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Abstract: In this article, we systematically study the amplitudes for annihilation of two virtual 
photons into hadron resonances and continuum states, a process measurable with colliding 

electron-positron beams. The asymptotic behavior of reonance form factors and their abso- 

lute scale follows from light cone or parton model considerations; definite predictions for 

inclusive two-photon anmhilation are derived by the same methods. 

1. Introduction 

The discovery of scaling properties in inelastic electron and neutrino scattering [l] 
has stimulated interest in the interaction of electromagnetic and weak currents with 
hadrons. Under certain kinematical conditions these reactions with high mass cur- 
rents probe the light cone structure of current products [2]. Far-reaching conse- 
quences can be derived by requiring the currents to build up a closed algebraic sys- 
tem on the light cone [3]. A physical realization of these ideas is the so-called parton 
model [4], the central feature of which is the existance of fundamental constituents 
of both the hadronic matter and the electromagnetic and weak currents. The pre- 
scriptions of the parton model are not precise, and the model has therefore a certain 
heuristic value. 

If the main point of deep inelastic scattering processes is the constituent struc- 
ture of the electromagnetic and weak currents, then it is natural to study in as much 
detail as possible those processes which involve only currents or current products. 
This is the major motivation for studying such processes as e+ + e- + y* + hadrons, 
where y* denotes a photon with large virtual mass. It is important to give a theoret- 
ical description of such current reactions, based on the above mentioned ideas, in the 
expectation that a confrontation with experiment will increase our understanding of 
deep inelastic processes. 
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There are two classes of processes in which one measures matrix elements of cur- 
rent products without the interference of hadrons in the initial state: single-photon 
e+e- annihilation into an unanalyzed hadron system, as mentioned above, which 
measures the vacuum expectation value of the product of two electromagnetic cur- 
rents [S], and two-photon annihilation into an unanalyzed hadron system, which 
measures the vacuum expectation value of the product of four currents [6]. Unfor- 
tunately, similar processes involving weak currents seem to be inaccessible*. Besides 
these fully inclusive reactions, one can study semi-inclusive processes like 
e+e- -+ h + X, where h is an observed hadron and X is summed over. These pro- 
cesses are complicated for a simple reason. Whereas the crossed process 
e- + h -+ e- + X reveals the constituent structure of h, the semi-inclusive annihila- 
tion process probes the complicated final state interaction of the basic current con- 
stituent. This reflects itself in the fact that, in the parton model, the Bjorken vari- 
able in the semi-inclusive process is actually the Feynman scaling variable ph/ph ,max 
in the process parton + antiparton + h + X. For this reason we believe that the reac- 
tion studied here - the annihilation of two massive photons into hadrons - provides 
a cleaner test of current theoretical ideas than semi-inclusive e+ee annihilation, and 
offers good possibilities for gaining an understanding of deep inelastic processes. 

Our aim here will be to provide a theoretical picture of the two-photon process as 
well as some specific predictions based on the parton model or the quark light-cone 
algebra. Some of the results may hold more generally and not just within this con- 
text; others not. For this reason we give, after a general review of kinematics, a quali- 
tative discussion of models. Then we turn to resonance production, 7* + 7* + reso- 
nance or, equivalently, the absorptive part of 7*7* + 7*7* forward scattering in the 
resonance region. Finally we discuss the high energy limit of the absorptive part of 
off-shell photon-photon scattering. A few of these results can already be found in the 
literature [6]. However, the purpose of this article is to present a coherent picture of 
the processes under discussion, so we shall repeat material where necessary. 

The process in which one can measure 7*(4I) + 7*(q2) + X(P) is 

e-(pl) + e’(p,) + e -(p;)+e’(plz> +X(p), 

where the energy and angle of the scattered electrons determine the independent 
2 variables of the basic process, ql, 42, 2 P2. This reaction has attracted interest in con- 

nection with nearly real photon-photon scattering (ST - 4; - -mz) [7]. In this 
kinematic region, the cross section is enhanced by a factor - (ln_!?/m,)2 relative to 
the case in which the photon masses are finite. We shall not discuss here the measur- 
ability question in any detail. The reason is that in the kinematic region of interest 
to us this process looks (in the parton model) like the pure QED process 
e-e’ + e-e’$p-, which will be discussed elsewhere. Of course, the experiments 

required to study reactions are not trivial, but we do not believe that they are insupport- 

* The reader can amuse himself by considering the Primakoff reaction v + Z --) p + hadrons + Z, 

which involves both the electromagnetic and weak currents. 
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Fig. 1. Hadron production by annihilation of two virtual photons which are produced in colliding 

electron-positron beams. 

ably difficult, either. The main problem is that the cross sections are small; this prob- 
ably sets a minimum of - 1O32 cmP2 .sec-l on the machine luminosity required to 
perform an experiment. However, even crude total cross sections in the appropriate 
kinematic region would be of great value, and we shall see that a dramatic depen- 
dence of the cross sections on a certain scaling variable emerges from parton model 
or light cone considerations. This can also be used as a test of these ideas, without 
requiring a great deal of data. Although the radiative corrections to the process 
e-e’ -+ e-e’X present a formidable problem, they should not obscure the essential 
features. 

2. Kinematics 

The virtual photon pair which annihilates into hadrons of even charge conjugation 
can be generated in a pair of colliding electron and positron beams (fig. 1). From the 
diagram we read off the production amplitude 

Tae4,(p;)Y,u(P1)U(P2)^l,u(P~)i 1 Ti!7ql,q2), 
41 42 

(1) 

where the amplitude TE is defined as* 

Tffv(ql,q2)= $d4, e-2 ‘i(qr-q2)x W(P)~T*{J'l(~x),JV(-~x)}~O,. (2) 

In the c.m. system of the virtual photons, which is identical to the rest frame of the 
hadron system, we may define the helicity amplitudes 

T;‘(ql 3 q2) = T;(q >q2) +%+~(q2)a A,,, = +>O . (3) 

Four-momenta and polarization vectors are defined to be (fig. 2) 

* Single-particle states are normalized by ( p, AI p’, A’ ) = 2Eij 3 (p-p’) 6 Ah,. 
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41 = (q;, 0, 034: > O), I 
Ef(q~)=&o,i I,-i,O) 

e0(41) = l 7=== -4: 
(4:> o>o, 47) > 

42 = Gl;> 070, - 4:) > I 
2(q2) =-&(O, f 1, - i,O) 

eO(q2) = & --(4:. O,O, --4i) . 

