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Abstract. We define the vacuum expectation value of the time-ordered product of 
four exponential s of free massless scalar fields as a continuous linear functional over a 
suitable test function space using minimal singularity as a criterion. 

I. Introduction 

The structure of the second and third order terms in a perturbation 
theoretic expansion of the Green's functions in powers of the exponential 
interaction Lagrangian G- Lint(x) = G : exp(fqS(x)) - t :, ~b(x) being a 
free massless scalar field, has been analyzed by several authors [%4].  

The position taken in Ref. [ t ]  and [2] can be described as follows: 
The problem of defining the time-ordered products T(x i  . . . . .  x~) 
= i,~+i TLint(xl).. .Lint(Xn) is equivalent to the problem of defining the 
connected parts of the vacuum expectation values z(xl  . . . . .  x,) of the 
time-ordered products. In fact, owing to the formula 

T: exp(f4~(xi)): .... : exp(fq~(xn)): 

= . . .  {i=<,<l~ =<" exp [ -  2/((x;-  xk) z - i 0 ) ] }  : .  exp( f  ~b(x,))... exp( f  ~b(x,)) :, 

where 2 stands for f2/47r2, the combinatorics is particularly simple. In a 
successive construction of the time-ordered vacuum expectation values 
along Bogoliubov's lines [5], z(xl . . . . .  x,) is determined by z(xl . . . . .  xr) 
with r < n via locality and unitarity only up to an arbitrary real, Lorentz 
invariant, localizable [6], symmetric distribution with support in the 
points where all n arguments x~ . . . . .  x, coincide. The removal of this 
arbitrariness is our main concern. 

Assuming that all z(x 1 . . . . .  xr) with r < n  have already been con- 
structed, we confine our attention to the real part ~e'c(xl . . . . .  x,) since 
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this is the only undetermined part. Moreover, since time-ordering 
involves multiplication of well-defined objects such as the vacuum 
expectation values of the products ofn interaction Lagrangians in various 
orders by step functions that depend on the time (-difference) variables 
only, we average ~e z(x 1 . . . . .  x,) over the spatial variables with sufficiently 
smooth real test functions f and study the resulting distributions ~ ,  z I in 
the time variables near the points where all n arguments x ° . . . . .  x ° 
coincide. 

In [1] it has been shown that for any admissable choice ofz(xl, x2) the 
contribution to Nezy(x °, x °) from the points x ° = x  ° can be separated 
from the rest. By requiring the absence of a singular contribution from 
these coinciding times we arrive at a uniquely determined, least singular 
definition for Nezs(x °, X°2) and, moreover, these individual definitions 
(for every real, sufficiently smooth spatial test function f )  can be derived 
from one particular Lorentz invariant definition of Ne~(xl, x2). Thus 
we are led to a least singular choice for ~*Z(Xl, xz) and thereby to a least 
singular definition of z(xl, xz), the superpropagator EF(X 1 - -  X2), 

In [2] we took this definition of z(x,,  x2) and showed that for any 
admissable choice of "C(Xl,X>X3), as before, the contribution to 
N~Lc(x °, x °, x °) from the points x ° o _  0 = x2 - x3 can be separated from the 
rest. Again, by requiring the absence of a singular contribution from these 
coinciding times we arrive at a uniquely determined least singular defini- 
tion of ~ezj.(x°,x~,x°).  We note that these individual definitions for 
every real, sufficiently smooth spatial test function f are just the 
corresponding spatial averages of one particular Lorentz invariant 
choice for ~ez(x  l, x2, X3). This least singular definition of N~z(xl, x2, x3) 
is uniquely determined. We were able to give the least singular time- 
ordered vacuum expectation value z(x~, x 2, x3) in an explicit form. 

In the present paper we go one step beyond the results of Ref. [2] by 
considering the definition problem for z(x 1 . . . . .  x4), the time-ordered 
vacuum expectation value of four interaction Lagrangians or rather its 
connected part, taking the least singular definitions of z(xa, x2) and 
z(xl, x2, x3). Here, for the first time in our approach we encounter a 
situation that corresponds to the occurence of overlapping divergencies 
in the perturbation theoretic treatment of renormalizable Lagrangian 
field theories. It is therefore interesting to find out whether the criterion 
of minimal singularity is still meaningful and whether it can be used to 
eliminate completely the arbitrariness in defining this time-ordered 
vacuum expectation value. 

To this end, we shall analyze the structure of z(x 1 . . . . .  x4) or rather of 
gZezy(x ° . . . . .  x °) outside, but close to points whose time components 
totally coincide. 
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If ~4 denotes the permutation group of four objects and if its elements 

~ are represented by a = ( 1  2 3 j  k ~) 

we may formally decompose z ( x l  . . . . .  x4)  as follows 

i 
z ( x l  . . . . .  x4) = -~- ~ [ i E v ( x i -  x/)] [ i E v ( x  2 - Xk)] [iEv(Xk -- Xi)] 

i 
+ -6- Z [iEF(xi  -- x) ]  EiEr(x,  - x~)] EiEv(x,  - xt)] 

O'e~ 4 

i 
+ -ff ~ [iEF(x, -- x ) ]  [iE~(x~ - x~)] [ iE~(x~-- x3l [iEF(x, -- x~)] 

O'er4 

i 
+ -g ~ riEAx~ - x N [ i E d x j -  x3 ]  F E A x ~ -  xN [ iEAx~ - x~)] 

ae~4 

i 
+ -g ~ [iE~,(x~ - x,) ]  [ i f ,  Ax~ - x~)-I [ iE~(x~-  xt)] [ i E A x j  - x# ]  

e'er4 

[ iEF(x  J -- xl) ] 

+ i H [ i E r ( x j -  Xk)].  
1-<j<k~4 

Graphically, this corresponds to a sum of the subsequent diagrams 

(1) (2) (3) (4) (5) (6) 

We shall show that the criterion of minimal singularity remains indeed 
applicable since the contribution from the points where x ° = x ° = x ° = x ° 
to ~e Lc(x ° . . . . .  x °) can still be separated from the rest. This separability 
can be established although we do not know whether 

decreases in some direction in momentum space. (It does certainly 
not decrease if only a subset  of the invariant momenta (Pi + p~)2 grows 
beyond all bounds such that all partial sums of the momenta are time- 
like. However, a decrease when blowing up an arbitrary totally time-like 
configuration of the momenta has not been ruled out.) By requiring the 

0 0 0 0 absence of singular contributions from the points where x~ = x2 = x3 = x4 
to ~ , e z : ( x  ° . . . . .  x °) we obtain a particular least singular definition of 
~Je z r. The individual definitions for every real sufficiently smooth spatial 
test function can be shown to derive from one common, uniquely 
determined Lorentz invariant definition of ~,ez(x~ . . . . .  x4) as the 
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corresponding spatial averages. By adding to it the imaginary part 
J~z(x~  . . . . .  x4) uniquely determined by unitarity we are led to a least 
singular definition of z(xl . . . . .  x4). There is no arbitrariness left. 

