf. Lecture 3).

With the help of the antisymmetric, imaginary and hence Hermitean matrix
: T
A=~ 1(G - G) - (1.3)

the Lagrangian (1.2) can be written in a more symmetric and manifestly Hermitean

form

L=3(qAdq-4Aq) - H(g t) (1.4)

e

where only a time derivative part has been omitted which, however, does not affect
the equations of motion. From the variational principle we obtain the Lagrange

equations



iAqg- Hq(q,t) =0 15
where
oH
H = — v
q dq

(We are suppressing indices everywhere.)

In the following we try to solve the Lagrange equations in various cases.

T A T e m T A T Em m e e e wm em wm am e

Assume first that A 1is non-singular. Then

iq=A H_ . (1.6)

Since from (1.3) N 1in this case must be even, i.e. N = 2n, A can be written

as

Copl o _
A=-iU|_ 41U (1.7)

with U a real non-singular matrix. Each block in [_? é] is an n X n matrix.

Exercise:

Prove this from more familiar matrix theorems (cf. e.g. [2]).

" ;
Denoting the column vector Uq by [Q} where P and Q are both n—component

column vectors, (l1.4) becomes

L = 2(BQ - QB) - H(P,Q,t) - (1.8)

Exercise:

Under what conditions can this L be considered to be derived in the familiar
manner from a higher order L(Q,Q,t) ?7 (Answer: The n x n matrix HPP must be
nonsingular. More general H are allowed, if they are reducible to this case

by change of variables.)

We now define the Poisson bracket of two functions X and Y to be

_ + -1 >
(X,Y):== = 1 X Bq A Bq X s (1.9)



It has the following properties:
i. (X,Y) = - (¥,X) (anti-symmetry) (1.10)
ii. ((X,Y),2) + ((Y,2),X) + ((2,X),Y) (Jacobi identity) (1.11)
iii. invariance under canonical transformations, i.e.
an infinitesimal change q' = q + e(q,W) implies

(£,¥)' = - i X *a“q. A” ”a‘q. Y = (X,Y) up to O0(e2) (1.12)

Remark: For (1.10...12) to hold A need not be g-independent.
In terms of the above Poisson brackets (1.6) becomes
4 = (q,H) .

The listed properties allow, as discussed e.g. in Dirac's book, [4] to elevate

these Poisson brackets to the status of quantum~mechanical commutators

&,V > - [x,¥] . (1.13)

(Throughout these lectures we will always use the Heisenberg representation. The
commutator [X,Y] 1is an equal-time commutator (ETC) of Heisenberg operators.)

In particular we have

[q,q] =4 A™" . (1.14)

Exercise:

0¢g
00
square matrices. Calculate A and A and show thatthis quantization is

Choose G inm (1.2) in the form 1 , g mnonsingular, and all submatrices
identical with the elementary rule (l.1) which here applies only when L 1is

in this particular form at least after relabelling of variables.

Remark: Contrary to superficial appearence, there is no isomorphism between the
CM Poisson brackets and the QM commutators whenever these are considered between
polynomials of order higher than two (otherwise QM would not differ essentially
from CM ). However, in special cases this correspondence may hold beyond. An

important example hereto are the structure relations of generators of groups



under which the variables transform linearly. This case will be discussed in

connection with field theory in Lecture 3.

1.1.2 Solvable Constraints

In QFT N is countably infinite. However this makes no difference at this formal
level. A 1is, however, in QFT almost always singular. This means that for some
g-components (or more generally, for certain linear combinations of them) there

are no equations of motion. In such cases A can be written in the form

T 010
A=-11T -1 00{ U (1.15)
00O
P
where again U is a real nonsingular matrix (cf. e.g. [3]). With Uq =: |Q| we

call the R-variables 'dependent" ones. The Lagrangian (1.2) then takes

the form

L = P) - H(P,Q,R,t) . (1.16)

The quations of motion are

Q

- HP , {1.19)
P =- HQ > (1.18)
and
HR =0 (1.19)

are the constraint equations, or to be more specific, primary constraints.

Suppose Hpp to be non-singular. Then we can immediately solve the primary

constraints (1.19) in the form
R = R(P,Q,t) (1.20)

and inserting it in (1.16) leads due to (1.19) again to the correct equations

of motion. The commutators become, therefore,

[Q,Q]

[P,P] = .0 s
(1.21)

[Q,P] i1 .



Commutators involving R are to be obtained from these and (1.20).
We now formulate this result without going over to the normal form (1.16). Let
P be the real symmetric projection operator on the zero space of A and

P=1-7P, Then

PA = AP = 0 , P2=P . (1.22)
From (1.5) one now obtains the equations of motion

i PAPP4-PH =0 (1.23)

PH =0 1 ' (1.24)

If now PquP is non-singular in the subspace on which P projects, then
(1.24) can be solved for Pq in terms of Pq . The commutator (1.21) is found

to be

[Pq,qP] = & (PAP)”! (1.25)

or equivalently
[Aq,qA]l =5 A . (1.26)

Indeed due to (1.24) we have

P a = - glPq,8] = - £1Pq,qlH

iz s oz i IR
- ‘_g{PquP] P Hq %{Pq,qP] PHq = - i(PAP) PHq (1.27)

which coincides with (1.23).

The above argument as it stands is correct in QM only if [Pq,qP] is a
c-number since otherwise we are confronted with the problem of ordering the
operators in this calculation. To my knowledge there does not exist a really
completely general treatment of this problem. It turns out, however, that the
Lagrangian QFT systems that can be handled at least in perturbation theory

are necessarily so simple that they do not offer trouble from this source.
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Exercise:

Derive the commutator of the dependent variables with the Hamiltonian:

—q 1

Pq,4] = - /(P H__ P Pe_ _P(PAP) ' PH . 1s
[Pq,H] ¢, ) g - ) . (1.28)
Differentiating (1.24) w.r.t. time gives

PR PPy+PH PPy+PE =0 .

qq’ 1 F Tag” T Tt “1eR2)
which can be solved for Pq giving

_] - ——l -

Pq=-(PH_P -i PH_P(PAP PH + PH g .

q (qq)[l qq(A) . qt] (1.30)
Using (1.28) this can also be written as

. i -1 _

Pq + zlPq,H] + (Pﬁqu) PH . =0 ‘ (1.31)

1

The term —(PquP)" PH is equal to 5%{Pq) if Pq is written as

gt o
(in general t-dependent) funmction of Pq , since from (1.24) follows

p 39 - . )
quP = # PHqt 0 (1.32)
In a theory invariant under time translation, or what is the same, with

conserved H , Hqt = 0 and the Heisenberg equation

by

q-= —-'ﬁ-l;[q,H] (].33)

holds for all variables (and for their time-independent fumctions). There is

however good reason to consider more general theories as we shall see.

Suppose now that PquP from (1.25) is singular, i.e. (1.24) cannot be solved
for the dependent variables Pq . Then there exists another projection operator
Q which projects on the zero space of PquP 1

= 2,_ _= -
QPH P = PH P2 = 0O, =92 2=1-2,

such that from (1.29) and (1.23) further relations can be produced which do not

contain time-derivatives of the variables



. 55, 5 -1 = _
-1 QPR PPART PE_+ QPH_ =0 (1.34)

called secondary constraints.
For shortcutting the discussion let us assume ﬁHq to be linear in the variables

QPq, e.g. H to be of the form
H = 'é' q B g + H'(ﬁq,ﬁ?q) + H"(-P‘q,QPq)Q‘Pq (1.35)

where the real Hermitean matrix B is time-independent. Then the secondary
constraints (1.34) can be solved for the variables QPq provided

Vi= QP qu ﬁ(?lkﬁ)_iﬁquPQ is nonsingular. However, if secondary or higher
order constraints exist, then the commutation relations are no longer of the
simple form (1.26). 1In the case of (1.35) and nonsingular V one finds (most

easily from Peierls' principle which will be discussed later)
I 5 -1 5
LA Al = - PH__PQV PH P é 1.36
xlAq,qA] = A & PH (1.36)

i.e. there is a modification of (1.26) which generally will not be a c-number

term.

If the secondary constraints are not solvable for QPq then by further
differentiation w.r.t. time tertiary constraints can be found and so on. We will
not spend more time on this problem, however, since we shall not need it in QFT
as far as we discuss it. “

There are interesting Lagrangians such that the development in time of scme
variables cannot be determined from the Lagrange equations. This occurs if the
Lagrangian is invariant under a group of transformations (e.g. gauge transfor-
mations of the second kind) with space-time arbitrariness. Such "gauge cases"

are most conveniently dealt with by giving up the dynamically redundant invariance,

as we shall show for QED in Leectures 5 and 6.

1.2 Anticommuting Variables

So far we have been discussing commuting variables only. Equally important are

anticommuting ones which we shall treat now briefly. Classically, we consider




N anticommuting variables qj such that {qi,qj} = 0 for all i,j . Their
polynomials form a "Grassmann algebra" with N generatorsand degree (number of
independent elements) ZN . There exist simple 2N X ZN matrix representations
of such algebras [4]. We call an element of this algebra "even" or "odd"
according to whether it commutes or anticommutes with all q; - In other words
it can be expressed as a polynomial with all terms containing either an even or
an odd number of q's .

Now the whole discussion up to (1.36) can be repeated for the case of anti-
commuting variables, but we will write down only the main formulas. Because of
the anticommutivity of the variables the antisymmetric matrix A of (1.4) has

to be replaced by the real symmetric and hence Hermitean matrix

Si= - 1i(G + GV) (1.37)

(G in (1.2) has now to be taken imaginary)

and the equations of motion are instead of (1.6) in the case of nonsingular 5§
ig=g" BEH = - Biﬂ 5! (1.38)

where ag and 82 are "left (right) derivatives" which means that we have to
reorder all terms such that the q w.r.t. which we differentiate appears always
on the left (right) and is taken away from there. For the variation of an "even"
quantity, e.g. the Hamiltonian H , therefore the relatiom

SH = 8q aiﬁ -t aﬁﬂ 5q = - 8¢ BﬁH

holds.

The matrix S can be written in the form

§=1U U
where U is real and nonsingular and the matrix ] _1) has =n 1's and N-n (-1)'s
along its diagomal. Writing Uq =: Q] we obtain the normal form of the
2
Lagrangian

- .

_i
L = 2(0,0; - Q,Q)) - H(Q,Q,,8) - (1.39)



The Poisson bracket now reads

: o PR~ 2L
X,Y):=-1i X938 3 Y
(X,Y) . q

and has the property of being antisymmetric if at least one of X,Y is even,
whereas it is éymmetric if both X and Y are odd. For a quantum mechanical

system we have the correspondence
(X, Y) + = £[X,Y]
if at least ome of the factors X,Y 1is even, but
(X, ¥) > - £ (X,7}
if both are odd. In particular for Fermi variables we have

{qu} = A S_l

instead of (1.14) which becomes in "normal form" (1.39)
{QI’QI} == {QZ’QZ} =H1,
{QI’QZ} =0

such that, if the metric in the QM state space is to be positive, i.e. we have
a Hilbert space, there must be no Qz—variables, such that the matrix S must
be positive definite, since we supposed the q and therefore the Q to be

Hermitean.

Since the case of dependent anticommuting variables offers little new compared
to commuting ones and, moreoever, does not occur in our applications, we leave

its discussion as an exercise.

Sometimes it is convenient to use non-real (i.e. in QM non-Hermitean) variables.

Then one starts from

L= (a'Ba - a"Ba) - H(a",a,t) (1.40)

p B, <508 +
and must for reality (hermiticity) of L have B = B . There are then two ways

to proceed. Either we take
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AT —

+ + _ +
V2 iv2

as the Hermitean combinations and the problem reduces by substitution to the

. ; . + .
previous case. More economically, we consider a and a as independent for

variational purposes.

One finds now, when B is non-singular,

[a,a+]; = H B_l

(1.42)
+ o+
[a,al; = [a,a ]l =0
([ , 1. = commutator, [ , ]+ = anticommutator, upper sign corresponding to Bose
variables, lower to Fermi variables.
In the case of solvable primary constraints we obtain
[Ba,a’B] . = & B
(1.43)
+
[Ba,aB’]. = [B'a’, a'B]. =0 ;

1.3 Variational Formulas

Next we recast the canonical quantization prescription in a more flexible form,

as is essential for a (on this level) easy treatment of QFT .

1.3.1 Schwinger's Action Principle

Our starting point are the Heisenberg equations (ef. (1.31,33))

P 4=~ z[Pq,H] (1.44)
P4 = - irpq,u1 + 24 (1.45)

for independent and dependent variables, respectively. We will now express H

in terms of only the independent variables as

1(Pq,Pq(Pq,t),t) = H(Pq,t) (1.46)
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and (1.44) will be abbreviated as

93551 = - %—Eq(t),ﬁ(q(t),t)] (1.47)

by suppressing P everywhere. Now (1.47) is solved by

q(t) = U(t,f:o)q(to)ﬂ(t,to)_l (1.48)

where the unitary operator U(t,to) gsatisfies

Tt = £ A@®, 00, e) = 2 uee,e ), o (1.49)

and the initial condition

Ut ,t ) =1 . | (1.50)

Exercise:

Prove the unitarity of U from (1.49,50).

We are interested in the scalar product of a pair of states
6y > £ 4 oy, £

which are defined by measurement or preparation operations at times t and t

1 2’
respectively, e.g. as eigenstates to a complete commuting subset of the operator
family q(tl) or q(tz) » the eigenvalues being represented by ¢ps by - Using

the relation
|¢i,ti> = U(ti,to)|¢i,ti>o (1.51)

where ]¢i,ti> means that we have replaced ts in the argument of q implicit

o
in the specification of ]¢i,ti> by t_ but have otherwise not changed the

specification prescription, we have
=1
Oty legaty> = <o, e UG, e )T, e ) (6,0t (1.52)
We consider a family of different dynamics by taking H = H(g,t,)\) to depend on

parameters X . For variations Gkﬁ(q,t,k) = ﬁ(q,t,h+6h) = ﬁ(q,t,h) i.e.

taking into account only the explicit dependence of H while keeping the
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(independent) q fixed, we find from (1.49,50) to first order in infinitesimals

L6, uCe, e )ut,e ) 1 = £ U, e )8, ) e, ue,e )

q(to) fixed

which gives upon integration

t

i A
GAU(t’tO) = % ft 5)\H(q(T)sT3;\)

o]

dT U(t,to) ‘ (1.53)
q(t) fixed

Using the identity U(t,t:c,)U(t,tO)_I = | we therefore have

£y

- - 2 f 5, a0, 7,0

-1
SA(U(tl,to) U(tz,to)) = U(tl,to) dt U(tz,to)

ty q(t) fixed
such that the variation of (1.52) is given by
£
i A
8,<9 5t 165,855 = = <055t J 8, H(a (1), T,0) | dt [4,,t,> (1.54)
%5 q(1) fixed

provided the specification of the states in terms of the independent operators

at times ty sty is not changed. All reference to t_ hag disappeared.

o

One only must keep in mind that at some time ts the independent operators were
kept fixed and the change of all operators at other times (and, if it applies,

of the dependent operators at to) is defined through changed Lagrange equations.
The arbitrariness of ty reflects the freedom of similarity transformations in
the representation of states and operators in QM in the calculation of amplitudes

and probabilities.

We now calculate 5lﬁ(q(T),T,K) . This is, by (1.46),

q(t) fixed



13

8,B(Pa(r), Pa(Pa(t),t,1),7,2)

Pq(t) fixed

= 8, H(Pq(1),Pa(Pa(1),1,1),T,2) + (1.55)

Pq, Pq fixed

+ B, (Pa(0),Pa(Pa(0),7,0)P §,Pa(Pa(x),1,2)

Pq fixed

The first term arises on account of the parameter dependence of H , the second
since the solution of the constraint equation gives parameter dependence in
Pq(Pq(t),T,)A). However, due to (1.24) it vanishes. Because of our form (1.2)

of the Lagrangian, with G taken as not varied, we have from (1.54,55) the simple

result
t
i g
6?\<¢l’tll¢2’t2> x5 <¢'l:t2| j 5)\L(q(T): q (1) ,Ts2) dT|¢v2,t2> (1.56)
ty d,q fixed

which formula is known as the "Schwinger action principle" [5]. We have derived
it only for our Lagrangian and the case of solvable constraints and up to

possibly an ordering problem in QM . (in the treatment of the second term in
(1.55)) if dependent variables occur. But this formula actually is more generally
valid. The reason why the generalization is not so easy to prove is that the
higher order constraint equations mostly are very involved. The above derivation

is adapted from C.S, Lam [6].

There is good reason why one should not take the Schwinger action principle as
fundamental or primary and deduce the canonical formulas from it. We just

showed it to be a consequence of the canonical quantization prescription.
Schwinger himself in a series of papers [7] has expressed the view that one should
not postulate the quantum action principle but derive it. In these papers he
derived it from a sort of Feynman path or history formulation of QM or of QFT
(cf. e.g. Dyson [3]). This derivation is, however, essentially void of mathe-
matical meaning and succeeds even formally only in certain simple cases. For

our applications of (1.56) it is adequate to consider it as an elegant and

(as we shall see) most useful rewriting of canonical quantization at least for

those cases where the latter is sufficiently established. As we have seen
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above, the formula does actually not necessarily take care of specifically QM

fine points - in short, it is a "classical" formula.

Exercise:
Write out all steps that led to (1.56).

The Schwinger action principle can easily be generalized to the variation of

matrix elements of arbitrary operators F(q(t),t,A) depending on parameters A.

Admitting the variation of the parameters in F as well as in H one finds

5,<0,,t, [F(a(E), 6,00 |8y, t5> = <15t [§;F(ale),£,2) [og,tp> +

t
1
+ <¢l.t1|%-J 6kL(d(r),q(r),r,A)\ dt F(q(t),tA>]¢2,t2> + (1.57)
t q(t),q(t) fixed
t
+ <¢1,t1\F(q(t),t,)\) %J .GAL(Q(T)’C‘(T)’T"M . ) dfld’z,tz}
ty q(t),q(t) fixed

which is obtained by introducing two complete sets of intermediate states Yt

specified at time t such that the term

<, t|F(a(t),t,0) |9, e = <y, [Fla(r ), e, [v'se >

does not depend on the dynamics.
The generalization of formula (1.57) to a product of operator expression at

different times is obvious.

Specializing (1.57) to t; = t, = T = gives (suppressing A from now omn)

ret
§23Yp (g (1), 1) = SF(q(t),t)

[F(q(t),t),6L(4(x),a(n), 1) | 1dt
4,q fixed

1
i

+ | ~—rt

q fixed

il
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where "retarded” or "advanced" means that we integrate the infinitesimally varied
equation of motion from zero variation at t = 7 » forward resp. backward in
time. By subtraction of the two terms we obtain the important Peierls' formula
[8l,[5]

ret

(6™ - 6**)F(a(0),t) =%J [F(a(t),£),6L(4(1),q(r), )| ldr (1.58)

q,q fixed

—c0

for determining commutators. In the case of free fields, i.e. when the
Lagrangian is only bilinear, (1.58) gives immediately the commutators at all times

in a convenient form without need of going over the clumsy p,g-method.

Exercise:

Derive again the commutation relations given before, and the commutation relations

at all times, if in (1.4)
H(q,t,2) = %-q B q - qi(t)

where B 1is a real symmetric matrix in the Bose case, resp. imaginary and anti-
symmetric in the Fermi case, and A(t) a commuting respectively anticommuting

"c~number" function of time which is subjected to variation.

2. Relativistic Invariance

2.1 Notation

Latin indices take the values 1,2,3 Greek indices take the values 0,1,2,3.

Summation convention is used throughout.
o =+ o _1i
= (x0, %) = (x° %),

i.e. in transition to non-covariant notation take as space components the 1,2,3

components of a contravariant vector. The metric temsor is

Throughout we shall take h=c¢c =1,
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F -+ I L
X -p=%X p =~ X P ’
= ik _ 1 j ok _ ik
(x x v) Eijk X"y £ jkx v eoijk Xy
where
_ _ 0123 _ 1 -
) 7 ’ €123 ’

both tensors being totally antisymmetric.

: (Kronecker symbol)

2.2 Lorentz Transformations

A Lorentz transformation is a real, linear, homogeneous transformation of %"

Mext = A LxY (2.1)

abbreviated as x' =Ax that leaves x'xy = ngP,x” invariant. Therefrom

follows that the matrix A must satisfy
T
A gAhA=g (2.2)

The matrix /\_1 (for brevity we identify matrices and transformations) is the
inverse transformation which is also a Lorentz transformation. Further A,A'

being Lorentz transformations implies that A A is such a transformation, too.

Thus the Lorentz transformations form a group L . From (2.2) follows
(et A)2 =1, i.e. detA= %l (2.3)
and
W -5, M= 2.4
. LN = (2.4)
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We will concern ourselves only with the matrices with det A = + 1, AQO = 1
which form an invariant subgroup Lf of the Lorentz group. The factor group
L/Li has four elements and is isomorphic to the group of space and time re-
flections.

Due to g2 = 1 also Agﬁ? = g holds. The metric tensor g also is used to

lower or raise indices according to
Aw= gue A LA™Y= N g™ LA = VA AT
I gft\ﬂ— v ] B8 LIRS g,«‘&g A Az
such that e.g.
=1 T R

2.3 Poincaré Transformations

An inhomogeneous Lorentz transformation, also called Poincare transformation,
is a linear inhomogeneous transformation that leaves (x=-y)H (x—y%l invariant.

Thus
sz =ANxY + ak (2.5)

under an inhomogeneous Lorentz transformation denoted by (A,a) where AelL .

Sequences of such transformations are computed by

(A", a™)(A",a") = (A" A",A"a" + a") . (2.6)

Finally we have

1

(A,a) = (A_l,-/\_la)- (2.7)

Thus these transformations form a group called the Poincarée group. In terms

of matrices they are represented by

(A,a) —> (/\ a) _ (2.8)

[= 2 |

For the Poincaré transformations on states in quantum mechanics we take the
active point of view: Let ¢ be a Heisenberg state characterized e.g. by a set
of measurements at some spacetime points X, with (generally merely statistical)
outcomes M; . Then we call ¢' the state that is characterized by analogous
measurements with ;he same outcomes Mi at the points xi =a@xi + a and write

it after Wigner ¢' = U(A,a)¢ with U unitary corresponding to the fact that
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A is an orthochronous Lorentz transformation and in particular a proper one
(we did restrict ourselves to Lf Y «

By "analogous" above is meant that any tensorial quantity is to be measured
with respect to a reference system as moved along unter the Lorentz transforma-

tion. It is only then that we can expect numerically unchanged results.

From the theory of the rotation group we know that the group S0(3) 1is doubly
connected. One can construct its universal covering group SU(2) and to each
rotation O in S0(3) there are associated two matrices in SU(2), U and -U.

1f we consider the covering group then the multiplication law is

g@wHu@E") = w(uran) (2.9)
against merely
g(o")u'") = fu(0'o'") (2.10)

for the double-valued i.e. spinorial representations of SO0(3). The same holds
for the inhomogeneization iS0(3) of the rotation group, the Euclidean group.
Likewise the Lorentz group and the Poincaré group are doubly connected and one
goes from so?(1,3) to its (simply connected) universal covering group SL(2,C),
the elements of which are denoted by A . Again to each A € S0T(1,3) there are
associated two elements A and -A of SL(2,C). The matrices A which form

the representation of the group SL(2,C) by these matrices themselves are the

starting point of spinor caleculus.

For a sequence of Poincaré transformations we have according to (2.6)

U(A' ,a)U(A'1,a"") = U(A'A"',a" + A(A")a'"). (2.11)

2.3.1 Generators

The generators of the Poincaré group are

PR = § —S UL, E) (2.12)
Sdp a=0
and
MM = i —2— U(A,0) ] . (2.13)
9w pv A=



19

From (2.2) we deduce for a A close to identity

Apv = gpv + Dpv (2.14)
the relations

Wpp= = Wup A ‘ (2.15)
Thus there are ten infinitesimals, four a, and six wyu, , and we have

U(A,a) = 1 + iauP” -%w,uw“’ + o ) (2.16)

Structure relations (Lie brackets) can be computed from any faithful represen-

tation e.g. from the formerly given one (2.8), and using (2.12,13) we find

[pﬁ)pV] =0 (2.17)
[M* P%] = - i(gh*pY - g™ p*) (2.18)
[MP M) = g (g™ MPP groepors gAMI e gh > %y ) (2.19)

The Poincare group is the semi-direct product of the translation group and the

Lorentz group. The translations form an Abelian subgroup.

Evidently P"P, is an invariant, called the rest mass squared. From physical

o]

i
considerations we require P~ > 0, (PHPP)"> 0 (the prime indicates eigen-

values) except for the vacuum state which is to be a non-degenerate simultaneous

eigenstate of all the P" and M"Y with elgenvalue zero.

We consider an n-component field Xi(x) i=1,2,..,n. Then we have
...l _
‘Jz.f S;5A D@y Ax + 2" = @, x; () (2.20)

where the n x n matrix is to account for the need to relate nonscalar
(e.g. tensorial) measurements to new "axis systems" as mentioned before. Since
with @' = U(A,a)¢ this equation is to hold for all ¢ , we have

5571 x;Ghx + @) = U, @)y; GOUA, ) ! : (2.21)
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This equation shows that

-1 1 ' 1 1

1

It

UA'A, A'a + a") x; GOUAA N'a + ')

= S, (A'l

ik A'—])xk(/\‘/\x + A'a + a')

and consequently the Sij(A) form a representation of SL(2,C). Some of the
simplest representations are (we list the matrices, their conventional

designations, and examples of fields that transform under these matrices):

i D(0,0) scalar field
f p(1/2 , 0) neutrino—antineutrino field
A D , 1/2)
A O
o i D(1/2 , 0) @ D(O, 1/2) Dirac field
A D(1/2 , 1/2) vector field (contravariant)
(ﬁ:l)T D(1/2 , 1/2) vector field (covariant)

A®A  DU/2 , 1/2) @D(1/2 , 1/2) =
= D(1,1) & graviton field

(symmetric traceless 2nd rank tensor)

® D(1.0) @ D(O,1) ® electromagnetic field
(self-dual antisymmetric tensors)

® D(0,0) scalar field

(scalar)

The decomposition in the last example follows from the general formula for the

reduction of direct products

min(m,k) min(n,r) s ,
m 0 k 1 _ : mtk=2a n+r-2b
D(z,5)@D(%5,5) = > > QD("‘z y gt
a=0 b=0
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If we work with hermitian fields the Sij must be real. The Dirac field
representation is equivalent to the real one
( Re A ImA

d : {om.
“fm A Ba A) called the Majorana representation

By differentiation of (2.21) we obtain the commutation relations

[PF, x0] = -2 %0 (2.22)
v ‘ v _ v . sl EBP A
LMY xoa]l = - e (x"” - x"2")xit0 =1 ST %09 (2.23)
where the
S.. (A) -
sr o 243 (2.24)
J 30\9;*0 A =1

are up to a factor 1 the infinitesimal generators in the representation

S(A) and therefore cobey (indices are suppressed)
[SHV,8%A] = g% gFA _ ghrgVA _ qud gpae , opd gue (2.25)

Herefrom it easily follows that all 8" are traceless i.e. the S(A) are
unimodular. This can be deduced also from the fact that the proper Lorentz

group is simple.

For more thorough treatments of the topic of this lecture the reader is
referred to [7]1,[111,[9]1,[10].

3. Relativistic Lagrangians

3.1 First Order Lagrangian Densities

In Lecture I we discussed the classical and quantized first order Lagrangian

L=%aAq-Hg,t)

with A imaginary and antisymmetric (i.e. Hermitean) for Bose variables and

real and symmetric (i.e. Hermitean) for Fermi variables, respectively. As

-

faasson

aa

N
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relativistic analog we set for the Lagrangian density

£ =% x"Pux - B xBX - RO (3.1)

or in an explicit Hermitean forwm

i (PO - X De X)) - 2 px - OGN (3.2)
b T (x X Py
where
B A
" B
dr‘:;,{”’ p=zp in the{ngziE case

for Hermitean fields.

The analog of

L=-1ia'Ba - Ha,a,t)

is, correspondingly,

+ +
N T A e ey, x) (3,55

where
+ + +
e p=p o= K

3

for non-Hermitean (Bose resp. Fermi) fields.