The number of independent helicity amplitudes can be reduced by invoking the 
known invariance principles. To that end, we assume that the state H has a definite 
spin and parity. Then we have from: 

(i) Bose statistics : qy2(q,>q2) = qy1(q2JQ > 

(ii) rotational invariance : TH h’hzfOonlyifIX1-X21~JtI, 

(iii) parity : Tc;’ ‘* = nH T~k’-h2, nH = normality of H , 

(iv) time reversal : T;‘* = {T;;}* . 

Therefore, the number of independent amplitudes depends on the spin and normal- 
ity of the resonance; we have 

T;+=fT;-, T;a=kT;o: J,>O, 

T+O = 
H 

f T$, T’+=kT;-: J,>l, 
H 

T;-=kT;+; JH>2, 

where the upper (lower) sign refers to even (odd) normality. As trivial examples, we 
mention the pion with one form factor, the Jp = O+ e -meson with two, and the 
Jp = 2+ f-meson with five independent form factors. In our case the photons are both 
spacelike and the form factors are real. 

Summing over all hadronic final states, the following tensors enters the total 

cross section: 

Fig. 2. Kinematics in the hadron rest frame 
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Wclfv'lJv =(2~)~ %,(q, +q2 -PH) T;‘“‘*T;’ 
H 

= s d4x d4y d4z e -~c~~~*-41~~-$~~2-~l~Y+~~2+ql~~~ (4) 

X(O~~*{Jp'(~x)J~'(-~x)}T*{Jp(~y+z)JV(-~y+z)}~O), 

and the helicity representation, 

wm’n’mn = E * m’ C*n’ p 9 
/L’ VI wp v%;E; . (5) 

This tensor can be interpreted as the absorptive part of the off-shell photon-photon 
forward scattering amplitude. This is restricted by the invariance principles to sat- 
isfy: 

(i) Bose statistics: W m'n'mn(qlQ2,4142)= W"'m'mn(q241,~l~2) etc. 
, 8 

(ii) rotational invariance : Wm n mn = 0 unless m’ - m = n' -n . 

(iii) parity : W m’n’mn = (_)m'-n'(_)m-nw-m'-n'-m-n . 

(iv) time reversal : Wm’n’mn = Wmnm’n’ 

(v) hermeticity ofJp : Wm'n'mn = {Wmnm'n']* . 

Thus, there are eight helicity amplitudes (all real), which can be chosen to be [8]: 

W ++++ , w 
++-- , w+-+-, w+o+o 

wo+o+ ) wo+-0 ) w++oo ) woooo y 

If this absorptive part in the low-energy region is given by the contribution of one 
resonance of normality n, then we get one further relation, 

,;+++ = n w++-- . 
r r (61 

The amplitudes are all dimensionless, as is easily checked. 
The independent variables in these processes are the masses of the photons, 

~7: < 0, ~7; < 0 and the c.m. energy of the y * Y * system, s = P2 = (ql + q2)2 > 0. 
From these quantities we can construct two independent dimensionless variables 
[9]. The limit 4; = 0 suggests defining a “Bjorken” variable 

a= 1 --s/b: +q;j > (7) 

which is a constant in any limit where 14: + ~7; I+ m with a futed ratio to s. As a 
second variable we define 

l= (4; - 4;)/(4; + 4:). (8) 

In a slightly different fashion we can define the scaling variable 
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t’ = vlQ2 > 
where 

P=42 +41 

I 
v=PQ . 

Q =%q2 - qJ 

This is related to the former ones by 

t’ = t/r+ + 111 ) 

(9) 

and E and t’ become identical for 1qf + qi I -+ 00 with s fixed. 
According to which variable is held futed, several a priori inequivalent limits may 

be approached in off-shell photon-photon scattering. The limit q: + 00 at fixed s and 
t we shall call the L kimit, and the double limit lim,,_ lim a at fixed E we 

shall call the DL limit [lo]. The limit qi 2+ - OQ at futed w a4nid’_E-w% be called the 
S limit. The two former limits arise from light cone considerations and the DL limit 
is formally the threshold w + 1 of the S. limit. There is a class of limits where the 
quantity s/q: 4: + m with both s and 4; approaching infinity; we shall call this the 
scaling Regge limit, SR. The proper Regge limit R corresponds to s --f 00 with 4: 
fixed. Again formally, the SR limit corresponds to w + + m in the S limit. The 
reason for this abundance of limits is that we expect different behaviour in each of 
them as we shall see in the next section, A schematic representation of the limits is 
given in fig. 3. 

3. The parton model 

The problem is now to determine the amplitudes from some physical starting 
point. In order to gain an overview of this problem, we discuss the basic features of 
the quark parton model in the covariant formulation of Landshoff, Polkinghorne 
and Short [4] (LPS). 

Fig. 3. Representation of the different limits in the (s, Iq: + 4: I) plane. 
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b c d e 

Fig. 4. Graphical representation of the connected and disconnected parts of the photon-photon 

scattering amplitude in the quark-parton model. 

The diagrams for y *y * + y * y * in the parton model are shown in fig. 4. The 
electromagnetic current is supposed to couple to fundamental fermion constituents 
(quarks), and the decomposition on the right-hand side in this figure is into diagrams 
without and with connnected quark-quark scattering amplitudes. These amplitudes 
include the attached quark propagator and incorporate the fundamental assumption 
of the model in the LPS version: all such amplitudes decrease rapidly as the squared 
four-momentum carried by any quark line connected to the hadron blob becomes 
large. As a consequence, amplitudes in which a photon couples to a fully connected 
blob (figs. 4a,e) Decrease rapidly as the q2 of that photon becomes large. The domi- 
nant diagrams are then 4b, 4c and 4d plus those obtained by crossing (we omit the 
latter for clarity). In several of the limits of interest to us, one or more of the three 
remaining amplitudes may either vanish or be non-dominant. 