This paper is organized as follows: 
In Section III we study the behavior of quadratic forms with parameter 

dependent coefficients raised to some complex power like 

ajk(01, 02) pj'Pk +-- iO 
j = l  k = l  

in 0~, 02 and p where the quadratic form may degenerate for certain 
values of 01 and 0 z, a prerequisite to the subsequent discussion. In Sec- 
tion III we introduce auxiliary amplitudes 3r(x~ . . . . .  x4;7) and 
3(x~ . . . . .  x4) and show how they are related to the two and three point 
Green's functions. None of these auxiliary amplitudes provides an 
admissable definition for the connected part of the time-ordered vacuum 
expectation value of four exponentials. However, the deficiences of 3 
have a relatively simple form. They can be made good by adding the 
deficiency amplitudes ~(x~ . . . . .  x4) introduced and studied in Section IV. 
Whereas the dependence of 3(Pi  .....  P4) = ~x ..... , {3(xi ..... x4)} (p 1 ..... P4) 
on the momenta p~ . . . . .  P4 is very complicated, the dependence of 
~(Pl . . . . .  P4) = ~x~ .... ~{3(xl . . . . .  x4)} (Pl . . . . .  P4) on the momenta is of the 
same simple nature as that of the superpropagator. On the other hand, 
whereas it is relatively easy to control the asymptotic behavior of 
Ne3(p~ . . . . .  P4) in the sector where all momenta and their partial sums 
are time-like this is not at all easy for ~eg(pl . . . . .  P4). 

In Section V the most general definition of Z(Xl . . . . .  x4) is given and the 
structure of Nezi (x  ° . . . . .  x °) is examined in regard t o  the separability 
property. Finally, among all admissabte definitions we choose the least 
singular one as the definition that leads to the simplest dynamics associated 
with the given classical Lagrangian. 

We use the notation of Ref. [2] and [7]. The spaces ~I/30R/) and 
~'1/30R l) denote the images of the spaces ~IJ/1/3(IR l) and 93l]/3(IR l) respectively 
under Fourier transformation (cf. [2]). 

II. Powers of Parameter Depending Quadratic Forms 

In this section we shall investigate the behavior of powers [P _ iO] ~' 
of quadratic forms whose coefficients depend on parameters: 

3 3 

P=P({q ) ;01 ,02 )=  ~ ~, ajk(O~,O2) qj 'qk ,  
j = l  k=~ 

qj~lR 4, 0 1 , 0 2 ~ I = [ 0 , 1 ] ,  ~ e # > - 6 ,  
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in particular for 
[b1(01,02) , if j = k =  t 
I 

|0zb2(01,02), if j = k = 2  

aJt'(Ol'Oj=12lO2b3(01'02)' otherwise.if j = k = 3  

Here, bj(01, 02) j = l ,  2, 3 are negative, infinitely differentiable functions 
on the square I x I. 

From partial Fourier transformation with respect to the variables qj 
it is seen that the distribution-valued function (of 01 and 02) [P_+ iO]" 
is infinitely differentiable with respect to 0a and 02 as long as the quadratic 
form is not degenerate i.e. away from 01 = 0 or 02 = 0. 

For N~# > - 6 the behavior of [P -4- iO] u as Ojj = 1, 2 approach the 
left end o f / i s  given by 

[p_FiO]~,=F~({q};O~,Oj+ 2+, +_ 02 G u ({q};01,02) 

+ O~+uO~+un+({q}; 01, 02) 

where the distribution-valued functions F~ . . . . .  H + have the following 
properties: for 0j e I, G~ and F + are infinitely differentiable in 01 and 
01, 02 respectively; 

e "  .... 

- ~  m= 0,1,... # ~ n = O , l , , . . /  

are continuous and bounded as O~j = l, 2 vary over the interval I. 
F f  . . . . .  H + depend analytically on # in ~e#  > -  6. (For # = -  1 

and - 2  the factors 02 +" and 0~ +~' have to be replaced by 02 +~ ln02 and 
04+" ln01, lbr # = - 3 and - 4  the factor 0~ +" by 04+u ln01.) 

Moreover, the limit of [P_+ ie]" as e tends to + 0 exists for 0 r e I, 
j = 1, 2 and is equal to [P _+ iO] ~ provided that ~e#  is larger than - 6: 

lira [P + ie] ~ = [P ± iO] ~ . 
e,t0 

Next, we turn to the asymptotic behavior in # of the distribution [P +_ iO] ~ 
and of the function [P__is] ~ for ~ e # > - 6 .  To this end, we use the 
formula 

s . 1 d r ( l - v )  N c3vN+I f (vx) ,  feCN+lOR1 ) f ( x ) =  .=o ~ f(")(0)+ ~ o 

for f ( x )  = [bl(O 1, 02) q~ + 02 b2(01, 02) q2 + xO 2 b3(01, 02 ) q~ + i~]" with 
3 + ~ e g  < N < 4 + ~e#  in oa/e# > - 4 .  After having set x equal to 01 we 
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estimate the resulting expansion term by term. In this way we obtain the 
following result: 

There is a positive constant M such that the set of distributions 

{ (M[I+  ~ ~ ,qj.~12][l+ (~¢.~#,2 ]l/2~-e.u-e 
j=~ v=o (•e#+6) 2j ] 

e -~tJ~"l [P +_ i~]"/~,# > - 6; 0 __< e __< 1 t 
J 

is bounded in the topology of 5P'0R 12). 
Now, we apply these pieces of information to the powers of quadratic 

forms that actually occur in the momentum space expression for the 
connected part of the time-ordered vacuum expectation value of four 
exponentials. We restrict ourselves to the discussion of the powers of 
quadratic forms corresponding to the diagrams (4), (5), and (6), while the 
reader is referred to Ref. [2] for a discussion of those powers that 
correspond to the remaining diagrams (1), (2), and (3). 

With Speer [7] we define the determinants 
i) C,]({m}) and D~({a};{p}) for the diagram (4), where ~ e ~41 v ~42 

denotes a permutation from the sets 

3'4) 43)t ( \1 / \z  
and where the correspondence of the Feynman parameters ao(~) . . . . .  aQ(4) 
and the internal lines is shown in the following diagram 

~,(4) , (~Q(2) 

Pl ' /  ~Q(t) ~X p 2 

ii) C~ ({c~}) and D~({a}; {p}) for the diagram (5), where ~ s ~351w ~5 z 
denotes a permutation from the sets 

(4. ~ 3} ~51= {(i) ~ / ~  ~4' (0(3)' 0(4)) #: (5, ~I} U {(12 21)0/0 ~3,0(5)=~ 

~ =  O/O e ~ ,  (0(3), 5(4))= ((~: 4)t u ]t 2 5/Oe ~,0(5)=3 
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and where the correspondence of the Feynman parameters %(i~ . . . . .  %(5) 
and the internM lines is shown in the following diagram 

P4~ ~tO(2) /P3 

iii) Cg({ct}) and Dg({e} ; {p}) for the diagram (6), where e e ~3 6 , u ~62 
denotes a permutation from the sets 

3 
~ 6 1 - - { ( : )  0/0 e ~4, 0(S)* 3} u {(i)(23 2) 0/0 e ~3} 

1 2 ~ 

and where the correspondence of the Feynman parameters %(1~ . . . . .  %(6~ 
and the internal lines is shown in the following diagram 

~0(4) ~ 0~,~(2) 

Pl P2 

We set e~. = t, . . .  t / j -  1 . . . . .  a a = 4, 5, 6 where t je  I for j --- 1 . . . . .  a - 1 
and ta e [0, + oe [. 

