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The amplitude ratio (3~r ITIKs) / (3zrlTIK L) can be well determined in e+e - (or low energy ~p) ~ K°K ° from the 
decay time-distribution when each produced kaon --* 37r, other unknown parameters of the distribution being obtain- 
able from corresponding observations involving known channels like ~rn. 

The ratio ~'n of  the amplitudes for decay of the short 
(Ks ) -  and long (KL)-  lived kaons 

~'n ---- 1/r/n = (nlTIKs)/(nlTIKL) (1) 

into the decay channel n = 37r is comparable in interest 
to r/n for n = 2rr. We denote the channels n = zr+rr- ~r °, 
3zr °, 7r+lr - and Ir%r ° by subscript symbols c, o, + -  and 
oo respectively. Firstly, in the superweak model (which 
is consistent with present data), there are no significant 
CP-violating decay amplitudes, giving .1 ~o = 77+_ as a 
test of  the model, assuming CPT-invariance (as we shall 
do in our analysis). Secondly, if .1 ~'o 4: B+_, one can 
consider the possibility of  CP-violating interactions or 
amplitudes having mixed parity properties and there- 
fore contributing differently to ~'c,o and to 7?+_, the 
37r (270 channel being parity-conserving (violating). If  
the CP-violating interaction is purely [1] parity-con- 
serving .2, it would not significantly influence the 2 ~r 
channel, would give the experimentally indicated equal- 
ity r/+_ = %o  and also would account for the smallness 
of the neutron dipole moment .  Thirdly, the present 
evidence for T-violation and for consistency with CPT- 
invariance in K ° decays depends on numerical evalua- 
tions of  the overlap (KLIKs),  using the Bell-Steinberger 
unitarity relation. The present imprecise knowledge of  
~'c,o contributes significantly to uncertainties [3] in 
these evaluations. As compared to B+_, the numbers 

* Address from 1st November 1973: Rutherford Laboratory, 
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,1 Because of a (presumably small) CP-even component in the 
n+n-rr ° state, the superweak model gives ~'c=%_ only in the 

• approximation of neglecting this component. 
,2 Recent K±~ 31r data [2] do not exclude such CP-violating 

effects of at least the same order as ~1+_. 

for ~'c and the limit on ~'o are at present [4] rather 
poor. 

The difficulty which makes the determination of  
~'3~r imprecise with an initial K ° or ~o or K L beam 
can be described as follows. For an initially created 
state PsIKs)  + PLIKL ) where PS, L are production 
amplitudes for the KS, L components,  the time dis- 
tribution in any decay channel n is 

In  = [Ps Sn 0S + PL Ln 0L[2 (2) 

= e-~rst ]Ps Sn 12 + e- ' rLt lp  L Ln 12 

+ 2e-'rtRe(pLPsL*nS e iMt) 
(3) 

where the time t is measured in the rest system of the 

decaying kaon; M = m L - - m s ;  7 = ½ (7L+7S); mL, S 
and 7L,S are the masses and decay-widths of  the KL, S 
mesons; 0S, L = exp [ t (-- ims,  L -  ½ 7S,L)]; Sn, Ln de- 
note the decay amplitudes (nl TIK S, K L) normalised so 
that ISnl 2 and ILnl 2 are respectively the K s and K L 
partial decay widths in the channel n. Because 7s ~ 
6007L, l0 s I < I 0Lt for t ¢  0, and the exponential 
damping of  the first term in (3) is the quickest. If  
S n ~ L n (e.g., n=zrgv) or if S n ~,L n (e.g., n=zrlr), 
one can make the three terms in (3) observably com- 
parable in suitable ranges of  t for K ° beams (Ps = PL) 
or for go beams (Ps = --PL)- In K S regeneration from 
K L beams, PS/PL can be advantageously varied and is 
usually small; the case of  S n >> L n is again quite suit- 
able for observing the various terms in (3). The diffi- 
culty in getting ~'n for channels with L n ~, S n (as ex- 
pectedly for n = 3 ~r) with K ° or ~o beams arises be- 
cause the second term in (3) is then overwhelmingly 
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dominant, especially for appreciable times t; the K S 
term and the K s - K  L interference term are too 
weak to be easily observed. The situation is worsen- 
ed if PS/PL is small, as for K L beams after regene- 
ration. Making PS/PL large, i.e., relatively enhancing 
the production of  the K L component in the initial 
state, would help. Regenerating a small K L compo- 
nent in a K S beam could do the job, but K S beams 
are not available. This relative enhancement (and 
therefore, effectively producing a K S beam) can be 
achieved in e+e - or low energy ~p annihilation in- 
to a neutral kaon pair. 

Since the experimental distribution I n determines 
only the combination PS~n/PL, one needs PS/PL to 
deduce ~n" Since PS/PL depends only on the produc- 
tion of  the initial state, and is the same for all decay 
channels, one can get PS/PL by observing the distribu- 
tion (3) for a channel m for which ~'m is known. A 
corresponding thing can be achieved in the above anni- 
hilation processes. 