A possibly unpleasant feature of the model is that when taking discontinuities 
one appears to have free quarks in the final hadron state. Even if there were no pole 
in the quark propagator, it is not clear that one does not have an isolated set of 
states (jet) of quark quantum numbers. Because of this feature of the usual parton 
models we shall refer to them collectively as “disconnected”. 

Models in which one assumes that the quarks are massive particles can trivially 
escape this sort of objection [ 121; one then has only diagram (c) contributing to 
the discontinuity, with the entire contribution coming from a connected diagram- 
contrary to the spirit of the parton model. The amplitude for e+e- annihilation 
provides a clear example of this. In any quark model, the diagrams are as in fig. 5. 
As q2 + 00 the parton model has 5(a) vanishing, with the entire contribution coming 
from diagram 5(b). This gives the familiar result o(e’e- * hadrons) = 

---+a&-=w+e 

Fig. 5. Graphical representation of the connected and disconnected pieces of the photon pro- 

pagator in the quark-parton model. 
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= Xi e$(e+e- + p+p-) where ei are the quark charges. In a massive quark model 
due to Bohm, Joos and Krammer [ 121 diagram 5(b) vanishes when q2 < 4Mt where 
Mg is the physical quark mass; the entire contribution from the connected amplitude 
consists of a series ofJP = l- resonances giving u(e’e- -+ hadrons) = Ru(e+e- -+ 
+ p+p-) with R # 0. The relation R = Ee?does not appear to arise naturally in this 
model, and a relation to the light-cone algebra is not evident. Although we shall 
have nothing further to say about such models, we wish to emphasize that many of 
the following results may emerge in such an approach, though these “connected” 
quark models have not yet been studied in detail*. 

Henceforth we shall confine ourselves to the “disconnected” quark parton 
models. They provide a realization of the quark light cone algebra within the context 
of which most of the following results are model independent. 

We have now to consider the behavior of the three amplitudes Sb,c,d in the vari- 
ous limits of interest to us. In all those limits for which 1st I and 14; I increase as fast 
or faster than s (L, DL and S) diagram 4b vanishes essentially because of a rrnh ef- 
fect: the momentum transfer along a quark propagator into the connected quark- 
quark scattering amplitude increases without bound according to 

Because the amplitudes decrease rapidly under such conditions, we conclude that 
diagram 4b does not contribute to the limits just emtioned. In the L limit, both dia- 
grams 4c and 4d can contribute. The latter involves resonances in the quark-anti- 
quark amplitude; the former can contribute to a non-resonant background. In the 
DL and S limits diagram 4c vanishes and finite contributions come solely from the 
disconnected diagram 4d. In the DL limit this is ‘ust the light cone algebra contribu- 

1. tion [6]. In the scaling Regge limit, where s/qfq2 mcreases at the same time that s 
and 14: I and 14; I increase, diagram 4b does survive and is expected to dominate; 
the contribution of 4d amounts to a measly fixed cut at J = 0 in the J-plane expan- 
sion. 

The theoretical prescription for evaluating the diagrams is the light cone expan- 
sion for the time ordered product of two currents [2], [3]: 

* A phenomenological scheme for such models has been proposed by Preparata [ 121. 
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where _$a (XIV) and J$ ( x y are bilocal vector and axial currents given in the free I ) 
quark model by 

The quark charge matrix is Q and Q2 = $Q + $ is a combination of octet and singlet 

pieces. The usual currents are the local limits of the bilocal operators. This algebraic 
structure survives in the gluon model, where a phase factor given in terms of a line 
integral over the gluon field appears in the definition of the bilocal operators [3]. 
We assume that the bilocal is the sum of a c-number piece singular on the light cone 
plus an operator piece which has finite matrix elements. 

The fully disconnected diagram fig. 4d corresponds to a c-number piece in the 

commutator of two bilocals; it has the most singular behavior on the light cone and 
dominates in the DL limit. In the parton model this is just the discontinuity of the 
box graph in massless quantum electrodynamics. 

4. Resonance form factors 

The most interesting question to be answered when s is held fixed concerns the 
asymptotic behavior of the resonance form factors in the light cone limit 4:) 4: + 
+ - m . In the quark model only quark spin-singlet states with negative parity and 
quark spin-triplet states with positive parity are able to couple to two photons; the 
states at lows are 

‘S,,withJPC=O-+: .O, v, X0(965), 

3Po with Jpc = O++ : 7+(975), e(700), s * (1070), 

3Po withJPC = l++ : A:( 1070) (?), 

3P2 with Jpc = 2” : A;(1310), f(1270), f’(1515). 

This classification scheme covers all the experimentally observed low-mass mesons 
with positive charge conjugation. 

In order to avoid considering this large number of states, we will discuss some 
selected examples in detail. It will then be clear how to deal with the remainder, on 
the basis of the quark model (including mixing effects). 

4.1. rr” meson 

The nay * y * form factor is defined as 

T,“” = epvPoQpP,,Fn( I&$ (11) 

and is related to the only non-vanishing helicity amplitude Ti+ = - T; by 
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In the L limit, 4: + - m,qi + - 00 with q:/qi kept fixed we then get a simple 