The quotients C~({~} ) /%. . .  ct 4 for 0 e ~a~ and C,~({e})/c~,...&4~3 for 
e ~3a2 are polynomials in tl . . . . .  t,_ 1, independent of ta and positive for 
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t j s l  j =  t . . . . .  a -  1. The quotients D~({e}; { p } ) / c q . . . e 3 , 0 e ~ , ~ , 2 ,  

are quadratic forms in the moments pl . . . . .  P4 Pm -- 0 with coefficients 

that depend polynomially on the parameters t ,  . . . . .  ta_ 1 and are 
independent of ta. We consider the following parameter dependent 
distributions 

t Pm - ~ } ~  +_ie for Q ~ a l  (1) 

and 
4 DX({e}; {P})/°~a"" 0~3 "Jr i for O e ~ .2  (1') 

p,~ - C 0 ( { ~ } ) / c ~ . . . . ~ 3  - 

with ~ > 0, t j e  I j = 1 . . . . .  a - 1 and ~e # > - 6 and where the Gelfand- 
Shilov prescription is taken for e = 0 [8]. 

For  any permutation Q from the set ~ , 1 u ~ , 2  there exists a non- 
singular linear transformation T,°({t}), infinitely differentiable with 
respect to tj j = 1 . . . . .  a -  1, 

q~(tl . . . . .  t~-t ; {P})/ 
{p})[ = T~°(tl . . . . .  ta-1) 

q~(tl ta-1,  
1 

Pl + P2 + P3 + P4 / \ P 4 /  

which diagonalizes the corresponding quadratic form such that the 
distributions (1) and (1') take the shape 

4 # 

(~ p~ _ (q~)2 _ t3 t2(q~)2 _ t3 t2 tl (q~)2 + i t  

for Q ~ ~ , ,  and 0 s ~a2 respectively. 
By applying the previously established results about powers of 

parameter depending quadratic forms, we arrive at the following 

Lemma 1. The behavior o f  the distributions (1) and (l '):e=>0, for  
~ p > - 6 as functions o f  t I . . . . .  t ,_  1 is given by 

±~ t2+gG+-e f,. . g,° ,~( t~  . . . . .  to_2; {p}) + o~ , , ° , ~ q  . . . . .  to_~, {p}) 
(2) 

+t~+"t~+"H~,~,o(tl . . . . .  ta_,;{p}) for 0 e ~ , l  
and 

+e 
F~,~,e(t~ . . . . .  t , _ , ;  {p})+(t3t2)  2+" ±~ ~.,°,~(t~ . . . . .  t°_~; {p}) 

(23 2+# 4,+# +g 
q - ( t 3 t 2 )  t 1 HA, , . o ( t , , . . . , t , _ , ; {p } )  for  O e ~ a 2  
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respectively• Here, the distribution-valued functions F~2,Q, G+~a, ~, and 
H+~,o have the followin 9 properties: for t j s  l j =  1 . . . . .  a -  1, Ff,~, o is an 

+~ d infinitely differentiable function; for t j e  I j =  1 . . . . .  a - 1 ,  also G£.,e an 
H~..,e are infinitely differentiable functions, while for t~ e I j = t . . . . .  a - t 

+ e  G~,a, o remains infinitely differentiable with respect to 

t t l , t  a . . . . .  t~_, if  0~9~a1~ and +e 
H ~ , a ,  Q 

( t l , t 4  . . . . .  ta-1 i f  Oe~3.z  ] 

infinitely differentiable with respect to 

t . . . .  , ta_ 1 if  O e ~ a l ~  

t .  . . . . .  t._~ if ~oe%~J. 

Hf,~, o are continuous (hence bounded) functions 
) m =  O, i , . , .  

+ e  +~: ± e  over the product of the closed unit intervals I. F~,.,o, G~,~,Q, and H~,.,o 
depend analytically on I~ in the domain ~].e # > - 6. (Similar replacements 
as before have to be made for I~ = - 1 . . . . .  - 4.) Moreover, the limit o f  the 
functions (1) and (13 as e tends to +0 exists for ~.~/L> - 6, t a J  j =  1 .... 
.... a -  1 and coincides with the Gelfand-Shilov prescription: 

l imS p ~ . [ . . . + _ i e ] " = 6  p~ [ . . . + i O ] " •  (3) 

Thus the distributions 

4 P Z ~+ s ] -  [At t(sa+2)-i f d t  t s"+'''+s4+2(a-3)-t ¢~ m a,--O,e({P}'~S1 . . . . .  oa - - J~a - lVa-1  ""J a 3 
0 0 

• dt2t2(~2+*l)- lSdt ,  t-[*'~-*[C~.({c~})/e.•..a4]-28 Pm (4) 
0 0 

a 

o . ]zs.+2(,-3) Do({c~}, p~(,) . . . . .  p~(4))/~ .. .  ~3 
• - - C O ~ / - ~ . . 7  . ~  +_ ie ~ if O e ~ a l ,  

(~ Pm a,O,~({P};Sl, Sa)= Id ta-1  ds"+2)-I f a t  ts"+-'*ss*2ta-4)"l 
• " • ,  v a - 1  " ' J ~  4 4- 

0 0 

1 1 1 
• S dt3 t;(s3 +s2 + sl)- 31 dr2 t2(sz + s,)-1 ~ dt I t[s1-1 [COa((O~))/C~a... ~4~3 ] - 2 

0 0 0 

a 

• 6 (~  P" )[  - D"°({e};P~'I)C,Q({e})/e, ...p¢`4))/ea'''c~3+-ie] ~"+2'"-3) i f o e ~ 3 " z ( 4 ' ) & 4  aa 
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with a s 6 4  and 0 _< e -< 1, unambiguously defined in 

t(si . . . . .  s~)/~t.s, < O , ~ e s  i + ~ s  2 <0,  L ~es,.  > - 2 ( a - n )  
/ 

. + 1 ( 5 )  
a 

. . . . .  a - 1 ,  ~ Yilesm> - 2 ( a -  2)~ n~-~3 
1 ; 

and 

(S . . . . .  Ra~S 1 71- ~ e S  2 < O, ~ e S  1 + ~ g S  2 q- ~.eS 3 < -- 2,  S a ) / ~ S l  < O, 

(59 

L a } N e s m > - 2 ( a - n )  n = 4  . . . . .  a - l , ~ N e s m > - 2 ( a - 2 )  
n+l 1 

respectively, can be analytically continued in s i . . . . .  s a to a function 
meromorphic in f2. 

t n+l  > - 2  n=O, 1 . . . . .  a -  1]. (6) 

If we use the same symbol for the continued function we obtain the 
following assertion: 

F ( - s 2 - s l ) - l F ( - s l )  - i 6  Pm Za, o,~({P};Sl,.. ~al  (7) 

and 

1 6 Z a+ I ' ( - - $ 3 - - $ 2 - - S 1  - - 2 ) - 1 1 " ( - - S 2 - - S 1 ) - l I ' ( - - S 1 )  - Pm a,-o,e({P};Sl . . . . .  Sa) 

(7') 

for ~ E ~a2 are analytic in 0 a, the limits as e tends to + 0 exist there 
and are equal to 