We have separated out from the non-derivative part a bilinear term
because of the prominent occurrence of such terms in all cases, and

we have also included a quantity m of the dimension of mass for
dimensional reasons. If we choose to have all components of x to have
the same diwension, then <" and  can now be taken dimensionless.
The analogy is cowmplete in the sense that our new lLagrangian density
leads upon integration over space to a Lagrangian of the ordinary type
with a countable infinite number of variables. Namely, we introduce a

complete orthonormal system of real functions fk(i) on R’ such that

= £,(%) £,(3F) = $(ZF) (3.4)



23

and

jfk(sz) £,(2) ax = &,,. (3.5)
We define

KD = (X 6% Fds (3.6)
Then

X (R = Z RLR A () (3.7)

inserted into the Lagrangian density (3.2) gives upon integrating over

X a Lagrangian of the form (1.4) with

A = R . (3-8)
countably many often.
Then the projection operator on the zero-space of A is

™
T

P - (3.9)

where P 1is the projection operator on the zero-gpace of oto, which
satisfies (P=1- P )

Px® = «°F = o0 (3-10)

and P«°? nonsingular in the subspace P projects on.
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3,2 Restrictions by relativistic invariance

Now we look at the restrictions imposed on the matrices 2" and [

by relativistic invariance. These are obtained e.g. as follows: think £
written in terms of the field operators, integrate over spacetime to
obtain the action and apply U( A ,a) ... U( A ,a)—1 to it, and regquire
that the action goes over into itself.

Now »
WA, a) x0x) «mDp x(x) UA,a) " =

')(C/\xw.) ST(A™) «’#Qﬁ .S(A"') j((Ax+q)

i

A ~A v 9 o
% (Ax+a) ST(A) & S(A™) N w5500 X (Ax+a)

Since d( Ax) = (det A ) dx = dx, the condition for the derivative terw
ig fulfilled if and only if

sT(a™") «Fs(A™) Ny = &” (3.11)

or in wmore usual form

sT (4) «*s(a) = A", a7 . (3.12)

Thus if «"* is transformed on all indices simultanously with the
appropriate transformation it must go into itself i.e. it wust be an
invariant matrix, or, it is invariant under the representation 5® S ® Ass
Sueh an o therefore exists if and only if in the direct product re-
presentation the trivial representation is contained. Clearly S cannot
be the scalar (trivial) representation. It can also not be the vector
representation. The simplest is a five cowmponent sum of a scalar and
the vector representations. Also the Majorana representation discussed
before, which is (4 ,0) @ (0,4 ), is allowed. In fact the product
[(£,0) & (0, % )]@ [(£,0)® (0, % )] ® (4, 4) contains the trivial
representation twice.

The case of complex fields is siwmilar. In this case we require (instead

of (3.11) )

S+(A-1) oLFS(A.—‘!) A= o” (3.13)
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or more usual
SY(A) «*s(4) = AF,«Y | (3.14)

Now the representation S(4) = A suffices, for

(
[%!0)@ (091’)]® (’3_';:‘_{) = (0,0) ® (1!°)®(011) ® (1,1).

In fact
(7Y -(”_4)) (3.15)

is the set of «* 1in guestion, and the transformation formula is just
the one with the help of which to a Lorentz transformation an A is
associated (cf. the literature cited at the end of lecture 2). Since

«® = 1, all fields are independent. In the first order formalism this
case 1s the only one where this happens.

. 4
spin Z

The sawe reasoning for the wass term in (3.1) resp. (3.3) yields

ST(A) p s(A) =p (3.16)

and

sT(4) ps(a) =p (3.17)
for hermitean and non-hermitean variables respectively.

Thus for such a f# to exist, we must have S® S (or respectively S ® §)
contain the trivial representation. This is always so for real represen-
tations, e.g. (0,0), (%, 6 4 ) etc. But (L£,0), i.e. S(A) = A, is ruled
out., This is the reason why we cannot write a +wo component equation
with mass term in the form given in (3.3) (owitting the B -term and
we have for S(A) = A the Weyl neutrino Lagrangian). But S ® S always
contains the trivial representation whether S is real or complex, so

we can have with the " of (3.15)

Lo=iyTalony - B yey + 3 ypre gyt (3.18)
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for a non-hermitean two-component Y , with the "spinor metric" matrix
£ = (f: g) . This Lagrangian is equivalent to the Majorana Lagran—

gian for a four-component Hermitean field.

The "Dirac form" for non-Hermitean (or also for Hermitean) fields we

obtain for non-singular [ by writing

N A (3.19)

which upon omitting ® gives from (3.3) the "Dirac Lagrangian"

L= B Yy - m Y (3.20)

This form is convenient since the y/» have the simple transformation

property

»

s~1(a) yFs(a) = ALY (3.21)

such that products of the y’s transform like the corresponding tensors

with respect to the Minkowski indices, i.e.
S'd(A){r“”. yEr SCA) = JAPAW v fﬁﬁrur X'% Lo Ylh . (3.22)

Finally for the % ~term in (3.1) resp. (3.3) we wust for relativistic

invariance have no explicit x-dependence and
Hisx) = "®(x) (3.23)
for Hermitean fields and
®(yp*t S*, sy) = KW, ) (3.24)
for non-Hermitean fields.

For FPerwmi fields, where we are only interested in spin -%f fields, the

Dirac yF , particularly conveniently in {the imaginary Majorana form,

provide us with the solution of our problem. For Bose fields, fields
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of spin o and 1 are of interest, but here the S contain A (and their
direct products) only and it is convenient to separate the various
tensors from each other as follows: Consider the Klein-Gordon
Lagrangian
2 "a"‘aA—r‘jA2 (3.25)
=--5_— Af‘ 2 -
which 1s quadratic in time derivatives. In the usual transition to the

Hamwiltonian formalism we can linearize it in derivatives, in fact

covariantly, by introducing an auxiliary vector field

ok4 = BF (3.26)
Then

L =-2B"8. + B 0A - T A (3.27)
giving

3B~ a° A= o (3.28)

and (3.26) as field equations. The Lagrangian (3.27) is equivalent to

the Klein-Gordon lLagrangian., Written in terms of «"* and $ foxr the
five-cowmponent field (4,B") or for dimensional equality (m* 4, m~* B")
provided m ¥ o gives the "Duffin-Kemmer-Pétiau" form of the Lagrangian
for a scalar field. (If mw = o it cannot be used since the scale change

is not possible.)
Exercise: Write the e« , [ and y/ explicitly in wmatrix form.

For further discussions of general covariant first order Lagrangians

and some of their properties the reader is referred to [4] (see especial-
ly £ 20) and to [1] .

Some considerations on the basis of Schwinger's action principle can be
found in [11].
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3.3 Quantization

The Peierls' formula (1.58) now reads

ret adv :
(87 - §24) Fxwa,x) =i jalg [F(xo),x), 8L (" xt9), Xy, H)Ja"'x,a( cie ol (3.29)

and thus, since reference to a coordinate frame has disappeared, the
covariance of the quantization procedure is assured if £ satisfies
the conditions we gave before. We will consider separately the cases:
1."®=0, i.e. the Lagrangian density in (3.1) or (3.3) is
bilinear (free fields),
2,40, or more precisely contains trilinear or higher terms
(interacting fields).
Tn case 2 we can essentially only obtain the canonical formulas back
as they correspond to the elementary ones of lecture 1, via the re-
lations (3.6...8) with the knowledge however, that the gquantization
is covariant. The case 1, however, will show the power and elegance

of the Peierls' principle.

First we have to introduce parawmeters into the Lagrangian, which we

do most conveniently via a term linear in X . Thus

L= kyaltopx - 5 xPx - e +x7T . (3.30)

Here J ig a "source", and is an arbitrary space-time function in the
Bose case, whereas it is an arbitrary space-time dependent algebraic

element with the properties

{3(x), ’x(y)} = o0, 1J(x),5(y)} = o for all x,¥ (3.31)

in the Ferwi case. The first property we have to require is to have the
new term "even" like the other terms in the Lagrangian, the second to
have it also commute rather than anticommute with itself (in the sense

of classical variables). Now the field equations are

LB rmpx + D = T (5.32)
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and

o

Lx op x4 P 42" = £ 3 (3.33)

+ . : ; ;
where -~ refers to the commutation resp. anticommutation case. By varia-

tion as a consequence of J~change follows

o r L R

Lol dudx + mPIx + 3% Sy = 53 (3.34)
and

. < L

LOX P!l + mdxp +8x %% = 1£487 . (3.35)
Let us now treat the itwo cases separately.
3.341 Free fields

Here we have " = o. Define S by

ret
adv
(~iard+mpS, o (x-y) = 8 (x-y)I (3.36)
adv
with
S et (x-y) = o if x° < y°. (3.37)

adv

If the Lagrange equations determine the motion (cf. section 1.1.3),
Sret are hereby uniquely deterwined, since the homogeneous eguations
adv have no solution by assuwption. The solution is directly obtained

in Pourier representation:

S, (x-y) =__ 1 -[e—ik(x~Y) d K (3.38)

ret
adv (2} ¥ mﬁuoc"*l(,.; T i <g

where € 1is positive infinitesimal.
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Exercise: Derive the reality, herwmiticity, and x «<— ¥y

symmetry properties of S

ret
adv

Now (wm(>-wtKu 3ix®e) ! as a matrix inverse has the form

matrix with elements polynowial in k .
determinant

Here the determinant is, on the basis of the transforwation properties

of «* and p and the unimodularity of S(4), easily seen to be a

polynomial in (Ku i€ Sua) (K L igdP®) = kP2 ig k® = K* 4 ig sign k°
with real coefficients. As such it can be written as
c,,,.a.ﬁ_’ (k2+ ig¢ sign k° - mf) if it has degree s in this variable with
co;;t. # o and the m% real or in complex conjugate pairs. (The determi-
nant vanishes identically only in the gauge case which we excluded).
After cancelling factors against possibly the same ones in the numerator
(as occurs in the Dirac case) we make a partial-fraction decomposition
of the rewmaining denominator. By a suitable choice of the «/ and p
one can always (i.e. for any spin) achieve that only one single term
with mass m , say,rewmains in the denominator. How to choose «F and p
or eguivalently y¢* and p, for this to cccur is the subject of a
paper by Pauli and Fierz [12] and in particular of the books of Naimark
and of Gelfand, Minlos, and Shapiro on the representations of the
Lorentz group [13,14] . The case of spin o we did just before, for
the case of spin %— it is done in the fawmiliar Dirac way, and the spin

1l case will concern us later.

Thus, considering for simplicity only this case of one real mass, we
cbtsin

wpsl¥-¥) = Pol,.(i 2% )ékret(x—y) (3.39)
adv adv

where Pol.(i 2% ) is a watrix, whose elements are polynomials of
derivatives, with certain covariance properties. It is called "Klein-

Gordon divisor" in the book by Takahashi on field quantization [15] .
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Exercise: Derive those covariance properties.

Now
Sper X (®) = [8.., (x3) §3(») &y . (3.40)

adv adv
Thus

(8¥°° = 8% ) x(x) = [(s,., (x¥) - 5, (x-y)) §3(y) ay

=if[x(x), x () $§3(x»)] e (3.41)

(87 - 824 ) (@) = 1 (L x(®), xN]_ §3(») &y . (3.42)
Defining

Sadv (X7¥) = 54 (x-y) = S(x-y) (3.43)

which has the explicit form

S(x-y) = Pol.(197) A (x-y) (3.44)

we find due to the arbitrariness of & J,

[x(x), x(MN] < =18(xy), ' (3.45)

i.e. the Peierls' method gives immediately the commutator (respectively
anticommutator) for all times, which vanishes for spacelike distance

and is a c-number. If we define

Kin (0 = X2 =[5, (x=3) 3() & (5.46)

out adwv

then also

[Xin (s Xy 0)]_= 1 8(x-y) | (3.47)
out out -

In addition .
8 Xout(x)_= ‘Xin(x) 2 (3‘48)
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where

E[Kou:(x) J(x) dx ijxxin(x) J(x) dx
e

_ (3.49)
= = &

is the (up to a c-number factor) unicue solution of the operator
equation (3.48).

In this case we have K # 0 . Now integration of the equation of
motion over arbitrary time intervals, as we did before, is no longer

pogsible. We therefore integrate only infinitesimally, and set
§I(x) = & &(x=y) (3.50)

where &£ is an infinitesimal c-number (respectively an anticommuting
algebraic element) with as many components as x has. The Lagrange

equations (3.32) give for the variatien
o£°9053((x) = - oL;a,', dX(x) = im B d xrx)

—L 2% M X)) Sx + i€ S(x-y) (3.51)

Let 7 be the projection operator on the zero-subspace of the
Hermitean matrix «° . Then with = 1- P the variation of the

constraint equations gives
—?¢ﬁ>m?5ﬂn-—?w§ 2P xx) - i PRP Pl -
—im PRT TIxen — L P3N (x)P PIxeg - (3.52)
- PR () P Pxex)y + { Pedlx-y) = o

We now use the fact that

Fa'F b (3.53)
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(This can be seen as follows: The infinitesimal form of (3.12) is

tl-r}& x A 2 A" v 2 A v
S " 4 x” S = ——-—-———aw:m o =(3ng w97 8™ «
_ M % »rA 'A¢.>
=(g" " - g7

where (2.14) and (2.24) are used. Setting p= o0, A= i, »-= o, and
pultiplying from both sides with P gives (3.53)due to (3.10).)

Due to (3.53) equation (3.52) can be solved for Pox =) (m £ o is
understood) if

i) Ppr® is non-singular in the subspace P projects on and ‘® con-

tains dependent variables at most linearly (i.e. Po"3%ne P = o)

ii) ‘'# contains ®+« bilinearly but m PpP + P32 % ? is non-

gingular in the subspace ® projects on.

In the latter case R (x) » expressed in terms of Pe and P JIxw
way involve an operator denominator which can give rise to complications.
We will come to this point in lecture 4. In the cases i) and ii) the

variational equations of motion are
—?'cio'fi 90753 J')((x) - _?m.‘? a;’&—)‘c:rj(rx)-- ?cc"'?a;?é’)({x) ad

—im PPT POxex) - im TPP P Sxixy -

_ o _ (3.54)
— L P2"9R"e D ?J‘)(rx) - P2"OR e ?J')(cxj +
+iPe Sx-y)

If we now set, for simplicity, Pe = o i.e. vary the sources only for
the independent components, or, what is the same, replace « by Pe
then ¥PdJdy 1is, as we established, of the same order as 2 dx (since
linearely expressed by it) and (3.54) gives upon infinitesimal inte-
gration, using (3.10),

ret
— adv —_ i, 1
PO %00 = +i (BB Be (28> OC£(x=y) +
(3.55)

+ O(Ix°~4®]) OCe)
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i.e.

(afat-_aadU) "?f‘}\/{x)

P (Bt ®)t B 2d(R-3) + OUIx%gl) OC)

i [P0, xtw], Pe + 0Ce®) (3.56)

according to (3.29). Setting x° = y°, it follows due to the arbitrari-

ness of @¢,

[E—?_X(“()J ’X(H)—?]¥ X°%=ye* - (ﬁdn@)”,t aqC>?"‘-:l‘) (3'57)

which is written more simply as

[rx"')((x),xf‘_,)ot"]_fs(x"—a'): «® S(x-y) (5.58)
or in general form, with M”nr_ = «&n,
Slnlx-9) [ x09, Xtg) @m) ] = @nr) J(x-y) (3.59)

where n is an arbitrary positive timelike four-vector with

n* n, = 1. (3.60)

These commutation relations in a fixed reference system we could have
derived immediately from the cowmparison with the elementary formula
(1.14) resp. the corresponding one for anticommuting variables since
by assumption the constraints are solvable. What we have shown in
addition is that also the dependent components, namely Px , have as a
consequence of (3.53) local commutation relations since we obtained at
mosf operators but not derivatives in the denominator arising from
(3.52) in the case ii). Of course this locality had to arise since
manifest relativistic covariance was assumed. We don't discuss the
question of relativistic covariance i.e. the n~-independence of (3.59).

It is treated for instance in [16] .
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It is to be kept in mind that for relativistic invariance of a QFT

as a whole the conditions are, however, less stringent than wmanifest
covariance. Namely it is only necessary that observable quantities
(which are always of tensorial rather than spincorial character, i.e.
transform under the one valued representations of the Lorentsz group)
transform covariantly, and that there exist P"™ and M"° that trans-
form them so and obey, of course, the structure relations of the
Poincaré group. The fields themseives need not itransform covariantly
insofar as they are not observables. The Lagrangian should for causality
reasons (c¢f. our comparison of nonrelativistic systems and quantum
field theory) be expressible by fields on a spacelike, e.g. a plane,
surface but not necessarily as a space integral of a local Lagrangian
density as we have assumed so far. Operators corresponding to locali-
zable observables (field strength, charge and current density, and
energy-momentum density) should commute for spacelike distances (they
will, due to the required covariant transformation laws, do so if they
commute at a fixed time in sowe frame) but those corresponding to un-
observable fields, being objects introduced from the physical point

of view for mathematical reasons only, need not. The Coulomb gauge of
guantum electrodynamics, to be briefly described later, has just these
properties that the fields (precisely: the vector potential and the
spinor fields) do not commute in spacelike distances and do not trans-
form covariantly (namely, they transform covariantly only up to a gauge
transformation). Actually in QED one can on the demonstratibly harmless
expense of enlarging the Hilbert space and letting the metric be in-
definite achieve covariance of all fields.

We will now return to our manifestly covariant case and give the P¥
and M"Y here. They are obtained by the familiar Noether method we

need not describe here:

p M

§ T dy, (3.61)

AT = g, (3.62)
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For (3.1) we have

T

It

£ (xe"0r x - X)) 3L (3.63)

WA TR T Lk (S - % ST (36

where in (3.63) £ wust be used in its explicitly Hermitean form.

Exercise: Show that T7Y and M*? are conserved, i.e.
2, TH =0 (3.65)
me X
D M =0 . (3.66)

For (3.65) it is needed that ‘¥ (%) does not depend on x explicitly
(if it did, one would get B, T” = >* *g{(xwﬂ)]%cwk )
and for (3.66) that

e (Sx) = e (x)

or in infinitesimal form

F e Sy + x S*T 2" =0

Writing
AICINGE SIS L (3.67)
one easily can show that the "sywmmetric energy-momentum tensoxr"

@)“U - jn:(-r}“"’ +—|—U)"‘) -+ %_- a) (?uhﬂ -+ F M?U) (?}.68)

gives

p* = Se,uw' dwy (3.69)



57

and

MP = [(xr@"2-x"0"" ) dv, | (3.70)

Exercise: Prove equations (3.69,70).

(Hereby one uses repeatedly Stokes theorem which is

fopRdS, = (2.R db, (3.71)

for any spacelike surface and an integrand R that vanishes more strongly

than 23 in space infinity.)

That P¥  and MM have the correct commutation relations (2.22,23)
with 7 can be shown by direct, though in the case of singular «°
somewhat lengthy, calculation. Since they are conserved, they can be
computed according to these formulas also under differentation signs.
Using the Jacobi identity we therefore find that they must obey the
structure relations of the Poincaré group (2.17,18,19) up to terms
that commute with +x at all tiwes. Briefly, the argument is for any

Lie group generators Gi that transforw the fields linearly,

Gox] = 0p; % (3.72)

where Opi is some differential and wmatrix operation, the following:
From (3.72) we have

such that

[650 [ 65 x]] -[e; [eix]] =- [ (655651 %] =(0p;0p,-0p,0p, )
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k . k ;
If now [Opi,Opj] = -Gij Opk with cij as structure constants, which

is easily verified in the Poincaré case, with the help of (2.24) then

[([Gi,Gj] - cijkcrk),x] =0

Such quantiﬁies that commute with all operators at all times (we suppose
the 7 to be irreducible such that Schur's lemma applies) are, however,
c-numbers and thus equal to their vacuum expectation values. If we
define "truncated" operators P’ and M *” from the naive forms (3.61)
and (3.62) by subtracting the vacuum expectation values (VEV) under the
integral sign (otherwise the integrals would not converge, nor any of
the manipulations that rely on the vanishing of boundary terms at in-
finity be justified), then for the truncated operators the structure
relations will be satisfied provided < [P*, PY] 7 ,etc. vanish. One
can give plausibility arguwents that this last condition is satisfied.
Clearly, one can give no mathematical proofs here since one cannot

show even the existence of any one physically nontrivial QFT, let alone
that of e.g. QED. In this theory, all one has so far is perturbation
theory, which is manifestly covariant such that the general invariance

arguwmentation is superfluous.

Remark: It is well known that the Lagrange equations remain unchanged
if one adds to the Lagrangian density a four-divergence (the local
quantum field theory analog of adding a total tiwe derivative to the

nonrelativistic Lagrangian):
£ — 2 + 2.V (x)

From Peierls' formula (3.29) we see that thereby the commutation

relations aren't changed either,

We have so far assumed in writing our formulas that all fields that
enter 7 are eilther of the Bose or of the Fermi type (commuting or
anticomonuting fields). In practice, e.g. in QED, one has both types
of fields in the sawme Lagrangian. We can take over all our formulas

with <", p» interpreted as reducible, i.e.
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r\— °<B ) N %3 )
o ‘( WL AR ( . (3.73)
with
T T

0(';‘“’ - ‘*g ’ oC; = + a(; ’

Bg = + By ’ br= — Pp

IS rt +

*p = oAy . Py = PFg

F F F F

and wherever in some formulas a difference in signs, + in our writing,
for Bose and Fermi case should appear, the upper sign is to be taken
for the Bose the lower for the Fermi part. That this reducibility holds
and in the bilinear terms in <Z 3Bose and Terwmi fields do not mix comes
of course from the requirement that X ©be altogether an even operator
since it is almost observable and closely related to the energy which
is an observable,

As reference to this lecture see e.g. [51] .

4. GREEN'S FUNCTIONS, FEYNMAN AND NON-FEYNMAN RULES

We now investigate further the effect of having the manifestly co-

variant Lagrangian awmended by a source term

Z = Lt X" - T xBxX - KO+ x1T

d is a multicomponent function of space-time. Therefore any number
coming from this theory will depend on this function, i.e. be a

functional. Of particular interest is the scalar product

Bae 17 = < 1 > (4.1)

sut Lt
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of in- and out-vacuum states already mentioned before (1.51). Namely,
we imagine J = o for very early and for very late times such that

H(x°) = gToo(x,xo) d% is x°-independent and . is defined as the
lowest-lying eigenstate to H(gz o). If J # o0 , 2;“

(We always consider Heisenberg states, and for a system with explicitly

%+ .. 1in general.
time dependent external perturbation the state that was the ground

state at x° = - o is not the ground state at x° = + oo .) However,

Pa) . z Fa)
G ane 10l = 1 as a phase convention, while ]Gdhc{J}[ £1.

4,1 Functional derivatives

For a functional F [ J} we define a functional derivative by

S | . FL3'E - FAT) (4.2)
S 1 (%) E=>0O £

with J'(:) = J(+) + & 8§(- -x) or, somewhat wore safely,

- F {7}
J;(x)ﬁ_{i}_ dop o Tl Fi3+efd (4.3)

3 IT(x) £>0 &

for suitable smooth test functions. (Note that functional differentia-
bility is a special property of a functional just as ordinary differen-
tiability is a special property of ordinary functions. E.g. the func-
tional F {J} = (nondifferentiable function of Max | 3(x)l), well de-

fined for continous J(x), does not possess a functional derivative.)

A functional F{J + A J'} is an ordinary function of A and, if it is

suffioiently differentiable, allows the Taylor expansion

F{I+231 = F4L3} ~ | £4ad)
A FlaxaTy) o+

mz(a’- .
+ A 2
! a'x‘- F{j_‘-‘kji) A=rO *
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with, if desired, breaking the expansion off with remainder term. From
the definition of functional derivative one easily finds by recursion
that

"

- F LI =
N LA 5
(4.5)
=53~[d&mdxn Fix, Yoo T0) o _Fi3+A7}
& Ilx4) --+- 3 I(xn)
such that, with A=1,
! = olx J(x) ——=—1.
FL1+3'} FLIt +  Jolx T'x T
(4.6)
S F LY

Ao (lotxq olx, T'xa) 7'0xa)
+ar | p Hedd 53(xa) & T(xy)

again with remainder terwm if desired. This is the Volterra series.
Using it for J = o and writing J for J', we can say that knowledge of

F {J] 1is tantamount to knowledge of the infinite set of ordinary

functions

F {o} = a number
s F{3} _
S30) lj:o = Fyd0

8% Fi3}
e e | = F {o}
JJ(XA\)JJ(K:.) J=o0o : K"KA )

etc. From these functions we can recover F {J} by the Volterra series.
Sometimes one uses F {J)} only as a shorthand for that series not caring
whether the series converges or not, similary as in wmathewatics one
sometimes considers the properties of "formwal power series" not caring

about convergence; in that case as in ours the "functional" is merely
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a convenient tool to manipulate the infinite set of coefficients, which
;ggmgggctions of an increasing number of variables, and learning about
their properties. This "algebraic" use of J need not be the end,
however, as also in mathewatics, formal power series often converge

to an interesting object or are the asymptotic expansion of one. In
fact, in our case ahuc{ J} itself is a transition amplitude that can
in principle be mweasured as such and need not be considered as symbol
for its expansion only, indeed the property'[aﬁ@;{J}l < 1 makes no

sense otherwise.

4,2 Green's functions

The expansion coefficients of the Volterra series for Gu i1J} are
called (disconnected) Green's functions, since they are analogous to
Green's functions in more elementary situations where they can be

introduced in the same manner.

Example: Consider the potential energy E{¢}] for an elastic string as
a functional of the weight distribution ¢(x).
Then

gfc{x: = ehnx

is the elongation at point x, and

st E{¢e} I
Sg(x) dgly) lg=o

= GCX_.’%)

is the Green's function corresponding to the elasticity equation

_ _d%a0g  _

pepoe g (x) = constant
X

with appropriate boundary conditions, which is easily solved in this

simple linearized case.
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We now define

~ .
Gase (R %n;31 = & (xex,)-- (x> = (4 n an & %
c 4 Sk X X +* Cin ( L ) 53(’(“) o CSU("(*) dise { }

(in the Fermi case all derivatives are to be left ones) which is

according to (1.57)

= LT {xx)- X(xa) >,
Ouk x (4.7)

( )

naive
if all times are distinct.T(...) indicé?égf?fﬁé ordering: increasing

times from right to left, with change of sign according to each trans-

Pl
position of Fermi operators. G (x3' " XujO0} =T Guise (% Xu)
with sources switched off, qﬁm(xl""’xn) being the covariant Green's

function. For possibly coinciding times we have

A 3
Gise (uxa ;3 = LTIXOOXOW) 2+ (7)< 3o X002,
(4.8)

_ 2
=% LTxbyxe) 7, = (24) < e iy,

etec. The explicit dependence of .X on J arises if the component of %
in question is a dependent variable, since frow lecture 1 we know that
any dependent variable has to be expressed in terms of the independent
ones through solving the constraint equations, and parameter variation,
i.e. in our case functional derivation with respect to J has to be
carried out on that expression. The property P« P = o which was
essential to have local commutation relations also for dependent
variables, again insures here that the correction terms added to the
time ordered products to obtain the Green's functions are local, i.e.
are different from zero only if not only the time but also the space
components of x, and xzcoincide such that these terms are proportional
to &¥-functions or derivatives thereof.