representation of the form factor in terms of the bilocal operator matrix elements, 

~~~~~~ P F + efiVp”Jd4x eiQx [ap&(x)] (n”(P)~Jfo2(~XI -tx) t (X --X)10). 
Pan 

(13) 
The invariant decomposition of the bilocal matrix element for x2 = 0 reads 

h0(P)lJ~(3,1 -ix) +~~~(-;xI~x)Io)=~~fi(xP) txof2(xP)) (14) 

where onlyfI contributes to the asymptotic behavior of F,. Introducing the Fourier 
transform 

fi (xP) = i’du e;i(p,)Uqn(u) , (15) 

-1 

where the (even) spectral function cp,(u) vanishes for IU I > 1 from the Jost-Lehmann 
Dyson representation, one finds for the asymptotic expression 

where 

&‘)= j’d.‘s= /:ldu 
cp,(u) 

-1 
1 - ,p,2 . 

(16) 

(17) 

A sum rule for q,(u) follows from the fact that the bilocal current operator 
J5: (+x1 - ix) approaches the local operator $ (x) for x + 0, the isovector part of 
w ich is related to the axial vector current in the weak interactions. We can thus ex- %._ 
press fI (0) in terms of the 7ra2 decay constant f,, defined by ( no(P)1 J,, IO 1 = iP,,f,. 

Then, 
+1 

s 
dUtP,W = f$9 = +fn . (18) 

-1 

These results forf,&g’) are due to Brandt and Preparata, as is the so-called “smooth 
threshold assumption” which ensures that f,(* 1) is finite [ 131, [ 141. Since cp,( U) 
is the absorptive part of the amplitude for e- + a0 -+ e- + I-(+P- in the scaling re- 
gion with u = 1 the threshold value, these authors suggested that the rapid decrease 
of the‘SLAC scaling functions at threshold indicated that discontinuities like q,(u) 
also should vanish rapidly at threshold. Accepting this, we anticipate that 
f#j’) -f,,(O) for some range of .$‘. On this basis, we have given cross section esti- 
mates in an earlier paper for the reaction e+ + e- + e+ + e- + no [6]. 

Note that it would not be meaningful to apply dimensional analysis here, since a 
dimensional scale factorf,, enters explicitly. This arises from the fact that the 



G. Kiipp et al., Hadron production 471 

Fig. 6. Quark-parton diagram for the asymptotic nay * y * vertex. 

photon-quark interaction in the light cone algebra is that in massless quantum 
electrodynamics but that the scale of the qqn” vertex is set by the dimensional 
constant fn; this dimensional scale then carries over into the troy * y * vertex 

(fig. 6). 
An estimate of the structure functions fn(g’) and j$(g’) may be found from 

the quark model. Let us ignore mixing effects, which can be easily incorporated. 
We then identify n and Xn with pure octet and singlet states; the My * y * form 
factors are proportional to tr{X”Q2} where XM is the h - matrix attached to the 
meson M, 

We immediately get the result 

1 
I 

’ hX=h l 11. 

(19) 

These relations should be fulfilled at least as well as those for the on-shell yy 
couplings when mixing is properly taken into account. 

We close this subsection by noting that in the scaling limit 

T ++ = - igj@), 

W ++** = + p{p([')}* 6(s - mi) . 
(20) 

The t’* dependence of W is a dramatic feature of the quark light-cone algebra. By 
the smooth threshold assumption, one should be able to test these relations by 
integrating over a range of .$‘; it is not necessary to extract f(0). Of course, it 
would be interesting to check the l’ dependence. 

4.2. e-meson 

We follow the prescription just given also for this case of scalar meson produc- 
tion. We now have two independent from factors, since parity invariance no 
longer requires Tcoo to vanish. The form factors can be defined as 

T"'= iApuFJ&q;)+ &""F;(qf,q;), E (21) 

with the totally symmetric and mixed (in /J,u) gauge invariant basis tensors 
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A W’ = Q2PclPv t P2Q’lQv - v(Pl”Q” t P’Q’“) + (v2 - Q2P2) 8” , 

A ‘/LV - _ _ iPpPv + Q’JQv t i (PPQ” - PvQp) - (Q2 - fP2) g’l’ , 

(224 

(22b) 

Whereas Apv has only transverse components, A ‘w contributes to both longitudinal 
and transverse photon helicities: 

T:’ = i(v2 - mzQ2) FJqf, 4;) - iCQ2 - $$)~~(qfy 4;) , (234 

r,“” = iJ(Q2 t $mz)2 - v2 F:(qf,qi) . Wb) 

Defining the invariant decomposition of the bilocal matrix element on the light 
cone as 

~~(P)~~~,(~xl-~x)-~~~(-~x~~x)~O~=iPog~(xP)txog2(xP), 

and introducing the Fourier transform as before, one has 

(24) 

+l wg4 
TpV+- j{Q~PvtP~Qv-vg~v}L~ 

E 
Q5 l+t’u 

+ non-leading gauge terms. 

(25) 

The expression on the right-hand side can be made explicitly gauge invariant by 
adding only non-leading terms 

. 

Taking the antisymmetry of $2(u) into account, we get finally 

+1 duu $,(u) 
T,” + - jEl2 j 

-1 1 -pL2 
= %‘28,(C) 7 

Too -+O. E 

(26) 

(27) 

Because of the antisymmetry of gl (xP) = - gl (- xP), an expression for b,(O) is 
harder to find than for f,.r(O). Expanding the bilocal currents around x = 0 gives 

~~(P)~~~~(~x~-~x)-~J;IZ(-~~~f~)~0~=2~p~~(P)(O~~(0)~O~+... , (28) 

where in the quark model 

0;2(x) =+i:~(x)y+'Q2q(x): (29) 

is the energy-momentum tensor apart from the matrix Q2. From the deep-inelastic 
electron-proton data, one can conclude that by replacing the singlet piece of 02 
by the energy-momentum tensor one can get an estimate for matrix elements good 
to a factor 2 or so [ 11. Thus setting 02 - $CP’ for the matrix element involving 

the SU, singlet eO and defining 
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(EO(P)IOPuIO)=+if {m2gP0 -pPpO} 
E E 

413 

(30) 

we arrive at 

(31) 

From phenomenological analyses, several authors have claimedf,, -f, (ref. [IS]). 
We therefore expect E and a production to be of the same order of magnitude. 

Again applying the quark model tognN,geo and gs * assuming here the identifi- 
cation 

lee + 
1 ’ I 1 

1 

As* = 
0 /I I! 0 5 

1 

9 h”N =+ 
1 

II I -1 
0 

I 

) he=& II 1 