F ( - s 2 - s O - 1 F ( - s O  -16 Pm a,-o, ot~pl;sl, s.) (8) 

and 

r ( - s 3 - s 2 - s i - 2 ) - l r ( - s 2 - s l ) - l F ( - s i )  -16 Pm Z~,~,o({p};sl ..... s.) 
\ 1  / (8') 

respectively. 
Finally, we apply the results on the asymptotic behavior in # of the 

powers [P+_ie]" established at the beginning of this section to the 
distributions (1) and (1'). Thereby we derive 
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Lemma 2. There exists a positive constant M such that the sets of 
distributions Bal and Ba2 are bounded (in the topology of ~'OR 16)) where 

n a  1 

a 

a '°sm t / t  1 

• l~I e ~ F t l + ~ s , .  e " ' F ( - s 2 - s i ) - l F ( - s i )  -1 
n=l 

"(5 p Zas.e({p};s 1 . . . . .  s.)/(s 1 . . . . .  s . ) e t? . , c r s~ , t ,  

and 

+ 0 P f t a 

~ J ~ S  m 

a 

1 
12 

• e ~ F|12n-31+ S m  
n=l  1 

" F ( - s 3 - s 2 - s l - 2 ) - l F ( - s 2 - s i ) - l F ( - s l )  -1~  Pm 

• Za,  uo,e({P} ; Sl . . . . .  Sa)/(Sl . . . . .  Sa) • ~'~a, (7 e ~ 4 ,  O e ~ a 2 ,  0 ~-~ I~ ~ 1 . 

HI. Auxiliary Amplitudes 

A. Unitarity andLocality Relations 
(-) 

We define auxiliary amplitudes 3 , (Pl  . . . . .  P4; 7) r = _ 1, _ 3, 4- 5, _ 7 
for sufficiently large real values of  °~, i.e. ~ > 2r + 3 by 

(5)(Pl . . . . .  P4; 7) = Z 3a, r(Pl . . . . .  P4; 7) (9) 
a= l  
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with 

3~,.(P~ . . . . .  P4; ?) 

, 26 (~2s+,~ F(-y( l+s . ) )r t -  =3(~P,.),.~,Tk-4- ] ~s-','j[,,=I3]~ dS"e"~" - ~  c(3 + s.) s.)j 1 
~" "" 2 2 iO)l [_~(_p2i,_~iO)] [~(_(pi+pj)2,N, iO) l [-~(-(Pi+Pj+Pk),-T, J~' 

(~) . , 
32,.(Pl ..'-, P4, 7) 

( ~ )  2 6 . . 2 s + i ~ o ~  3 ds~ ,~.~ F(-7(I+s~))F(-s,) ] 
=fi Pm , ~ ,  6 - ( 4 )  ~s'-','J [.~, - f ~ - e  F(3 +s.)  

[~(-pi~,iO)l ~(-pX,N, [~(-p,,T-, , 

(--) 
3a,,(Pl . . . . .  P4; 7) 

[ 4  , ~6 / g \ 2 i S + i ~ [  = -,5[~p,~).~. 2--[4) s-"'i~ [,, =[511 ~ds" ei'~'" F(- 7(IF(3 ++ s,~,) Is.) J 
3 

/~ 2 s4 

rg~ +-)(Pk, Pi, -- Pi -- Pk; Sl ..... S3) , 
Qe~a 

(--) 
3a ,  r(Pi . . . . .  P4; 3 ~) 

= 6  Pm ( - - t ) '+14614)  Z ~'"~ h 21ri\4j 
ae~4 S - loo  n=l  

F(3 + sO F - s , , -  2 ( a -3  Za~}~ ~({p}; s~ . . . . .  s,,) 
~al u~3a; 

for a = 4, 5, 6. S is a real number between - 2 and - 1. With the help of 
Lemma 2 and Stirling's formula it can be shown that for ), real and larger 
than seventeen the above integrals exist and define distributions con- 
tained in the class 93l'113(IR 1 6): 

5)r(Pl . . . . .  P4; Y) 6 ~fJ~tl/2 (JR16). 

By swinging the s,-contours around the real axis from - t to + oo in the 
same way as it has done in Ref. [2] one proves the existence of a constant 

6 > 0  such that(.~,(pl . . . . .  P4; 7) r = _+ 1 . . . . .  +_ 7 are analytic functions oft' 
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in the chisel shaped region 

W, h4={~=~l+i72/yl>l,l~2[<Min[(~,@6 (Yl-1)] } (10) 

with values i n  ~ti/30R16 ) and that the limits 

(5)r (p  i . . . . .  p4 )  -~-. lim (5)Jp 1 . . . . .  P4;Y) (tl) 
y-~ 1, yeWa, 4 

exist in 9~'1/3(IR 16). 
Next, we want to show that for ~ real and larger than seventeen the 

Fourier transform of S)r(pl . . . . .  P4; 7) is related to the product 

[I [ ~ ~ iEF~T~.,(xi- x~; ~)] 
l=<i<j=<4 

by the following equations 

3 g x l  . . . . .  ~ , ;  ~) = ~ ,  ..... w { 3 g p l  . . . . .  p , ;  ~)} (~1 . . . . .  x , )  
(12) 

=i ( <l-I< [1 +iEF,,(Xi--xfiy)])con,~" 
\ l = i < j = 4  

< I ]  x~; ~)]) oo. ,  . (12') = - i  (1=i<1_<4 [1 - iEp,~(xi- 

The ultra distributions Ev<~),,(x; y) occurring on the right hand sides of 
the above equations as well as the corresponding ultra distributions 
E~+)(x; y) were defined in Ref. [2]. From the results established there, 
we infer that 

a) Ev<~),,(x; y) and E~+)(x; y) are analytic functions of y in W~,4 with 
values in ~'1/3(1R4), 

b) the limits 

lim Ev~),~(x; ~) and lim E~+-)(x; 7) 
7 ~ 1, ~W~,  4 )'~ 1, y~W6, 4 

exist in E'I/a(IR 4) and are equal to 

{2 2 1 Y ( - 1 - s )  C ( - s )  
Ev(r%'(x) = ~P 4 2~it" . ] I , as r(3 + s) 

- 2 \ - 1  

• e.~.~ ( _  p2 _--g iO) (x) 

and 
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respectively where 

w" 
9(w) = m! (m + 1) ! (m + 2)! ' 

m = 0  

c) iEv,,(x; 7) and - iEp, ,(x;  7) are time ordered "functions" in the 
following sense 

~iE~+)(x;7) for x ° > 0  
iEr"(x;7)=[iE~+)(-x;7)  for x ° < 0  

~iE~+)(- x; 7) for x ° > O  
-iEp'~(x;7)= [iE~+)(x;7) for x ° < O ,  

d) for 7 real and larger than seventeen EF~),r(X; 7) and E~-+)(x; 7) are 
locally L4-integrable functions of x such that products of the form 

y[ [1 + iE*,(xj -- Xk; 7)] 
l < j < k _ < 4  

are unambiguously defined• Here, E*~(xj-Xk; 7) stands for either 

Ev,~(x j -  Xa;7) or - EF,,(xj-  Xk;7) or E~+)(xj - Xk;7) or -- E~-)(xj-- Xk;7) • 