Since amendment of the Lagrangian by a source term and functional

differentiation of gdhc with respect to J do not make reference to any
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particular coordinate system, the Green's functions must be covariant
if J = o. The functions aﬁan~«ﬁJ} with J ¥ o are of course not co-
variant, but they have simple transformation properties only if J is
also transformed correspondingly, such that the correction terms above
must remedy the possible noncovariance of the T-products. Indeed, the
separation of the, by themselves covariant, Lagrange equations into
constraint equations and equations of motion does require to fix the
coordinate system, and as a rule alsc the correction terms are non-
covariant, though, of course, space rotation invariant. A sufficient
condition for a T-product to require a correction term for covariance
is that the equal time commutator of the guantities in question is

proportional to some derivative of a § ~function:

+

7(a(x)B(y)) =& (x°-y°)a(x)B(y) = 6 (y°-x")B(y)A(x)
= 6 (n(z-y))A(X)B(y)* & (a(y-x))B(y)A(x)

with n* = (1,0,0,0) as in lecture 3. From the constraint nFn, = 1 we
see that Jn”nP = o , i.e. only the space components of n* ecan be

varied independently. We therefore have

2 T (AMBL) = (xi-y) (AG)Blg) T Bly) Alx) §0-y")

2 n;

. (4.9)
= §(°-4°) (x'—y4') [ AG), Bly)]

¥

This is zero if L[,15 ~ S(X-3) but ¥ o if it is ~2' S(R-F)
since a 6(a) = o but a §'(a) = - S(a) # o. By the method used here one

can also easily see that if the equal tiwme commutator of two gquantities
is singular like the nth derivative (with respect to sowe space coordi-

nate) of a §% -function then the correction term must contain a & =fune~
d x
43
gingular as a derivative of a & -function in time only if in order to

tion in time up to (nul)th derivatives at least. Since can be as
express X DYy independent variables one has to differentiate the
primary constraints with respect to time, it follows that the equal

time cowmutator of any two cowponents of X can be as singular as a
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second derivative of a space-d -function only if there are gsecondary
constraints, e.g. in the case of spin 31%- . First space derivatives
are, however, quite common and occur in the spin o and spin 1 case
already (in the first order treatment we are following, where with
the scalar (resPectively vector) fields also their time derivatives

appear as canonical variables).

4.3 Generating functional

We now develop the consequences of the equations of motion for the

Green's functions generating functional &, {7} . Frow (1.56) we have

" A _ 4, .
g Gaie = L1 & X0 >, (4.10)

and

g> £ | .
S T G i Lok X7 (4.11)

Then (cp. (3.34,35))

PPy - mpx -2"® 1 =0 (4.12)

and
Six e P 0% £ T =0 (4.13)

give
(-1t + o) a?c:) Core = 1300 B % ¢ o BRIy, (4.14)

and

\

$* ad. (iaé’“éﬁ; + Awm) + 1 J0x) @o&.‘sr_ IR AR-A TP I (4.15)
ERICS out o
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We have already defined

S (x=y) = Pol.(i2™) A

ret (x-y) )
aawv

ret
adv

S(x~-y) = Pol.(i ax) Alx=y) .
We need now also

S(r‘)(x—y) = Pol.(i QX) A(t](x—y)
and

SF(X"'Y) = POl'(i ax) AF(X"Y)’
whereof the latter is the unigue solution of

(mp -1 «™2.) Sp(x-y) = -1 & (x-y) (4.16)

that has no positive-freauency part for x° < yo and no negative-
frequency part for x° > yo. Uniqueness is shown as follows: Every

solution of

(mfp -1 «"0,) £(x)=o0 (4.17)

can be represented as

£(x) = i [ S(x-y) «"£(y) d & | (4.18)

Exercise: Prove this in three steps:

1. Show that the expression on the r.h.s. of (4.18) is independent of
the surface 6 .

2. For y earlier than x replace S by _Sret and close the surface at
points y later than x which does not change the integral,

3. Use Gauss' theorem and the property of retarded functions

e
Spep (X7) (0B+ 1" 32) = 5 (x-y)
which follows easily from its definition.
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We define the (*)-frequency parts of f(x) on the basis of (4.18) by
a +

£5(x) = 1 [ 8™ (x-y) «*£(y) dop . (4.19)
All solutions of

(mp -1x"3) s (xy)= & (xy) (4.20)
can therefore at x° > yo or x° < yo be uniquely decowmposed into posi-
tive- and negative-frequency solutions. The solution of the homogeﬁ%us
equation to (4.20) that has no positive-frequency parts in the past of
¥ and no negative-frequency parts in the future of y has neither
positive~ nor negative-freguency parts at any time and thus is identi-

cally zero.
We note that

Splx=y) +  ©(x°y°) i8®(xy) - o (y°x°)isT(x-y)

in general, since

Sp(x-y) = Pol.(i 5%y e(xo—yo)i A z-y) -
- Pol.(i %) ©(3%-x°)i 2 (x-y) (4.21)
O (x°-y°)is YV (x-y) - © (y°-x°) i8 7 (y-x)

+ [Po1.(12%), & (x°¥°)] 1 & (x-y)

Sp(x¥) e = 1 S(x=7) g ing

The two terms on the right hand side are not separately covariant unless

the second vanishes. Here one notes that 9? commutes with ©(x°-y°) but

LH-J.

e

LeaX)™, o) 6-9) = F (3))

V=o

n-2v-2

(n-wd) 8% (x-y) (4.22)
after an easy calculation, using A(x~y) I o o= o,

ch /—"("""i)!k,,_;[d_ = —-d(x-7) and (Q+4w?) &(x-y) =0
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The role of the singular term in (4.21) in connection with the de-
pendent comwponents of < i1s seen as follows:
From (4.12) we obtain

'}( = Zli X,‘.‘ = S-rcl' j = S"C.b ah’}e (4.25)

out aokv oxel v

A
% Z is the "amplitude renormalisation factor" to be talked wore about
later. We way consider Y in 28 defined by this formula.
out

Now the Peierls' formula (1.58) becomes

o

X
et
& K= X () independent i J [X(k)‘xw)]? 81ls) oy (4.24)
variables fixed =
while variation of (4.23) gives
S*gt ret
aewd = Sre, CS-.I - -S*c 'a'-an.p.& CS 3 =
% = Sz = o
(4.25)
L et
= Sg:,\% éj - Ss:w%,a an.q{' é':""'\f ‘X +
& e et Te Lal 5 ;';5
Suw tem O Sm:"‘& 2 pld X
where the last terms stem from
S-rc,t' (x—y) = S;in%(x_y) + @(xo_yo) S (}C—y) (4‘26)
olv .
arrived at as in (4.21), with for (4.25)
Seeb vog (x-4) = 3 O(-) SOx-y). (2.27)

The O-~function which arises in writing out the integral in (4.24)

leads (at least in the case of no secondary constraints) to

= S - L AR
é:x}:‘anlependent S““% 4l SS“ﬁ 0 ?ﬂéﬁ'independent

variables fixed variables fixed

= (4 + Seiy 3% )" Seing 97 (4.28)
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where o“9%e  contributes only if "¢ is at least bilinear in
dependent variables since Ssing # o only for right- and left-index

belonging to a dependent component.

Exercise: Show that in the case of solvable constraints

=
h\9}

1 p_._-._l
SSM& = (PP ) 971 |ind., variables fixed (4.29)

(ig % =0)

and that for W+ o (3.52) leads to (4.28).

We now use S (which is, if we treat several fields simultanously,
actually a collection of simple Sp-functions combined in a matrix)
to convert the differential equations (4.14,15) into the integral

equations:

L ~ R
f:;cx) Gaw =F [Selx-9) Iy Cap =
(4.30)
T {Sex-g)dy < 2" W xa)>,
SR A "
Gaige = F {3y) Sely-x) ot & ab
PR i 3T (4.31)

e Sof'; ae"k('xf'ﬂ)kh SF(g—w) ohé

where no boundary terme appear for the following reason: The operators

(ep. (4.23))

A
Xin ) = Z = x0x0 - § Srer O-g) [305) = 3K (x19)] k) (4.32)

out
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satisfy the equations

(mﬂ)—l‘dﬁar) Xl‘ﬂ (k’) - O

Ot

This does not prove that these are free fields, for which it would
also be necessary that

['X;.;t(k)} ’Xi;:u:(-g)]; = {_SCx—Aj), (4-33)

Actually, this is so provided ' has been properly adjusted. The proof
is not easily given in the Lagrangian formwalism but supposes that the
theory has axiomatic properties [26] , i.e. among other things that

the mass square operator has a discrete and isolated eigenvalue m2,

and furtherwore requires 7 ;. 1o be defined wore carefully, e.g.
ot

{2

X, = li=  x'@® e

G - F 0@

F -—

'X () = J-f—(x) oz."")((x) "{qr (4.35)
£ -

Xiw = [FC0«" X1n 00 dvp (4.36)
owt gu ’

where f runs over a cowplete set of positive and negative fregquency
solutions of (4.17). These % in, then, again frequency decomposed,
are used as creabtion and annihilation operators in the Fock spaces of

in- and out-particle states: One first defines by

XD o> = o forall x (4.37)
ouk sk
. or more properly by
F.
Xin Tia =0 (4.38)

out oub
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for all positive-freguency solutions f of (4.17) the in- and out-vacua,

and by

(i) ()" >

::ua.k

with fl""'fn positive-frequency solutions of (4.17) the n-in— respec-
tively n-out-particle states. Since the in- and out-operators are de=-
fined through operations at arbitrarily early resp. late times, when
all particles the theory is thought to describe in a fixed Heisenberg
state are travelling practically freely, the order in which one per-
forms operations on such particles is immaterial since they do not
interact, unless one happens to perform itwo operations on the same

free particle, and the contribution therefrom to the r.h.s. ot (4.33)

is the same as in a free field theory, i.e. is a c-nuwber.
If J =o0, then >, = >u , but X 1is not equal to X.. if &
is not merely gquadratic and time-independent, such that the scattering

problem is nontrivial. The S wmatrix elewments are the scalar products

4n out-particles | n' in-particles > (4.39)

<n in-particles|S|n' in-particles >

<n out-particles|S|n' out-particles>

where S 1is defined by

3 ‘Xout(x) = ’Xin(x) S,

For a thorough treatment of the problems of scattering theory see

e.g [27] .

Now the boundary term arising in the integration that leads to (4.30,31)
has an in-annihilation operator acting on théj%acuum which gives zero
by definition of that state, and an out-annihilation operator action on
the out-vacuum, for which also zero is obtained. One-, two- etc. par-

ticle states are characterized by the corresponding nonvanishing boundary
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terms arising in the integration. However, the "reduction technigue",
which will be recapitulated at the end of this lecture, allows to ob-
tain matrix elements involving non-vacuum states directly from the

Green's functionas with vacuum states on the sides.

Now
- » > 2" (4 9 ) Cupe i
JE BRI A, = T
if all components in D (X)) are independent ones, or if at

most one is a dependent one, since in that case

S
R Yoo (x) -
cf{; S J(x) ( XX X )J tnokep. var, Q—a‘xenl >§m @
even if 3%&;; refers to a dependent component provided all the

independent components have been produced first. If ® contains
dependent components gquadratically, the above formula has nonzero

terms in the right hand side. Let us treat these cases separately:

In the simple case when "€ is at wost linear in dependent variables,

from (4.30) there rewmains to solve

L

auui{]} = 3 5 Splx-g) Tly) oy aducijl R

S IOy
. B (4.40)
_thF(k—tj)d% 2 h}t(i‘: ‘55";)) Got.’snij}
If furthermore * = o, the solution is easily to be seen
(4.41)

~ ;% (U 30x) S (x-y4) T(y) okxoly
Gd.’s;ijg o= const., 2
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”~
where, due to Gay.{o} = 1 (see the beginning of this lecture), the
constant wust be equal to one. It is then not difficult to show that
(wi‘th Sc4) & 5 g+ _ : Sc—))

18 st 7Y # % (300 87 0cn 30 ety (4.42)
olise = £

and that this satisfies (G4, {J}| < 1 in the spin o, spin 4, and
spin 1 case, and the Volterra series expansion off%hclearly converges
(if the exponent in (4.41) is finite) as it is an exponential series.

If '® % o, one has the unique formal solution

. g+
S e (2t 2 —) oy
é\'dis; 131} = const. = LS00 §

24 ({700 Sp (x-4) Ty) olxoly (4.43)
- e

which follows from the fact that on account of (4.40)

X ~
- G 133

satisfies (4.40) with "% = o. (4.43) is the final formula with the
constant to be chosen such that @dkcio} = 1. If one evaluates this
formula by expanding the first exponential (and to the extent that

one is interested in Green's functions only, and not in E%d&fJ} as a
functional, expanding, also, the second exponential), one finds that

a perturbation theoretical contribution to a Green's function is given

by (in our case) "Feynman rules":

Write vertices -iW(.......) any number of times, connect them

in all possible ways with each other by lines SF and let a line

SF go to each external argument of the Green's function; inte~
grate the vertices over all space time and sum over all such con-—
tributions, with, in case a graph admits a nontrivial mapping onto
itself, the corresponding contribution to be divided by the
symmetry number, i.e. the number of such possible nontrivial
mappings. (Here, if ' has L equivalent legs, it is understood

that it has a factor L. multiplying the coupling constant.
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The constant in (4.43) has the (> (b

effect that vacuum graphs, i1.e.

isolated graph parts with no 2 6 4

external lines, are to be Symmetry numbers

omitted. The easiest way to (provided the lines are equivalent)

see that is to go to the
~ A
generating functional Gi= ln Ggjsc of "truncated Green's

function" also called "connected" ones. One finds by differentiating

~ G
Bdlig = % (4.44)
Gaise (xl°'°"xn) = G(Il.....xn) +
+ > G(xi ...xi) G(x:j .,,x;'_; ) + (4-45>
partitions "1 T i n-r

+ S G6leee) Glueee) Gloae) #+ aus

partitions

with the sum going over all different partitions of arguments as long
as each G(...) has at least two arguments that allow it to be different

éfrom zero, while inversely

6 = 1n Base (4.46)
gives
G(xqeeeeex ) = Goise (Kyeeeeax ) =
=11 57 Gy {eee) Gue(ewe) + (4.47)
partitions

+21 5 G (eee) Guie (eoe)  Gaie(ens)  =+...
partitions
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(Whenever the order or arguments in the product terms on the r.h.s.

of (4.45,47) differs frow the one on the l.h.s., a factor (=1) is to be
provided for each necessary transposition of Fermi variables.) which
shows incidentally that G(x4---- xn) has the same covariance properties
that Gy (x,xu) has., Now for &i3} we have

S A 3 ~ L 1 16 A A
S T0xe) Gy = +(5=(’<”‘4) Wddy 2 (SeCemdady 278 (27 3100 T T 3300
= 5 (Selew Tgdoly + (4.48)
A
* ESF()‘_H) MSIBLK(:%:{JW))G "
L ~ A
49 LONE wile w

partifions

+ o]

This means: if we "look into" a Green's function from one argument we
see along, in any case, a SF function, at the end of which is either
another Green's function argument (the first term on the r.h.s. of
(4.48)) or a vertex. All other legs starting from that vertex may
either go into a connected Green's function, or into two connected
Green's functions that hang together only at that vertex, or into three
etc., as wany as the legs of the vertex (and the other arguments of the
original Green's function) permit. Iteration of (4.48) obviously leads
only to connected perturbation theoretical contributions to a-{J}, and
a{o} = o from a‘—.,uu{o} = 1,

e s o e e S T T o o S T T

In the wmore complicated case when " contains the dependent variables
aiso quadratically, the present method works guite straightforwardly
in giving from (1.57) and (4.28) the necessary corrections to the

"Feynman rules" from

< an{CX(K>)>m.=: "R (£ 4 ) @Nmﬂﬂ+-ccrrection terms (4.49)
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which leads to "non-Feynman vertices". A particular simple way to see
how they would look like is to write g"® in place of '€ and to con=-

sider
g% @chijg = ——\S;i Rx0d >, dx + "boundary terms" (4.50)

where the "boundary terms" come from the explicit dependence of K
and >, themselves on g. (Cf. the assumptions we had to make to obtain
the formula (1.54) without such terms.) Disregarding the boundary terms

for a mowent gives

2 4 I B
o Caiedy = =i fdx R(EL 7)) Gaie 173

X

+ terms from (é;——l
3 inoleyp. Vai. fixeot

+0) (4.51)

where the last term can always be written

. e 4 oF A
~i _gg (ohx H(t% S350 %) Gaw il
and then
. JL A j_J“
é\d. (11 = e—LSY_%%{.(iﬁi—'a—v—_j(n)-rR(i.‘ch\o,ﬁ,)ldx -
Vs8¢

¥ ﬂj_' €Tt Sp (x—4) T(g) oly

s

. e ‘ (4.52)

The boundary terms neglected above have, as comparision with the
dgifferential-equation method would show, only the effect of supplying

the constant that insures gwﬂac{o} = 1. The present wethod, however,
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shows that the correction terws simply take the form of occurrence of
extra vertices, which are, however, an infinite number since e turns
out as a rule to be some non-polynomial function of g (usually of the
form 1n(1+...g) related to the formula (4.28)) that wust be expanded.

An example of this need of "non-Feynman vertices" is the theory of
charged vector bosons (the W-bosons that mediate weak interaction,

say) with anomalous magnetic momentum of Lee and Yang [17] in second
order formulation. C.S. Lam showed in [6] that it can elegantly be
treated with the Green's functions wethod described above. On the other
hand, to avoid the non-Feynman vertices Lee and Yang intreoduce a uni-
tarity and positive metric violating f ~formalism, effectively a
regularisation. Such step seewed desirable because the non-Feynman
vertices are actually non-covariant and guite pathological (having a
factor 5%0)). Since ultimately the Green's functions must be covariant,
the plainly untolerable non-Feynman terms must compensate similar
undesirable tesms the faithful evaluation [52] of "ordinary-Feynman-
rules" terms give, but the way of avoiding them altogether by the first
order method would seew preferable. What the first order method of course
cannot do is to make the non-renormalisable theory one is considering
here renormalisable; the § - formalism does it but it is doubtful
whether this is of any significaﬁce.

Another example with non-Feynman rules in first as well as second order
formalisms is that of "phenomenological Lagrangians" first obtained by
Gell-Mann and Lévy from the o« -model, and later considered by Stech

and Girsey, Weinberg, Schwinger, Cronin, Wess and Zumino, L.S. Brown
and othersf)Let us draw sowe conclusions: The method we have shown here
to obtain the perturbation theoretical expansion of Green's functions
(and therefore of scattering awmplitudes, see later) has the following
advantages over the Dyson Te™d B formylas

i) It is manifestly covariant in every step. The Dyson formula is so
only in QED and other such simple cases; it is not manifestly covariant
already in e.g. QED of scalar charged particles, not to speazk of
charged particles of higher spins. In the more complicated cases the
interaction Hamiltonian that appears in the Dyson formula contains non-
covariant (“normal-dependent") terms, and the contraction funciions

Iy

on-Feynman rules play a role in recent discussions of nonpolynomial
chiral invariant Lagrangian models, too, [59],Fe60].
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! s 4 n "
LT x> are not SF but its non-covariant "regular part SF regs

When one completes the SF i to the full covariant SF one finds

that the changes in the verti;es one must introduce to keep the whole
expression unchanged is Jjust the removal of the non-covariant parts

of the vertices.

ii) As we have seen above the Green's functions wmethod gives quite
straightforwardly the "non-Feynwan vertices" in wore complicated cases,
too.

iii) Finally, the Green's function method is most suited to perform
renormalization. This we will show in some more detail when we discuss

QED.

Since what one desires to have are covariant Green's functions, if one
igs satisfied with a perturbation expansion only, it appears most
economic to formulate that expansion directly in terms of covariant
Feynman rules and agsociated renormalization prescriptions, as done by
Stueckelberg and most completely by Bogoliubov and Fhirkov [jﬂ , and
reformulated by Weinberg [53]1 .

However, perturbation theory appears not always to be sufficiently
sharp 2 tool. B.g., for a particle of spin % in interaction with

an external electromagnetic field, Johnson and Sudarshan 151 and Velo
and Zwanziger [54] have pointed out difficulties that do not show up
in perturbation theory. Also when a theory is to possess certain
syommetries (expressed e.g. in the validity of Ward identities, see
lectures 7,8), it is apparently useful to formulate it as limit of a
correspondingly symmetric but regularized theory such that the Lagran-
gian formalism, Noether's theorem, etc., do apply. It is for these
reasons that the Lagrangian forwalism as presented in these lectures

is not outdated.

4.4 Reduction technigue

We have now to go from Green's functions to observables, i.e. scatter-
ing awmplitudes. This is done by the "reduction technique". After (4.38)

we have already constructed the non-vacuum in- and out-states:
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+
X5 x>

34 3"""
’Xﬁtd.t' IXOUJ-' >ou.|:

with f1"‘fr and gqee.8, as before positive frequency soluiions of the

equation

(M(A—|‘o¢”ar)(l=o . (4.17)

(It we take «" and [ not only Hermitean but also to satisfy P =tp7
«”::;:L“T we have in (4.17) a2 real eguation which allows the use of
real solutions. The positive~ and negative=-freguency parts of such

solutions are complex conjugates to each other. For the spin -case

A
z
this treatment means using a Majorana representation for the y's, which
can be made imaginary actually for any spin).

Now the S-matrix element (with sources)

14 R ?'4+ Lot
°Ht< IXQM.E o ’XOU.L‘ ’XI‘.v\ o ’X s >LH-

is to be converted into an integral cver a Green's function. The

asymptotic condition (4.34) allows us to write this as

< - > = Lline -+ lim Lim ceo Lim
Out in S > 02 Ty—> > qﬂ'-—)-—na Te -~ (4 55)
34 - t
X m - X ey (P (Pt >

where we can keep all spacelike surfaces well separated in the limiting
process. Then, however, since times do not coincide, we can replace
this by
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Lime - Lim Lim

Liwe
G > <0 G, > oo g:‘"—a-ao &, > -

AR PICO AL P AL e
g (4.54)

LG (KO X X o0 X ) ) >
- }
CoM ) e TR xd) dEyl ol

Assume that we are interested only in scattering in the theory with no

sources. Then 7>out = g = > , and we have

Glﬂsc(x1"'xmx%"'x£) -

= G(X,eeex Xtooux!)  + =— G&(...)6( ) + ouen

- m ] partitions

for the function in (4.54). Any G(...) of two arguments hereby gives
zero when both arguments are at + g0 or - oo but gives a "straight
through" term if one argument is at + e and the other at -o , since

in the expression

Lim  Lim ({700 a"de, <(x00 xO04+> «"ds, £(x) (4.55)

G400 G—a-0o

the VEV L (xx) X(x")), >, which is of the form "SF + correction", is
replaceable by "iS ) 4 correction" where the correction term does not
contribute in view of (4.21). (This will later be made more explicit
in terms of spectral representations, and is what is achieved by wass-

and amplitude renormalisation.) But because of (4.19)
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§5 300 Moo, i SPx-x) 2 olwe LX) =

= S@cwd*‘ fi{x) &, = (3,8) (4.56)

is the "scalar product" of the two positive-freguency solutions, i.e. a
¥Kronecker- § if we have an orthonormalized set, and 2k° S(K-%') (K wd)
multiplying a covariant polarisation vector product when we use plane
waves. The G with three argumenis do not contribute; G with four or
more arguments represent "subscattering" except for the G of all
arguments, which is the "connected" scattering amplitude for all m + r
particles here involved. For any such a connected term of at least

four arguments Gauss' theorem gives

Limwe o bime oo | goaade, o0 G (xeex) W hsy K=

T 0 e

(4.57)

- SLicx)[\mf&'—idhsr)--- Gl oo =) ("hﬂ-!-i.-x':ﬁ.*) RO A dx

Namely

2.3 <" G(x) =

= —i g0 (mbp *"“‘FS}) P - N O

+1300 (mp —a"d ) GCoux...)

whereof the first term vanishes, and similarly for the - oe -terms, and
a boundary term could only be a scalar product term of the tyve (4.56)

which, however, would be disconnected from the remaining part of the
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Green's function which is not possible for a connected function.

In recent literature the reduction formula is used very often in
connection with current-algebra calculations for spin 1 parvicles
where (if one uses positive metric) the T-product vacuum expectation
value differs from the Green's function since the zero=~components of
the vector fields are then dependent variables. Then one usually goes
first to the more familiar T-product and then argues that it is actually
for the scattering amplitude eguivalent to the covariant Green's
product since the difference term is, as we have seen, local, i.e.
proportional to § (x-x') or some derivative of it, and such terms do
not give singularities on the "mass shell". This is entirely correct.
For some very special purposes, like use of current algebra the T-
product is somewhat more convenient in spite of its non-covariance
because it allows a more direct use of e.g. PCAC. That for currents
(instead of, above, fields) the T-product is in general not covariant
is seen without reference to a Lagrangian theory from our earlier
argument that whenever an equal-time computator of two operators con-
tains a derivative of the & -function, the T-product of those opera-
tors cannot be covariant, and the presence of such derivative terws,
the socalled "Schwinger terms", is well known from the spectral re-
presentation of the vacuum expectation value of the product of two
currents. Electromagnetic current commutators and correlation functions
(defined by functional derivatives of out<:1 ﬁ>in with respect to
Agit after adding a term jPA;xt to the Lagrangian) have been investi-
gated e.g. in [181 , [19]1, [201.

5. BASIC EQUATIONS OF QUANTUM ELECTRODYNAMICS

5.1 Maxwell eguations

The Maxwell equations are

A . = = ,, = - a
E = ©$xB-3 (5.7a) , B = =¥ x E (5.1D)
JF = ¢ (5.1¢) , ¥-B =o (5.14)
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and imply

¢ =- 3.7 | (5.2
Classically, ¢ and ‘ﬁ satisfying these equations are formed from
matter variables in the particle approximation, or from matter field
variables, while in QFT they are formed from the guantized matter field.
We need consider their explicit form only later. (The formulas of
lecture 3 naively would give, if we use, as is more familiar, a complex
field instead of a Hermitean field of twice the number of components to

describe charged particles, in the first-order formalism

o

i = eytu«ty

-
i=eyp’<y
for "minimal electromagnetic coupling".) Passing to relativistic nota-

tion (with conventions as e.g. in Bjorken and Drell [2] , we introduce

the second rank tensor of field strengths

S AL (5.3)
where

Foi - El

Fi oo Eyip 35 = F, such that B 155 7k ’
and the current four-vector

i = (e, T . (5.4)
Thereupon (5.1a,c) and (5.1b,4) take the form

P, F" = g (5.5a)
and

PPTFVE 4+ O%FFY 4 VE®F - o (5.5b)
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respectively, while (5.2) becomes

piF=o (5.6)

(Another way of writing (5.5b) is by introducing the dual tensor

ﬁy.v E‘:‘i&rsuw'}\ FR’A
such that
f.=-8Y F.=--2¢e. 55
ol ij 13k
and
'%iaruuj\ Bpa™ =F"

Then (5.5b) becomes

Fal
apFr_L\) = Q.
Together with (5.5a), this sywmmetric way of writing the Maxwell
eqguations is the starting point of introducing "wagnetic charge" which
has received sowme renewed discussion recently, but we will not concern

ourselves with it.)

Remark: If we integrate (5.5a) over a spacelike surface and use Stokes'
theorem (3.71) we obtain

§o,FP ds, = §o.F ds, = L([a,F"gs,.+ 9. F™de,1 =o

because of (5.3), and thus ffde.=0 i.e. the total charge
must be zero which is generally not the case. The error is in the in-

correct use of Stokes' theorem, which requires the integrand R to vanish
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faster than in space~like infinity. We therefore conclude that

=y
M (more precisely: FOi) cannot vanish that fast in spacelike in-
finity if the total charge is not zero. (The same conclusion can also
be drawn by integrating (5.1c) over space.) One has to keep that long
range in mwind, and we will later always have to be careful when writing
integrals over all space, and in particular when manipulating them, and
convince ourselves that we are not committing errors. We could be more
careless if the photon wass were finite and the Coulomb potential re-

placed by the exponentially decreasing Yukawa potential.

5.2 Vector potentials and gauge freedom

Equations (5.5a,b) cannot be derived from an invariant Lagrangian
density since their l.h.s. transform like a vector or a third rank
tensor, and we have available as variable only a second rank tensor.
However, as in classical theory, this is no obstacle for the solution
of the quanium problem, if we can take i*‘ as given operator field
that commutes with F"Y , in pa-ticular, as a c-number field. Namely,
(5.5a,b) give

QF* = a%jr - prjv (5.7)
with the solution

FF(x) = F&2(x) + a"ﬁ (x—y )it (y)ay - o, . (x-7)i%(y)ay  (5.8)
out adv

where F;;’ satisfy (5.5a,b) with j¥= o, and

out
~-ik(x~-y)
ret(x-y) “ (2f o j g > o dk , £->+o0
adv ) -k~ pigk

The Maxwell energy-momentum tensor is syommetric

o = - FPEY, +LgM A g

Max

o (5.9)
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such that
KA v M
MHO\‘ = X gﬂak - )(hl @Hm:(
gnd we have
pv . AN
au ehnx = J‘)\ ): (5‘10)

where the r.h.s. represenis the density of energy-womentum transfer

from matter to the electromagnetic field. The commutation relations
that give for jH =

o (i.e. for the in- and out-fields) the desired
relations (2.22,23)

[:F"“ ka] =_La}"Fn1

J

(5.11)
@ ® _ PP _ Vs A
[M JF" ] = L(xa x" 0 ).F: (5-12)

__':(%_\-’R F}-l'\ _ %,H-'H- F_'V')\ i g)‘\)\- F"’\"— _ ?b’l FP“—)

are
[F™ (), FPM ] = i (gh™avp> - g"™ 23"0* +

(5.1%)
+ g7 0K9% - g"79%9%) Dlx-4)

where

D(X_Y) = Dadv(x-‘V) - Dret(x_Y) .