we easily derive for the ratios of the structure functions 

&$‘) : B,,(f) : g&g’) : & *(c;‘) =*:+:g 1 . 

1 3 

0 /I 

(32) 

Let us emphasize that scalar (and tensor) meson production in y * y * annihilation 
provides a useful tool to study couplings of the tensor given by (29). From the 
factor 2 discrepancies mentioned earlier, this is presumably not directly related to 
the energy-momentum tensor; perhaps it is a piece of that tensor. 

Again, we note the dramatic g’ dependence of IV, which emphasizes the region 
I,$‘1 - 1. It is interesting that the tf4 zero of W as [’ + 0 is converted to an asymptotic 
behavior W a ( Q2)-2 at 41 = s$, Nothing in our analysis (except the precise value 
of the sum rules should change in y * t y 

3 
* + 7r+ + n- at threshold, and we con- 

clude that for q1 = CJ~ W a (Q2)-2 here also for s E 4m$ qf + - 00 . Soft-pion 
techniques can be used to obtain this result as a consequence of the Weinberg sum 
rules [ 161. Here we see that it is a consequence of the quark light-cone algebra or 
quark parton model. This result does not follow for j = 0 partons. 

4.3. A, meson 

According to the helicity rules, there are three independent form factors for AI 
production, 

(33) 
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The polarization vectors &) are written in the A, rest frame. We have written the 
decomposition in such a way that the form factors are in a one-to-one correspon- 
dence with the helicity amplitudes: 

Ty=L 2 mAtv - m:Q2)FA(qf, 4;) j 

T+' = - (v2 - miQ2) J- Q2 t v -am”, Fi(qT, qi) , A (34) 

Tp = - (v2 - miQ2) J- Q2 - v - $rni Fi(ql, qi) . 

The square roots are identical with qandv q2, so that the helicity amplitudes 
for longitudinal photons vanish when the corresponding q: = 0. However, T++ also 

4 vanishes for both photons on shell, since Bose symmetry requires that FA(ql, qs) 
is antisymmetric. Thus the Al77 coupling vanishes completely for on-shell photons, 
a well-known fact. 

The L limit in this case is appreciably more complicated than in the preceeding 
two, not only because of the presence of three form factors, but also because of the 
need to impose gauge invariance. Inserting the light cone expansion into Tr, we get 

The invariant decomposition of the bilocal matrix element can be written as 

( Al(P) I J!$ (ix I-ix) t (x++-x)(O) = eJkl(xP) t iP,(e * x)k2(xP) 

+x0 (e*wqxP), 

( A,(P) I JQ2($xl-:x) - (x * -x)10) = ie 0 oaBrPaxPe *Yk’(xP) . 

(36) 

(37) 

To begin with, we can easily see that the last term in the axial vector matrix element 
does not contribute to leading order 0( 1) of the helicity amplitude, because 
x,~,x-~ is symmetrical in the indices p and u and thus vanishes when contracted 
with eppvo. A somewhat more tedious calculation shows that the vector matrix ele- 
ment does not contribute to leading order either. Inserting the first two terms into 
the fourier transform, we obtain a term with the structure e.clpVOe~ QP. This is not 
explicitly gauge invariant. However, this tensor can be replaced to leading order by 
the gauge invariant tensor (Qe *)E ~~voPpQ,/v. We are finally left with the represen- 
tation 

+g +l du~x;(u) 

s 

+ 

Q4 _ 1(1 - f2u2)2 
. . . (38) 
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and we get, as expected, a finite contribution only to Ti+, 

T; --f $ <’ {xi@‘) + 4Ef2x;(03. (39) 

Again, we can relate the scaling function 2; (g’) at {’ = 0 to the coupling constant 

fA defined by ( Al 1 Jso IO) = e,*fA. We get 

ii(O) = j’dux;(u) =+fA . (40) 
-1 

The scaling functions of the other l++ particles within the same fashion as before 

lated in the same fashion as before to )iA la2(f’); because of the present dubious ex- 
perimental status of these particles, we will not dwell on this extension. 

4.4. f-meson 

The last resonances we shall discuss here are the 2++ particles f, f’ and A’i) . This 
case is the most complicated one because of the presence of five form factors. How- 
ever, we shall confine ourselves to the discussion of the helicity amplitudes Tf++ and 
Tf'- , arguing that Tfo' , Tf” and Tfo’ vanish in the L limit we are interested in. This 
follows most simply by noting that the leading contributions come from the vector 
bilocal and that they are symmetric under interchange of 1-1 and v (the tensor indices 
of the currents). The only such tensors with this property are also fully transverse. 

They are* 

B1”” = {Q2PpP” +P2QpQv - v(PpQv +P”Q’“) + (v2 ~ P2Q2)$“}(QaQPEa*p) 

(41) 
Bp” = {PpP” - P2gp”}(Qo;QirE;J + (v2 - P2Q2)E *W 

2 

*’ + {- v(P’lEp + P”Ep*“) + P2(QpEj” t Q”Ep*p)}Q” . (42) 

where Efi” is the f-meson polarization tensor (EK = 0, Epv = E”, Ep”P, = 0); a re- 
presentation in the f-meson rest frame is given by EC,+,,) = ei;h)eCh~).The transverse 

form factors, defined by 

Tr = iBrFfl(q:, 4;) t iBrFf(qf,qi) + . . . , 

are related to the helicity amplitudes by 

(43) 

T;’ ~5 $ (u2 - mFQ2)2Ff'(4Ty 4;) -3 i (v2 - mfQ2)Ff(qT, 4;) + . . . , 

(44) 
Tf’- = i(v2 - m:Q2)Ff(q:, 4;) t . . . . 

In order to discuss the L limit, we insert the light cone expansion into T/“‘, 
ending with something analogous to that for the AI case. The invariant decomposi- 
tion of the bilocal matrix element is 

* The complete basis is given in the appendix. 
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(f(P) I J,e*(;xl-;x>-(x *-x)10>= E *cup (xagopk, (XP) 

+ ixaxpP,k2W) + xaxpxok3(xW , 

(f(P)1 J$ (fxl-fx) t (x tf -x)10) = iE *a~xa~opy,,xYp”k’(xP) . 

(45) 

(46) 

As before, the axial vector term and the trilinear term of the vector bilocal piece 
do not enter the asymptotic behaviorof the form factors. The contribution of k, 
and k, is 

T/’ --, 2iBr’ 
