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Abstract: We present the helicity formalism for e+e - annihilation into three-body and quasi- 
three-body final states. We derive expressions for the cross sections and angular distributions 
in the one-photon-exchange approximation. For the process e+e - ~ prrTr we exhibit the 
results of calculations based on various low-lying exchanges and VMD assumptions for the 
form factors. When two of the final state particles resonate, our formalism allows us to study 
the reliability of the narrow-width approximation made in previous work, and to include 
certain interference effects previously neglected. 

1. I n t r o d u c t i o n  

Recently a series of  experiments on e+e - annihilation into hadrons at center of  
mass energies up to 5 GeV have been performed at Orsay, Frascati and CEA [1 ]. In 
the near future we expect further interesting experimental results from the colliding 
beam facilities at SLAC and DESY: firstly of  course because the energy range will 
be extended,  but  also because the higher luminosities of  these machines will provide 
far more detailed information about the hadron final states in the energy region al- 
ready covered. 

It has been argued that a large part of  the measured cross section can already be 
explained in this energy range just by the production of  two-body and quasi-two- 
body final states and their subsequent decays [2]. The general formalism for such 
two-body product ion has recently been given [3]. The cross sections e÷e - ~ h l h  2 
are related to the electromagnetic form factors for 7 ~ h+h - and transition form 
factors 3' ~ h l  h 2 in the time-like region; these correspond to three-point functions. 

From the theoretical point o f  view the next case of  interest would be the three- 
body or quasi-three-body production.  One now relates the cross sections for 
e+e - ~ h l h 2 h  3 to the four-point amplitudes 3' -~ h l h 2 h  3 which correspond by 
crossing to two-to-two scattering amplitudes. We develop here the appropriate 
formalism **. This can be of  help, on the one hand, for analysing experimental 

* Now at Universit~t Dortmund. 
** The formalism for an arbitary number of  particles in the final state is developed by Avram 

and Schiller [4]. 
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data on three-body production. On the other hand it provides insight concerning the 
limitations inherent in the two-body interpretation of many-body data. 

In the two-body description of many-body final states the resonances are neces- 
sarily treated in the zero-width approximation. The effect of symmetrization for 
decay products of resonances is also neglected. In a three-body treatment we can 
take into account the effects of the finite widths of the resonances, and the in- 
terference effects between different channels. 

We derive here the relation between the measurable differential cross sections 
and the four-body helicity amplitudes in the one-photon approximation. As in the 
two-body case this approximation leads to certain well defined angular distributions. 

The Adone results have shown that multi-meson final states are copiously pro- 
duced [1 ]. We consider in this context the example of p~rn production as the simplest 
final state with non-trivial spin structure. Examination of the Frascati results on 
e+e - -~ n + n - n + n  - [5] shows that, as one would expect, the p ° n + n -  configuration 
probably accounts for at least 80% of the four-pion final state. It is clear that from 
the energy dependence of the total cross section, which is all that has been studied 
up to now, it is difficult to gain reliable information concerning the production 
mechanism. In order to gain insight in this regard it will be necessary to investigate 
differential cross sections and angular distributions. In order to generate some feeling 
for these distributions we calculate the contributions of the low-lying resonances and 
particle pole exchanges in the various channels to the different amplitudes and cross 
sections. More ambitious theoretical approaches to the dynamics of e+e - annihila- 
tion which exist in the literature [6] are mainly concerned with more global proper- 
ties, and/or asymptotic predictions. 

Of course, an interesting problem concerns the decrease of the cross sections 
with increasing energy. In our isobar model this would be given by the W 2 depen- 
dence of the quasi-two-body form factors. According to vector dominance ideas 
these form factors are expected to be dominated either by the classical p, w and 
~b mesons [2,3], or by these in conjunction with further heavy vector mesons 
(p'(1250), p"(1600), etc.) [7] , or even continuum states [8]. The interference of 
different two-body intermediate states (e.g. "y"  ~ nA 2 ~ pTrn versus  " 7 "  ~ p e - ~ p m r )  

will be affected by these different hadronic contributions in the virtual photon 
channel. Nevertheless at fixed W our results are independent of such assumptions 
as long as we concentrate on only one particular two-body intermediate state. 