If j" commutes at all times with F*" and j¥Y , (5.13) also gives,

as follows from (5.8), the commutation relations of the "interacting"

F X itself. The solution of (5.13) that fulfills (5.5a,b) is easily
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obtained by analysing the Fourier transforms in terms of creation and
annihilation operators. One finds photons with helicities +1 and =-1.
For details, see e.g. [ 1] ,[2]1, 03], [6]1. These photons are emitted
and absorbed by the given current j* , and if j* can be taken to
commute with F™” at all times (or physically speaking, in the
approximation where we can neglect the reaction of the electromagnetic
field on the relatively heavy charged bodies), one obitains the S-matrix
and all transition awplitudes for the electromagnetic field easily in
explicit form in termws of watrix elements of j™ or products thereof
with respect to matter states. For details about this we recommend

particularly [ 5] and [ 127 .

This approach does not suffice ii the reaction of the electrowagnetic
field on the charges is to be taken into account, i.e. if the FPHV
cannot be taken to commute with the j* . We know the equation of

motion for point-like particles

d X (B = dx’m |, dxm o=
d_m 225 o e (EGxm) S0 4 20 X B (k) (5.14)

with T being the proper ftime
d7% = dxp dx” = (dx)* - (d®)H*

and j* is related to the particle trajectory x(r) by

g0y = e {odx®(ry S(x-xm) |

-

oo

5()‘)2 e Sd?(r)é(xr xéeyy |

(5.14) is in covariant forw
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» ()
d_ . SxFE E# i) d Xv
adr o T AT

Vo, y & dxo(T) —
= - [E77(2,t) 4, (R, £ ) === dx

where the r.h.s., which is essentially the negative of r.h.s. of (5.10),
represents the energy-momentum transferred from the electiromagnetic
field to the charged particle (one finds an analysis of these equa-
tions in [127]). However, for a consistent QFT treatment of matter and
electromagnetic field in interaction one has to have quantum field
equations and commutation relations consistent with thew, and the only
way known to obtain these is to start from a Lagrangian for the whole

system and to apply canonical gquantization.

Obtaining (5.5a,b) from a Lagrangian density clearly demands the use of
a vector field, the field whose necessity is also known frowm CED, where

(5.14) is put in Lagrangian form as derived frow

L(E) dt

]

—m kT 4+ e AN (x(0) dxpulty =

(5.15)

Il

—m AT a ot (AN (R ) qu (R E) dX

where the space cowmponents of the vector potential A" are necessitated
as "generalized potential" by the velocity-dependent force in (5.14),
the Lorentz force (Cf. e.g. [21]1 ). Here we have

FHY (x) = a#aY (x) - 24" (x) (5.16)
which is the general solution of (5.5b). (Our A* differs in sign from

the one used by Bjorken and Drell [27] .) Namely, it is iwmediate that
(5.16) satisfied (5.5b), and if (5.16) holds with sowe A™ then, since
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the most general solution of
Y AAM) - ¥ A A =0
is
aa? (x) = 9% Alx), (5.17)

the general A" differs from any particular one by a "gauge trans-
formation" term 2% A . Thus it suffices to exhibit some A" that
satisfies (5.16):

Consider

AFGy = [ EFPO) dxy = [ P (x4z) dz, (5.18)
X =]

where we integrate along an x-independent spacelike z-path %o obtain
for A" a simple transformation law under translations analogous to
(5.11). (In (5.18) we need not fear a convergence problem since F ™’
needs, for (5.18) to converge, only to go to zero more strongly than

24 in infinity which decrease is consistent also with nonzero charge.)

Now

DAY (x) - 3P AP = [ [ 3" F¥%(xwz) = M F* (x+=)] dzpe =
=]

fLo™ F'F(x+2)] dze =

=]

]

E*Y(x) = F* (e0) =

= F"* (x)

as required. Here we have used (5.3), (5.5b), and the fact that is safe

to set F"” (o) = o. (The differentiation under the integral sign is
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permissible here, since in general the new integrals will converge even
better than that in (5.18).)

Different choices of z-paths will give different gauges; in fact,

oo (D @)

( J‘ = f ) F*" (x+=z) oz, =

e o

- % fo{o“(x)[a"‘l:’“’— O XA (x+2) = (5.19)
v
= 0% Alx)

the two dimensional surface integral going over a sector with vertex at

x (respectively 0 for z), and with

Ao = =4 [d 0, FYH (=) (5.19b)
v

by use of (5.5b). (For this A -expression to exist FY* should go to

zero wore strongly than -%1 in infinity, if it does not go so fast but

more strongly than 1% i du Al(x) 8till exists with the property-belong
Dy (dp A(¥) = d;m (20 AL)) = o ). The gauges we have so obtained to

a narrow class since they lead due to (5.5a) to

f=-2

D,AAM(\:) = - g »jv(x-tz) ol =V

which vanishes in the absence of charges, i.e. A" +then satisfies the
Lorentz condition which is clearly a special property.
One might think to obtain a covariantly transforming A™ (x) by averaging

(5.18) over paths covariantly, which would formally yield

A* (= 3% Dlx-x) F* (x') dx’ (5.20)
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with

D(x) = - —45 sign(x®) D(x) .
(Exercise: Check this.)

Unfortunately, this integral does not converge since (5.7) indicates
that the Fourier transform F"" (k) of P*” (x) is singular on T Qs
and this is also the singularity of D(k) = - P %@_. In fact, we shall
later prove that there cannot exist a covariant vector votential that
could be expressed by FMY in any wmanner. (For a theory of massive
photons the coincidence of singularities just mentioned does not occur,
and the expression corresponding to (5.20) does give a covariant vector
potential).The best one can do is %o obtain a vector potential that
transforms covariantly under space rotations only, by averaging (5.18)
spherically symwetrically over straight line paths at a fixed time.

To the resulting Coulomb or radiation gauge we shall come back later.
From what we found about (5.18) it is clear that when we perform a
Lorentz transformation that involves an acceleration, the radiation-
gauge AM™ will transform like a four-vector only up to a gauge trans-

formation whose explicit form in terms of FM” can be deduced from

(5.19).

Equations (5.5a,b) in the solved form (5.16) are obtainable from the

scalar Lagrangian density

E-5

L = _ 4 F?u(ar\Ao__auA») +:|t__.. F}w ¢ Be +j,AAP‘+ %_‘—ZA,‘«AM (5.21)

where we have also added a mass term for the purpose of later comparison,
since the Lagrange eguations to (5.21) are (5.16) and (5.5a), the

latter in the mass-term amended formw

2FMY - WA= P (5,22}
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Putting (5.21) into the first order standard form would require to
introduce a lo-component x = (A", F°° ) and 10 x 10 matrices «’
and A . By a change of scale, if m2 £ o, one then obtains the Duffin-
Kemmer - Pétiau form of the Lagrangian for a spin 1 field. If m2 = 0,
the scale change is not possible, and the B of the normal form turns
out to be so singular, that the Lagrange equations do not deterwine

the wotion. We see this by separating equations of motion

°F° - it ey Pl L Al (5.23a)

2)° AL =t a‘A° -+ Fo" (5.25b)
from equations of constraint

Eii = VAl - YA | (5.242)

2.F = 0 4 wtAT (5.24p)

Equation (5.24a) gives the Fij occuring in (5.23a) in terms of Ai, but
(5.24b) can be solved for A° needed in (5.23b) only if n° # o in which
case we would have the usual canonical schewe. With m2 = 0, £° oceuring
only in (5.23b) is completely arbitrary while (5.24b) rather becomes one
constraint too many, and is compatibie with (5.23a) if and only if (5.6)
holds. Thus, a retarded or advanced Green's function does not exist in
the m2 = o case since the wotion of the variables is not determined by
any Cauchy data, and moreover the classical action integral has a

stationary point (or rather, wanifold) only if the current is conserved.

In more detail, for m2 = o we define of any three-vector fields B the

longitudinal part BT by
3 (x):= 9 [aY? 3,8 ] 0

where A = —2; ¢ is the ILaplacian and
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<_ A)ﬁdlxw = (5()&"—)("’)

the Coulomb potential as an integral operator.
B'T = i -B'" = (gf  +2'(-2)"23;) B -
is the transverse part. Here le is a projection operator that
commutes with derivatives (for fields that g0 to zero sufficiently
strongly in infinity such that the space integrals involved here
converge). Now (5.24b) gives the longitudinal part of F°F as
Feltl _ 5, (-a)*° (5.25)

and the longitudinal part of (5.23a) becomes the consistency condition

(5.6). There remains the transverse part of (5.23a),
aoFaLT _ __iLT - Fii (5_25)
We also decompose 2Y and have from (5.24a)
FL,;' _ aLA:‘T— 2 AT (5.27)
and from (5.23b)
3° ALT _ FoLT . (5.28)

There rewains from (5.23b)

@A - 2YA° 4+ BN
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i.e. with (5.25)
AL _BA° = 3 =) ° (5.29)

il . . 40 s
which yields A in terms of A~, or sowmewhat more naturally vice versa,

the general solution being obtained frowm any particular one by

A° ALL i A°+a°/\ ) Ai-l- i aLA

J

with A an arbitrary space-time function, which transition is the
gauge transformation (5.17). At = o gives the Coulowb gauge

A = (=2)7 (5.30)

while e.g. setting A° = o and determining 2* from (5.29) would be
less acceptable since it would amount to integration in (5.18) over a
straight line parallel to the time axis which sometimes does not give a

convergent integral.

If one inserts F”Y and A" in the decompositions given above into
(5.21), adopts for definiteness the Coulowb gauge and discards terms
that vanish by partial integration due to vanishing boundary terws, one
obtains a non-covariant Lagrangian and action integral whose Lagrange
equations are the eguations (5.26) - (5.28). This Lagrangian is one
possible starting point to treat OED along the canonical scheme and is
followed by e.g. Bjorken and Drell [2] .

5.% Canonical guantization of cuantum electrodynamics

1%t is extremely difficult, however, to make non-lowest-order calcula=
tions in the Coulomb gauge because for the unambiguous cancellation of
infinite expressions that arise in higher orders manifest covariance is
almost mandatory. In fact, Bjorken and Drell [ 2] proceed by first
manipulating the Coulomb gauge S-watrix, in which they are ultimately

only interested, formally into covariant form (Cf. also [22] ). We shall
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go the other way round and obtain for all quantities, Green's funtions
and not only S-matrix elements, covariant expressions, and will show
that our theory, the Gupta-Bleuler gauge approach, is equivalent 1o the

Coulomb gauge one, i.e. does describe the physics of QED correctly.

We now turn back to the Lagrangian (5.21) with 2° = o understood unless
said otherwise. As it stands it is gauge invariant only up to a four-
divergence which is, however, cancelled by a term coming frow the gauge
transformation of the matter field variable in the matter Lagrangian
not written here. We now add to (5.21) terms that do break gauge in~
variance but allow to quantize canonically. In the next lecture these
terms will be shown to be innocuous as just remarked, essentially be-
cause they only restrict the physically unnecessary freedom in (5.23,24).
We choose

L = -4 F,., (2"A-3°A*) « % P e

P +jHAF+

(5.31)

~ -1 (PA)*
where we have added also source térms KB and 3I" A, for application
of the Peierls' variational method, with the c-number function X later
set equal to zero but possibly retaining IX 4o representing an ex-
ternally given c-number current distribution subject to 8. I* = o.

B is to be a Hermitean scalar field, and B a real number to be fixed

later. The Lagrange equations are now

FrY

!

DAY - BUVAR (5.32)

o F"Y = R Ll - Tl - (5.33)

2

[

op A" S B + k| (5.34)
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where we have assumed that the functional expression for j' does not
contain FM” | A® | B or their derivatives. (Although the form of j*
given after (5.2) satisfies this reguirement, this is not quite so
trivial a point as it wmay seewm. We will discuss this question some time
later in detail.) To depart from the original situation as little as

possible, we will keep

-0 (5.35)

which is here to be taken as a consequence of the matter field ecuaticns,
since (5.33) no longer demands it by itself as a consistency condition.
The fact that (5.33) is not the Maxwell ecquation (5.5a) will later be a

central voint.

To explain (5.31), we note thst due to (5.34) for s = o the B-term in
(5.31) plays simply the role of az Lagrange multiplier that enforces the
Lorentz condition 92,A" = o (respectively, with source, dp M = K)
to hold. In CM a constraint imposed by a Lagrange wultiplier terwm con-
tributes a constraining force to the equations of wotion, the precise
value of which is to be calculated with the help of the constraint it-
self, In GM the Lagrangian multiplier must becowme, for consistency, a
g-variable, and in particular in GFT a guantized field; in (5.33) we
have the amended equation of motion and in (5.34) with s = X = o the
constraint. Once we have recognized, however, that we wust admit an
extrafield, we can change the dynawilcs of that field a little by the
cuadratic B-term in (5.31), which turns out to be useful since in OM
we also have to keep an eye on the siate space and this happens to be
simplest with s having a particulsar nonzerc value. The "transition to
suitable varisbles" that in CM often relieves the need for a constraint
(think of the Lagrange equations of motion in generalized coordinates)
is here an operator gauge transforwmation. We will in the next lecture
see how such a noncovariant transformation leads us from (5.31) and its
variables to the Coulowmb gauge. In lecture 7 we will treat for coumparison
also the case of nonzero photon mass where, in addition to the non-—
covariant operstor gauge transformaticn to the Tukawa gauge, there

exists a covariant one to the Proca or Lorentz gauge, the one that is
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most natural in that theory anyway; however, the way to it via a
Lagrangian with constraint built in by extra variables does have

advantages as we shall see,

The Lagrangian (5.31) is of the canonical form L = pq - H(p,c,r)
discussed in section 1.1.2, with the constraintequations Hr(p,q,r) = 0
solvable for r. The independent field variables are g = (AO,Al) and

p = (-B, Foi), with the dependent variables r =(Fij) to be obtained from

(5.32). The cancnical egual-time cowmmutators (7.21) then read

[7°%(x), A9() ] oo g §83(3-%) (5.36)
(3G, 4°() 3, o Tt 57 (3-7) (5.57)
[F(x), 4°(3)] oLy TO (5.38a)

[B(x), A*()] Lo _ O =0 (5.38b)
[ 7°%(x), 7°3(y)] oo " 0 (5.38¢)
[°%(x), 3(y) ] oo T° (5.38a)
(26, 23] o = o (5.38¢)
[a(x), 47(y) ] o0 T (5.38¢)

Note that we have here assumed tha®* j! does not contain hidden time
derivatives of FOi, AF', or B. Although this seewms already implied in
our remark about (5.32) - (5.34), it is here a somewhat stronger assump-
tion since ETC are more singular objects than single terms in the field
equations. In fact, we shall later see that ji does contain the fields

2% 4w a hidgden manner, such that, however, the equations (5.32) - (5.34)
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require only a somewhat elaborate writing of j* in (5.33), but no

change of (5.36) - (5.38) takes place since no time derivatives, even

hidden ones, occur in j* .

We emphasize that we are not discussing the wost general theory with

a formal appearance similar to QED, but QED ultimately defined by its
famous renormalized perturbation series solution itself, and that we
want to formulate in a reasonably logically consistent and intuitively
satisfactory way a theory for which that expansion is a formal solution.
With wmore elaborate mathematics the points glossed over here can be
cleared up [55] (except for, at present, the state space problem of

the infrared catastrophy, cf. sect. 6.2)

First we will derive sowe imwmediate consequences frow the field equa-
tions and the canonical commutation relations (CCR). We will take these
as source of information about the so far only vaguely defined term j*
in the equations of wotion, for which we will use its vector character

and (5.35). We therefore separate the equations of motion

3% w 9P o 28 (5.32a)
e e M A I (5.332)
°B = + aiF°i Y (5.33b)
°8° a-34" +eB K. (5.34)

from the constraint equations

j, i

Frd o 2149 _ 2dy (5.32D)
and rewrite the imposed property of current conservation
%% = - 23,37 . (5.35)

We now differentiate in turn all commutators (5.36) = (5.38) with re-
spect to time and obtain in that order (from (5.39) till (5.48) =all
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commutators are to be taken at equal times):

[5% &1 = (5.59)
[3% 2°] = o (5.40)
[3%, 2°] = o (5.41a)
[5° 4*] =0 (5.41D)
4, 0]« [0, 5] - (5.410)
[4%, B | " [7°%, 5°] = (5.414d)
[5° 8] + [3,3°] =o (5.41e)

(5.41£) is an identity

Here (5.35) has not yet been used. (5.59,40,41a,b) can be combined to
[3F, &% = o (5.42)

which means in view of (5.36,37) that the current operator does not
have a hidden dependence on F°t or B.
The equation (5.34,35,40) give

[5° 2]

o if s #o (5.43)

while (5.32b,35,41b) give

(5.44)

=
.
Q
=
Qo
[E8
I
I
O

Thus (5.414) becowmes

(5.45)

—
[N
’._l.
-

o
—
I
o
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and time differentiation of (5.41f) gives with (5.33b,35)

[i% 3°] =o | (5.46)

A ;
whereas (5.44) gives upon time differentiation
. . .k i o i

5% *1 = - [o4% ¥ - [5° 2's]. (5.47)

From (5.43) we see that the last term in this equation vanishes if 8 ¥ o
but later on we shall see (ef. (5.53)) that this is also generally true.
Therefore the charge-current-density commutator is a derivative one.

Commuting (5.38c) with ¥°% and using (5.41¢) formally gives (ef. [23] )
(<5~ ) [ 3% 791 = 0 for all 1,3,k

which mweans that

Litoo, ;:o:\(u)}xo ~ S(R-T) (5.48)
=ij°

i.e. it does not contain a derivative of a & —-function term, such that

from (5.47) we learn that [jo,ji] contains no higher than first-order

space derivatives of a 4 -function. The space integral over the jo-

argument gives zero for this commutator, i.e. it is a pure "Schwinger

term”.

Altogether we have learnt that j° commutes with itself and with all
canonical variables of the photon field, i.e. has no hidden dependence

on photon field variables, while ,ji may contain Ak in a hidden wanner.

It must be stressed that all these conclusions are sowewhat formal in
the sense that the existence of ETC and their termwise differentiability
is taeken for granted, both of which assumptions are open to debate. In
general the justifiability of those formal manipulations depends on

what matrix elements one is considering, because the strength of the

singularities depends on the states between which the operators are



81

sandwiched. The reason for this can easily be seen from the more satis~
factory discussion of ETCR due to Wilson [24] which is based in the

analysis of the swall distance behaviour of operator producte:
A(x)B(o) = = Ci(x) Oi(o) + nonsingular operator
L

where the Ci(x) are covariant, at x —0 singular c-number functions.

This expansion implies [ 24]
[A(x), B(o)] = = E, (x) Oi(o) + nonsingular operator
i

where the singular functions E. (x) are simply related to the C. (x) Up
to every finite order of perturbation theory the functions Cl(x) give
rise to singularities (apart from logs) of order ( x) da+dg - i

where the d's are the wass dimensions of the fields, provided the local
operators 0.(0) do have non-~zero matrix elements between the two states
considered. E.g., the most singular coefficient E (x) is in general the
one of the unit operator such that it does contrlbute cnly to the VEV

of the cowmutator (if one only considers connected diagrams).

In addition, we have neglected the presumed need for renormalization,
i.e. assumed that the scale factors it involves are finite. Most of the
relations we have so derived have been obtained ip lowest order of per-
turbation theory for renormalized QED by R. Brandt f25] y hovever the
commutator of current and charge density is in lowest order perturbation
theory more singular than we obtained, which difference can be traced to

infinite renormalization in that order (of the current correlation function).
Next we consider the field equations. We obtain from (5.33) and (5.35)
i.e. B is a free field with only the external source, if, for wvariational

purposes, it is kept arbitrary instead of restricting it to 2. 7" =o.

Using the Green's function introduced in (5.13) we obtain

(87 524y B(x) = | D(x-y) 0, 83%(y) ay
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whereas Peierls' formula (3.29) gives

1, =i [ [B(x),(Ax(3)SI"(y) +B(x)SE(y))] oy

Therefrom we find the CR at arbitrary times

[B(x), 4, (y)] = -i 9, D(x-y) (5.50)

and

[B(x), B(y) ] = o . (5.51)

Equation (5.50) actually follows also frow (5.49,37,40,38b and 410), and
thus with (5.34) (5.51) follows if s ¥ o, while for & = o it appears
that (5.51) is an original contribution of the Peierls' principle on
this formal level. (5.50) gives with (5.32)

[Boo, F* ()] =0 (5.52)

and (5.51) gives with (5.33)

[ B, M()] = o, (5.55)

relations that we will later interpret as showing that F *” and j "
are invariant under "gauge transformations of the second kind" (of a
very restricted class, however, see (6,28». B is not an ordinary free
field of zero mass since as such it should have a commutator with it-
self propertional to D(x-y) instead of 0, ecf. (5.51). But (5.50) shows
that B(x) is not identically zero either,

5.4 Spectral representations

We eliminate F"' frow (5.32,33) and obtain with (5.34)

DAY = — " & (s-) "B -1T% 42"k (5.54)



83
which suggests the definitions

Ain = A" = Deie (-3F # (-020B 278 4 0nk) (5.55)
out adv

However, for a vector field the commutator even if it is a c-number can
have various forms, so in order to investigate OAE:t we will now use a
different sort of argument.

We set in (5.31-34) J" = o, K = o, whereupon, assuming that to (5.31) ie
added a scalar matter Lagrangian and that j* 4is a covariant vector
field, we have a manifestly Poincaré invariant theory. Assuming that a
vacuum > exists with P > = M"> = o and that all other eigenvalues
of P* and P*P. satisfy P°’ > o, (PPP”) > ©, the vacuum expectation

value (VEV) of the vector potential operator must have the form

. p)
-l B (x-y) Nloy >

LA A )P = < AN e =
(5.56a)
(xR S(P-k) A%(0) >
Now for covariance and spectral reasons we must have
i P-w) A () =
<A CO)cS( ) (5.561))

= 2Ty 7 [-gn %g (K2 + KFK” g (kM ] O (%) O(KY)

with “98,.(k*) real due to Hermiticity (a concept to be clarified in
the present context later). There is no contribution from the vacuum
intermediate state for covariance reasons. (Such contribution would
have given a & (k) and not a 5(k2) singularity.) Inserting (5.56b)
into (5.56a) gives

A" () A(y)Y> = (5.56)

Lo
= fdﬁz [_ °§4(3€L) %)w _ 03,_(56") 9:*9: ] c+)€x g, k-)
-0
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and therefrom
< Ao, A9lr=

~ (e -0, g" - 22, (v D] | L & (x-y, 3¢ (5.57)

where the lower liwit (-o) of integration is to indicate that we expect
a singularity at »* = o frow one-photon intermediate states which is to
be taken in full. (The interchange of integrations in the derivation of
(5.56) can be shown to be harmless.) (5.57) shows that the VEV of the
commutator of the vector potential vanishes in spacelike distances for
covariance reasons alone; on the other hand the anticommutator could
not vanish in all spacelike distances without °¢g¢, and °g, being
identically zero. This is the famous "axiomwatic" argument that vector
(as also scalar and all tensor) fields cannot be quantized with anti-
commutators but only with commutators. That A¥ is relative to the v
of the Dirac or other matter field also a commuting (rather than anti-
commuting) operator follows from the (possibly generalized, i.e. not

ul

restricted to spin 4 fields) Dirac equation

(idpyh-m)y = —e Apy” W

gince the r.h.s. must have the same even=- or oddness property as the
l.h.s.

From (5.56) follows with (5.32)

< FMD{KS F—K’/\(\j‘]> &

oa ¥ A w  pmD w  wA (5'58)
— jo(a«'-" ogdﬁ'g(z‘) (9”97'%'“ — 9”9 '%"K-a“é) %_ + a"g % ) ¥

L A Oe g, e
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the commutator again being obtained by replacing 145&) by i& .

Since the field strengths F"° are observable quantities, (5.58) should
be interpretable in an ordinary QM Hilbert space, i.e. the metric of
intermediate states in (5.58) should be positive definite, for which it

is necessary that

°¢.(x") 20,

\ i g (5.59)
while no such condition can be imposed on °gm(x?) on these

grounds, since when adopting (5.31) we did introduce unphysical variables
also. Comparing the commutator forms (5.57,58) with (5.36,38) gives

{ dat ep ) = 4 (5.60)

-e

and

folrd 20 ) = o (5.61)

while (5.56) compared with (5.50,34) gives

.6
°g (¥¥) — ¥ %8 (w) = s S | (5.62)

We note that °g4(}c2) in (5.58) wust be the same function whatever
formulation of QED one chooses again since F"" is an observable field,

i.e. °¢,(»*) 1is "gauge independent"”, while ° e, (») is not.
The requirement that our theory describe massless photons imposes on
°g, (%*) the form
2 o
cg, (3t = Zz d0¥') + °¢ () (5.63a)
with

o & Zz < 1 (5.63Db)
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and

°2, () 2 O ~ (5.63c)

Sa!&-?_?' ag,{(kﬂ") 2 1 “23 (5.63d)

where we have separated out the singularity at ‘H? = 0 this function
must have due to the contribution from matrix elements

£PM"(x)| one-photon stated in (5.58).These matrix elements are the ones on
which the free-photon treatment is based (in connection with (5.13)),
and Z5 = o would seem to indicate that in the theory there are no
photons then. Actually, the intricacy of QFT seems to admit Z5 = 0

even with massless photons as we shall see. Z3 = 1 can be excluded from
axiomatic arguments that show that in this case the photons are non-
interacting particles, which is uninteresting. The suppression of the
one-free-photon contribution in (5.58) due to (5.63a,b) has to be taken
into account when scattering states invelving real photons are to be
normalized correctly. The simple technique of "photon amplitude renor-

malization" which takees care of this is treated in 5.3.4.

We now can see that in (5.48) the coefficient of the & ~function cannot
vanish except in the trivial case of noninteracting photons. Namely,
from (4.33,58d,58) and the property

ha(ay) | - = 5 (8%

&) o]
x =y
we have

<RI 8(°5°) = -1 g ST (E) (A o) et

-

One has to convince oneself whether the integral on the right hand
side exists, if not there might occur derivatives of the & =function

as discussed by Brandt [25] . The nondiagonal matrixelemwent of this
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coumutator between one-photon states is zero (in contrast to Brandt's

calculation).

We now discuss the choice of the parameter s 1in the Lagrangian (5.31).
|
Equations (5.61,62,63a) give %

b oé\" (k“)

A £ ly 4 z ‘ !
2g, O)= —ETEL 4 (s-Z3)8'ae) - SGe) (ot —Ea (5.64)

with the last integral positive due to (5.63¢) and °¢, (3¢) #o.

The first and the last term on the right hand side of (5.64) are
"gauge-independent" while the widdle term expresses the only gauge
(i.e. s~) dependence of °¢,(x*) in our narrow class of gauges.

The most natural choice would be g8 = o, 8ince then (5.34) would show
that in the "physical"™ case K = o the Lorentz condition is satisfied
for the vector potential. However, this is not a Lorentz gauge in the
classical sense since in (5.33) there is a constraint force 8"B that
is aﬁsent in classical electrodynamics (CED) and only due to which the
Lorentz condition can be satisfied. Thus, there is no particular wvirtue
to the choice s = o as compared to others. However, this "Landau
gauge" is often used since it looks the most natural in terms of Green's
functions. The "physically" simplest gauge, however, is the "Gupta-
Bleuler gauge” 8 = Z5 which wakes the bizarre terw in (5.64) vanish.