In order to prove Eqs. (12) and (12') we start from the infinitely 
differentiable functions Ev~),r,~(x; 7) which regularize the L~oc-regulariza- 
tions EF¢~,,(x; 7) even further: Er~p),,(x; 7) are the limits of Ev(-~),r,~(x; 7) 
as ~ tends to + 0 for 7 > 17 in the topology of L~4oc. It follows from this 
fact that 

= j < k = 4  

are the limits of 

\ l < j < k < 4  /conn .  

as e tends to + 0  for 7 > 17 in the topology of L]oc. 
• (--) ~p) 

We evaluate the Fourier transform 3~,~(P 1 ..... P4;7) of 3,,~(xl ..... x4;7) 
using standard techniques, i.e. we straighten out the contour L~ entering 
the definition of EF~r),~,~(x; 7) (Eq. 53 of Ref. [2]), introduce Feynman 
parameters, work out the G/russian integrals over the loop momenta, 
subdivide the integration region (® [0, + c~ D b of the Feynman parameters 
into sectors according to the respective ordering, set the jth smallest 
parameter equal to O ~ j = t j . . . t b _ l ' t  b with t m e l m = l  . . . . .  b - 1  and 
0 <= tb < + c~, absorb part of the orderings by permutations of the 
external momenta and finally perform the integration over t b. Thus we 
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establish that for y > 17.3,,,(P~ . . . . .  p~; 7) is equal to the r.h.s, of Eq. (9) 
with the only difference that for ~ ~ ~ ,  

D~({a} ; pl, p~, p, ,  pt)/a, ... a~ ~-~ iO ~ is to be replaced by 
Ca~({~})/~.... ~ 

a 
__ a ~1 ] g s m + 2 ( a - 3 )  

[ Dea({~} ; p i ,  p j ,  pk ,  p l ) /~a  . . .  C~3 ]~sm+2(a- 3) 
for 0 ~ 3 , 2  - 7 f f V ~ 5 ~ - - - ~ -  ~ i0 ~ by 

Ca({~} ) /O~a . . .  0~4(~ 3 

a 

Dea({~};pi, pj, pk, pt)/% . . ,  0~3 a ~ ]Y.sm+2(a-3)  

- C ~ ( { ~ } ) / ~ . .  ~ ' : 3  ~-g) i ~ l '  ' 
• . i ~4 J 

i 1 

r~(+-) (Pi, Pk, -P~ - Pk; s~, s 2, s3) by ~ dt2t~ ~+~ ~ d t l  t-( ~ - ~[1 + t 2 + t2t~-[ -2  
0 0 

3 

• - P ° ( o + t l P ~ k ) + t 2 t l ( P o ( o + P ° ( k f  ~ ) i e ( t y ~ + l + t l ) x  and 
l + t 2 + t 2 t l  

[-(E'pm) 2 ~-~ iO] ~ by [ - ( E ' p ~  2 ~N ie] ~ . 

Here, the symbol E' stands for the respective partial sums• 

~) We, observe that the s.-integrations in the expression for 
3 . : (P l  .... P.; 7) just established are uniformly convergent (in 0, that the 
powers which occur for any t. are larger than - t and that 

a 3 

- 6 <  ~ s . + 2 ( a - 3 ) < 0 ,  - 4 < ~ s . + 2 < 0 ,  - 2 < ~ s . < 0  
1 1 

n =  1 . . . . .  a. The lower bounds coincide with the restrictions on the 
applicability of the limit relations (7)/(8), (7')/(8'), The upper bounds 
guarantee that the integrands are (with respect to e) uniformly bounded 
distribution-valued functions of t.. In virtue of the theorem on bounded 
convergence, for 7 > 17 the following relation holds 

• (~)  (~)  

h m 3 ,  ~(Pl . . . . .  P4; Y) = 3,(Pl . . . . .  P4; 7) (15) 
e~0  ' 

or after Fourier transformation 

• (--) (--) 
. . . .  X 4  ; 7 )  = 3 r ( X l  . . . . .  X 4  ; ~1) 11m3, ~(x i, . (15') 

~ 0  ' 
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If we combine this result with the limit relation between the expression 
(13) and (t4) we conclude for 7>  17 

(--) 
3r(Xl . . . . .  X4;7)~---(-I-)i( < ~  < [-I(~)iEF(ff),r(Xj--X k;7)])conn. 

\ l=j<k=4 

q.e.d. 
Formal manipulations which are correct for L~oc-integrable functions 

yield for )~ > 17 
a) the unitary relation 

1 
2i {3/(xl . . . . .  x4; 7) - 3 ,(xl  . . . . .  x4; 7)} 

"{k~ [ t+iE'+)(xk-x ' ; ' )] t l~  [1-iEy'"(xm-Xn;~/)]})c . . . .  
j (rn, neY 

where the sum runs over all partitions of the set {t, 2, 3, 4} into two 
disjoint non-empty subsets X and Y : X u  Y= {1, 2, 3, 4}, Xc~ Y= qS. 

b) The locality relations 

i) 3~(x~ . . . . .  x4;7)=i(1 i~<) [ l + iEr,~(x~- x~; 7)] } 
,t~,~x (17) 

" {kl-Iz~Sr [ l + iE~+)(Xk- X'; 7)]I { [I<:r [ l + iEe,*(xm- x~; 7)])con~. 

it) 3 ,(xl  . . . . .  x4;')=-i({~x[1-iEy(xi-xj;~)] 1 
(t7') 

I lm, n~Y )/conn. 

if x ° > x ° for all i s X, m ~ I1. Here again, (X, Y) denotes a partition of 
the set {1, 2, 3, 4} into two disjoint non-empty subsets. 

As we already know, the left hand sides of these relations are ultra 
distribution-valued analytic functions of ~ in W~,4 and their limits exist 
in ~l/30R 16) as 7 tends to + 1 from W6,4. Also, the products on the right 
hand sides of t~ese relations are ultra distribution-valued analytic 
functions of ~ in W~,4 and their limits exist in ~'~/3(IR a6) as y tends to + 1 
from W~,4. 

In order to prove this, view the right hand sides of the unitary and 
locality relations as convolutions in momentum space, remember that 
the integrands, are analytic functions of 7 in W~I 4, that their limits exist 
in ~J~tl/3(lR16 ) as 7 tends to + 1 from W~, 4 and note that the integrations 
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over the loop momenta  are uniformly convergent when the right hand  
sides are tested with test functions from E1/3(1R16). 