1 +l du&u) 4 

s 

+1 du&u) 
- _- 
v2Q4 _1 (1 +ut’)2 s vQ6 _I (1 +z&)3 

+l dup;(u) 
+2iB;‘--&s l+ugr . (47) 

vQ --I 

Notice that the gauge problems appear only in longitudinal pieces. However, as long 
as the components Tf”” stay finite (which is so in our case) the helicity amplitudes 
To’ and Too vanish as l/d- Q2 and I/(- Q2) respectively. The remaining trans- 
verse amplitudes are 

(48) 

and we have the interesting result that the tensor mesons are produced only in 
states of helicity zero. The vanishing of the amplitudes with a longitudinal photon 
and the predominant zero helicity of the produced meson can be checked both in 
the lepton distributions for e- + e* ‘e- +e* +faswellasinthef-,n+ndecay 
distributions. 

In order to show that Tf+’ is non vanishing, we derive a sum rule involving the 
zeroth moment of the structure function pi. Returning to the expansion of 
P(&xI-~x), we see that we have to determine xP ( f I O$ IO ) . We can try to esti- 
mate the magnitude of such a matrix element between the vacuum and an SU(3) 
singlet state by assuming it to be of the same order of magnitude as the matrix ele- 
ment involving the energy momentum tensor. The identification should be sufficient 
for a factor-of-two estimate, to judge by the approximate validity of the Mack sum 
rule for the nucleon structure functions in inelastic electron-nucleon scattering [I]. 
Anyway, defining for an SU3 singlet f(O) 

(f(“)lOP”IO)=iffE*po, 

we get the sum rule 

(49) 

+1 

s dw# - - ;ff, 
-1 

(50) 
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where the quantity is to be estimated by using tensor meson dominance not for 
02 but for the energy momentum tensor. Writing ( nlW”ln) = 2PPP”, we imme- 
diately get the estimate 

ff - m%fnn (51) 

for ff (ref. [ 171). The relations between the scaling functions of the various 2++ 
nonet members should be identical to those of the (ideally mixed) O++ mesons. 

We have some general comments on the y * y *-meson form factors. 
(i) The preceeding arguments can be generalized to include higher spin reso- 

nances, and we expect Too, T+O, To’, Tt- + 0, generally. The vanishing of the 
first three helicity amplitudes can be obtained under very weak assumptions, and 
we have already referred to this. Since we have finite components of the tensor Tfi” 

in the L limit as can be verified from our examples we can, by applying gauge in- 
variance qlW Tp” = q2,, Tpv = 0, obtain the result that 

-[(l - Q2/v) + . . .] T3+ = 0(l/&&T3’ =0(1/m), 

(52) 

T”=&,[(l-Q4/u2)+... ] T33 = O(l/(- Q2))T33 = O(l/(- Q2)). 

The reason why T’- -+ 0 is a bit more obscure, but we shall see in the next section 
that to leading order in the L limit, two photons with parallel spins cannot couple 
to a massless free fermion-antifermion pair. 

(ii) The smooth threshold assumption is an even stronger constraint for high-spin 
mesons than in the no and E cases; for the f, pi and p! must vanish at least as fast as 
(1 - u)~ and (1 - u)~ for u + 1. If the structure functions are to be reasonably 
smooth in t, the threshold behaviour must be even stronger. This is a reflection of 
an anogalous situation in the vertex y * p”fo which is vaguely similar to y’y *f” at 
$ = + 1. Unless the invariant amplitudes decrease rapidly as q2 + CQ, cross sections 
like u(e’e- -+ y * (q) + p”fo) could have unreasonable high-energy behaviour, the 
invariant amplitudes being multiplied by kinematical factors which blow up as 
q2 + *. 

(iii) If the smooth threshold assumption is really valid, one can check some of 
these results in 7 * + y + mesons, where one photon is nearly real [ 181. The most 
striking fact is that the tensor mesons should be produced in states with zero helic- 
ity in the y * y c.m. frame. If the f-meson, however, is produced with helicity + 2 
in real yy collisions (as some authors have claimed [ 19]), there should be a rapid 
variation of the f + rr + n decay distributions as a function of q2 of one of the 
photons as it increases from zero to the region where the scaling behavior should 
hold. 

(iv) We remark further that the presence of a light cone term when one photon 
has 47 = 0 results in a slower decrease of the y * y-meson form factor than one 
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would expect for the 7 * p-meson form factor following arguments of Brandt and 
Preparata (see also Wilson [20]). This means that there is no compelling reason why 
the threshold behavior for inelastic electron-photon scattering should resemble that 
for inelastic electron-rho meson scattering. This remark is not frivolous, since the 
related processes e+e- -+ 7 * -+ (p’, 7) + X should be measurable and a comparison 

possible in principle. 
(v) The results obtained so far are based on the connected part of the light cone 

algebra and are probably quite general, perhaps even true. It is interesting, however, 
that the structure of the absorptive part of 7 * 7 * + 7 * 7 * obtained in this way in 
the resonance region is the same as that following from the disconnected part of the 
light cone algebra at large s. If one accepts this latter prediction, the possibility 
arises that this disconnected part in fact just average the contribution of the con 
netted parts and should not be added to it as dutiful followers of the parton model 
would do. This possibility would amount to a kind of duality for the light cone alge- 
bra, for which the usual parton model prescription would amount to double 
counting. A realization of this would probably make sense only in the context of 
the “connected” models we mentioned earlier. For the purposes of this paper, we 