It i1s extensively discussed by Kédllén in his famous Handbook article
[8] and we will henceforth use it unless stated otherwise.

We now form the in and out fields by (5.55) or, more generally,

AL = A - { Drc (3™ (5.65a)

owt adv

This shows that the Fourier transforms of °A". are proportional %o
5(k2) due to a °A%. = o. However, they dig?;r from each other, and
we consider how the :;ngular Aé:tupart is obtained. In Fourier trans-

forms, (5.65a) is
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QAJ.‘ (K) = Al - —?—j——'a_—\;: [(—-KL) ,b\r‘-(‘“')] (5_65b)
in _ < i

owk

where the last product is nonassociative, since

[ xE(x)] =0 ; [ : - xIS(@ = &(x)

X £ i X% 1k

the difference being in coordinate space the boundary term from
partial integration in (5.65a).

Now

= - 2 eimsiga(x) 304 (5.66)

~ K2 zig K =

and in words (5.65b) means: look for the principal value and 5‘{k:) '
parts in &Y (x), cowmplete the principal value paris in the way pre-
scribed by the second part of (5.65b) and by (5.66), and subtract them
from A" (k). The é(kz)-aingularity that survives is the l.h.s. of
(5.65b). Frow (5.63,64) we learn that neither °g,{¥*) mor "g,(w)
have a principal value singularity at mg = o (note *that the integration
in (5.56) goes only over x? > 0), therefore in (5.63a) the whole Zg
term and the last term in (5.64) are associated with the in and out

operator, i.e. in coordinate space using the abbreviation

od o A ( a.)

S&}g B ¢l (%.67)
}LZ

+0
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we have

i

L NGOTAL > =

ouk

LA 6O AV (g >

wut

(5.68)

1}

= <AL N9y = [-g7Zy+a 3] (D ey

Sut out

for any combination of subscripts. Assuming that the in-in and out-out

commutators are c-numbers as discussed after (4.38), it follows that

[ aAfﬂ Lo AT (9] = [-%rv Z3+a9’;a‘; 1. Dlx-3) (5.69)

LA
ouk owk

for either the upper or the lower subscripts., In analogy to the dis-
cussion after (4.33) one would write (5.65a) more elaborately as

L T 5, AL odds” o U L (FGo 5 AP de’ (5.70)
ouk G > Fe
7 = 5
(where & = -0 + 0 and qQ £(x) = o)

As we shall see in the next lecture, if s/ Zﬁ' the theory contains
states that cannot be obtained by operating with °Aﬁ:d on the wvacuum.
These "dipole ghost" states require further creatiogu;perators. For a
discussion of this topic we refer to N. Nakanishi [28] . This complica~
tion, which in particular takes place in the Landau gauge 8 = o, is the
reason why we chose the Gupta-Bleuler gauge 8 = 23 as the "physically"

simplest.

2.5 Amplitude renormalization

We note that it would be convenient for scattering calculations to con-
vert the factor Z3 on the r.h.s. of (5.69) into 1. This is done by
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introducing

o -1/2 ,p
Avon ™ 25 A

to be accompanied, to keep the egquations (5.32-34) simple, by

v ) -'1/2 pray
Fren 1= Z3 F

- +1/2 B
ren 3

such that (5.65) is replaced by

A,“ = Z;A{z .A ,:.4. = AF - S Dwee (O Ate»)

ten
;u-t owt onda

or the more correct version from (5.70)

with (5.69) replaced by

[ A G, Aiit9] = (9" +213[8)) ¢ D (x-u)
@k

et

where

(5.71a)

(5.71b)

(5.71¢)

(5.72)

(5.73)

(5.74)

(5.75)
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We also introduce

-4

Qi X 1= Zy "8, 0D (5.76a)
§d (xf) = 23_4 o?ﬂfaﬂz) (5.76b)
such that
g, (w?) = S() + ¢,06) (5.77a)
A < zZ;' ¢ e , (5.77Tb)
g, 0¢) 2 0 ] (5.77¢)
z" =4+ (e G ady (5.774)
Up to now we considered the covariant theory with J" = o, X = o0 only

to define 23' which we will use in the presence of sources. The equa-
tions (5.32-34,50) then become

FRY o ar AL - DY AR (5.7}
B s = 255 g e 2, E TP 4 27578, (5.79)

DA = Been ¥ 277« , (5.80)
[Bren 09, Aveld] = =L 2 D (x-y) (5.81)
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We now use (5.80) with, since K no longer serves any purpose,
K =o

to eliminate B__  from (5.79) and find with (5.78)

N 2
OM. = = e = Tim (5.82)
where
L , BT Ny
h = Zgo 47+ (1-25) 3, B
. L R (5.83&)
and - -
IS g pia
= Z
j-&xl: = (5-3311)
Equation (5.35) leads to
a»j;;n =9 (5.84)
while (5.49,51-53) give
O Brew = - al’“ ]):"‘h ! (5-85)
[ Bre. 9, Been ly)] = © , (5.86)
[Bren 0O, B2 ()] =0 , (5.87)
[ BrewO), 45 w] =0 _ (5.88)
Equation (5.82) with (5.83) has the following features: The Je*;t
appearing on the r.h.s. of (5.82) is the coefficient of A = . in the

Lagrangian density (5.51) gsuch that the Green's functions becowe par-
ticularly simple. For this reason it is Jé;t rather than J * which we
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have to identify with the "external current" since the numerical
magnitude of such current is not determined by the Lagrangian but by
the static or almost static effects of charges, and for this the factor
multiplying the renormalized field (which has normed anmpld tude for one-
photon state) in the Lagrangian matters, The renormalized current
(5.83a) is on the basig of (5.35) alone conserved without need of using
(5.80,85), and is not singular on the photon mass shell k2 = 0 in con-
trast to e.g. the r.h.s. of (5.79) which differs frow the r.h.s. of
(5.82) by a term 0" B, Which according to (5.81) is there singular.
It follows that due to vacuum polarization, i.e,. Z3 <1, also j" is

singular on k2 = o0, a8 is also seen ﬁrom the formula

A = Ze gt e f2s -1 I BB =T, )

L

which is obtained by inserting (5.79) into (5.83%a).

From (5.79) and (5.83a) we find

4
[ Bren (), Wly)] X = [z} 1500, w1 =
X'J‘io X =I:j“
(5.89)
= [ ﬁ‘ort“(,() ) I‘P(lj)]xa=- '10 = - ei’!.lﬂ- ’LV(%) (‘53(;—'9)
with
. 1/2

€ren ™ © Z} (5_90)

where we assumed j° to be of the form glven after (5.2). Together with
(5.49) and

[ Bren 00 Yl =0

o

from the canonical independence of Bren and (5.89) leads to

[Bren (0, ()] = - el Dix-y) Wy (5.91)
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a relation to be used in the next lecture.

Finally, (5.832,42,36) give

n
1

e j % ' o H
[ J“'en (x)l AJ(LJ)J)(’,_&’ [ 23 :] CY) * (1—23)3"-1-: ()(J) A {HJJX‘-‘="“I-

(5.92a)

L (1-2Z3) Z,

1l

Dy ¥(ZX-3)

whereas (5.38f) implies

(5.92bj

il
O

e 00, AT o "

6. STATE SPACE OF QUANTUM ELECTRODYNAMICS

In this lecture we will show that the new degrees of freedow introduced
by the choice of the Lagrangian density (5.31) instead of (5.21), or
rather the Coulowb gauge Lagrangian derived frow it, are physically
innocous. To this end we analyse (5.74).

We first remark that it is simple to write the theory such that in
(5.74) the 2M~term is absent. One way define

v

A = A () + M PP B, (0 (6.1)
such that

Al sy = Atw(v) + B R, (0

owt
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(assuming for simplicity 0 Jé;t = o in (5.85)). Then (5.74) becomes
with (5.81) and (5.86)
LA 0o, AL (9] = ~9”" L Dlx-y) | (6.2)

owt ouwt

The relation (6.1) is an operator gauge transformation (ef. (5.17)). It
is accowpanied by a corresponding operator phase transformation (cf.
(6.28)) of the matter fields operators, the Dirac (or generalized Dirac)
equation for these is then restored. The new operators serve for all
physical purposes as well as the forwer ones, moreover, one can write
for the new operators (in their unrenormalized version) a Lagrangian
density differing of course from (5.31) but being as canonically sound
as (5.31) is, with A° a dependent variable. The operator gauge trans-
formation mentioned here has been pointed out by Rollnik, Stech, and
Nunnemann [29]. The Lagrangian formulation of this gauge is contained
in the family of Lagrangians proposed by Nakanishi [28] , which also
inveolve state spaceé different from the Gupta-Bleuler one while the
above special transformation does, of course, not alter the state space.
We will, however, analyse (5.74) instead of (6.2) since it is at least
as natural as (6.2), and if we do not fix the value of M by (5.77),

more general.

6.1 Gupta~Bleuler gauge

We now describe the structure of the state space of the photons. We
proceed in three steps. First we construct a space Tgss which necessari-
ly wust have an indefinite metric. Then we restrict in an unambiguous
Lorentz invariant way to a subspace %%P of states with positive semi-
definite norwm. The state space of physical photons is built up by

equivalence classes of HP as state vectors.

6.1.1 Construction of Kep

Let k be a positive lightlike four-vector, i.e. k2 = o, k° >o0. We
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choose two spacelike unit vectors e(1)(k), 9(2)(k) orthogonal to k and

to each other (in most of the following we will suppress the argument
k of the vectors introduced):

e
(€c4)) _ (efL{)l _ , pCN ) (6.3a)

Ke® - ke™ o o (6.3D)

There is a unigue k such that

A
e & =4 e . Re™ _o (6.4)

The vectors

A
£o) K 27 It 3 -
e : = o * e( J:,-:- e e % (6'5)
V= 4 Va2

with some ' « > o form together with 3(1) and e(z) an orthonormal system
of four-vectors. Then

(o) _ (o) 1) () () () c3)  cy)
? v = e.r e = 6}, €y - & » (4% - e.',,. € ]
6.6
A A () () z) ) ( : )
= Kr K,} = i(,,, K‘; = er- Zy - {’,F e.,

The most general set of four-vectors 9(1), e(z), % g0 related to k is
obtained from any special one by applying a transforwation from the
"little group" of k (i.e. the proper Lorentz transformations that leave

k invariant) to any such set (when the orientation of 3(1), ?(2), 3(3)
is fixed).

We now set

i . ;
ko _ A o % - X ) L) p ¢ A .
A T o foix 0080 L & [ Z ant) e 04 pEO KT + el wr]

4 Q}l““"[% o\vbtvc)drefu’“('-‘-) + bkt kF (k) + co)t kr]} (6.7)

i=a
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(where we supress the in -index of the a,b,c), i.e.

out
etu(KJ ' e
=-L=£ L x - g :
Qi (k) s = -k B [ ™% 2, Al O ST P 4,2 (6.8a)
b(K‘) = i K}u L KX Ly }a.' c u
(2m)¥ S “ ?» Al":.r s (6.8b)
K
: &5
clw) == | o o0 AN (k) g
(2my34 j i v A\;:=x5 ) (6.8¢c)

whereby we have used (6.6) and

()

A 00 = = [ 0P (eeg) B AL () et

out Bub

From (6.8), or more quickly by inseriing (6.7) into (5.74), we find

Lo, [ (4377 = 2x® 83(k-&') g (6.9a)

_ " _ ° 3> -J_“-/-u .
[b(u) }C(K'ﬁj = [ clw) P bu)* 1 2R SR~ ) (6.9b)

I

[ctx),cfu‘ﬁ'] =2M 2k® §3R-K')

+ (6.9¢)

and all other commutators vanishing. Here k° = k! , and the combina-
tions on the r.h.s. are the familiar ones that appear in our covariant
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normalization @ (k°) 5(1:2) dk. From

[PL | A% ] = =" A% () (6.10)

sut out out

(which is a consegquence of covariance with P;ﬁ = Pgﬁt = P*  if JV = o,

and essentially the definition of the photon-variables part of P{;
otherwise) we find

out
[p&k y aied o=~ KT e (6.11a)
L DEL, b(ud] = -« p(w) | (6.11b)
[ PE:* , ey 1 = - " e tw) (6.11¢c)

and the same relations with + signs on the r.h.s. for a;, v, ¢'. It
follows in the familiar way thata;, b+, et acting on an eigenstate of
P* ox P{; change the eigenvalue by + k" , and similarly aj, b, ¢

out change it by - k" . The part of P" or Pi’; which does

out
not commute with the photon variables is therefore, using (6.9),
" ur = +
Pro pueton = [ 00N SILZ a; 7 ai ey - bl elx)

ok

(6.12)
- () + 2H pugt bt ] k™

where we have already ordered the operators such that if we define the

vacunum state with respect to the in -photon-field by
out

a, (k) > =b(k) 2 =clk) > =o (6.13a)

ke owt pea

for all k
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normalized by

in £ |1 in - 1 (6.13b)
out out

this will be the eigenstate to lowest energy and satisfy

P—
F'in > in =0
out photon ) (6.14)

‘The equation (6.13) can be written on account of (6.7) as

Ay (+)(x) S =0 . (6.15)

l .
out owt

We now form the linear space 13‘53 from the basis vectors that are ob-

* repeatedly on the vacuum. The scalar

tained by applying a;} b*, e
products between any basis states so obtained can be evaluated using
(6.9,13) alone. States obtained by using a:, a; only behave in the
manner familiar from free zero-mass scalar particles. States that
involve besides a:;z one or more b have scalar product zero with all

T and b?

states that do not involve c¢c* . States involving besides &y 5
b

also one or more ¢’ yield indefinite scalar products.

6.1.2 Restriction to %,

Thus, if we define a linear subspace %q, of ..z by the condition
b(x) B, = o for all k (6.16)

which due to (6.9b) is the subspace of Z2¢a  Spanned by the basis
vectors not involving ¢*, the scalar product in ﬁkp is positive sewi-
definite. In fact, each vector of i&p can be decomposed unigquely into
a linear combination of vectors involving a:,z (applied on the vacuum)
only, and a linear cowbination of vectors each involving one or more

b" , and to scalar products only the first part contributes.



100

Now, in contrast to a, 2(1:) and c(k), according to (6.8b) b(k) does not
9
involve any arbitrariness. In fact we can write

= ._/1_.-— f‘KX = " (k) O{Gp
b(“-) C:;_Tl-)s/; g {9;\& ) a;,. AL:;

]

.1’
e e
(zn)y*z *g ?I" (

(K% 5:’ Ar'_“ (k)) Ag” _ (6_17)

owt
A 7 [ v
- [ x ¥, (x) d&
(am)>2 fz o 9"“ A aeon )

whereof the first term wanishes due to

2 g
a (thcx 9 /5\1"‘;.~ (x) O&Q—p —
r

owlt

= 5 3, fat " ¥ Al (98) ds,

ot

and

where Stokes' theorem has been used which is applicable here since b(k)

should actually be considered integrated with a swmooth function on kz-o

which replaces e:j'k:t by a fast-decreasing function in x. Furthermore,

]

r . a4 ;
N, 09 = Bp Aeenl0 # [ Drev te-g) 37 [ ] (9) + T (] oy -

(6.18)
Been (04 im  [D0ey) [§7 () Wls)] oASpty =

S Fos

= Bf—cn(k>

because of (5.84) and the assumption we now make,
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RN (6.19)

and the last integral in (6.18) vanishes since j ' + J;;t is (here we
utilize the Gupta-Bleuler choice 8 = 2Z;) not singular on k° = o, cf.

(5.82). 4As B.op 18 due to (6.19) and (5.85) a free field, (6.17,18)
allow to rewrite (6.16) as

BLon (x)(+) ﬁ& . =0 (6.20)

which is the famous Gupta-Bleuler subsidiary condition of physical
states with positive sewi~definite metric. Clearly, f%Q like ﬁ}aa

is defined in a Lorentz invariant manner. The scalar product in by co
is invariant since its evaluation is based on (5.74) only and so is its
restriction to %4. » such that the positive semi-definiteness of the
metric in %p is aleo an invariant statement. The intermediate use of
the systems e i)(k) served for convenience only; the scalar product

between any in -photon-states Il¢7 S| q'? can also be wmanifestly
out

invariantly evaluated by the formula

; © s Kt P ()
<ol > = 2 gy ([ <l A e P, C0
o out

swt

[

Zr e -
T % I T (g -2MBE B

% )
(6.21)
v (+) "
.‘4 At,“ (x,) -+ AIJ C+)(x"-)1c€f>_ dass ... olg b
e ouwk ::.»

owt

(Exercise: check this)
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6.1.3 BSpace of equivalence classes

In order to obtain a Hilbert space we proceed by completing ﬂap ab-
stractly to a pre-Hilbert space. But there are still states with
vanishing norm. As discussed in Sect. 6.1.1, each vector of %y o can
be decomposed uniguely into two parts, one of them with positive norm
and the other with norm zero, lying in T%+ and ﬂ&o , 8ay. Unfortu-
nately this decowmposition of ﬁbp is not Lorentz invariant. Whereas
-%P and %o remain invariant under application of a Lorentz trans-
formation f,“ does not, i.e. a vector belonging to ‘ﬂw in a certain
reference frame may get a cowmponent in 'ﬁa,o by a Lorentz transforma-
tion.
(Exercise: look for an example)
From the validity of the Schwarz inequality in %TF we know that

also %ﬂ igs a linear space. The factor space

% ree E&P/ﬁao (6.22)

is the linear space of equivalence classes of vectors from f%F, whose

elements differ only by vectors from {30 . In our realization with
+ + + . .

asy b", ¢’ applied on the vacuum ﬂaes contains all vectors, % -

only those not involving ¢t , and the elements of ﬁa Fock are in

one-to—-one correspondence with the wectors of that space that is formed
from basis vectors involving a:, az applied on the vacuum only. % ik
is invariantly defined. It is the Hilbert space of transversely polariz-
ed incoming (respectively outgoing) photons, i.e. of photons allowed by
the Maxwell equations without charges, cf. the rewarks after (5.13).

A broad exposition of the concepts involved here can be found in an
article by F. Strocchi [30] .

6.2 Gauge invariance

Operators that ccommute with Bren(x) = ar_Af;“(x) we call strictly gauge

invariant. Such operators are the S operator, since
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B, =3, =B y Rt [s,B = o, (6.23)

ren in out ren]

the operators F!"”, j;;n, and B itself (cf. (5.86-88)). Operators
that, together with their adjoints, map f%P into ﬁ}? we call
gauge invariant. Operators that, together with their adjoints, map %c

into -%c, we call weakly gauge invariant.

From (6.20) follows that strictly gauge invariant operators are also
gauge invariant, and from the validity of the Schwarz inequality in % "
follows that gauge invariant operators are also weakly gauge invariant,

but the inverse inclusionsdo not hold. The matrix elements of weakly

gauge invariant operators between states from %,P are equivalence

class functions only, i.e. for such applications these operators are
i - F

functions on by Fock ® ﬁ? Fock® Fin due to its form (6.12)

out,photon

is gauge invariant but not strictly gauge invariant, and the same holds
for M}

out’ rhoton”®

If one evaluates the matrix elements in fﬁp of a product of gauge
invariant operators, only the intermediate states of %.P contribute,
and all matrix elewents involved depend only on the ﬁk Fook equivalence
classes of all states. (This does not hold for only weakly gauge in-
variant operators.) Thus, the positive definiteness requirement we
derived from (5.58) is now justified. The matrix elements of Bren are,
moreover, zero between states of £ » such that due to (5.78,80,82)
(with K = o) the Maxwell equations (5.5a,b) hold as equations among

strictly gauge invariant operators.

As (5.91) shows, Y and of course also w ' are not strictly gauge

invariant, and not even gauge invariant since for b e %f, e.g.

Baow () W 1> = = yen DY0x-g) piy) | 6> =+ o
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in general, However, the operator 1/, appears to be strictly gauge
invariant due to the following argument: One would expect that (with
a scale factor inserted as in (4.23))

ZZ g, o0 = won - Joy S Cey) (1P M) Wig)
such that

272 [y, (0, Baen)]

- € rew I.PLY) D(X’\_j) -+

+ @ren foly Seec o) Cigr e [wly) Dig-2)] -

i 2 ren E:_{.M go{q‘r(b) .S'C)c-—tj) X?" 'q)(j) D(U—Z)

- %00

which should only be nonzero if zy(y)D(y-z) is singular on the mass
shell p2 = M2 for the electron. But 1 is only singular on that mass

shell, and for k2 = 0y p2 = Mz,

2 4 2pk # M2,

(p+k)? = M
Unfortunately, this arguwent does apply only if one gives the photon a

small but finite mass; for strictly zero-mass photons the asymptotic

# do even not exist in the usual sense

electron operators ‘Pin , ly Z
out

out

in which e.g. A 'y exist. This difficulty is that of the infrared cata-
out

strophy, for which a completely satisfactory Hilbert space treatment has
not yet been given (as rewarked after (5.38)). However, the zero-mass
photons Hilbert space properties are more interesting than those for
finite-mass photons, and the infrared problem being beyond fhe scaope of
these lectures, we conclude that "apart from the infrared problem" the‘
Hilbert space E% Q€D of QED is
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{% 0 &lectrons & -a} i positrons ® ﬁ%’ 1Et Fock

out? out’ 0

the last factor referring to photons as analysed above. Since Yo J1p;f
awk

(- 3

are, apart frowm the difficulty just mentioned, strictly gauge invariant,

by qen = fgp/ﬁa (6.24)

where we now allow in 9, also the WY.. |, Zyéhj as creation
operators on the vacuum. In § .., P{; (or, if J" = o, simply P" )
out

and equally M"Y are gauge invariant in the obvious sense.
Concerning the state space problem in QED, see e.g. [56] and the re-

ferences given there.

6.3 Gauge transformations

Gauge transformations of the first kind are defined by

— (o Cren

1{/ s LLL};LL"l = - ’L{) A)“ — AJ“‘

P

where the unitary operator U is of the form U = el"CQ and «is a constant.
The CR of the generator Q with the fields are

[&,w] = ~ewnwp | [Q,A"] =0 . (6.25)

From (5.89,92) we see that Q is given by

-

& = (v, 47 . (6.26)

However, the current j;;n is not completely determined by (6.25,26) as
it may contain in addition e.g. terms of the form 2, 5"  , with §*” =

- 8/, as for non-minimal eleciromagnetic coupling, which do not con-
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tribute in (6.26) because of Stokes' theorem.

While (5.5) together with the possibly generalized Dirac egquation
. - r = oL AK
(—ld”af- + Mrs) Y = -e,u{rA W = Crem *p ren W (6.27)

remains invariant under gauge transformations of the second kind

ha A

. T Y
£t N b )R Dy, €. Ly
. o - . il

-ie A
A" = AF oA, y = e W

where A  now may depend arbitrarily on x, (5.32-34) and (6.27) re-
main invariant under

Ve A
Ar . ,AF-FBP'A R > R+ %—ﬁaﬁ ¥y —= e g1y

bl /

only if
7 A = constant . (6.28)

The only weaningful solution of this is o A = o. If A commutes with

all operators appearing in the theory and with itself, then the change
can be implemented by (we replace A by A 251/2)

lS‘Ag:)Br:nJGH —-iSAé—: B"’E” dG-‘,
Atgn — e . AF’!‘C-—- i & =

= A, + 27A

where (5.81) is used, and similarly for the other operators, whereby
for 7p and Pt we use (5.91) and its Herwitean conjugate rather
than the Dirac eguation. This time independent canonical transformetion,

under which strictly gauge invariant operators are invariant but merely
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gauge invariant ones not, maps every state vector within its own

equivalence class, e.g. the vacuum is changed within its equivalance

class {| >un 1} which (with respect to the electromagnetic
& wk
field) is the vacuum of fy Fou and characterized by
Ffum %l -3 } = 0 ) i1 >} ¢ %p
Lw Owk owt

out

However, the special gauge (6.15) is useful to obtain still covariant
Green's functions alsc when non-gauge-invariant operators are involved.
For A = const. the above integrals are not meaningful. In this case
the gauge transformations of the second kind reduce to those of the
first kind which are generated by the renormalized charge (6.26).

If the gauge function A is an operator, we obtain an "operator
gauge transformation", a fairly trivial example of which we encountered
in (6.1). A more significant such transformation is the one from the
Gupta-Bleuler gauge to the Coulomb (or radiation) gauge to be presented

now.

6.4 Coulomb gauge

We define
A}:. Cy) = A}:‘c\n ()‘)5 - a'i" [(—&)-4 9; AL"(M]()"> (6'29)
with _
AH o= -9
such that
AE - Att;rm
and thus

aiALc i (6.30)
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and

E e [-217" 30 K 100
Ve (0 = e wx) (6.31a)

+ —1eren EC'@)-‘la;ﬁi,—‘_][x)
W () = e Wt ) (6.31D)

where the exponent commutes with 1w, -47* as it contains independent

canonical wvariables.

These Coulomb gauge cperators (in line with our not treating the re-
normalization of the watter field in this lecture, we do not attempt

to put (6.31) in a mathematically less objectionable form) are strictly

gauge invariant:

LBren (%), A':{‘j)l = -9 :')}; Dlx-y) +
(6.32)
i ah 3l (oY, Dix-y) = o
with use of (5.81), and with (5.91)
[BTRV\ (X}, Wr_ (‘3)3 = —€r.. {Hé)-; 8? a;gj Dcx"ﬂ) 'L,/e‘('ﬂ) *®
(6.33a)

+ Ceenm D lx-9) ap cy) -

and likewise

[ Bren ), Wid] = o (6.33b)
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This implies that in calculations involving these operators and other
strictly gauge invariant ones, only states of ﬂXP and even only sample
states from the equivalence classes that are the elewments of %jQED

need be inseried. This applies in particular to the field equations
which take, by using (6.29,32), in the Coulomb gauge the form

: (LT .
OA = -§ - 3 | (6.54)
A.c. = == (— CZ))- (j:’ ~ ]ZK&) ' (6-35)
(iy"o+M) Y = Crea ‘gr,At W, ) (6.36)
where
L . T
AC. = Afc-ﬂ- ] (6'37)
J e = jl:cm + " E’*"i"‘ v (6-38)
and
L
[Ac(k)JWr_(‘j)]x‘ﬂ:U. =@ K (6'39)
We have from (5.83a)
:-GWT = er{w Cw'i' od.l w)T -+ (’]—23) ad F"J ) (6‘40)

The ETCR's for the Coulomb gauge operators in the present renormalized

form, together with the unchanged ones, are
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[AS, AT = DA%, A1 = [AL AL -
DAL wel = DAL, Wt T = L, AT -
(6.41)
- T4, R = DR REY = DR AT -
0%, AR ] = [, AT = [l ,a1 = o
nd. i e e Ay Nt i 4
[A0, weld] o o = ~2; oY eren 8T (R-5) W (6.422)
[A';m,w:fb)}&f = Zo (-aYle,,. 33“.(5{“?5) wro, (6.42b)
[ L0, vt e = Zs790a)" 8%(2-3) 4, (6.42¢)
Fo; ( +( = - o - o =1 3(—'—" +
[FR e e )]y o= - 22 27 6a)" 37 (X5) g (6.424)
LF2 G, NJ&.)]X%S,: L Eg (41§ - 23 (ay1) S3(R-3) (6.42¢e)
{We, WS oY o o= L EFR-T) (6.42f)

The occurrence of the transverse projector in (6.34) makes all operators
except the already originally strictly gauge invariant ones j”» and F™7
not commute (or anticommute) in spacelike diatancés, in fact, already
the ETC's (6.42a-e) are all nonlocal.

As rewmarked before, for matrix elewents in ﬁap , and —% p 1is in=-
variant under all Coulomwb gauge operators as introduced here, the Bren-
term in (6.38) may be omitted. Moreover, for picturing the Coulomb gauge

in a perticularly simple manner one may restrict the state space further.



One may choose the polarization vectors in (6.3) and the parameter
in (6.5) such that e(1)°, 9(2)0, L vanigh while e(o) = (1,0).