By the uniqueness of analytic continuat ion in simply connected 
regions we infer the appropriate unitary and locality relations for 

(--) 
3r(xl  . . . . .  x4)=  lim (3)r(xl . . . . .  x , ;  7). (18) 

7-~ 1, ;0EWd,4 

For  the linear combinat ion 

,> (9  -37 z +9 
t 1 . . . . .  x 4 ) = - i ~ -  1 r=+3 r=+5 ~ 7 (19) 

(--) 
lira 3r(xl  . . . . .  x4 ; 7) 

y---r l ,  y~W6, 4 

we obtain the following relations in which z(xl . . . . .  x4) stands for an 
arbitrary admissible definition of i (1 <j<k<=4 [1- t - [ I  iEF(xJ -- Xk)]), 

conn." 
a) unitarity: 

1 
2i {3(x~ . . . . .  ~ , ) -  3 ( x l  . . . . .  ~,)} 

1 
= 2--7 {z(xl . . . . .  x4) - v(xl . . . . .  x,)*} 

(20) 

+ 2 ixl=2 - 4 -  J i , j E x  

" {k~xe [ t + iE( +)(Xk-- Xl)]} {i 22 n3 g (-- -~ [-]) ~(Xm-- Xn)}:,<:y)conn" 

b) locality 
o for a l l i e X ,  m e g  i f x ° > x m  

z(x l  . . . . .  x4) for IXt = i, 3 

z(x 1 ..... x¢)+i i22rc3 9 - --~I--1 a(xi-x1) i<j 
Ji , j~X 

~) 3(Xl . . . . .  x , ) =  {k~fX[I+iE(+)(Xk--Xz)]} (21) 

2 

for IXl = 2 
fl) a corresponding locality relation for 3 (x l  . . . . .  x4) 
c) reality: 3 (x l  . . . . .  x4) = [3(x~ . . . . .  x4)]* 
d) symmetry:  3(x~a)  . . . . .  x~(4)) = 3 (x l  . . . . .  x4) for any a e $ , .  
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B. Asymptotics of  the Real Part of  3(Pl . . . . .  P4) 

In this subsection we shall establish the asymptotic behavior of 
Ne3(pl  . . . . .  P4) in the region where the Minkowski squares of all 
momenta together will all their partial sums are bounded below by some 
negative constant - K z and where at least one momentum or one partial 
sum of the momenta tends time-like to infinity. The methods developed 
in Ref. [2], Section III to study the analogous question for Ne'~(Pl, P2, P3) 
are good enough to control the asymptotics of 

1 
~e3~(p 1 . . . . .  p4)= ~ (93,__~+. 1 -37,=+_3E + 9  ,=±sE - , - -~7)  

lim ~,e 3,,,(p l . . . . .  P4 ; Y) 
7--> 1,7e W6, 4 

for a = 1, 2, 4, 5, 6 in the above-mentioned region. For a = 3, however, 
those methods do not suffice and a new technique has to be set up to 
clarify the asymptotic behavior of Jm~-(Pl,P2,P3) in the region 
{(pl ,p2,p3)/~)  2 > - g  2, m = 1, 2, 3} the appearance of ~-(Pl,P2,P3) 
in the term 3_3 being obvious. 

By the methods of Ref. [2], Section III and II respectively, one can 
show that one commits only an error of type 0t~Max s-z ,,2 ,,2~-5/1~ i l. I.FI~F2~F3! I 

i 
if one replaces , ~  J-(Pl . . . . .  P3) by ~,e ~- {~1(Pl, P2, Pa ; 7 = 1) 

- -  3z'- I(Pl, P2, P3 ; 7 = t)} and that this latter expression satisfies the 
following locality relation: 

i 
~ ~ {Yl(X~, x : ,  x3 ;  7 = 1) - Y-_ l(x~, x2, x~; 7 = 1)} 

(22) 

=--Tc3)~2~ei[iE'+)(xi--xj)][g(----~ 

for x ° larger than x ° and x ° and a similar locality relation for x ° less than 
x ° and x °. Hence, outside the coincidence points x ~ = x 2 = x  3 the 
following relation is true 

i 
~ ~ -  {Y-l(xl, x2, x3 ; 7 = t) - Y-_ 1(xl,  x2, x3 ; 7 = 1)} 

(23) 

[( ) 1 = __~3~2 2 ~ 2 [ iEr (x i -  xj)] 9 - ~ []  t ~ ( x j -  Xk) [ iEF(X k -  Xi) ] . 
ae~3 

Next, we construct an extension of the r.h.s. (not necessarily agreeing 
with the l.h.s.). As usual we do this via its Fourier transform. To this end, 

we represent the differential operator g - ~ - [ ]  as an integral over 
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translation operators [9]: 
a a 

g ---~-[-]g = 2~222 l dQ-~i~d~(3e i "-- ,  
IIQII2= t 

employ standard techniques [8] to manipulate the Fourier transform of 
the r.h.s, and obtain for it the hitherto formal expression 

- 6  p~ 27r5/2 ~ ... ~ [(pj_pk)2]~,+~2 [pZ]~2 [Pi '(Pj '--P0] 2~3 
vl=O v3=O 

• c ...... 31 dy y3 +~,+ 2~ +2~ j , +  2~+ 2~(]/-}  ~ - P ~ ) l i l l y  -]/-S~i]- i-2~=-2~ 

1 d~ ~,+~+,~+~ ~" ( 2 5 /  2rd ~ I dO sin 2 O C~,,2 +2 v3( cos O) 
0 

Here we have set 

c . . . . . .  3 = ( -  i )  ~' + ~2 (v2 + v3) ! 
(26) 

• [1~ 1 ! V 2 ! 12 3 ! F(½ -Jr- v3) (1 q- P1 -4- 2v 2 + 2v3) !' 16 ~ +~2+~3] - 1, 

f((, 69)= T + + 

The symbol & denotes the Bessel function of first kind and order it, while 
the symbol C~ stands for the Gegenbauer polynomial• The integration 
runs along some path 0 to + oo. 

We may deform the (-contour into the circle 

{ff/ff = -- ~ (1 + ei~), -re  < ~p < +zt} (28) 

without changing the value of the (-integral. On this circle ~ e f  is always 
non-negative. Inspite of the fact the Jtef assumes the value 0 there (for 
O =0 ,  ff = -4/3) ,  I , z~f l  < re/2 is valid over the entire range of integra- 
tion since the critical point is a saddle point and f itself is equal to zero 
there. 

With this information at hand, we may give a precise definition of the 
formal expression (25): the path of the y-integration is fixed to run from 
0 to + oo along the positive axis. 

From the integral representation (25) we can read off the asymptotic 
i ~ 

behavior of ~ e - ~ - { Y - 1 - i f - , }  in the region of interest which in turn 

settles the question of the asymptotic behavior of J ~ g ( p ~ ,  P2, P3), of 
~ ' e ~ 3 ( P x  . . . . .  P4) and finally of ~ e 3 ( P l  . . . . .  P4). We content ourselves 
with the statement of the asymptotic structure of ~ e 3  in the region 
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{(Pl, Pz, P3, P4)/(Pi) 2 > -- K2,  (Pj ÷ Pk) 2 7> - - K  2 i,j, k = 1, 2, 3, 4}, K 2 s o m e  
positive constant 

. . . . .  . o  \\- ] 

+~ P 2 0 ( ( P l )  ) [(Pj--pk)2]m[(Pj--Pk) (P~+Pk)] 2~ 2 --o:9 

\ 1 / ae~4 [m=O n=O 

[ (P~ - pk)--' (p~ + 2pk)] (29) 
" Wmn((PJ÷pk)2)]÷ (Pj+Pk) ' -*Pj  ] 

÷ Z amtmzm3(p2)m~ (p2)m2 ((pj + pk)2)raa 
r n l = O  m 2 = O  m 3 = O  

+ 3 p,, ... (pZ)m (p .  p,)., (p, .(pf + pj)),~ 
o" 4 0 n l = O  n 3 = O  

• (p~. (p~ +p))"~ w."~ ~-~ ~- ~ ...... ,,~tw , wi + Pi) , Pk) + a similar term with 

the variables (p~, Pt, P~ + Pj, Pk) replaced by (p~, p~ + p j, Pt, Pk) + a 

similar term with the variables (p~, Pt, P~+Pj, Pk) replaced 
"l 

Pl, Pi, Pl ÷ Pl) I by (p~, 

where the "functions" I4~.(y) and W~ ..... 3(YI, Y2, Y3) r =  1, 2, 3 are of 
type O(y -"-~) and O(y?~,y~"~-"~-~,y~ a) with c>23/10, d__>0 and 
where amt...m 3 are real constants. 