Sect. 2 contains the relevant helicity formalism. In sect. 3 the calculations for 
the o~rTr final state are given, in sect. 4 we present the results, and in sect. 5 the 
conclusions. 

2. The helicity formalism for three-particle final states 

We consider the reaction 
+ 

e + e -  ~ h  1 +h  2 +h  3,  (2.1) 
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where p+, h_+ are the momenta and helicities of the incoming leptons, Pi, hi the 
corresponding quantities for the outgoing hadrons hl ,  h2, h 3. In the one-photon-ex- 
change approximation the scattering matrix elements are 

e 
Tfi = - (Pi' hi[Jeu m(O)[O) ~-~ fix+ (P+) 3'u ux_ ( P - ) ,  (2.2) 

where we use as state normalization 

<p'h'lp X) = (27r) 3 2P06(3) ( p ' - p ) 6 x x , .  (2.3) 

14' = x/~q 2 is the total energy in the center-of-mass system of the two leptons 
(= laboratory frame). 

We take the laboratory Z-axis along the momentum p+ of the positron and the 
z-axis of the decay system coordinate axes along the momentum Pl of particle one. 
The orientation of the decay system with respect to the laboratory frame is given 
by the Euler angles a,/3, 3' (we use the convention of ref. [9] for these angles) and 
is shown in fig. I. 

The hadron system can now be described by the states 

la/37;E i, h i>= Ip i , h  i) , (2.4) 

where E i are the hadron energies in the center-of-mass system. The Jacobian 
determinant of the transformation from one set of variables to the other is equal 
to one. From these states, states of definite angular momentum may be formed in 
the usual way [10]: 

IJM K; E i, h i > = fd= dcos/3 d3'[ a/3 3'; El, h > D J * i Mr  (Or,/3, 3'). (2.s) 

This state has total angular momentum J, component M along the laboratory Z-axis 
and component K along the decay system z-axis. The decomposition of the 
Is/31'; El, hi ) states in terms of states of definite angular momentum is given by 
the inverse of the above equation: 

J 
la/33";E i, Xi)= ~ 

J=O M,K=-J  
[ J M  K; El, X i) DJMK (a,/3, 3"). 

Since je, m (0)10) transforms as a state of angular momentum J = 1, the matrix 
element in eq. (2.2) is 

(2.6) 

jM=<a/37;Ei ,  XilJffa(O)lO)= ~ 1" xi O~I x (~,/3, 3') PK (El), (2.7) 
K=_+,0 

where JM are the spherical components S_+ = • l/x/2 (Jx +- iJy), J0 = Jz and I'Ki (El) 
are the helicity coupling factors of the virtual photon to the hadrons defined by 
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Fig. 1. Definition of Euler angles a, #, 7- The positron momentum is in the Z direction whereas 
Pl and Pl × P2 define the z and y axes. 

I"Ki (El) = ( 1, M,  K; E i, k i I J ~  m (0)10). (2.8) 

They are independent o f  M by rotational invariance. Conservation of  parity leads 
to the constraints 

3 
rKi (El) = ( _ ) K  ~]  17i(_)si-xi  r-KXi(Ei ) ' 

i=l 
(2.9) 

where ~i is the intrinsic parity of  the i th  particle and s i is its spin. The cross section 
for e+e - -~ h 1 + h 2 + h 3 is calculated from 

e 2 d3p 1 d3p2 d3p 3 
d 9 o = L ~ V J J  * 8 ( 4 ) ( p l + P 2 + P 3 - p + - p _ )  8 E 1 E 2 E  3 , (2.10) 

v 2 W6(21r) 5 

where 

W 2 
Luv = P +u P -  v + P - u P  +v - 2---gin, " (2.11) 

In the limit of  vanishing lepton mass Luv = 1 W 2 6i / for i, ] = 1,2 and equal to zero 
otherwise. In this approximation the cross section expressed in spherical components 
of  the current and after integration over d3p 3 is: 

d 6 o _  a ~ ff.d [ J M I 2 t S ( ( W - E 1 - E 2 ) 2 - m  2 
8 W4(2~r) 4 spins M=-+ 