are taking the more conventional view that the connected and disconnected pieces 
should be added, as is the case in the Landshoff, Polkinghorne, Short model, and as 
one would (actually equivalently) infer from the distinct character of the connected 
and disconnected pieces of the light cone algebra. 

5. The continuum region 

Increasing s in the asymptotic region of 47 and q2, 2 it is natural to ask about the 
behavior of the absorptive part of the amplitude 7 * 7 * + 7 * 7 * above the reso- 
nance region. More generally, one can consider the S limit where s + ~0 with t = 
= (4: - ~T)/(c$ t 47) and w = 1 - s/(qz + 4:) fixed. The limit just mentioned (the 
DL limit) then just corresponds to threshold, w + 1 at fixed 4‘. 

In the model of Landshoff, Polkinghorne and Short, the leading term in the S 
limit is given by the disconnected diagram of fig. 4d and its crossed diagram. This is 
a consequence of the cutoff in the model and is presumably a general feature of this 
sort of model. A nice virtue of this is that we can calculate the absorptive part of 

7*7*+7* 7 * exactly in terms of the quark charges. We have only to calculate 

the helicity amplitudes in massless spinor electrodynamics for the box graph con- 
tribution to 7 * 7 * + 7 * . This yields, in the S limit, 

W ++** = qj’ y@K+/&YB~ ) 

i (02 + 22(1 - cJ2 - t2)j2 
(534 
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w--+- &a +l &? s (1 -z4)&?(1 -c$ 
1 

i -1 X{J +z2(1 -a* -&I* ’ 
WI 

woooo = Ce44( 
+l dz 

i 
w - 1)2(1 - t*> J- 

z2(1 -22) 

_ 1 2n {J + zq 1 - J - ‘&* 
(53c) 

w++oo = Ce42(w - l)@ t 0 - 
z2(1 -22) 

i 
l)J_ j-ldi 

_ 1 27r {J t z2(1 - J - E*)}* 

w+oo- = Ce;(l - ti)Jq$ 
i 

x (l* - l)z*(l t z*) t w(z* - l)[Sz* t ~(1 -z*)] 

{J t z2(1 - clJ* - &}2 

o+o+ 

(53dj 

(53e) 

(SW 

with 

Y(o,+&z*)=z*(l tz2){2(1 -w)(l q+(g* to* - 1))t 

tzq4w(l-w+~)tw*} t,*. 

Apparently, we express this result in a compact form by defining the ratios [21] 

T = lim 
c&+(ee + eeX) =C,? 

S+m or7+(ee + eePF) i ’ ’ 
(54) 

R = lim 
07(eZ --f X) 

oJee + PF) 
=Cef 

q2,ip 
j 

where the subscript “yyt”.means 

, (55) 

that the one-photon background to the process 

has been subtracted; hence the final state has positive charge conjugation. There is 
an appreciable advantage to measuring these ratios experimentally, since one can 
check T and R simply by taking cross-section ratios. Note that if one does not sub- 
tract the one-photon background to u,,(ee + eeX), the ratio u,,(X)/u,,(~P) is 

urr(ee + eeX) _ T + flR with p = uyr(ee + ee@; Chic) = -1) 

oJee -+ eepcl) l+P urr(ee + eepii; C(J_@) = t 1) ’ 

where fl can be calculated from QED (the above ratio is R in the Han-Nambu model 

where T = R). 
The detailed structure of the helicity amplitudes contains much more informa- 

tion. 
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(i) The threshold limit w + 1 leads to the light cone algebra result that the only 
non-zero amplitudes are [6] , [lo]: 

W ++** = Eefp jlg,,:l-T, (&2 f 1) ) 
i 

which exhibits the striking similarity to the kinematic structure of the resonance 
amplitudes which we emphasized in the last section. The contributions from states 
of definite s-channel parity (?) are [6], 

(57) 

The light cone structure near w + 1 might be of more general validity than the ex- 
pressions for the helicity amplitudes in the S limit, which depend to a weak extent 
on models (namely, on the existence of a softening or a transverse momentum cut 
off). 

(ii) The longitudinal amplitudes survive in the S-limit because of the absence of a 
cut-off in the surviving diagram. These longitudinal pieces are not very big, since 
they are constrained to vanish for w + 00 and w + 1. 

(iii) The limit E2 + 1 of the helicity amplitudes in the S limit is logarithmically 
divergent. There are two arguments why this could carry over into a log divergence 
of the structure functions for inelastic electron-photon scattering [18], which is for- 
mally a different limit (41 = 0, with s/q; fixed). First, evidence from deep inelastic 
electron-nucleon scattering leads one to the inference that scaling limits are reached 
rapidly and that in fact the limits s + =J,~I 2 fixed and s + 00, s/q: fixed are inter- 
changeable in the sence that the former one corresponds to s/q: + 00 in the latter. 
Our example here is just an extension of this point. Second, in the LPS model this 
disconnected diagram (4d) appears independent of the kinematic variables and leads 
directly to log divergent structure functions for real photons or a log divergence 

when qi + - 00 and 2 fixed. In fact, one expects a logarithmic divergence for any limit 
41 where the ratio qi/ql increases without bound [22]. 

So far, we have concerned ourselves mostly with the class of limits where ql and 
4: increase as fast or faster than the squared c.m. energy s. We have given cross sec- 
tion estimates for this process elsewhere [6], and shall not discuss this point further 
here. The reason for our concentration on this limit is the wealth of explicit predic- 
tions we can obtain from light cone or parton model ideas. The question arises 
whether one can say anything about those limits where s increases faster than qf 

and qi as all tend to infinity. This is certainly of practical relevance, as one has to 
test our predictions at finite values of the invariants, and not in formal limits. The 
presence of large contributions from such “scaling Regge” amplitudes for a big 
enough range of s and qf and qi could vitiate the hope of testing light cone algebra 
and parton model predictions. More over, these contributions (fig. 4a) are of inter- 