Then the omission of the %F> -part of the state vectors as described

after (6.16) can be expressed as the restriction to bt with
! out
o (+)
s N = 0O s 6-
A'o:-t E-af.,o() e J E‘a rost, L2 o ena e . ( 43)

These two spaces are not invariant under the Coulowb gauge operators,
however, and for either the % et i or 8y et o oOnNe may without
any change in the equations (6.34-41) (except that the Bren-term in
(6.38) is to be omitted) supply the above Coulomb gauge operators on
both sides with the restrictions to the spaces defined by (6.43). These
restrictions are, due to the indefinite metric, not rrojection operators
in a Hilbert space. The fact that ﬂ?,“d)ch F Bk, ot however,
makes this transition somewhat artificial. We leave it as an exercise

to investigate the relation of our renormalized Coulomb gauge to the
elementary one discussed after (5.24), and whose commutation relations

are given e.g. in Bjorken and Drell [2] .

We finally comment on the physical adequacy of the covariant theory
based on (6.40) for QED. We have established that this theory is related
tc Coulomb gauge QED. For the latter we only omitted to supply the P*
and M™" and to show that they obey the structure relations of the
Poincaré group and transform the field operators covariantly up to the
gauge transformation that takes one from one Coulomb gauge to the other.
The gauge function for this transformation can be obtained from (5.19)

or more directly from the formula

9;; = 9;\)'\} "o

e 2% - D¢ ot W AT

v
A te i




112

which gives explicitly the normal (i.e. time axis) dependence of A%

For these matters see e.g. Bjorken and Drell [2] or B. Zumino [22].

We exhibited in (6.29,31) the operator gauge transformation that re-
lates the covariant theory to the Coulowb gauge theory. That such trans-
formation does not affect scattering amplitudes should follow from a
suitable equivalence theorem though e.g. neither the ones considered by
Kamefuchi, O'Raifeartaigh, and Salam [31] nor the ones of Borchers [32]
cover the present case. In view of this, one would directly show that
the singularities of the appropriate Green's functions are the same. An
obstacle to a completely satisfactory demonstration of this is the lack
so far of a renormalized Coulomb gauge theory, apart from the infrared

. problem; formal proofs of equivalence abound in the literature (see,

e.g. [33] ). The situation is the same if, in order to avoid the infrared
problem, one gives the photon a small but nonzero mass, the theory dealt

with in section 7.
6.5 Remarks

6.5.1 Causality

How do we know that QED is a causal theory in the relativistic sense?
The field equations and commutation relations in the Coulomb gauge
certainly are nonlocal. But for causality it suffices that the observable
local quantities like F*Y , j* cowmnmute in spacelike distances. They
are gauge invariant in the ordinary sense and in the sense of commuting
with B, and so from their comwuting in spacelike distances due to mani-
fest covariance in the Gupta-Bleuler gauge it follows that they also
commute if the state space is restricted to the one of the Coulomb gauge
(recall the need to scrutinize the intermediate states when operator

products like [F*’(x),j? (y) ] are considered).

Another expression of causality are by common understanding dispersion
relations. In QED scattering amplitudes involving photons only exist,
and, neglecting technical difficulties in rigorous proofs, dispersion
relations hold for them. In the proof the indefinite metric would play
no role since the S—operator relates to physical states only. Scattering

amplitudes involving charged particles exist only if the photon mass
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were finite though arbitrarily small. In that case the analog of the
Coulomb gauge is the Yukawa gauge (cf. e.g. [1], [587 ) but also
covariant gauges exist, with and even without indefinite wetriec and
lead, of course, to the same covariant scattering amplitudes as the
noncovariant Yukawa gauge. Since for these scattering amplitudes dis-
persion relations can (e.g. for vector meson - vector weson scattering)
be proven, it follows that the fact that a theory can be formulated in
a nonlocal and noncovariant manner is not in contradiction to causal

behaviour. This also applies to QED.

6.5.2 TUse of indefinite metric

In all our discussion we did not comment on the fact that we did not
work in a Hilbert space but in a larger space with indefinite or, upon
imposing (6.20), semidefinite metric for which the concepts "Hermitean
adjoint" etc. are not explained. Our procedure was to develop, as pro-
posed by S.N. Gupta [34] , the adequate concepts intrinsically: After
introducing a scalar product <& |db'> linear in I¢'> and anti-

linear in ! ®> one defines the pseudoadjoint of an operator A by

LOIA D'

<3 AlLE>

and proves that a pseudo-selfadjoint operator has real eigenvalues apart
from the eigenvalues to eigenstates of norm zero, while its expectation
value is always real., In our case, the scalar product (6.21) was dictat-
ed by the cowmutation relations of the in-operators; for equality with
the scalar products evaluated using out-operators we seem to have to
rely, if J” = o, on a suitable generalized version of the TCP-theorem.
The use, as is done in most textbooks, of a metric operator, which is

by necessity noninvariant, does not seem to have much werit in this re-
spect except in connection with the anyway noncovariant interaction re-

presentation, which has, however, other serious shortcomings.

We finally emphasize that the need of either introducing an indefinite

metric, or of giving up manifest covariance, if one wants to have a
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vector potential, is unavoidable, and for the reascns given before
(5.15) a vector potential appears indispensable. For a simple proof of
this (based on (5.56,58) and (5.63a) with z_,> > o) and also of the im-
possibility to have the free Maxwell equations with covariant vector

potential valid irrespective of the metric, we refer to R. Strocchi [ 30].

7. GREEN'S FUNCTIONS IN QUANTUM ELECTRODYNAMICS
AND NEUTRAL VECTOR MESON THEORY

We now continue our discussion of Green's functions. From the equations
of motion we derive several relations among them which will be useful

for renormalization procedure. Since in this lecture we are not interest-
ed in the state space we discuss (massive) neutral vector meson theory
rather than QED.

7.1 Stueckelberg gauge

We use the Lagrangian (5.31) but amend it by a "photon" mass term, and
also write the Dirac Lagrangian out to later obtain the complete set of

Green's functions equations:

2
L = -% Fu (QRAY- Y AR) + T FL B — AN = BarA,+ Z BT 4

2

+PigreX-HM)w + (7.1)

+ AT+ P o AW o+ ke

The field equations derived frowm the Stueckelberg Lagrangian (7.1.) are

FHM = ora” - oavar , (7.2)
o, F ™ - miA*' = e Wy w + "B +J”" (7.3)

:-.jf‘ + 2rB o+ JF ;
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24" =8B + K (7.4)

(-iF+ M) P o= e Ay (7.5)

PiF+Nu) = 3 + ¢ P A (7.6)
With 5, ~ £ o, the current j" is not conserved, but

o3 =de P - de M (7.7)

from (7.5,6). Actually, (7.7) can also be derived for a more refined
definition of the current, since W + WP is the part in the
Lagrangian (7.1) that is not invariant under gauge transformations of
the first kind (cf. sect. 6.3) [35] . All CCR are the same as in the
case of vanishing mass, (5.36-38) and the familiar ones involving the
Dirac field. If ~ = ~ = K = o and 9317 = o the theory adwits
the gauge transformations of the second kind

—ieh

A" = AP*&’“/\J B — @'Mi/\‘, () v, ﬂ)—beje/\ﬁ) (7.88,)
provided
(g + mia) AN =o0o . (7.8b)

If A is a c-number function, not only the field equations but also
the CCR remain hereby unchanged.

From (7.3,4,7) we have

(g+mis)3=- 3. J" - miK -dieypmn +ie qw (7.9)

from which by Peierls' method (cf. (5.50,51)) the CR of B with all

operators at all times follow:
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[B(x), 4" (7)1 = =1 3] A (x-y,8m2), (7.10)
[B(x), B(y)] = - 1w’ A(x-y,su’), (7.11)
[3(x), w(3)] =-e Alxy,en)) w(y), (7.12a)
[B(x), W(y)] =+ e A(x-y,smi) P (y). (7.12b)

In addition the equations of motion (7.2,3) then give

[B(x)! F Y (Y) ] =o0 3 (7-13)
[B(x), " (y)] =o. (7.14)
(7.11) shows that the wetric of the free field B is indefinite. In
contrast to the case mi = p discussed in lecture 5, for m§:>o the in-
definite metric can be removed from the theory in a covariant way by

an operator gauge transformation of the tyve (7.9).

7.2 Proca gauge

Setting formally A (x) = lé B (x), the gauge transformation (7.9)
m
u

leads to new variables
UF (x) = A" (x) + =B (x) (7.15)
(74

such that 2,.0" (x) = o if 2,J" =X = o, and

i

-'t—e"-'..' B(x
p(x) =e ™ ) Y Cx) . (7.162)

_ i —= Blx)
¢(x) = e e P (%) ) (7.16b)

(This transformation is discussed in greater detail by W. Zimmermann

(361 ).
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One easily shows that B commutes with these variables at all times

[0F(x), BT = [g(x), B(y)] = [&(x), B(y)] =0 (7.17)

and that the field equations take the form

F* = orgv - o'pr ) (7.18)

D, F MV _miuﬁ -ezf){’"c‘f + J"r = 5!" & g , (7-'19)
(-1 & +M) o =%y, {U"J @y (7.20)
G (17 +M) = (5,07 y, (7.21)

which would follow a Proca Lagrangian

= = 1 rgY - avmH 1 pu ma > »
L = P (eru U )+4FNF b U, UF +J,0" &

+ie Fe - M g + %Efg},{tr“,c?g, (7.22)

which would be just a Maxwell + Dirac Lagrangian except for the "photon"

mass term.

In contrast to the Maxwell - Dirac case, however, where we have the
gauge freedom and canonical quantization is not possible, (7.22) admits

canonical gquantization since the constraint equation

o} o}

B.Foi-m_iUo = ey e +3%°=3%+1 (7.23)

:
can be solved for U° due to mi > o. The CCR derived from (7.22) are the
same that one derives for U», F"', 3 , ¢ from the way these variables
were introduced before, starting from the CCR derived from (7.1) as in
QED. There is an interesting difference, however: The operator gauge

transformation way gives
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o]
=‘y 78

i LA L¢3 = o
[1°(x), ()] =i — 273(%7) (7.24)
¥ m
directly using the definition of U* and the known CR for the con-
stituents. On the other hand, the Lagrangian (7.22) leads upon canonical

quantization to (7.24) only upon assuming
: i
[5° v"] =« o (7.25)

since for this Lagrangian U° is a dependent field to be calculated

from (7.23), where e &y < is rather the symbolic form for 3°.

The reason for this seems to be the following one: On the form of j*

which in the Stueckelberg gauge approach is a functional of o , v ,

and A" (because of (7.14) it does not depend on B) two constraints are

imposed:
i. the divergence equation (7.7),

ii. in the transition (7.15,16) to the Proca gauge it has to become a
functional of @ y ¢ , and U* alone, since (7.17,18,19) again
imply this functional to be independent of B.

These requirements may well restrict the form of j ™ +to such an extent

that (7.25) is 2 consequence.

The operator gauge transformation (7.8), with for zero sources B a free

field with indefinite metric quantization as follows from (7.11), shows

that the state space of the Stueckelberg theory (7.1) is

f}u = %Pr ® E'Z)B (7.26)

with ‘% ve the positive-definite-metric Hilbert space of the Proca
theory (7.22), and % i the indefinite-metric "Hilbert"-space of the
free B field. In fact, substituting (7.15,16) in (7.1) (with 7 = ~ =
= K = 0, DrJf“ = o) decowpose the Lagrangian and also the generators
of the Poincaré transformations P* and M"Y into a sum of two terws,
one of them containing only U”, q s ¢ variables, the other containing
only the B variables but with an opposite overall sign as would be the

case for a free scalar field, this reflecting the indefinite metric.
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From (7.11,16) follows

2 el

= ¢ ;
Hli. B(k) Lt.m:_ ad)(o‘,sm‘:) L:e—:[g(k)

Wix) = & C?(x) = ¢ : o

L

¢ o) (7.27)

Using (7.17,26) we therefore find

4

< 2200 ¢ ) . e
Zn WESNE e
41;/(:() w{3)> = € e e

+)
A (x-y)

<K Ge)> (7.26)

where the infinite constant factor is to be absorbed into a renormaliza-—
tion of the Stueckelberg fields against the Proca fields. Similar ex—
plicit relations hold between other VEV and Green's functions of these
theories. From (7.28) the two-point Wightman functions LY (x) Y (9

and < (x) F(y)Y cannot both be tempered distributions in the
sense of L. Schwartz [37] . Since in perturbation theory the former ones
lead to tempered distributions of order-independent growth in wmomentum
space, the conjecture is reasonable, that the Stueckelberg theory, if

it exists, yields tempered distributions. Then the Proca theory leads

to the more general "strictly localizable" distributions of A. Jaffe [387,
. and in perturbation theory to a growth that is the stronger the higher

: the order. The interested reader is referred to [38] , [39] , and the

literature given there.

7.3 Two-point functions

In this section we discuss briefly the spectral representations of both
the vector weson and the spinor fields two-point functions and give
explicit expressions of the inverse propagators which will be used in

the amputation procedure of Green's functions.
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T.3.1 Vector weson propagator

The discussion of the spectral repreaentdtion of the two=-point function
< A" (x)AY(y) > for the theory without sources follows the same pattern
as in QED. The formulas (5.56) up to (5.61) rewain unchanged. Because

of (7.10), however, (5.62) is to be replaced by

¢g Lty = W Pg(w) = & S (- smi) . (7.29)

Assuming the existence of a neutral vector meson of mass m (5.63a)

becomes
e ity = Zg Sx—wd) + ¢ (%) (7.30a)
with
o £ 2y <1 (7.30b)
° é,‘fkt) o A (730c)
folset °2 1y = A=Z5 (7.304)
Wi

where w is the threshold for °§4 -contributions, while (5.64) is to
be replaced by

,\
© ¢ 2 2 2z
o, (38 =—%—> + 23—5“‘7;"‘—) - 30 smE) - adhe (7.31)
with
oo
A
- Zi + (e 28200 = A (7.312)
= . vt wad '
Wig
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the
The third term on the r.h.s. of (7.51) is due to B~part, the others

come from the U~(Proca)-theory, cf. (7.11,15,26). If now a # o, U*
would contain the derivative of a scalar zero-mass field (or a wvector
field), of pathological behaviour, since we assume there to be a stable
vector particle of finite mass m, and there would not be an apparent
reason to prevent a stable particle to decay into such "a-particle".

In perturbation theory at least, we find we can get away without such
particle, which means that the theory possesses a reasonable formal

solution with

a=o0 (7.32)
which we will henceforth assume.
According to (7.11,31) the choice of the parameter s solely reigns the

wass of ihe B-particle and, as follows fromw the discussion after (7.26),

has no other effect. For convenience we chose

s = Z— (7.33)

which makes the two § =-functions in (7.31) coincide, such that the
mass of the B-particle coincides with the physical vector weson mass.

From (7.31,32) we learn

Z3 m., < m < m (Te54)

as an equality sign can hold only if ° §4 = o, which, however, leads
to a theory without interaction. Therefore s has the property

0 £8 <1
. . 2 ..
with 8 = o only if m, diverges.

It turns out that the most convenient amplitude renormalization is given

by
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w o -1/2 » PO —‘1/2 pv

A =8 A", Fln™ 8 Fr, (7.35)
L 41/2 " +1/2 ¢

Bren'= 8 B '3 Jren' B8 J .

Correspondingly the renormalized charge is defined to be

‘ +1/2
., = ® /2 o (7.36)
such that
e A" = e AV ,
ren ~ren

According to (7.35) the renorwmalized spectral functions are
2 -1 o 2 A gL 2y =1 o2 2
g1,2(‘3c )"’B 31,2(}€—) ] §1(dc- )"’S g1(~’<')0

Thus (7.31a) with (7.32) becomes

Ay
N

W
.

+ | olgr o Ra T (7.37)

:"5— . 5. 4 [ éﬁ(w}) . (7.38)

2
s

' As the coefficient of the J =function in (7.30a) by this renormalization
becomes ( f%i) the A;ﬁ—field part of A;;n defined in analogy to (5.65a)
ig now nmormalized to ( Z2)"* , i.e. when calculating scattering
amplitudes from Green's functions one has %o multiply the Green's

)]1‘/2

- functionse by (‘—%ET when T "photons" are involved to be able to use
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a reduction forwmula as usual. Since, however, the calculation of the
scattering amplitude is the last and simple step after completed
calculation of the Green's function, the convenience of the more com=-
plicated Green's function calculation is decisive. (This renormaliza-

tion convention is the one adopted by Kroll, Lee, and Zumino [ 40 ] ).

—
=

For m2 —> 0, according to (7.37) —> 1 from below, such that we re-

cover the Gupta-Bleuler gauge (or, in [40] , the QED-Landau gauge).

With our choice of parameters (7.32,33) the two-point function of re-

norwalized vector meson fields has the representation

< A;;n(x)A;;n(o)‘> = ? ol el 94(KF) (_.%rU’_ Eﬂ%g;.> i £J+)(r,k¥)
) (7.39a)
o RS L A% (x i)
with
g, (xt) = gg'é(xﬁ—wﬁ) + 8, () . (7.39p)

Since in our (Stueckelberg) gauge the vector potentials are canonically

independent wvariables the Green's function

J v
” v =R 25 ¥ (k) i
<(Aren(x)Aren(o))+ e F
= 50{}&1 54(3—(1} (_%}‘W‘_ a:g_u ) /—\)F(k" }&L) + 7/1;‘: arauAF_(waz.) (7.40)

. . . o )
coincides with 41T(Aren(x)Aren(o)) -

This can easily be shown:
from O(x") 279" = 2rY ©(x°) —g 7 E(x) — g S(x) ¥

one finds

oy pro” La™i] + ecex)[-2Fe0 a(’}(‘x)l = phrpv Loy ¢ %’”%VE’ S(x)
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(note that our Ay is called i Oy by Bjorken and Drell [2]), and
the noncovariant terms cancel due to (7.37).

Passing to Fourier transforms (which for convenience are denoted by the

same symbols)

I ols ikx Vpw
25 (k) = gdx e ’ . (x) =
. > )
- z 3 v K"K ¢ = M }‘L{v ¢
we find after some calculation by again using (7.37)
I po
AF (k) = AF%U (k) =+
. P Y 2 - 2 (et Z, ot
s g - ) e e SO (7.40)
K41 e WS =t 4 £ mg‘ }C?'(K—z-’Mz“'\';E)

s J

i.e. in the Stueckelberg gauge the "free" propagator ﬁhF””(k) is
corrected by a term that is transverse but has a pole at k2 = m2 with
residuum proportional to m2, and vanishes at k = o, That the pole term
is not the free one is characteristic for the non-zero mass case; in
Zs

fact, for mz-;;o, i.e. —> 1, there remains only the free pole

term at k2 = Oa

From (7.41) we have, in the sense of watrix inverse,

[(AIFCK)—AI ne _ i%yu{]{_l__u’g> +

‘(D{ 2 §4CKL) (MZ-—-\B{_"') (7-42)
+ (K- L)(%”” KE— KR ¥ er (K- ¥'tie)
A =Kol 8.,y (i = o)
yr(wi=n 4 ie)

=: [(peC)Y " — TIM(w)
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From (7.42) these properties of T17°(k) follow:

(2) it is transverse,

(b) it vanishes at k = o of second order,

(¢) it vanishes at 2 w?, (7.43)

(d) for m2 = o, 1t vanishes of fourth order as k — o.

(The denominator in (7.42) could vanish for some E® hetyeen m° and mg;
such kinematical (in this case "Castillejo—DalitZuDyson") singularity
will however, never be noticed in perturbation theory which implies

expansion of the ratio in (7.42) in powers of &, ).

We mentioned before that due to the renormalization (7.35) instead of
the one with s replaced by 23' in the calculation of scattering amplitudes
from Green's functions one needs the value of é%f. Instead of using

k-]

(7.37) it is more convenient to directly obtain it from T*° .

Exercise: Prove

s

2 2 N, (k)

> kA
Kz-'_':wl_

7.3.2 Electron propagator

Analogous considerations to those that led to (5.56) give for the Dirac
field

o0
<YW W > = [dwe? (%, (x*) %+ o5, (™)) i 5 (x 3¢t )
3]

If the metric is positive, e.g. in the Proca gauge, 3| o T, (%) 2

. Introducing
7 |°T (x|

o o iy , — A © _/_L_ -]
S(tpel)i= *Gy (xD= 2 (06, () = T G, Cx>))
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we have
+ oo
Ly ) P (e)> = [ove ({F*r2e) °F () LW (x,3) (7.44)
—
with, in the positive-metric case s 6(e) = o

From the canonical anticommutation relation one finds

Jolac_ °G (w) =1 | (7045)

Analogously to (7.30a) we should now have
o (%) = Z, 3(x-1) +°F o) (7.46)

where M is the renormalized mass of the electron.

-~

Stueckelberg gauge Z2 need not be bounded by 1. The fact that the

property 22 > o remains true arises as follows: In the massive vector

In the Proca gauge one has o< Z, < 1, ©°T (%) = o while in the

meson case there is no difficulty of principle in constructing one-
charged-particle in and out states as there is in QED, i.e. there exist
Vin & in since the arguments preceding (6.24) now do apply, and
out out

[win 'Bren! = © implies, because of (7.11,26), that W 3, oOperate

out out
in féPr only and thus are egqual to q>inr at least after an adjustment
out

of phases. But then the contributions from the one-particle intermediate
states in (7.44) are the same as when calculated in {% s alone, and
have positive~definite metric leading to 22 Z ©. It 18 easily shown that
the contributions in (7.44) from states with the same or opposite parity
relative to the free one-particle states are associated with positive
respectively negative x , and a J -contribution in (7.44) from

= = M also would iwply a one-particle-state degeneracy that does at
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least not occur in perturbation theory.

Applitude renormalization of the Dirac field is achieved by defining

 =1/2 _ . =1/2
Wren = ZZ p ' Yren = W ZZ '
_ _ Z+1/2 Z+1/2
“Yren 2 ' “lren = 2 “1 ,
and
G()i= 25 e (2) = & (-M) + & (x)

From (7.44) the full electron propagator becomes

L Ypn® T ponl0)) > =1 Six) =

+ o0

= J‘dvt G le) (P +3¢) D (x, 2*)

—oo

which again coincides with < m( 1pren(x) ﬂ)ren(o)1>since
o(x") ar = 27 e(x°) - g"° §(x°)
and

&(x)

[}
(o]

X =0
According to (7.48) the Fourier transform of Sé(x) is

S%(p) = g dx eiPX S%(x) =

(7-47)

(7.48)

(7.49)
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z A 'l & Ge)
A | ] (7.50)
i S .

such that its inverse reads

+ 02
| s ___i'?_fit_)_
si(p)”" = -i(f - M) +i(F - W) mw,ﬁ'f+£ (o-ry (1251
’1‘ - jd‘c_ﬂM—'CW'h)
oo P-3 +ig

= 5,27 - Z ()

where as well as Sﬁ(p) also S (p) is a function = (¥) of the matrix
p only, which, as is easily seen from (7.51), vanishes of second order
&t ﬁ= M, i.e.

Z(ﬁ) } é=M = o and %{; Z(ﬁ) l 25=M = 0 ; (7-52)

Without need of bringing = (p) explicitly into the forwm of a function
of ¥ (7.52) can be replaced by

(5+M) =(p) = =(p) (F+M) =0 if p° = M, (7.53a)
and
Gem( 2 @)E+m =0 ir st (7.53b)

The ratio in (7.51) can be freed of matrices standing in the denominator

in the familiar way. This is left as an exercise to the reader.
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7.4 Green's functions

We are now in position to write down the renormalized field equations.

From (7.3,4,35) we find (setting K = o as it does no longer serve any

purpose)
(EI+M1) Aﬁfcv\. = "’j}:h‘ - 31:“ (7-543)
with
hew = STF AR L amsy o, B
whereas (7.5,6,47) give
(7.54b)

(_' l‘a“f' M) ?-Pa-ew\ = Z}. B rein ,gm wrcn i ,(_,T*C“. +

+ (1—2;_)(—-1‘§5+!‘1) Yrew + 2,31 Wirein

and

1‘1};(,‘ (‘a * H> = i’_).r:n /Aﬂfe—\. erﬂw\. ZZ. t ’::('?"gu-\ -+
(7.54c)

* PreaGF41) (1-22 ) + e $H1 2,

with

Since from now on we shall use only the renormalized charge and fields

we omit the subszcript "ren" for brevity.

Now from the generating functional of disconnected Green's functions

Caise 14,4,1 7% = out < | Vin
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we define in analogy to (4.7,8)

T ; 2 R Pr -
(x"“-x"‘J Ya Gmm ) 21'"2") i Goh'sc (K,‘---)(,,_J AT Yooy Lot T A1 59 3} =

(7.55)

A
Ha
Gdi_l,

il

edg (W“’J"'Ur'f"n) 1?{51)"' l-P(‘;lm) Aﬁ‘czq}"' /A\}‘r(z-r))-{- 7‘:_‘ =

,qr; _j_;‘ A4 E)
: )

. e - A d o4 d
L SAx,) Smixn)  F

R (..1_.) ) A A @ =
I41(y4) L dMlym) i 53”*(2‘) t $Tpurlze) oisc i“"’)"‘bj}

Since in the Stueckelberg (and Gupta-Bleuler) gauge the fields Aﬁty,i?
are all independent canonical variables we have from (4.8)

L(Pxy- A 2, = < T (@ix) - AM(ze)) D> (7.55a)
-1 wh (85

L&
(=1

Setting &= 4= J = o we obtain the (disconnected) Green's functions

P (

M A Rae fe
G’d ff.r, G <

olise Kam XKy, Yo Yo ) Z,77 %0 °,e,e} =

(7.56)

)(‘l...x‘) ﬂ"‘“‘j““" )Z - sz =

i

< (1Pf’<4>"'1?“‘"3@f‘34)"' 1-‘}(5»-) AR‘(Z‘t)"‘ A}”fzr))_;. ?

which are covariant by definition (recall the discussbn after (4.8)).
From (7.55a) we see that the (...)+—product (sometimes also called -
product) in the Stueckelberg gauge coincides with the (naive) T-product.
The connected parts er“""fxrnangfn3,4,:ﬂ”.zr ) and

G s e 78 i e ) are obtained similarly to (7.55,56)
by differentiation of

a{’c‘h""ﬂj% ;= ln adisc {’_‘;1:"'1;3} . (7-57)

Due to gauge invariance of the first kind (charge conservation) only
Green's functions with the same number of w - and 1 -variables, i.e.
n=m, are different from zero, and invariance under charge conjugation

implies all Green's functions with an odd number of vector particles
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arguments but without spinor or antispinor particle arguments to vanish

(Furry's theorem).

Taking n=m=0, r=2 or n=m=1, r=o (7.56,57) give the one-particle propa-
gators (7.40) and (7.49), respectively:

oly(x=y) = 657 Gyxy) = 677 (,,xy) , (7.58a)
S’F(x"y) = Gdisc(x’y’) = G(?ry!) . (7-58b')

The amputation operation, indicated by underlining the argument, is de-

fined by the convolution with the corresponding (in the convolution

sence) inverse-propagator matrix:

G (ceyeneyeaxes) = (a7 6* Guxn) 8 (ceyeayiyes) . (7.59)
877 (ceZeurenagene) = (a7 6(x,30) 8 (veFeupunnyens) _ (7.59)
a"'(...,.ﬁg..,...) = Edy a"'(...,..y..,...)‘ C‘r(y,:c,)_1 . (7.59)

and amputation of the one-particle propagators (7.58) gives by definition
GHY (boxy) =67 (,,xy) = g** S(x-y) , | (7.60a)
G(x,¥,) = G(x,7,) = 13 (x-y) . (7.60b)

We introduce Fourier transforms by

EPat o+ L X~ 1 amem LGy + K v (K,
Johxymobn By, Aoz, ooda, o T TR AR i P 1 Ky

(7.61)

Ha-s Ar
- G (x"‘"'x"‘.:‘ﬂa“'Lj"‘JZﬂ"'z"J =%

. ] - ¢ o ﬂ. r. . Maeet r
(2m)* 3( %ipl Z-'"qi 4-2:_' ki) & 4 (F*"'W“)q‘!'“q“) K']"'l"c")
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with G’“"'ﬂ*(p1...kr) defined only where the argument of the J ~-func-
tion vanishes. (For convenience we use the same symbols both in con-

figuration space and in momentum space.) The amputation operation then
reads

G(r}l_..p,\)qj---th k,\---_\(;:) 5(Z|(9—'Zo\+g’:»c) -

o \ L , _ " ;
=T Selpy " T Al (k)™ G pu, gy gy Ko ¥ ) TS (i) d(Tp-Tg+ k)

L=a L7y itq

where we have suppressed all indicea. Frouw (7.42,37) we find

[ orte) 1" (gl KRy s kTR (7.62)
(— Kia ) - s iz T TR ;.
and from (7.51,52)
- -4
(Se(p)) ‘ - i (7.63)

(-p+m1) f=nh

such that amputation on the mass shell in coordinate space (up to =
factor i) for "photon" arguments is equivalent to application of the

Klein-Gordon operator apart from a factor —%— for the transverse part,

3
and for spinor arguments is equivalent to application of the Dirac

operator.