_(p2 + p2 + 2 [Pl liP21 cos 012))dcos 012 dq~12 dcos01 d~ 1 dE 1 dE 2 , (2.12) 

where ~12 and 012 are the azimuthal and polar angles of  p2 with respect to Pl" The 
integration over cos 012 can easily be performed. Instead of  the variable~ q~12, 01 and 
q~2 we shall go over to the variables ~t,/3 and 3, defined previously and use the ex- 
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pansion (2.7) for JM in terms of these new angular variables. Then we obtain for 
the differential cross section: 

d5 ° o~ ~ ~ 1" 
- D k x  (ol,/3, 3") D I  r ,  (a,/3, 3") 

16W4(27r) 4 a i K,K' M =+ - 

× PhiK',(Ei''K'~PXi*(Ei) dot dcos/3 d3, dE 1 dE 2 . (2.13) 

(2.13) is the most general formula we can obtain for the differential cross section in 
the case of e+e - annihilation into three particles of arbitrary spin. We se'c that the 
angular distribution depends only on two angles/3 and 3' (the dependence on a drops 

. k i out) and on the hehcity matrix elements r K (El). The result (2.13) can be simplified 
further if we insert the explicit formulas for the D-functions 

d4o d2°u d2OL 3 
d cos/3 d3,/2zr dE 1 dE 2 - dE l dE 2 3 (1 + cos2/3) + dE 1 dE-------~ ~ sin2/3 

d2Ol 
d2°T ] sin 2/3 cos 23' ~2  sin 2/3 cos 3' , (2.14) 

+ d E  l d E ~  dE 1dE 2 8 

where 

d2°u _ a ~ ~ Ir~i(Ei)l 2 
dE1 dE2 12 W4(2¢r) 2 x i K=-+I 

d2OL _ O~ Z~ ( O I  2 , 

dE1 dE2 12 W4(2r02 h i 
(2.15) 

d °T - 

dEl dE2 12 W4(21r) 2 x i 

d% r0 r c c) 
dE1 dEs 12 W4(2~r) 2 x i 

do T is guaranteod to be a real quantity because of the constraints of parity con- 
servation eq. (2.9). We see that by measuring the angular distribution in/3 and 3, 
four independent cross sections o U, OL, a T, and o! can be determined. Here d o U 
is the cross section for three particle production by an unpolarized transverse virtual 
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photon, do L is responsible for the production by a longitudinal virtual photon, do T 
describes the production by a transverse polarized virtual photon and do I comes 
from interference between transverse and longitudinal photons. The polarization 
is given with respect to the momentum Pl .  Obviously the dependence of the cross 
section on/3 and 3' is a consequence of the one-photon approximation. The cross 
section given in (2.13) can be integrated over the Dalitz plot. Then the following 
integrated angular distribution is obtained: 

d2a 3 (1 + cos2/3) + o L 3 s in 2/3 
d cos 13 d3'/2rr - aU ~ ~' 

3 
+ O T ~ sin 2/3 cos 23" - o 1 8 - ~  sin 2/3 cos 3'- 

The angle integrated Dalitz plot distribution is 

d2o d2ou d2OL 

dE 1 dE 2 - dE 1 dE~ + dE 1 d E ~ '  

and the total integrated cross section is 

(2.16) 

(2.17) 

a =  a U + o  L . (2.18) 

3. T h e  process  e+e  - -* o m r  

The kinematics for the virtual decay 3" ~ Prr27r3 is given in fig. 2. We denote the 
momentum of the virtual photon by q and by Pl ,  P2, P3 the momenta of the three 
decay particles p, 7r 2 and zr 3. Similarly as for two-body scattering processes it is 
useful to work with the Mandelstam invariants defined as 

s = ( q - p l ) 2 = W  2 + m ~ _ 2 W E  1 t = ( q - p 2 ) 2 = W  2 + m 2 - 2 W E  2 

u= (q-p3)2 = W 2 + mZTr - 2  WE 3 . 