Unless angular integrations are done to make them 
incoherent, the ~ j o d d  3 states IK°K ° + K°K°) of  the t even ~ 
K°t( ° pair are, in general, produced coherently so that 
the initial state is 

alKLK S - KsK L) + b IKsK S - K L K  L) (4) 

where the coefficients a and b are associated with the 
C-odd and C-even states respectively. Experimentally 
[5], the C-even state is produced only weakly in low 
energy ~p annihilation so that roughly, b/a < 0.1. In 
e+e - ~ K°K ° also, one expects the C-odd state to be 
produced more strongly than the C-even state: b/a 
a = 1/137 because the C-odd (even) component of  (4) 
arises from intermediate states of  an odd (even) num- 
ber o f  photons. This suppression*a of  the term in (4) 
can produce a relative enhancement o f  the K S compo- 
nent in a time pattern resembling (2), as we shall now 
see. 

To illustrate the enhancement o f  PS/PL, and to in- 
dicate the determination of  S'3w c°nsider*4 the decay 
rate Rnm of the state (4) into the mode (n, m) where 

,3 Information on neutral kaon decays in the cases when b/a ~ 
l or b/a ~, 1 or when the K°K ° pair is produced along with 
other particles is considered in ref. [6] which also includes 
further details of the present paper. 

4:4 See, for example, refs. [7-9]. 

the channels n and m are detected for decay of  the 
first (time t 1 ) and the second (time t 2) kaon respec- 
tively, t 1,2 being measured in the rest frame of  the 
relevant kaon. 

Rnm = ]a(LnS mO 1 02 - S  nLmO ~ 02 ) 

+ b(S n S m 01 0 2 _ LnLmOl02)[ 2 (5) 

= la(~ m 1 2 02) 0 L - rn 

+ b(~'n ~'m 01 02 - 01 02)12 ILnLm 12 (6) 

=la(r/n0L1 02-r/m01 02 ) 

+ b(O1 02 - r/n ~?m 0L1 02)12 ISnSm 12 (7) 

where the superscripts on 0S, L refer to the times t 1 
and t 2. For the mode (3rr, (3 rr)') where (3~r)' may 
also be the same as (3 rr), the term b~'n~" m in (6) is 
negligible for b/a small because ~c,o are presumably 
small and also because of  the time-dependence of  
this term. This gives 

1 2 0L 2) R3rr,(31r)' ~ [a(~'(37r)' 0L 0S -- ~'31r 0S1 

-b010212 12 IL31r L(31r)' (8) 

which shows that for b/a small, the b and the a terms 
can be suitably comparable. For simplicity of  illustra- 
tion, take t 1 large so that 101 I '~ I 01L I, keeping t 2 not 
very large, so that the a~'3~term in (8) can be dropped 
to get* 5 (9) 

R3~r,(3~r) ' ~ i ~.(3~r), 02 _ b 0212.101 [21aZ3~rL(3~O, 12 

In the form (9), the t2-dependence can be seen to be 
capable of  exhibiting a useful interference pattern 
because the coefficient b/a of  the K L term is small 
and expectedly comparable to the coefficient S'(3~)' 
of  the K S term. Comparing this time dependence 
with (2), PL/PS = -b/a, a small number. This proves 
the point about the relative enhancement of  the K S 
component. ~'c,o and b/a are not uniquely predictable, 

,5 Obviously, interchanging t I ~ t 2 does not matter to this 
illustration. 
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but the situation is decidedly better than the corre- 
sponding distribution (2) with IPsI = IPLI which holds 
for a K ° or ~o beam. Of course, the simplifications in 
getting (8) and (9) are not obligatory; these were meant 
only to illustrate the effective enhancement ofPs/p L. 
One should determine ~'c,o by fitting the full expression 
(6) to the observed time-distribution in the (3zr, (370') 
mode. .6 For b/a negligibly small, the a term in the 
(37r, (3n)')  mode is seen in (8) to be capable of deter- 
mining I ~'c,o[ and only the relative phase of  ~'c and ~'o. 

To obtain b/a needed in the above determination of 
~'c,o, one can consider the rate (5) for modes where 
Sn, m and Ln, m are known so that the only essential un- 
known in Rnm is b/a. For the mode (2rr, (2zr)') where 
(2~r)' may also be the same as (2rr), conditions are suit- 
able [7 ] to determine b/a by using the known ~+_ and 
*/oo. For t l ,  2 not very large, the bOlO 2 term in (7) can 
be comparable to the at/n, m terms, the br~nr/m term 
being then unimportant.  This makes the observation of 
the b term in the full time-distribution (7) convenient. 