est in their own right. We shall attempt here to speculate on their behavior. From 
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factorization and the smallness of the ratio R = aL/uT in inelastic electron-nucleon 
scattering, we conclude that the dominant amplitude for y * y * + y * y * in the 
limit where 4: + - m, 422 + - 00 and s/q:& + 00 is 

WR 
++++ = q+- = c pR 

R i 

ssO 

(9: ~ m;)k: - m;> I CcR 

. 

Note that whereas we had in the S limit dimensionless functions which were con- 

stants at fixed ,$ and o, we have here helicity amplitudes which increase without 
bound in the mentioned limit. As an estimate, we choose rni 5 0.2 GeV* from 
parametrizations of v W2(v, 4*) in eN scattering, so Y 1 GeV* andFR from factori- 
zation; for convenience we ignore everything but the pomeron. In the region of 

* small scattering but angle 14: I , lq2 I 2 0.3 GeV* we can write down an estimate for 
the cross section e+ t e- -+ e+ + e- t X on the same basis as the Weiszgcker- 

Williams estimates in the region 4; - - nzz. The familiar logE/m, factors are miss- 

ing and we find as an estimate u - (a/n)* ay * y * - 1O-36 cm*. Thus contributions 
of this sort are expected to be about the same order as the light cone terms, and not 
very much bigger. 

From the fact that the connected amplitudes in electron-nucleon scattering de- 
crease rapidly as 1 q* I 9 s (in the LPS model this is a consequence of the softening 
and of the rrnin 0: l/(1 - o) effect), we infer that here also the connected amplitudes 
should decrease as fast as faster than a power of 4:&s*. In inelastic electron-nu- 
cleon scattering this threshold behavior of the connected amplitude sets in already 
for w’ = 1 +s/(--*)<3 or 14*12; s, consistent with the c,,,~ effect expextations. 
It will be interesting to see if an analogous behavior can be observed in yy annihila- 
tion. The practical test of light cone algebra predictions above the resonance region 
in s evidently depends on the behavior of the Regge terms in this limit. This ques- 
tion needs a more detailed analysis. 

6. Conclusion 

In the forgoing sections we have concentrated on tests of ideas from the quark 
light cone algebra and related parton model ideas. in processes where two virtual 
photons annihilate into hadrons. For the time being processes of this kind offer the 
only possibility of checking the light cone algebra for non-diagonal matrix elements 
and also for commutators of bilocal currents among themselves. Because of this, we 
have first studied the production of resonances with low mass by colliding photon 
beams, where the photons have large virtual mass (y * + y * + resonance). We have 
calculated the asymptotic behavior of the corresponding form factors and the ab- 
solute scale of the amplitudes. Both are determined by the light cone algebra. As a 
consequence, rather detailed predictions emerge for production of even charge con- 
jugation states is electron-electron collisions. In a second step, we have studied 
hadron production in the continuum region above the prominent resonances. In 
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that region. the bilocal algebra predicts the amplitudes for e- t e’ + e- t e* + X 
to be of the same structure as e- + e’ + e- + e* + pg (confining ourselves to even 
charge conjugation states in an appropriately defined kinematical region). This pic- 
ture is similar to that for one photon efe- annihilation where one predicts 

o(e’e- + X)/a(e’e- + 1_1+p-) = constant. Because we are dealing with spacelike 
photons, there is a good chance to observe this scaling behavior even for fairly low 
photon masses, as we have learned from deep inelastic electron-nucleon scattering. 

We hope that the appropriate experiments will be attempted with the colliding 
beam machines now coming into operation. Even the experimental proof that such 
processes exist would yield strong support to light cone and parton model ideas: 

pointlike couplings give large cross sections, which are pushed to lower values if de- 
creasing form factors are included in this process with four currents. We believe 
that it is possible to gain a deep insight into the structure of the electromagnetic 
current by studying such processes. 

Appendix 

The complete set of basis tensors for the fr * y * vertex is 

Tf” =i hBp”Ff( 2 2 
k=l k k 41’42) ’ 

with 

B1”” = {Q2PpP” t P2QPQ” - u[P~Q” tP”QP] t [v2 -P2Q2] gc”” I(QOQ@$ . 

B;” = {p~‘p” -P2g""}(QuQpEc,*II)t[v2 -P2Q2]E*'" 

t{-v[P~E*;tP"E*;]tP2[Q~E*;+Q"E*;]}~P, 

B;"= {- $PpP” tQFQ”t+ [PpQ"-P"Qp] - [Q2-;P2]g~"}(Q'yQpE~*~, 

B4""= {-P~P"tP2,~"}Q2(Q"QPE,;)-P2QpQ"(Q"QaEa;, 

t v2($p2 - Q2)E * pv t {vQ2 [P"E *; t P"E *;] 

++P2 [QpE*;- Q"E*$]}Qp' 

Bs"" = P2g’““(Q”Q@E,*p)- P2(+P2 - Q2)E*"' 

_ {;P2[PpE*;- P"E*;]tP2[Q'E*;tQ"E*;]}QP. 
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Then the helicity form factor is 

$1 A2 = plp2) plv 

u v f 

=i ,& Byv;(y;,q;). 
k=l 

' The various contributions BP A 2 to the helicity form factors are 

T;+:B;+ =-& [v2 -P2Q212, B;' v-&,2 _p2Q2] , 

B;+ =-&P2 -Q2]$[v2-P2Q2] , 

B4 -fi 
++ +v2($P2 +Q2)- 2P2Q4] , 

B;+ =-&2u2 - P2(+P2 +Q2)] . 

Tf'-:Bf-=O, B;- = [v2 -P2Q2], 

B;-=Q, B4'- =v2[$P2 -Q2] , 

B;- =-P2[iP2 -Q2]. 

ToO:BoO=O 
f 1 ’ 

BOO=0 
2 ’ 

BfO =&;[v2 -P2Q2]d(Q2 t;P2)2 - v2 , 

B4 
O" = --&' d(Q” +;p2)2 _ ,2 , 

B;o=L 2 &P (Q2 +$P2)2 -v2 . 

T;":B1+O =0, B+O=O 
2 ’ 

B+O=O 
3 ’ 

‘z&[;v- Q2] - Q2 - v-$P2, 

% 
,--$@,v_+p2] J-e” _,-$p2 

T”+:BO+=O 
f 1 ’ 

go+ = 0 
2 ’ 

Bo+ = 0 
3 ’ 
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o+ _-A- 
B4 --\/z v P [+J+Q~] -Q2+v-$P2, P1 

~“+=--$@[v++P2]~-Q2+v-+P2. 
5 
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