Then we define the covariant tensor Tuv by: 

* jem 0 eU(XX) T~v=(Pl ,Xl ;P2;P31 v ( ) [ 0 ) ,  (3.2) 

and expand Tuv into gauge invariant covariants Fiuv: 

5 
T v = ~ Ai(s, t) Fiuv. (3.3) 

i=1 

The covariants F~v are (Q = P2-P3) :  
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F1 -- (qPl)gtw-q~plv lay 

FI~2 = (q p I ) Qu Qv - (Q q) Qu p 1 u - (P 1 Q) qu Qv + (Qq QP 1 ) gl~u , 

F3u = (q Pl ) Qu qu-q2 QuPlv_ (Pl Q) qu qv + q2 (Pl Q)guv ' 

Y4u = (qPl)PluQv - (q  Q)PluPlu-P~ qu Qu + (q Q)P~ guu ' 

F 5 = (qpl)Plu 2 2 2 2 (3.4) qu - q  P l u P l v - P l q u q v + P l q  guu" 

These covariants obey 

i v F'uv q = 0 ,  (3.5) 

which is necessary because the electromagnetic current is divergenceless. Further- 
more, to have complete symmetry between the electromagnetic current and the 
O meson we asked for 

p~ F i = 0 (3.6) 
/dr 

which is advantageous for continuation in p 2 including p 12 = 0 .  
The helicity couplings we are interested in are obtained from 

hl  , I" K (E1,E2,E3)=et t (Xl)  T e~(K), (3.7) 

if (3.7) is evaluated in the system q = 0 and the z-direction parallel to the p meson 
momentum Pl .  Then with (3.3) the helicity form factors are related to the invariant 
amplitudes 5 

PK'(Ei)-i~=iAi(s, t, u)fixaK , (3.8) 

where 

t z ( h i ) ,  i fixx K = e F~v eV(K). (3.9) 

The f]~ K are listed in appendix A. This way we can study various exchange models 
withot/t going through the calculation of  the helicity matrix element for every new 
exchange contribution. We just specify the corresponding invariant amplitudes A 1, 

A 2 . . . .  ,A 5. 
We investigate here a simple isobar model in order to see the effect of  the finite 

widths of  resonances and possible interferences in the s-, t- and u-channels. 
Depending on the charge configuration of  the final state (p°lr+Tr - ,  p0rr07r0 or 

p-+rr-+rr 0) we incorporate the e resonance (0 ++, m e = 0.7 GeV, Pe = 0.3 GeV) in the 
s-channel, the 7r and w poles and A 1 and A 2 resonances in the t- and u-channels 
(fig. 3). We remark that e, A 1 and A 2 are in the physical region for 3' --> Pn'27r 3 , 
whereas ~r and w lie outside. Therefore 7r and 60 constitute background terms to 
the resonance contributions. 
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~ P(PO 
V (q) ~ ~ 7 ) - - - - - 1 ~ z  (p2) 

~ ' ~ ' ~ a ( P a )  
Fig. 2. Kinemat ic diagram for 7 --* pnn. 

In terms of the couplings which are defined in appendix B the contributions of  
the poles and resonances to the invariant amplitudes are calculated to be: 
(a) Pion pole 

AI =_gpmrF (W2)( 1 2 +u_ml 2)'A2=2gp"F~(W2) 
t - - m  

A3=A4=A5=O. 

(b) Omega pole 

( t -m2)(u-m2)  ' 

(3.10) 

A1 =_~gntopgntoT(W2)(2t+2m2 ~(s+m2 +W2)) 1 +(t4__~u ) 
t_m2 

1 + (t *--* u), 
A 2 =A 5 = ¼g~rtoog~to~(W 2) t_m------ f 

t o  

A 3 = A  4 ,_  g rW2X 1 _(t+_~u) (3.11) =--4gntop nto~ ~ ) t_m2 
tO f 

For the resonance exchanges we include an energy dependent width in the Breitf 
Wigner formula, with the appropriate threshold factors [11] (P/pR)2/+I. 
(c) e resonance 

A 
1 

- ))genn(G (W) -mpW G rep(W )) 1 s_m2 +im e re(p(s)/p(m 2 1 2 2 2 2 2 e p  ) 

= 1 m2 W2 2 ½(-s+ + )g ,.ccp(w 2) 
AS s-m~+imeVe'P'S"P t t ) l  t ~)) P 

A 2 =A 3 =A 4 = 0 ,  

where 
1 

p(s) = ½ (s-4m 2 

is the momentum of the pion in the e rest system off-mass-shell. 