In terms of the generating functionals the renormalized field equations
(7.54) take the form (ef. (4.14,15))

a
(@t 4 B Gy = [TeCeZaam s ZEDE) -7 - (7.64a)
r

=5,

_('1-5)(9""93—:[%“5)4—% ] a'oln'sc
¥ g
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- 3 L 8. A8, - T48 a8 .64b
_2.) ¢ 5., (S 1 2
+ (1-2,)C ahh)Ts_ Z,3H 5 ] Cais. |
(S o (iGrm) = (1) 8 198 2. = B« 7.64c

A
+(_1;)§:1 Coliss ([ F4m)l1-2,) + f'f-‘)g%é\a.‘k dhz,

and similarly for the connected parts. We can integrate these equations

with the free field Green's functions zgg(x) = - ghv LEF(x) and

SF(x) which do not give rise to boundary terms (cf. the discussion after

(4.31)) and satisfy the differential equations

(T+ 07) Splx-y) = (- F+ WS(x-3) = Sp(xy) (1 5, + 1) = =1 & (x-y).

Then they read

6" (ax) = fay &L (ey) [ -Tr(iezy 0 C(y,y,) + 6Ly, ) tez,y" &(y,,) +
+ 137 (y) + i(1-8)("2¢ - 0 g“¢ )& (,,¥) ] , (7.65a)
&(x,,) = [ay Sy(x-y) [ iez, y, & (y,,5) + iez, 3, &(y,,) &% (,,y) +

+1y(y) + 101-2,) (13 +m&(y,,) + 12,8 M6(y,,) ] ) (7.65b)
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a(lx!) - Sdl’ [as (sYry)ieZQY; + a(ly!)_ G¢ (7)), ieza Ye * (7.65¢)

+15(y) + 8(,y,) 1(1F40)(1-2,) + (,y,) 16M3,] Sp(y-x)

Further differentiation w.r.t. the sources yields similar equations for
Green's functions with an arbitrary number of arguments. The reader is
_suggested to look up the corresponding equations in case of theories
with <p3- and ¢4-coupling in [41] and [42] , respectively. There
graphical representations are given which may be helpful for understand=-
ing.

The iteration of these equations generates the perturbation theoretical
expansion of the Green's functions in pre-renormalized form, i.e. the

counter terms on the r.h.s. of (7.54) are supplied by the operators

¢ ()= 1(1=8)(3% 0L -~ O™’ ) & (x-y) , (7.66a)

e (xy) =[1(1-2,) (=15 +M) + iz, SM] I(x-y) (7.661)
and by the factor Z2 in the bare vertex operator

¥ (x,7,2) = ieZ, y* 8(x-z) J(z-y) . (7.66¢)

Tn the final lecture we show that they can be absorbed in a convergent
calculation, wainly with the help of the Ward identities, which will be
derived in the next section. The order in which one uses the equations
(7.65) does not matter since in the form of functional differential
equetions (7.64) they are integrable as one easily proves by construct-

ing a formal solution by the technique of lecture 4.

7.5 Ward identities

It is the aim of renormalization theory to show how the divergent ex-
pressions encountered when one solves (7.65) by iteration can be con-
verted into convergent ones by suitable cholce of the constants Zz, 8,

and & M, It will turn out, however, that our equations are somewhat too
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formal to enable %o cope siraighiforwardly with all exigencies that
will arise. As a help hereto, we have to use that the main reguirement
for the current j* is that {(in the absence of sources) it is conserved

and, of course, transformsas a vector, and satisfies the ETC

[3° (=) w(3) ] ;o0 = - p(x) J(xy) . (7.67)

The conseguences of this for Green's functions are the Ward-Takahashi

identities.

In order to obtain them we take the matrix element of the divergence of
(7.54a) between the states out <1 and 1>, . Upon using (7.7) we
then have

2 2 - » A
(0 +w )aerisc(”x) == 0" Gy, - (7.68)

-de G, (x,) ~4(x) +ieF(x)E,. (x,)

disc disc
and similarly for G { 4,4 ,7} +the usefullness of which is that it does
not involve Green's functions with coinciding arguments and thus will

help to circumvent some of the ambiguities of the latter. The integrated

form of (7.68) is obtained by using the Green's function zzF:

ia}"a!‘t (,,Z)

disc Jax & p(z-0) [ 0037065, 15,478 - (7.69)

- le ’q (x)Gdisc(x”) + iecdisc(’x') "1(3{) ]

Because of the importance of (7.68,69) we briefly indicate an alternative

and more elewmentary derivation. Consider

3: YOy WxD) P g Wlgu) AMz) Ay A ze)) =
(7.70)

= £ (WO WK W) Wiyl B(2) AM(z) - A" (2 7
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which holds since from (7.4,35) O,4"(z) = B(z) and the cowmutativity
at equal times of Ao(z) with all operators that occur above. Now the
commutators of B(z) with all other operators on the r.h.s. of (7.70) are
known, namely (cf. (7.10,12,35,36,47)

[85)(2), ar(0)] = - (2% a®z-xa?)

35 (2), v (x) T

- e a(ﬂ(z—x,mz} p (x)

(2" (2), (1T = +e s zy,0®) P()

Thus we can decompose B = B(+)+ B(-), and move in (7.70) B(+) to the
right, B(-) to the left, until they reach the vacua and annihilate

them. Which operators are hereby to be passed depends on the time re-
lation just as in the elementary proof of Wick's theorem for free fields.
E.g. we obtain from

£ (e Blz) A2y ) Vg >

the term

< ()7 [-oE=-2n E}):‘ 2P (22 ) + ©(23-2z°) P8 (2-2,)7 =

= - £y 3 ap(=-2)

which is Jjust what is obtained from the first term on the r.h.s. of
(7.69), and similarly we obtain the other terms. In this proof of
(7.68,69), (7.67) appears not to have been needed; however, it is
required (in unrenormalized form) to obtain (7.12) from the CCR and
the equation of motion (7.3) for p= o and the free field property
(7.9) of B for sources being zero.

If we pass to connected Green's functions, amputate the "photon™

arguoent, and use the relation
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YY) %
2 Dp(x¥) = 9, &L (x-y) = ~ 2° Ao (x-y) (7.71)
which follows from (7.69), (7.68) becomes

19.67(,,2) = -2,07(2) + 1e5(2)8(z,,) - 1e6(,z,) 5 (2) . (7.72)

(7.72) gives in a very compact form the familiar Ward identities

O, G Ot 94, 22020) = = 8L0 0, BN (Oand) d(z-z2, ) 4
+ i e Gl 21 X" Py mzeine z ...z _
=, ®3&s Xa X, Ja o gu, Z,- 2 ) (7.73)

- = e M xxa Yz g, 202 ) G2, y,,)

K=4q == —

where the first term on the r.h.s. can easily be calculated from (7.42).

If all spinor particle arguments in (7.72) or (7.73) are put on the mass
shell, the last two terms do not contribute, since the singularities in
these arguments then are removed, and thus the r.h.s. vanish except for
the trivial case when there are no spinor and only vector particles.
(This argument seems to fail if the momentum of the "photon" is exactly
zero, s8ince then the singularity is preserved. However, at this point
in momentum space we have only a finite and no J (k)=type contribution
such that it can be omitted since the momenta must always be thought to
be smeared over slightly.) Therefore the Green's functions with all
spinor particle arguments put on the mass shell are transverse in all
vector particle arguments on and off the mass shell, except for the

"photon" propagator.
In the simplest case of the vertex function
r‘r(xu'.Y’Z) = G (_JE!,X!E) (7-74&)

(7.73) reduces upon use of (7.60) to
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197 Mx,7,2) = oL sp(x-2)”" 8 (2y) = S (xa)spla)'] | (7.750)
and writing

r(pyq) = 6"(p,9,k) , k=a-0p (7.74v)

(7.75a) becomes
(3,-p,) """ (p,a) = e [Sp(p)™" = sp(0)™" ] | (7.75b)

the generalized Ward identity due to Takahashi [43] . Differentiating
it w.r.t. q and letting g —>p gives

PR
" (32) = - o 2 5y(p) (7.76)
It

provided

1 (a,78,) 2— [V (2,0) = o
gD qp

a regularity assumption that is verifiable in perturbation theory. From
(7.51) or (7.53b) we obtain

(B+11) TP (p,p) (B4M)

242 ie(B+M) v (B+1) l 2oat? =

P

ie2pr(pm| , , (7.77a)
P =

which is wostly abbreviated in the symbolic form

mr (p, = i » .77b
(pyp) it ey . (7.77b)
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7.6 Gauge independence of S-matrix elements

In section 4.4 we described the reduction technique to convert T-products
between out-states on the left and in-states on the right into integrals
over Green's functions. From the discussion after (7.73) we then learn
that an S-matrix element w.r.t. the vector field arguments is an ex-

pression of the form (the eu are polarization vectors)
ep, (k1)...eﬁ¢ (kr) pHha - R (p1...pn,q1...qn,k1...kr) (7.78)
where

(k) THATRr L (7.79)

such that the change of a polarization vector by a vector proportional
to the corresponding (mass shell) momentum k has no effect. This is
what is commonly understood as gauge invariance of the S-matrix. The
subsidiary condition (6.16) on the in~ and out-state furthermore yields

ey (k) (ki)’** = o for all i (7.80)
which for the massless case expresses the absence of (not covariantly
separable) c+-type photons, and for the massive case says that we do
not consider the scattering of the (covariantly separable) scalar B-
wesons which in fact are free particles. In the massive case (7.80) is,
in contrast to the wassless case, actually unnecessary since in the
former one every polarization vector that does not satisfy (7.80) can
be replaced by a "gauge change" by

ek

A
Sp(x) = ep(®) - ok,

which is orthogonal to k, and it is € rather than e that should be

subjected to the normalization condition 92 = =1,
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The general solution of (7.78) is obtained as follows:

Choose a timelike vector a that is (for preservation of manifest
covariance) one of the mass shell momenta p or q or some convenient
linear combination of them and change the gauge of all polarization
operators by

| ea
6, —> e, - B = -k (7.81)

such that all e’ are orthogonal to a. (7.78) then reads

op, seeey, TV HTURT (7.82)

where Mt Ma - pF igs any properly covariant tensor of rank r that can
be formed from the available vectors (k,p,q, ¥) but which need not in-
volve a since all polarization vectors are orthogonal to it. But other-
wige T Ha-- MF underlies no restrictions, since if we substitute
(7.81) into (7.82) the resulting temsor T ¥+ " /"  satisfies (7.79)
and as the derivation shows is the most general solution of (7.79). In
the wassive case T'/* M+  pay have terms proportional to (ki)”‘,
however, from (7.81,80) one sees that they give contributions proportional
to ki=m2, and thus do not contribute in the massless case. Therefore in
the massless case the most general T'®+--- Kr  (apnd T Y« A¥ | to0)
will involve fewer scalar functions of invariants (which are the co-
efficients of the covariant tensors formed from the available vectors)

than are necessary in the massive case. (Cf. e.g. [447] ).

In unitarity sums (i.e. summation over final or averaging over initial

polarization states) one encounters the expression

2 M P - - P (7.838)

in the massive case and according to (6.16), if m = o,

g& eS})(k) e(j)(k) - =y * ﬁrk, + krﬁu ) (7.83b)
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Due to (7.79) in both cases only the g"’ ~term need to be kept. The
interesting point is that in (7.83a) the full contribution arises from
three, in (7.835) only from two terms. In order to compare both cases
we must choose a frame of reference in which e.g. e(i)- 0, i = 1,2,3
resp. 1,2, and Z(i)J.E, 2(1), 2(2) for both (7.83a)oand (7.83b). Then

= [¢]
e(3) is given by e£3) = I%I_ F 3(3)= 4 —- sguch that

™Y
(3)}'L - _l.il_ k" L i
) mk, SR

The first part gives no contribution due to (7.79), and the last part,
describing the three-dimensionally-longitudinal'polarization, does not

give a contribution when m —> o due to its explicit factor m. This is

the formal reason why, in a fixed reference frame, the 3(3)-polarized
meson for m — o are ultimately neither absorbed nor emitted, and thus
allow the two transverse-polarized photons only to interact physically.

For the above transition to be possible, however, (7.80) is necessary
which is, of course, satisfied by the polarization vectors we choose,

i.e. photons with polarization vectors violating (7.80) would be "absorbed"

and "emitted" were it not for their explicit exclusion due to imposing

(7.80).

It is imstructive to see the gauge independence of the S-matrix also in
terms of Green's functions rather than only via the operator gauge trans-
formations to the Coulomb gauge ete., which is difficult to implement at
least. The Ward identity (7.68) is a special case of

s _ =5 - -4 5 & = f o
[2lnm 5= 413;1_:> 21 + (af) O] G 19, 4,77 (7.84)
(ef. e.g. [45] ), where &iiac {;ﬁJAh j} is the generating functional

of Green's functions in the gauge where the longitudinal part of the
"photon" propagator is
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¢ ) 1gng = 08 24 £)

f(xy) = o in the Landau gauge

and

flxy) = -1 ljx._‘l([jx-l- 2°)~" §(x-y) in the Stueckelberg gauge.

’

. ; ps _ . s
The generating functional Gdisc i"ﬂ; “, 3& which satisfies (7.84) with
f replaced by another gauge function f' can be expressed in terms of
~f

Gdisc 14, M, 7% . by the formulas

/\F’ _ A
GDUSC {’11“11313 = & # G.Jf{"—"] “1 39
W y; 3

or
e o 4 31at27 i abg
Gdu';c )L":hﬂb-‘]?] = e e "
2 —le b —eaf-27 _ ek -eafd]
x@d“‘c{e ~, @ 4’];35 ’
l.e.\-:.o
(with of = £' - f) which can be derived from a formal solution of

(7.84) similar to (4.43).

The electron propagator in the new gauge then reads

" 2 aflxy) — & aftx) - & Afl93)
& (x-’(jJJ = B "GF(:‘-J‘jJ>
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0f practical interest are only gauges where f(xy) = f((x-y)z), such
that, if zbf((x-y)z) —> o0 for (x-y)z_a s , an asymptotically unchanged
normalization ofzthe Fermi fields is obtained by absorbing the constant
factors exp[- ‘% » f(o)] into the fields. The Green's function that is

relevant for e.g. Compton scattering then is

2
¢ mv 2ot (xy) € pv
Gdisc (XJ lﬂ;zu'J - e [ Gd;g (x, 4,z w) +

+ ceOF (aflex)-af(29))-G (ol (x,q,u) =+
+ le 09 (AQ(MK)-—AF(%H))-GEL{-SC"(XJ y =) +
)4.
Lol B aflzw) G5 (x4 1.
Due to the transversality of the photons, only the first term in the
square bracket contributes to scattering amplitudes, and asymptotically
the exponential factor is replaceable by one. (In momentum space, in the

expansion of the exponential all but the first term would give rise to

*
convolutions which remove the singularity from the pole term.)

8. RENORMALIZATION é

As can be seen from simple solvable models [46] the "bare" parameters
(masses, coupling constants) of a Lagrangian field theory differ frowm
the corresponding "observed" ones if the fields are in interaction.
Adjusting the bare parameters such that the observed ones have assigned

values is called renormalization. In the physically mwost interesting

cases this renormwalization involves infinite quantities. There are,
however, theories in which all infinities arising in e.g. a perturbation

theoretical treatment are consistently removed by rencrmalization.

S e e

* )
More general nontransverse parts of the photon propagator than con-

sidered here, as relevant for the Coulomwb gauge, are considered in [33] .
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We begin by determining the (ultraviolet) divergence character of a
Feynman integral in neutral vector wmeson theory or QED. The well-known
power counting (cf. e.g. [2] , sect. 19.10) gives the degree of

"gsyperficial divergence"

D=4 -n(da -1) - rQ% - 1) + NX“(% - 2) (8.1)

where n is the number of external electron-positron pairs, r» the
nunber of external "photon" lines, N, the number of vertices, and d

the number of space-time dimensions (physically, d = 4). A theory is
called renormalizable if D depeﬁds only on the external lines; it is
superrenormalizable or nonrenormwalizable if for fixed nuwmber of external
lines D decreases resp. increases with increasing order (number of

vertices).

Hence QED in four dimensione is renormalizable. The only graphs that

give rise to superficially divergent (D >o) "renormalization functions"

are listed in the following table: '
n=o,1r=2,D=2 : photon self energy T
n=1,1r=o0,D=11: electron self energy =
n=11r=1,D=o0 : vertex ™"

‘;ﬂ.ng‘

n=o0,1r=4,D = : photon-photon scattering X

o
.

The tadpole graph with n = o, r = 1, and the 3-photon-vertex with

(
n=o0,r =3 vanish due to Furry's theorem),

8.7 Regularization

4

t is necessary to specify the way how to deal with these divergent
gquantities in forwal manipulations. We find it wost satisfactory to
introduce regulator fields into the Lagrangian from the beginning [47].

Qur Stueckelberg lLagrangian (7.1) can be expressed in terws of re-

normalized fields as
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1 Pav ID2 b ol 1
L==-5 0u4y 2"4% +35 Apa" 4 3(1-5)(9,~Av-99%) (2"4%- 3va") +

+ P (17 - M)y + Vo ey + §(2,-1)(id -M)y + P2, SMyp +

+ Py + 4y o+ Jua" ‘ (8.2)

Ve replace it by

L = I_JO + LI R LS (8°3)
with
N 1 1 “’i
- ) _a s
L, = Z=o N Il S W il B

Nt n
+ 2 §f—_ Pee(1? - M) o

f=o k=1 ‘ (6.32)
L. = > U ZfeKqJ -
I fE Vot Ve
+q (1-5)(0,8, = 2,4,)(2%8° - 2°4%)
£ 5 P [ F - m) v o2f sy ]
P Ve [ (B-1)(1 T - mp) + 2, Sm, Wk (8.3b)
y
Ly = J. A" + ;,Zk L Dex Mo * T We ] , (8.3¢c)

where AM= S A
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‘The field equations then read

-1 2 S Y
c, (o + ma)Aa = = j J (8.4a)
With {! .
=en f y - .
e fzk PaZoey Yy + (1-8) 0p (2747 - 374%)
?

and

. f ; £
(~i @+ Mp) Wo= gy + (125) (<1 8+ Mp) Py + 23U Wiy +
£
+ Zyed Ve o (8.4b)
P P R _ £
P19+ M) = A+ P ) v Poouz
_.f
+ P Zoek . (8.4¢c)

In (8.3%,4) the zeroth member of the set of "photon" fields corresponds

to the physical field of (8.2), i.e. Ao" = A", ¢ 1, m = o. We have

o=
introduced N auxiliary "photon" fields of masses m_ The constants o

are subjected to the constraints

N
2'."
Z;% c mY =0 for L = 0,7,e00e,0=1, (8.5)

the general solution of which is
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¢
c_ = — with ¢ = 1T (m2 - m2) . (8.6)
a ~ o= a (o]
J[ (m2 - m2) 3,740
b#a‘ b a
A simple realization of (8.5,6) is given by
2 2 2 N /N 2N
m_ =1 +a A=, c, = (-1) (a)' c =N A . (8.7)
c, 1
From Z —2 __c | —_— and the independence of the
a O +m> — a 0O +0°
a a r.h.s. of (8.4a) of the index
a follows
c -1
= } AP 7T (DHDE)_%” = - " -ar,
a 0 +o_ a

and therefore, using (8.4a) again, every constituent of A can be

regained frow it by application of a differential operator:

2
0 +m
A_ = i bg A (8.8)
8 b £a (-m +mb)

The effect of this arrangement of regulator fields is the followings:
Since the electrons are coupled to all components of g“ equally every
internal "photon" propagator of the theory (8.2) is to be replaced by
the regularized propagator

o 1

A c A o ig” e |
¥ reg % a F a a D+m§
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such that by suitable choice of the number of auxiliary fields there
will be no divergence difficulties in the internal "photon" momentum
integrations as long as the regulator masses remain finite, External
"photon" lines are obtained by application of the operator

+m2
ﬂ’ il a to

ao (—m2+mi)

e

P which becomes unity if the auxiliary masses
reg

tend to infinity. In order to obtain the lowest order contribution of
the "photon" propagator itself the differential operator must be

applied only once.

Similarly we have introduced in (8.3) N' multiplets of auxiliary
"electron" fields. Each wmultiplet contains o fields of mass Mf which
are quantized with anticommutators or commutators according to Sf = 11.
The constants df = nf-c5f are subjected to constraints similar to (8.5).

The simplest choice of parameters corresponding to (8.7) is

The auxiliary electron fields give rise to additional contributions to
closed loops. However, due to their normal or anowmalous commutation
character and wmultiplicity the multiplets contribute with different
signs Sf and weights D Therefore every electron loop contribution
of the theory (8.2) is to be replaced by

N'
¥ df [loop contribution with (electron mass)2 = M% ] .
f=0

The constraints on the df then again guarantee the loop integrations
to be convergent.
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The numbers N,N' of regulator fields depend on the highest degree D of
superficial divergence occuring in the calculations. Since from (8.1)

we know that in QED and in neutral vector meson theory Feynman integrals
are at most quadratically divergent, it is sufficient to choose

N=1, N' = 2, In the following we will keep our regularization pro-

~ cedure in mind but will not indicate it explicitély in order not to

mar the equations with additional indices.

8.2 Skeleton expansion of Green's functions

We are now in position to present a brief discussion of renormalization
of neutral vector meson theory, since all manipulations can be done
unambigously as long as the auxiliary masses are finite. (The renormali-
zation of QEﬁ is not possible by simply setting w = o, since the electron
propagator cannot be normalized on the mass shell due to the infrared
divergence. This complication can be circumvented by use of the inter-
mediate renormalization (cf. e.g. [2], sect. 19.9): then (7.52) is to

be replaced by

2(8) =0 and '5%7 Z (%) -

P=0

and correspondingly in (7.77b). The normalization of the photon
propagator (7.43) need not be changed. For the calculation of observable

guantities in QED, namely differential cross sections, we refer e.g.

to [48] , [49] , [50] .)

We will now show by the method of [41] that in the calculation of
Green's functions all quantities can be eliminated which would diverge
if the regulator masses go to infinity. The first step will be +to
eliminate the counterterms (7.66) from all Green's functions other than

the renormalization functions T, Z , M, X.
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We rewrite (7.65b,c,a) in the form

A R A A A A
Gxas - Sny [1q(y) " £yx'va, * nyZ(GxZ.Z * GXE, G’:z>] (8.9&)

[rp b
|
67
&3]
—
1
'_l
—=2
Y
4
g
+
™
(»]
o{r

Al A Va
yxZ(G Ly G G”Z)] (8.90)

1Y R E)

A i " A A ~
G,,z =AQFZZ,[1J(Z) + P G”u + nyz(Gx,y, + Gx,, G’y’ )] (8.9¢)

) = o~ b D+ ~C D +%

where we have used a graphical notation similar to that of [41] , [42].
In writing (8.9) we have omitted all indices as we will do throughout
this lecture whenever permissable. Furthermore we introduced a matrix
notation for the space-time arguments and extended the suwmmation con-
vention to them, i.e. repeated arguments are thought to be integrated
over. However, because of the anticowmutivity of the (physical) electron
fields we have to keep in mind the following sign rule:

:Whenever an antispinor argument is to be suwmed over with a preceding
spinor argument one encounters a minus sign (cf. the last terms in

8.9¢c) and the corresponding ones in (7.65a)). We will incorporate these
igns into the suwmation convention rather than wmarring the formulas

ith them.
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According to (7.58) the one-particle propagators are calculated from

(8.9) by another functional derivation and then setting the sources

equal to zero, After some manipulations one obtains

L
Sny Sny - ny
v = ~1
T
Afﬁu Aqu ‘ zZu
with
2 m &

[T [—]7 - x -
xy = Sxy T ¥yxa COy,ye
[—=]"= [5] =« =

[

zu - Pou T X&xz Gx,y,g

[T = L517 -

Comparing (7.42,51) with (8.10,11) we see that we can use the

(8.10a,b)

(8.10¢)

(8.11a)

(8.11b)

(8.11¢)

renormalization conditions (7.43,53) as a directive for the choice of
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s, Z,, and SM in (7.66).

2,

We now insert the expressions obtained in (8.10,11) for € , ¢ Dback
into (8.9):

2 . rre A A
GE, , = l&]‘(x) + ﬁ-xﬁz(er’ ,Z: + G’x;” G" ’Z) (8-12&)
4_-@ = & - ""C:@ +
e
A - A-é A A
= g V& + G G 8.12b
G!E’ ig(y) + yyz( LY, 2t 5, ,,z) ( )
—p = —— + W +
[
A Ag- ~ A
= G + G () 1
Gn_% iJ(z) + &yxz( i - ,y,) (8.12¢)
—p - 2+ —~ g
3
with the functionals,
Ae A A,
= & - (3 G X
X,,2% X,y,% Xy FsZ Vs (8.13a)



153

G =G -G G (8.13b)

>
ot
>
b

G . =G -G G (8.13¢)

- = = - OO0
L4

being irreducible between the arguments in front of the colon (vertical
bar) and those (to be created) behind it w.r.t. the particle lines
indicated by superscripts. (The piectures in (8.12) correspond to un-

amputated functionals.)

(8.12) reduce to identities in the case of the one-particle propagators

(ef. (7.59)), since

i = g% = G
Xy3Z3,Y, 1 V23X, , XyYsis9s2
by definition.

For later use we define two further functionals, one of them being

"yvacuum-irreducible" and the other one-photon irreducible in the sense

of (8.13c):

G G (8.134d)
, 22 G,,zz‘_ 5ig O - 13

poc//ZBe

5
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/\x- P al

-'=G' W W G‘
+ 9 ZET s 3 227 s 9 2220 y ol

(8.13e)

4

= - =O—

Having in (8.12) eliminated the counterterms £ and ¢ from the Green's

functions with more than two external legs we proceed to eliminate the

bare vertex operator Vv ™ 1eZ23-5kz ‘Szy in favour of the full

vertex r}yz = qEvIJE. and the photon-photon-scattering amplitude

X = G . Although the latter can be expressed in terms of 5.
ZUVW y 9 ZUVW F

and " , e.g. as

the introduction of X will enable us to write the integral equations

(8.12) in such a form that the regularization can be removed.

From (8.12) we obtain by functional differentiation

e
Feyz = ¥xyz * Xifz‘Gx},zH,xLE (8.14a)

*_Q:=H<+‘——c::qi:ﬁ
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xyz = Yxyz * nyz'G,y;z}E,,E, (8.14b)

= |1 {‘
xyz Sxyz T yxz Gx,y', £ (8.14¢)

X - G¥
2277" = Syxz  “x,y,:,,zzs"

(8.144)

:
!

We now define in turn a set of two- or three-particle irreducible
functionals as (e.g. iterative) solutions of the following integral
equations (ef. [41] , [42] ):

. +G., & ) (8.15a)
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né,ér _ ne _ E "E,Ex‘ & a é‘_ ) (8.15b)
G,y’z" - 1 Y22 Gsy;z=x” 92 A 2 Vs ’75)

ree _ gy - 6¥ G"'ee #G G ) (8.15¢)
ax’Ysz B GX:Y:- X9¥ss E;x: ( LyYy ¢ Ky s s 3

¥,ee ¥ b 3,ee %

4
¥

A0,2% _ A0 _ l ’G\'O,zf‘ + a a (8.15(1)
G,:zz’: a G,,zz’: 2 G,,zz’u_u’ , g U2 ;38 ,,u‘)
- D - 7 O -

o,2% % o2y
An3  _ae _lar o3 .38 8O .G &
Gf-’,zz’z B G,,zz’z": _6'G,,zdz’., uuu”( ,uu's 5 I T L ¢ . I

J g 3% gor28 (o 8.15e
4 PZZ'Z"G1 ,Z'Z"ll:' (G,,zu‘d' h G”zu' :ru") ( - )

1:\:;@ - w _ A — BIEE%
¥3 ¥ 6 ¥,35 2 % 6 e
o b ¥ ooy

g

oY
A
P =D -4 =g




A¥s3v,ee _ av,ee
X,y Xyt
Y33t %,ee -

A%, 38,08 _ A¥, 5
y s 222" yy 222"

_ ] Gr,eé
X,¥yty 222
Al
€ giee 3 3ged
- Gé’;}f

29222y, 2,

157

’éif!3¥’e-e.
Xy Yt

A ¥ 3geT %

(8.15f)
+ 3 G 60'2*” + G & ,a
192 34 %% 21Z 4332 4,2

::nag;;g; -4

B o2y 6 ¥, ez

A A

G G 8.1

Xyy 'Y g ( 58‘)

(8.15f,g) form a system of coupled integral equations. In (8.15d,e) we

have used (8.13d) which gives a° _
R AL g

G , « The symbol P__, ,
s 9 ZZUU &

Z2

in (8.15e) denotes summation over the permutations of 7,252 .