To illustrate the possibility of  getting b/a using Rnm 
for the modes (3n, rrlv) and Orlv, Orlv)')where 
(Trlv)' may also be the same as 1fly, we neglect for 
simplicity/kS = - A Q  corrections of  relative order x 
where [xl is at most a few per cent experimentally 
[10] ; these corrections are easy to incorporate. The 
amplitudes S n and L n for the rrlv channel with posi- 
tively (denoted 1 +) and negatively (denoted 1 - )  
charged leptons become 

-S~+ = L~. = (p/q)S~_ = -(p/q)L~_ = f p (10) 

where the real parameter f = ( / + l  TIK°); KS, L = 
pK° + qK°; Ipl2+lql 2= 1; (KLIK s) =lP12- Iql 2 ~ 10 -3. 
The rate for the mode (3n, 1 +) is 

+ b(~-3~ r 01 0S2 _ 0LI 02)12. (11) 

To get b/a, one combines a fit of  the observed distri- 
butions to (11) and to R3,r,(3~r),. To see the suitability 
of  (1 1), one can drop the ~'3n terms which are relatively 
small, especially for t 1 not small, giving 

,6 Other determinations of ~'c,o by using (4) are less favourable 
[6] for b/a small. 

= l ip L3.12. Io112. la0s - I (12) 

which is convenient because b/a is small. Considering, 
in addition, the (3rr, 1 - )  mode offers the advantage 
that some interference terms have different signs (rel- 
ative to (11)) because of  (10). The modes 0 r l u ,  ( r r lv) ' )  
offer similar possibilities .7 to get b/a. The rate for the 
(1 ÷, 1 - )  mode is 

qt 2. i . (o /ok + ol 

+b(O 1 02 +01 0L2)i 2 (13) 

which again is suitable for observation for t 1,2 not very 
small, b/a being small; (13) involves only b/a as the es- 
sential unknown. Considering also the modes ( l  ±, 1 ±) 
offers, because of (10), the advantage of signchange 
(relative to (13)) of  some interference terms. 

For determining b/a, one can also consider "inclu- 
sive" modes of  decay of  (4), a channel n being observed 
for one kaon (time t l ) ,  but  no specific channel for the 
other kaon; however, these modes seem [6] more 
favourable for b/a ~ 1 than for b/a ~ 1 or b/a >> 1. 

Some remarks on the rates Rnm. For modes where 
the channels m and n are different, one obviously can 
consider (Rnm + Rmn ) in order to get the appropriate 
information. For channels with n = m, the C-odd 
term of (4) drops out [e.g. 9] for t 1 = t 2 ; this offers 
a way to get (b). Though our arguments used only 
the time-dependences of  Rnm, the overall factors 
(like IL n L m 12 in (6)) in Rnm are known to be appre- 
ciable in the cases considered. 

By using different ~ energies, one can vary the re- 
lative strength b/a of the C-even term; it is obviously 
desirable to determine ~'c,o by using many  different 
values of  the phase and magnitude of b/a; these ener- 
gies should preferably be low so that b/a is small .3 . 
The e+e - case seems unfavourable [6] with present 
luminosities, but the ~p case is hopeful because of  
larger cross-sections in general. For e+e - ,  it is useful 
to work close .8 to a resonance (like ~b, f' mesons) 
energy; this also allows variations in b/a. Neglecting 

, 7  For details and other m o d e s t o  get b/a and ~'a,r, see ref. [6 ]. 
,8 This is also because, for the one-photon diagram, the cou- 

pling is due to only SU3-breaking effects which are enhanced 
at a resonance like C-meson. 
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corrections of  relative second (and higher) order in a 
in amplitude, one retains only the 1- and 2-photon 
diagrams for e+e - -+ K°K°;  then one knows [e.g. 
11] the angular distr ibution of  the l a 12, ] b j2 and 
(a'b) terms. Varying the angle 0 between a kaon 
and e ± then offers another way to vary the effective 
b/a; the b term vanishes for 0 = 7r/2 and the (a'b) 
term is a maximum for 0 ~ 55 °, a convenient value. 
In the ~p case, the corresponding angular distribu- 
tions are not uniquely known, but  the fact that they 
are different for the a and the b terms can again be 
utilized to vary effective b/a. 

In summary,  we have considered the (3rr, (370') 
mode o f  the K°K ° pair for determining the KS~  3n 
amplitude; this can avoid the difficulty behind deter- 
minations with a K ° or ~o  or K L beam. The relative 
enhancement o f  the K S component  in an 'effective 
beam'  is due to the weakness of  the C-even compo- 
nent b of  the initial K°K ° state. The unknown pro- 
duction ampli tude b/a needed in the above determi- 
nation can be obtained within the experiment by  
considering the time distr ibution for a variety of  
other known modes. Some advantages of  the present 
method are due to two time coordinate t l ,  2 being 
independently variable and due to the variability of  
b/a by varying 1) the ~ (or e -+) beam energy and 
2) the angle between one kaon and the beam. 
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