(3.12) 

(3.13) 
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P " ~ "  . . . . .  p /  " "" I t  
(a) 

. . . . .  / S 

__-¢==~ 

p / P 

(b) (c) 

~¢ rt 

P p 

(d) [el 

Fig. 3. Various exchange contributions to ~' --* oTrn. 

(d) A 1 resonance 
The formulas for the contribution of the A 1 meson in the t- and u-channel are 

much more complicated since both vertices consist of two independent terms with 
coupling constants G1A _(W 2) and G2A _(W 2) at the upper vertex and G 1 .  _ 
tand G 2 - ' b  .p~l~r at the l°wrer~'ertex respecti~ee"l~"*(fig" 3d)" We write d°wn °nly th%c~n" 
rl UtlOn of the t-pole. The u-pole term is obtained by the crossing rules (see for 

example (3.11) in connection with the w-contribution). Then we have for the A 1 
contribution to the invariant amplitudes 

1 ai 

A i = t-m21-- + imA1 FAI(P(t)/p(m21))3-- ~ , (3.14) 

where the coefficients a i are polynomials in t, i.e. 

~(4 t -4m2 W2 m 2 ) - h 2 ( 2 W 2 m 2  + i  02 al =h l  ~ + s +  + 1 ( t - u ) ( W 2 + r n  )) 

+ h 3 W 2 m 2 K ~ ( s - m  2 - W  2) 
o o ' 
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a 2 :h l -h2 (W2+m 2) +h 3W2m 2K, 

a 3 = -h l -h2 ( t -m2-m2)  + h3m2(t-m2 ) K 
O zt 

a 4 = -h l -h2 ( t -W2-m2  ) + h~ W2(t-m2)K 

a 5=h 1 +2h2(t-m2 )+h 3UK. 

p(t) is the momentum of the pion in the A 1 rest system: 

1 X/X(t, m2, m2 ) p ( t )  = 

and we used the following abreviations 

K = m4Aj - ½ (t+m2-m2)(t+W2-m2)(t-2m 2 ) 1 
p n ~r ~ I  s_w2_m 2 

U = 2  m 2 W2+ (t-m 2) ( t + 2  m2-m2) ,  P 

hl=G1 (W2)G 1 
' y A  1 rt o A I ~  ' 

h2= ~ m211 (GIA17r(W2)G~A lr+G2 (W2) GoAll 7r) 
1 ') ,A 1 "rt 

h3= G 2 (W 2) G 2 
,TAI Ir /3 A 1 ~r " 

(3.16) 

(3.17) 

(e) A 2 resonance 
The contribution of the A 2 resonance is somewhat simpler in that there is only 

one coupling at the upper and lower vertex (fig. 3e) As in the A 1 case we give only 
the t-pole contribution. This can be written as follows: 

Ai - 1 
t_m22+imA2FA2(P(t)/p(m22)) 5 G A2~r(W2)GoA2bi, (3.18) 

where 

b 1 = ~a(4t + 4 m 2 - s - m  2 -  W 2) + ~(s -m2-W 2) (¼b + ~f+ ~e-c) 
7r 

- -  1 1 - - 1  _ 1 7 -  1 ~ 1 _  IT . .  1 = ! 1 1 b 2 - - g a + ~ b , b 3 - ~ u - ~ o - ~ e ,  b 4 = g u - ~ u - 5 d ,  b 5 - g a + ~ b + 5 f + s e - c ,  