Using these functionals and the equations (8.14) for the vertex functions,

(8.12) can be written in the form

% . Ae,elf
QE’, = iv(x) + Fxfz (Gx:,z: +
ifp = o—s + ——CIXD
&8
- Ae,ev
G’X) 141(:{) * r‘:‘fyz (Goy'lz= *

'
Xy

112

(8.16a)

(8.16b)
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~ R AX 35“ eg A A
¢ = 1iJ + g orem + G G + 8.16¢
112 (Z) T}XZ ( X9¥o 3 Xy aY’) ( :
1 AK';BK]QE e A0y2% a A q
T% quﬁd’(e,,uﬁwi * 3 G,,u G,,dﬂi N G,,u G,,u'G,,dD

o4

In view of (8.15) these equations reduce to identities in the case of

+he renormalization functions.

The equations (8.16) together with (8.13,15) allow to expand all Green's
functions in terws of z}% y Sﬁ , M , and X only, whereby in this ex-

pansion no self energy or vertex correction parts, e-.g.

~O~

_arise. This statement can be proven by induction w.r.t. the number of
vertex functions: Assume all Green's functions expansions in termws of
the Tenormalization functions to be given up to order Pn Xm, say. Then
(8.13,15) give the expansion of the irreducible functions (in the sense

of Dyson [61] ) up to the same order. Insertion into (8.16) then gives
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: o and Fn Xm+1 .Due to the irre-

ducibility character of the functionals in (8.16) no self energy or

the Green's functions up to Pn+1

vertex correction parts arise in this iterative construction, i.e. we

obtain the "skeleton expansions" of all Green's functions.

Since all integrals occurring in these expansions are superficially
convergent, i.e. the integrands behave like p"n y with n3z 5 (apart
from logarithws), for all (combinations of) integration momenta, the
regularization of the electron lines can be removed from the lines
connecting the renormalization functions. This can be seen as follows:
From every integral corresponding to a loop of auxiliary electron lines
at least one power of A' in the denowinator can be factored out after

a scaling of the integration momentum: p = p'A . Since the rewmaining
integral is finite in the limit A' — oo the whole contribution vanishes
in the regularization limit, After having eliminated the auxiliary
electron fields from the skeleton expansions they are only needed for
the calculation of the renormalization functions W, = , " , and X

themselves.

8.3 Bethe-Salpeter eguations

The analysis of the equations (8.15) is aided by introducing Bethe-
Salpeter kernels by the following integral equations, which define
these kernels uniquely at least in terms of the mentioned skeleton

expansions:

perey " [ e e,eﬂ. (8.17a)

Xyy22,¥42 Xy328,Y52 Xy Z8,X,20 X5 ,2,y,2'

:@Z=$CPC—M
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e e,ey
-G B ’II'ZI/. t J
2y Y 922X, ,3

We may write (8.17) collectively a8

B=1I -ISB

(8.17b)

(8.18)

where I refers to the totally amputated one-particle irreducible

functions and S

am3x &Y
XY

8

A A
nyee' I = G'Y 1

=W = =D

¥, €€ ¥

yy ZOZS ) yZZE S

18 A%

1 N
: 6 Gx,y,:,,zﬁi(G,,zdﬁﬁ * 3 G,,Z ke

A s A -~
& ch®® LG @
9 3 ZRZIY 3 XKy " Ky ¥y 2 Xysy 1Y

T ,2€ EE g %

mediate states. We must define two new functionals:

)

T
-

symbolizes the two-particle propagators ‘QF

S

[

F .

The treatment of (8.15¢c-f) is more complicated due to the 3 y--inter-

o

(8.19a)

SRR 0 AR
K|3g’ L 6 ¥ PRES 2 ¥ oy 6— 3

(8.19b)
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Now we are in position to define some further Bethe-Salpeter kernels:

Btl35,ee - Gx;5$ = G835¥ , BX:SK,B? ' 8.20
X,¥,:¥hX, EJI’=X;£v EJE!=th; Xy ¥y 2y, XY ( &)

125

30!23 i

-G G 30,23’
» 322’3, ul , 5 22010

;
T2 7,z T, v, s un (8.20b)

~EC - OO - 4 SO

33,53,95 _ ,ee -
y 92227, ,uty” y » 222", ,udu” (8.20¢)
_ ] g ¥ree . rlBar,Sa’,ee __1_ ¥y 3¥ee

y 9222, vV, gV, , uun’ Pzz’z"G, ) 22VY B, , ZVVE, yuun’

1 0,2
fﬁl. Wh‘. " “x [ P Ti " G’ (i " B ? b’ . /
99 BTL, ,UVV T, , VvV, , U 4 “zz27" Tudu" T, ,zz2vy" ", ,zve, ,un

i
:

15,e¢.

A

o IEIEE -ir e -
¥,ce
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(For later use we state that the(superficially logarithmically divergent)

Bethe-Salpeter kernel B°
equ. (40) of ref. [42] .)

(8.20c), cf.

’Ercan be eliminated from the last two terms of

BIEE o n T - BN e s (8.200)
o - =o - OB
ahdmes gYree 53¢, ee ¥, ee
Xy tyy222" ,x,.,,zzz' Xy ¥y by uuu’ o, uuls, 222"
- M e, e

l

A somewhat lengthy
in the form (8.18)

elements are given

‘(73?{, ee
Xy ¥y tF Xy

calculation shows that (8.20) again can be written

with B, I, and S now being 2x2 watrices. Their

by:z

. ‘6’3‘6395
Bi2 Bx,y,:,,udu"

1

29 =
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= ¥ _ Ay
Y117 Cx,y, px T12 = Oy, 0, ,uu”
= f - é_ 7 -1 X
f21 G,,géé!xgzj To0 = 2 Page “ran G, gz * G, 227, ,min’

and the propagator matrix S is diagonal:

S = P T A|

S 22 727 qu.. Aﬁqu ) Zbqu

— ’ '
11 SFxx‘SFy?

The Bose symmetry factors %1 which take into account the eguivalence

of the Photon lines are incorporated into the summation convention.

8.4 Renormalization functions

We now can solve (8.14) for the bare vertices. Nawmely, multiplying
(8.18) from the left by S gives

(1 +81)(1 -5 B)=1 (8.21a)

(where, oi course, 1 stands for a matrix with products of & -functions

in its diagonal), and similarily
(1 =S B)(1+81I)=1 (8.21b)

since in the second term on the r.h.s. of (8.18) I and B may be inter-

changed which can be seen at least from the iterative solution of (8.18).

Inserting (8.21a) into (8.14) gives
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_ e,ey
r%yz = Yxyz T gg,xgz X o T B (8.22a)

e,ex
= + G_, B2 8.22b
rxyz nyz VaXsZ 4Y Z:Xy 42 ( )

~0 -~ + —OTES
_ X!Eh’!ea 1 p5¥gea

r’xYZ N Xxyz " G-Ylvxls.?_ Bx‘,y’,:x,y, - 6 G, !Euuluu y s UUUE X, T, (8.220)

~OL = < OO 4 ~CERED

B Y 33",&5

1 1-1 _0,2¢ 1
X%udﬂ'" Gy,x,g_ x,y,:,,udd’+ G,,Eyv%”(4 Pva”‘s

1 g¥s3t,ee
Fvu B,,vﬁ?,,d@'+ 6 B,,vv%@,,uuﬁa

. (8.224)

: RPN e (O
S o
WP"“%; *'%

%«
é

or in abbreviated notation

M=y + M sB (8.22)

where (8.22¢,d) have been combined by introducing two-dimensional vectors
¥ " with components

¥a= ¥ , Ya=o© M= Moo= X (8.25)
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Finally, inserting (8.22) into (8.11) gives

> g4 ySF = g + MSC - PSBSC  (8.24a,b)
e T = e + % _W

—> T = e+ ST - ~ B0

T= ¢ + yST = ¢ + rsnr - 8BS (8.24¢)

We s8till have to demonstrate that the renormalization functions in
(8.22,24) can be calculated in terms of convergent integrals only.
Then the regulator fields can be eliminated from thew, too, without

e e e e e e e R S

occurrence of any divergent quantity.

8.4.1 Vertex function and photon-photon scattering amplitude

. S o e D . T T S " S0 T T T o T ) S s S5 s S o =

We now proceed to eliminate the bare vertex y from the vertex
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equation (8.22). The method +o be shown was first used by B. Ferretti
[62]. In momentum space (8.22) reads

k k k k
PP g4 o 9gq 9pP (8.25)

where we have indicated the momentum dependence in an obvious way such
that k denotes the momentum transfer from right to left and the symbols
at the .right (left) collectively denote the incomwing (outgoing) momenta
which are restricted by momentum conservation. In (8.25) an integration
over q is understood (including factors of (2%)_4) and we still have to

keep in mind our sign rule and the Bose symwetry factors.

Subtraction at k = o then gives
o} o] (o] Q o0 (@]
r -0 = (r=T1T)8B + I (S-8)B + Ts(B-B) (8.26)

where we furthermore suppressed general momenta and those to be inte-

grated over. Using (8.21b,18) we obtain
o o ) oo ©
M- = I (s-8)I + T©s(B-B)(1+8I) . (8.27)

Subtraction of (8.25) at k = p = o gives

(o) 0 cc O 00
mr- r° = [s(B-B") (8.28)

(o]
where m® is the vertex function with all momenta zero.

For covariance (parity, and time reversal invariance) reasons we have
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or‘o M
My = 1ez,y (8.29a)

while transversality of the (regularized) photon-photon scattering
amplitude (cf. the discussion after (7.73)) implies

o
M, =0 and especially 1'% = o . (8.29
2 .

The constant z, can be calculated (recursively to higher and higher

1
powers of e) from (8.28) and the renormalization comdition (7.77a):

o O o] (o]
41e (1-z,) p¥ = 1r [F§ST1(Bﬁ1-331)(ﬁ+M)] (8.30)

for p2 = M2, where "g" means putting the two arguments on the r.h.s.
on the muss shell at p. Then (8.28) can be solved for 31 ( ﬁz is already

known to vanish)

o] (o] o 0 Oo - Oc Oo O O 00
Fe1 [1-883"))] "= r®+ r°s(-3° +... (8.31)

which can be inserted into (8.27). From (8.27) we then obtain the
equations for the vertex function and for the photon-photon scattering

amplitude, respectively:

o] o] o o 0 (o]
Tp= T+ T8-Sy )T+ T8 (By-Byy) +
o 0 (o] 0 0 C
+ 789(Bq=Byq)SqqTyy + T48,4(Byp=B,5)8,,15, (8.52a)

=
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(o] Q o O (o]
My = M(844=81 )T + 718 14(Byp=Bqp) +

o 0 [ (o] o]
+ 1.8,,(By4=Byq)S  Iopt 1844(Byp=Byp)S0lnn - (8.32b)

So far we have obtained (8.32) only in regularized form. But it can
easily be verified that all integrals occurring in (8.30,31,32) are con-
vergent (in perturbation theory) in virtue of the differences ;_go

¥

0 o
B-B, and S-S in the integrands. Due to the scaling argument discussed

after (8.16) therefore the vertex function M and the photon-photon
scattering amplitude X can be calculated from the subtracted equations

(8.32) without need of electron regulator fields.

In our determination of the vertex function we have used (8.22¢,d4) in
order to obtain formulas needed in the caleulation of = below. If one
is interested in e.g. the vertex as form factor, i.e. with the photon
momentum nonzero but with the Fermion momenta on the wass shell, one

pay use (8.222,b) in a similar way as we used (8.22¢c,d). However, then

o )
the analog of o ;. ™8 ypich has a more complicated structure than

(8.292a).

S e s o D D O e o S A S A B S S

The discussion of the electron self energy operator = is simplified
by use of the Ward identity. (Although we have derived the Ward identi-
ties (7.73) only on a formal level, their validity can easily be
established frow the regularized theory by removal of the cutoff, A,A”*°°)

)
sccording to (7.76) and (7.51) the vertex function T can be written

in the form

r¥(p,p) = i e [A(pz)x’“+ B(p?)p” + 2p7a' (°)(4M)] (8.33)



169

with, from (7.772)
A(M®) + M B(M®) = 1 . (8.34)

As is clear from (8.33) the functions A(pz) and B(pz) can be calculated
from Tr M*” and Tr(y" T'*) where (8.3%1) has to be inserted. Due to
(7.76,5%a) SF’,(p)-1 then can be obtained from (8.33) by integration as

2

D
sy = 1 [ AEOGEM 43 [ s ] (8.352)
M

Alternatively, SE',(p)-1 can be derived from (7.75b) without integration.
After a short calculation one obtains

o8
307 -3 ger [ G M) @] G2 ()
o]

where P, is a momentum on the mass shell, i.e. pi = Mg.

8.4.3 Photon self energy

The photon self energy operator T can be calculated from (8.24c) by two
slightly different methods.

The differentiation method consists in first calculating the third
derivative " from (8.24c) and then regaining [ from it by integration
whereby the integration constants are chosen such that the renormaliza-
tion conditions (7.43) are fulfilled. For brevity we give the final
result for M only in graphical form (cf. equ. (39') of ref. [42] ):
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- | D - oS

+
0 >~

.l_
o>

oD +r & ] e

6\1_\

In (8.36) all "overlapping divergences" that mar (8.24c) have been
disentangled and all integrals become convergent after the remaining

differentiations have been performed.

The subtraction method for obtaining T consists in first calculating

the auxiliary tensor

Tia(®) _ ") - A Lot
tr = 0 (k) T (o) = k. (_a_?a’ﬂ‘/‘(k)>k=o -

~d =
2 k?-kt( DK, amﬁﬁ (k)>k=0 (8.37)
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 and then regaining ﬂf from it again by use of the renormalization con-

fditions but without need of integration. ﬂdtr is transverse as is I

(in its regularized form). Since the counterterm ¢ in (8.24c) is
quadratic in the momentum k it does not contribute in (8.37) and there-

fore we need consider only

W.= M= ¢ = Msr - s BsM (8.38)

in forming ?rtr. In performing the subtractions in (8.37) the essential
point is that differences and derivatives of Mand I (which is intro-
duced via (8.27)) are always eliminated in favour of differences and
derivatives of B and S, whereby again the overlapping divergences are
disentangled; The final forwmula looks similar to (8.36) with, however,
some derivatives replaced by differences. Of course both methods are
related to each other since Trtr is the remainder of a Taylor series

which can be calculated from " by a well-known formuls and vice versa.

According to our regularization prescription every contribution to (8.37)
arising from an electron loop has to be replaced by a weighted sum over
loop contributions with different electron masses. However, we may re-
order these terms in such a way that one obtains differences of the

form (8.37) for every type of electron separately. Due to the subtrac-
tions then the contributions of the physical and the auxiliary electrons
are separately finite. Moreover, the contribution of each electron
regulator field can be seen to vanish because of the secaling argument
already given above at the end of section 8.2. Therefore one ends up
with only the contributions of the physical electron. Although the sub-
traction terms in the regularized version of (8.57) were transverse, the
contributions from the physical electron alone are not as can easily be
verified from the lowest order contribution teo (8.37), i.e. the elimina-
tion of the auxiliary electron fields wmust be paid for by allowing, on
the counter term level, quadratically (and also logarithmically) diver-

gent counter terms that are not transverse.
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Having obtained Trtr(k), which is transverse and vanishes of fourth
order as k—>o0, it is easy to form the photon self energy operator

T (x) from it, that satisfies the renormalization conditions (7.43):

~ A
" , Ty (k)
) = /() - (g” k2~k”k”)(~fi-§——> > 2 (8.59)

=T

(The subtraction term is identically zero if m2 = 0.)

Thus the renormalization of charge, mass, and photon awplitude (these
three are directly related in the convention (7.33,35,36)) is dis-
tributed over two steps, (8.37) and (8.39), in the latter only finite
guantities are involved. The factor E?— which is needed for the cal-
culation of the correctly normalized scattering amplitudes, cf. the
discussion after (7.43), is to be determined from the finite expression

(8.39) of WY .

Now our renormalization scheme is complete: In (8.16) we have obtained
the skeleton expansions of all Green's functions other than the re-
normalization functions. The irreducible functions occurring in (8.16)
can be calculated from (8.13,15). The renormalization functions ™ , X,
~ , and U can be calculated iteratively from (8.32a), (8.32b), (8.35),
and (8.39), respectively, whereby the Bethe-Salpeter kernels occurring
in these expansions are determined by (8.17) and (8.20).

We have shown that the regularization of the electron lines can be re-
moved from these equations. However, we did not prove that the photon
regulators can be eliminated, too. Since every photon line is regularized
separately there are no complications due to gauge invariance, and the
problem is similar to e.g. the one in ¢>4—theory. Since a somewhat
laborious power counting shows that all integrals of the above system

of equations are convergent in virtue of the judiciously arranged sub-
tractions, the photon regulators are not necessary in that system. In

fact, this system is werely a resummed form of the prescriptions given
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by Bogoliubov and Shirkov [3] for the calculation of renormalized

Green's functions adapted to QED and neutral vector meson theory.

*
8.5 Vanishing electron mass )

8.5.1 'gB—invariance

The renormwalization conditions (7.43,53) were given for electron mass
different from zero and for photon mass either zero or different from
zero. If the electron mass vanishes but not the photon mass, it suffices
to let M = o in (7.53). In this case the theory possesses gs-invariance,

i.e. the substitution

i 3*5
Yy —> e W

P — e

leaves the Lagrangian unchanged. More precisely, in the regularized
Lagrengian (8.3) the -{5—substitution must only be carried out on the
physical electron-positron field We? {po, with Mo = 0. This implies
that the corresponding conserved Noether current is

j; ”Z;_i_?b Ysb’r Wo * (8.40)

The gs-invariance holds also for the renormalized theory: It suffices %)
that any Green's function has in the corresponding graphs an odd

number of Yy -matrices along any electron arc. From the renormalized

R *x)
Section added in Fall 1970. cp. footnote on p. 174
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equations (8.32a,35a) it is immediately seen that y--oddness of the
‘electron propagator (due to M = o) and of the vertex to lowest per-
turbation theoretical order implies recursively this property to all
orders, since in (8.32a) only a linear combination of ¥ -odd terws is
formed and B = o in (8.35a). Indeed, the current (8.40) has a limit as
the regularization is removed; this renormalized current is conserved
(as implied by the appropriate Ward identities) but not gauge invari-
ant. A gauge invariant current in the limit could only have been ob-
tained by taking instead of (8.40)

>

. f —
I5 g1, = %5 fk Zzl}’fkﬁlf” Wek (8.41)

with Z5 s gsuitable (in the limit not finite) constant, in analogy to the

vector current in (8.4&). However, the space integral
.M
o = Jask g
ig gauge invariant [637] .

8.5.2 Massless quantum electrodynamics

o o T T S e o S S A - - ———— . o ——

More interesting is the case of electron and photon mass both equal to
zero. Then (8.35) is not applicable since this would require normaliza-
tion of the electron propagator on the mass shell, which leads to UR-
divergence as in finitemass=QED. For this reason also the vertex cannot
then be normalized at zero electron momenta. Moreover, the renormali-
zation conditions (7.43) cannot be imposed*;ince the second derivative
of the inverse photon propagator is singular at zero momentum due to
the vanishing electron mass, which wakes zero momentum the threshold
for pair production. The difficulty can also be seen as follows: if the

* j ;
Strictly speaking, this holds also for vector meson mass w>o, when an
adaption of the method described after (8.53) should be used.
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conditions (7.43,53) with M = m = o could be imposed, the theory, if
thereby determined, would not involve any mass parameter, such that it
would have to be scale invariant, and (7.43,53) would imply that the
electron and photon propagators were the free ones. But then it follows

[64] that there cannot be any interaction at all.

It is therefore necessary to treat the renormalization oi massless QED
separately. Let us denote in this section the vertex function and the

negative inverse propagators collectively by My Lee.

M(#) = - s5(£) ‘ (8.42a)
M(p,a) = ™(p,q) (8.42b)
PrU(e) = - Lo ] (8.420)

Let the unrenormalized form of T (X)) , i.e. the one before the final
subtraction (ef. (8.24a,b)), be Fu(p). We set

r(4) = M(psp,) = &(p,) - 2B (p,) (8.43a)

with

a1 (p.)
Clpp) = F(p) = T - (pmp ) Louof _
(pyp,) 2(P) W(pg) = (-2 ) —5 5, . (8.430)

which is finite due to D = 1 of the electron self energy part, for any
P, with pi:go, whereby manipulations analogous to those we discussed in
connection with (8.37) are implied. From the zero-mass condition

M(o) = o (8.44)

follows

a(p,) = M(oyp,) » (8.45)
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and from

2 '(4) =‘afﬂ(P,PO)

5 - 3%(p,)
O P P
by setting p = Po
20(8,)
BH(p,) = - —2= (8.46)
apw
é Now, for covariance reasons
%; T ($) = £ 0(p?) + V(p°) (8.47)
i
. such that
;‘"5 B*(p ) = = y"0(s2) - 2 p* [0 (22) + V' (22)] (8.48)
Po ¥ Po 0 o o ) : :

To find U'(pi) and V’(pi), we form the second derivative of (8.43a)

at p = I

2 (8 2o, )
0 ( o) ) 9214\ P, _ 2 (xﬁpg_‘_ Kpp,q_ I;og}.\u) U’(Pi) .
a PO r‘apop a pOrtaPOD @

+ 28"V (35) + 4ptel[B,U"(02) + V' (2D)T - (8.49)
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Here all but the terms proportional to gMY are removed by transverse
projection, and forming traces gives U'(pi) and V'(pi) for insertion in
(8.48), with the final result for (8.43a)

F(#) = T(pyp)) ~ T (o,p,) +
PP, plrpY 520 (p,)
4, t= [ 4,(6" - ) E
i 12p° {- ° ° p2 ORIy
p¥pv 27 (p )
+ p2 Tr [ (gh’- =2 ) i = ]}- + B U(Pi) _ (8.50)
p, op, dpY

The constant U(pi) in the last term is arbitrary except from being

imaginary for p§<.o as can be seen from (7.51). It determines the
normalization of the electron propagator and, thereby, of the re-~

normalized electron fields. In (8.50) one may also use

>2n,(p,) 221 (p,p,)
0P, op,” ~ 2pMpY =D .

In order to determine the renormalized vertex function, in view of
D = 0o, from the unrenormalized Pu(p,q), i.e. the one before the final

subtraction, we use Ward's identity

r(¥)

’c)pj.~

M(p,p) = - e (8.51)
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such that
M(p,a) = Mi(p,a) - My(pyp) -6 — (8.52)
Py

where the difference of the first two terms is finite and to be cal-
culated in analogy to (8.27), and the last term is to be obtained from
(8.50).

As mentioned before, the negative inverse photon propagator in (8.42¢c)
cannot be normalized at k = o due to an UR-singularity of the second
derivative there. Since the definition of, e.g., Gupta-Bleuler gauge
in sections 5.4 and 7.3.1 rests on the possibility of separating from
m#*(k) a part proportional to gM¥, which dowinates at k = o and
determines the normalization there, that gauge does not exist in wass-
less QED, the only intrinsically defined gauge (in the class of gauges

obtainable from (7.1)) being the Landau gauge

M) = (g76° - W) () . f (8.53)
(0f course, one may add to (8.53) a term of e.g. the form k'K’ const.,
however, this cannot yield Gupta-Bleuler gauge, since ((o) does not

exist.)

Thus we set in analogy to (8.43)

rww)=nwum%)-A“U;)—gﬁ”ﬁ%)-%w%%c”‘ﬁ%) (8.54a)
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with

v Qv u e}
M,k ) = 077(k) - (k-k_),

1
-3 (k—ko).‘ (k—ko)ﬂ ———-—-——akwak (8.54b)

which is finite, due to D = 2 of the inverse photon propagator before
final subtraction with k§4=0, and to be calculated again in the manner

discussed in connection with (8.37). The zero-mass condition

P* () = o (8.55a)
and the trivial one

B

= M%) = 0o (8.55b)
akoc k=0
give
2" (k) =T"™0,k ) (8.56a)
and
> ™k, x )
- e 3 SN - . (8.56D)
o Qk k=o
O et

i
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Now

» 2rreE, )
c"‘ f’(ko) = ?...—0 (8'57)
akOiSkop

yields, with (8.53),

1 vuf 2 2
- 5 Kk, gr (k) = (e"x"- ¥r'k”) (k7)) +

2 > Bs

s[2 KM (k) + 2 KPKV(kk)) - 4 g ik )%+ KKK gP“kao]r‘(kg) -
v, 2 v 2 "y, 2

-2 (g” ke~ kgko)(kko) P (ko) . (8.58)

Insertion of (8.56a,b,58) into (8.54a) and wultiplying by k., using
(8.53), allows to solve for T“'(ki) and r‘"(ki) provided (kko)e-k2k§ £ o0 ,

i.e. k and k_ are not parallel. The, for ki < o imaginary (cf. (7.42)),

constant F’(ki) remains undetermined and fixes the normalization of the

photon propagator.

Xs-invariance of the theory so obtained follows as before: It is secured
if the electron propagator and the vertex are Y =-odd. To lowest order,
this is trivial. Let it hold up to order 0°® fop M(g) and up to order

822+ gom M (p,q). Then it holds for Pu(p) to order 222 gue to

il

T o - GCECD

and the skeleton expansion for the Bethe-Salpeter kernel, and thus
from (8.50) with (8.43b) also for TI'(¥), and for r”;(p,q) to order
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82n+3 due to

A e W ()}

and thus from (8.52) and the result on [7(#) just obtained also for
rn*(pyq). The induction is complete. Thus, in (8.47) V(pz)-a

Finally, we consider on which parameter the theory so constructed
actually depends. We have introduced U(pz), C{(kz), for some pi.éo,

resp. k <o, and e. For simplicity, we choose k2 = p2 . Bj re-norwalizing

the photon and the electron propagators, we can make [‘(p ) = i and

U(p ) i. (We take the sign in the latter case, concerning which no
rigorous result is known, as that suggested by perturbation theory for
smwall p2 ) The coupling constant e associated with this choice by (8.51)
and designated by e(p ) is thus the only physically significant para-
meter, since the operator normalizations chosen here are arbitrary con-
ventions in the absence of an intrinsic wass and in view of the im-
possibility of normalizing the propagators at zero momentum. Now, due to
non-gcale-invariance, e(pi) depends on pi nontrivially for the unchanged
theory, or, equivalently, a length scale change for the theory changes
e(pi). Thus the relations we have given define a one-parameter family of
physically distinct theories, all of them, however, related to each other
by dilatation, with no intrinsic diwmensionless parameter definable. In
particular, e in (8.51) is not a renormalized charge in the conventional
sense, due to the impossibility of normalizing the photon propagator in
the conventional manner. It can be shown [65] that if the massless theory
exists, as here formulated, as the limit of conventional finite-electron-
mass QED (and in this sense it does exist in perturbation theory) then
one wust let the conventional charge go to zero in that liwiting process.
The rate at which one lets it go to zero relative to the electron mass
determines which member of the one-parameter family of zero-mass theories
Jjust described is obtained. The absence of any intrinsic dimensionless
parameter of the zero-mass theory (in perturbation theory) is the root of
the famous result of Gell-Mann and Low [66] that the bare charge, defined

by a certain large-momentum limit, is independent of the renormalized one.
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