IV. The Deficiency Amplitudes: Construction and Asymptotics 

The occurrence of the terms 

" [ i 2 2 ~ c 3 9 ( - 2 0 )  6(Xm-X,)],,,<, ] for IXl=2 
Jl?l~ ?/~ ]g] c0nn. 

in the unitarity and locality relations (20) and (21) indicates that the 
amplitudes 3(xl  . . . . .  x4) and 3(xl  . . . . .  x4) do not provide admissible 
definitions for the vacuum expectation value of the chronological and 
antichronological product of four exponentials of the free scalar field 
respectively. 

In this section we shall construct amplitudes ~(x 1 . . . . .  x,) and 
g(xl . . . . .  x4), called deficiency amplitudes, that account just for these 
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extra terms, i.e. amplitudes with the following properties 

o) C~xl . . . . .  x4) e ~'(IR16), Lorentz  invariant, 

1 
i) ~ [?(x 1 . . . . .  x4) - g ( x l  . . . . .  x4)] 

1 i22a:sg -- ~- [] ~5(Xi--Xj)i<j 
2 I =2 ji,j~x "{~[l+iE(+)(Xk--X,)]} 

o for a l l i e X ,  m e  Y: ii) if x ° > x,~ 

0 for tXI = l, Ixl -- 3 

-i  2 77)6(x~-xj)],< 2 

I, leY ) 

for IXI-- 2.  

fl) a corresponding relation for ~(x 1 . . . . .  x4), 

iii) ~(x 1 . . . . .  x4) = [g(x 1 . . . . .  x4)]*, 

iv) 3(x~(1) . . . . .  x~(4~) = a(xl . . . . .  x4) for any a e ~4. 

By these requirements~(x,  . . . . .  x4) is only determined up to an arbitrary 
real, Lorentz invariant, symmetric ultra distribution with support in the 
points xl  = x2 = x3 = x4 and contained in the class g~/3(lR16). We shall 
show that  among the ultra distributions with properties o) . . . . .  iv) there 
exists a least singular one: (~o(xl . . . . .  x4). Moreover,  the definition of 

c~o(xl . . . . .  x4) is unique. 
The locality relation ii) requires 8(x 1 . . . . .  x4) and g(xl . . . . .  x4) to be 

equal to 

2 [_?)6(xi- 2 [ ] ) ~ ( x k _ x , )  ] 
2496 (g ( _  .~_ 
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away from x i = x 2 = x 3 = x 4. There, outside the coincidence points, the 
so defined quantities 3(xl . . . . .  x4) and ~(x~ . . . . .  x4) match all the re- 
quirements o) ..... iv). 

Next, we have to extend the definitions of 3(xl . . . . .  x4) and ~(xl . . . . .  x4) 
to Lorentz invariant ultra distributions over the entire IN 16 preserving 
the relations iii) and iv) and ensuring that the extensions are contained 
in the c lass  ~I/3(IRI6). For any such extension, the tmitarity relation is 
satisfied if and only if its Fourier transform is real whenever the external 
momenta are totally space-like. 

We give the particular extensions 30 and ~o in terms of their Fourier 
transforms. For that, as before, we represent the differential operator 

2 
g ( -  ~- VI) as an integral over translation operators [9]: 

( 2 ) 1  1 Z r o a  ~ ' a l  
g - -  --4- t--']¢ - -  2 7 Z 2 2 2  f dQ~i~d¢¢3e ~e~le~°+i'~°-~J,(24) 

110112= i 

apply the Gelfand Shilov procedure [8] and arrive after standard 
manipulations at the following expression for 

~(p~ .. . . .  p , ) = G ~  ...... ,(~(x~ . . . . .  x,)} (pl . . . . .  p,): 

(]~(Pl . . . . .  p , ) = 6  P,. E IdYz.(Y;Pl, .... P,*) 
a ~ 4  

~T) i a~e~ 4 (~(pi "k- p j) g p2 . b(Pk q- Pt) g p2 

where the integral should be taken along some path running from 0 to 
sgn(-(p,+ps)Z),  m and where z.(y;pl ..... P4) stands for 

y5~2 =/2 r~/2 1 1 + 1 
43 ~ d O l s i n 2 0 1  ~ dO2sin202 2h i  ~d~l~l-~gi~d~2~2 5 d~ 

0 0 -i 
(30 

exp(~ f(~l,~Z, Ol, O2,{))J,,(Y; ~l,~2, 01, Oz,~;Pt ..... P4) 

with 

f(~l'~e'O*'02'¢)= ~ + ~2 +~=1 i=l  l+ ( - -1 ) ' ~ / ' / ~c ° sO1  

+ ( _  1/1/~2 cosO2 + ~1 
4 

t 1y+~ + ~ - ( -  ~ ] / ~ 1  ~(cos  O1 cosO2 + sinO1 sinO2 "4)+ - -  

(32) 
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and 

J~(Y ; ( l , ( 2 ,0 ) l , 0 )2 ,~ ;P l  . . . . .  p4)= ~ - . .  ~ c~,, ...... 8 
,~=0 ~=0 (33) 

• h:~ ...... 8(Y; ~1, ~2, 0)1, 0)2, 4; Pl . . . . .  P4) J t+2~6+2~7( / f l / / - (Pi+pj )  e) 

The symbol J,(x) stands for the Bessel function of first kind and n th order. 
The definition of % ...... ~ and h~ ...... ,(Y; (~, (2, O1, O2, 4; Pl . . . . .  P4) can 
be found in Ref. [ 113]: Eqs. (34)-(36). h~ ..... ~ is a polynomial in the variable 
y and in the scalar products of the momenta. 

[c ........ ~h~ ....... jY; ~l, (2, 0)1, 02, ~;Pt . . . . .  P4)]* 

= c~  ...... ~h~ ....... JY , ~1, (2,  0)*, 0)~, ~*; Pl . . . . .  P~).  

Furthermore, % ...... , and h~ ..... ~ are such that a definition of~)(pl . . . . .  P4) 
contained in the class ~'~/3(IR 16) is possible. 

Now, the extension problem poses itself in the following form: 
Give a precise definition of the integral on the r.h.s, of Eq. (30). 