(3.19) 
and 

a = ~ ( s -m2-W 2) + 1 (t + W2-m 2) (t * rn2-m2~ 
o 4 m22'~ o ~r: ' 
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b - 1 X(s, W 2, m 2 ) ,  
2 ( s -m  2 -  W 2) 

p 

c - 

s_m2_W 2 
P 

' (t + W2-m 2) (t + 2 2 ( ( s -m2-W 2) t + ~ m o - m  )), 

d _  
s_m2_W 2 

P 

2 2 (W2(t + m p - m  ) + ½ (t + W2-m 2) (s -m#-W2))  , 

e - I (m 2 (t + W2-m 2) + ~ (t + rn2 -m 2) (s -m2-W2))  
s _ m 2 _  ul2 , ,  , p ~r p ' 

P 

f _ 1 ½ (t + W2-m 2) (s -m2-3 14/2) . (3 .20)  
s_m2_W 2 p 

The decomposition of  the cross section according to the polarization of  the virtual 
photon, eq. (2.14), is a first step towards distinguishing the contributions of  the 
various exchanges. For example in e exchange, eq. (3.12), A 2 = A 3 = A4 = 0 so that 
F_+ = p0  = I '~ = 0 and therefore 

a T = a I = 0 .  (3.21) 

The e exchange diagram therefore contributes only to a U and a L. The angular 
distribution takes the simple form do/dcos t3 dT/2n ~ a + b cos213, independent of  
the azimuthal angle 7. 

4. Results 

We present in this section numerical results for the process e+e - ~ pTrn using the 
isobar model of  sect. 3. We exhibit the contributions of  the various exchanges to 
the partial cross sections o U, a L, a T, a I which determine the integrated angular 
distribution of  eq. (2.16). We also show the distributions on the Dalitz plot arising 
from the angle-integrated cross sections d2a/dE 1 dE2, eq. (2.17) and the total 
integrated cross section eq.  (2.18). 

For the W dependence of  the quasi-two-body from factors we use the simple VDM 
form: 

a(w2)- a(W2=m#) "2 
0.1) 
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A1 .~ _ _ _ t ~  

÷ ÷ 

1 

Fig. 4. Unitarity relation for the quasi-two-particle form factor 3, ~ rrA 1" 

For the energy range we consider here this may be a reasonable procedure, although 
for sufficiently high W we expect it to break down, as it does for large space-like 
values in the deep inelastic region. The pion and kaon form factors G.r~r~r(W2 ) and 
Gn, Kg " (W2), the only ones measured up to now in the time-like region [ 12], follow 
the VDM curve, at least as a first approximation, up to W ~ 2 or 3 GeV. This in- 
dicates that the heavier vector mesons such as the p' ,  if they exist, couple weakly 
to the zrn channel [13]. Renard has considered the effect on these form factors of  
including higher vector mesons in the calculation, as well as the effects of  inelastic 
intermediate state which contribute through unitarity [14]. It is clear that similar 
inelastic effects can contribute to the form factors which we are interested in, e.g. 
7 ~ ep  ~ lr A1, see fig. 4. In this sense the assumption of  eq. (4.1) means that we 
include only 2 ~r intermediate states in the unitarity relation. 

If such inelastic effects, or strongly coupled heavy vector mesons, were impor- 
tant in any of  the channels which we are considering, their contributions would 
have to be added to that of  the p meson, which is what we have calculated. Besides 
the W dependence this would affect the distributions at fixed W to the extent that 
the p'  couples to the various channels with relative strengths different from the 
couplings of  the/9 meson. Indeed, besides in the W dependence of  the total cross 
section, which we shall show to be a rather insensitive test, it is in deviations from 
the distributions given here that the effect of  the p'  meson in e÷e - annihilation 
should be searched for. 

4.1.  e e x c h a n g e  

We consider first the e exchange contribution of  fig. 3c. As explained in sect. 3 
an angular determination of  the cross sections au ,  aL, OT, O I will immediately show 
how important this contribution is: small values of  a T, o I compared to o U, o L would 
indicate its dominance, appreciable values of  o T, a I would point to the importance 
of  other mechanisms. 