In order to do so we need some information about the behavior of 
z,(y; p~ . . . . .  P4) in the neighborhood of y = 0. We observe that for y real 
and negative the (,-contours of integration in expression (31) may be 
deformed into contours C"o,o~ given by 

. . . .  Q2(t +e~n), < =~, (O1,  0)2)>0} (37) Co~,O~--{(./~n-- - - ~ < ~ . =  + = , e .  ~ 

n =  1,2 without changing the value of z~(y;p~ . . . . .  P4)- In particular, 
setting (01) 2 - 2 = - ~ ,  (ff2) 2 in the vicinity of 0)1 =0)2 =0 ,  

d = k [1 + sin(Ol - 02) 

(38) 
Q~ =½ tl - sin(0)i - 02) 1 

otherwise, ~,~ f (~ l ,  ~2, O1, 02 ,  4) is non-negative for the entire range of 
integration and I~*f f(~i ,  ~2, O t, 02,  0I < ~. [There is a one-dimensional 
continuum of saddle points with f = 0 : ~ = + l ,  t g 0 ) i - t g O 2 = 3 ,  
(~l,  ~2)-=(--2(Q1) 2, --2(Q2)2) • Apart from these angles 0)i and 0)2, N e f  
assumes the value 0 again only for 0)1 0 0)2 (1 = 4 
~2=~ f i m ( l + e  ~t~) and ~ = - ~  f imj l+e~ t~) ,  ; z = - ~  leaving 

t ~ f l  < ~, however.] Hence, z j y ;  Pl . . . . .  P4) stays finite as we approach 
the point y = 0 along the negative axis. 
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Now, we are able to give the precise interpretation of the integral on 
the r.h.s, of Eq. (30): 

1 [Sgn(-(pi +pj)2) .  oo\ 

Obviously, this particular extension (~)0(Pl . . . . .  P4) satisfies the require- 

ments o), ii), iii), and iv). Moreover, in view of the reality of (~)o(Pl . . . . .  P4) 
for totally space-like momenta, the unitarity relation i) also holds true, 
i.e. go and ~o just introduced are admissible definitions, go and ~o are 

distinguished from all other possible definitions by the fact that Ne(~)o 
has the special structure 

4- oo 

Ne(~)o(Pl . . . . .  P4) = 6  ( ~  Pm){,,~0"",3~--0 win2 .... a((Pl +Pz) 2) 

• [(Pz + p3)2] "2 [(P3 + Pl)2] "3 [(Pt + P2)" (P2 + P3)] "1 (39) 

• [(P2 +P3) '  (P3 + Pl)3"2 [(P3 +Pl)'(Pl +P2)] "3 

cyclic permutations of { t, 2, 3}} + 

where the sum runs over those indices only for which n~ + n2 and n2 + n3 
(and n3 + nl) are even and where for all such indices w,,2...,3(q 2) are real- 
valued "functions" of type 0((qZ) -'2"" -"3- 7) for large time-like q, with 
the property w,.2,.~.1.2.3 = w~3,.2~.2. ~. 

Any other possible definition of (~)(Pl . . . . .  P4) differs from(~)o(pl . . . . .  P4) 
by a real entire function 

pm .-. A . . . . . .  ~[(P~ + P2)23 m~ [(P~ + P3)23 "~ [(P3 + P 0 2 3  "~ 
,.~ =o .~=0 (40) 

" [(P~ + P2)" (P2 + P3)]"' [(P2 + P31" (P3 + Pt)]"2 [(P3 + Pt) "(P~ + P2)] ~ 

where the summation is restricted by the same conditions as before and 
where for all summation indices satisfying these conditions 

Amtmzm3na n2n3 = Am2m3m~n2n3n, = Arn~m3m2n3nzn~. (41) 

V. Definition of the Time-Ordered Vacuum Expectation Value 
of Four Exponentials 

By construction, the sum of the auxiliary amplitude ~ a n d  an arbitrary 
deficiency amplitude(~)yields an admissible definition of the connected 
part of the vacuum expectation value of the chronological, respectively 
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the antichronological product of four exponentials, i.e. ~(x  I . . . . .  xa) 

+~8~(xl . . . . .  x4) satisfies 
O) (~(xl . . . . .  x4) +(~(xl . . . . .  x4) e gi/3(lR16), Lorentz invariant 
I) unitarity 

II) locality 
III) reality: [3(x ,  . . . . .  x4)+8(x 1 .. . . .  x4)]*-~-3(Xl . . . . .  X 4 ) - ~ ( X I , . . . , X 4 )  

IV) symmetry with respect to permutations of the arguments. 
Conversely, every admissible definition can be obtained in this way. 
Now, let us average the real part of an arbitrary given admissible 

definition with a real analytic test function fe-Z(IR 12) in the spatial 
difference variables. From the asymptotic behavior of ~e3 (p l  . . . . .  P4) 
[Eq. (29)] and of Nea(p, . . . . .  P4) [-Eqs. (39) and (40)] in the region 
{(Pl . . . . .  p4)/(p~) 2 > - K  2, (pj+pk)2> - K  2, i , j , k =  t . . . . .  4} where K 2 
is some positive constant, we conclude (the various series appearing in 
those equations converge sufficiently uniformly) that the resulting 
distribution in the time-difference variables has the following structure: 
It consists of 

a background, once continuously differentiable throughout IR 3 

+ a-derivative type singularities concentrated on planes x ° = x ° (two 
coinciding times) each one multiplied by a three times continuously 
differentiable function of the coordinates of the respective plane 

0 + a-derivative type singularities concentrated on the lines x ° = x ° = xk 
(three coinciding times) or x ° = xj°, xk- o'= xt o (two pairs of coinciding times) 
each one multiplied by a three times continuously differentiable function 
of the coordinate describing the movement along the line 
+ a-derivative type singularities attached to the point x ° = x ° = x ° = x °. 

To visualize the position of the singularities in the three dimensional 
space of the time differences, the variables 

xo+xo xo+ o 
~ t  - 2 2 , ~2 - 

~3 ~ 

are suited best for a symmetric plot. 

o o 
x 1 q- x 3 

2 2 ' 
x o + x o x o + x o (42) 

2 2 

The structure mentioned above expresses just the fact that all 
singularities of the spatially averaged real part can be separated from 
each other and from the background. Moreover, this separability con- 
dition does not only hold for real analytic spatial test functions f ~ Z(IR 12), 
but also holds for every real spatial test function f ~ ~1/3(1R12). 

Now, among all possible choices for the connected part of the time- 
ordered vacuum expectation value of four exponentials there is a partic- 
ular one: 3 + 30 which is distinguished from the rest by the fact that when 
its real part is averaged in the spatial difference variables with an 
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arbitrary real test function f egq /3 ( IR  la) this average never contains 
h-derivative type singularities solely attached to the times x ° = x  ° 
= x3 ° = x °. Thus the definition 

z ( x l  . . . . .  x4)  = 3 ( x l  . . . . .  x4) + 3o(X 1 . . . . .  x4) (43) 
is singled out in a unique way by the criterion of minimal singularity. 
On the basis of arguments given in Ref. [ 1] we expect this definition to 
lead to the simplest dynamics associated with the classical exponential 
Lagrangian. 

We would like to conclude with two remarks: First, as a corollary 
of the discussion of Section IIIB we obtain the assertion that also the 
space averaged imaginary part of z(x 1, x z, x3) enjoys the separability 
property (as well as the space averaged imaginary part of z(xl ,  x2)). 
However, we are not free to use this separability for a minimal definition 
of J~z .  Second, since the s-integrations in the equations defining 
3,,~ a=4 ,  5, 6 when bent around the real axis from - 1  to + oe are 
uniformly convergent as the momenta vary inside compact sets, the 
analyticity structure of the (crossed and uncrossed) box graph amplitudes 
in the invariant momenta on all sheets of the Riemann surface is just 
the same as renormalizable models. 
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