The coupling of  the e to the P7 channel involves two form factors; we use 
G 1 ( W  2"~ G 2 p(W 2) as defined in eq. (B.4). Whenever more than one form factor e " / p  " 1 ,  

is involved in t~e coupling at any vertex the energy dependence of  the cross section 
will depend on which form factors, corresponding to different possible covariant 
decompositions of  the vertex function, are assumed to follow the "minimal" VDM 
prescription. We discuss this question more fully in connection with the A 1 exchange 
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o" (nb) 

2O 

I 
1.0 t~ z.0 z s  3.0 

9/(6ev) 

Fig. 5. Cross sections a U and a L for e+e - ~ p°n+~r- + p°Tr°Tr° as a function of the total c.m. 
energy W for the e exchange model with G~p3 ' ~  = O. 

cont r ibu t ion .  Here we use VDM, eq. (4.1), for the form factor  Glrp(W2) ,  and set 

G2p~(W 2) = 0, as this leads to the sharpest decrease o f  the cross sections wi th  energy,  

as favoured by the data. 

We use th roughou t  f2 /41r  = 2.26;  mp = 0.77 GeV. For  the e meson we take m e --- 

= 0.7 GeV,  r e = 0.3 GeV,  and Gle,rp(W2 = m 2) = 38 GeV -1  , as in ref. [15], and in 

agreement ,  th rough fur ther  appl icat ion o f  VDM, wi th  the est imates for gem of  

refs. [16, 17]. 

Fig. 5 shows a U and a L as funct ions  o f  W. We see that  a U dominates ,  o T and qI 

are ident ical ly  zero. The effect  o f  the f ini te-width correct ion inherent  in the cal- 

culat ion wi th  the three-part icle final state is shown in fig. 6, where a is compared  

to the result o f  the zero-width  calculat ion wi th  a two-part icle final state [ 15]. We 

find that  the two cross sections differ appreciably only  in the threshold region; 

whereas  in the two-body  calculat ion the threshold is at W = mp + m e and the cross 

Cr(nb 

2( 

10 

I I I I 
to ts 2.0 zs 3.o 

• w (6ev) 

Fig. 6. Comparison of o for e-exchange contribution in zero-width approximation (two-body 
result) (dashed curve) with finite width calculation with I ~ = 0.3 GeV (full curve). 
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o'(nb', I/'\ 

20 / .  ,X 

I I [ I ] 
1.0 1.5 2.0 2.5 3.0 

W (GeV) 

Fig.7. Cross sect ion a for e e×change (full curve) and for e and ~r exchange (dashed curve) as a 
function of W. 

section rises sharply above this point, in the new calculation the threshold is at 
W =mp  + 2 m ,  and the cross section rises more gradually to its maximum. Above 
maximum the new calculation differs only little from the zerowidth approximation 
for this process. 

4.2. e and 7r exchange 

In the calculation of  the pion-exchange diagram of fig. 3a we use g2~r /4n  = 2.86. 
This diagram constitutes a background term to the resonant e-exchange diagram in 
e÷e - ~ pOn+lr-.  (In e+e - ~ p0rr07r 0 e.g. the background would be due to the 
co-pole term.) It produces small but non-vanishing values of  a T and o I. Its influence 
on o is exhibited in fig. 7; it is seen to increase the cross section at maximum by 
roughly 10%, and thus produces a stronger fall-off of  a with W. 

As mentioned in the introduction the Frascati data on e+e - ~ n+n-Tr+Tr - should 
be well described by consideration of  the p0n+Tr- final state. The Frascati group 
further asserts that the scatter plot of  the invariant masses M(~r 17r 2) versus M(lr 3 lr 4), 
as well as other kinematical evidence, strongly supports the assumption of  a p0e° 
intermediate state. It is therefore of  interest to compare the result of  our calculation 
of  e+e - ~ pOor+n- with e and 7r exchange to the Frascati results. This comparison 
is shown in fig. 8. Here we have used a slightly different normalization compared to 
the case of  pure e exchange (fig. 6). The agreement is reasonable within the appreciable 
uncertainties present in this experiment. This does not mean that alternative inter- 
pretations of  these data, for example in terms of  strongly coupling heavy vector 
mesons [ 18] are not possible. We only wish to stress that the energy dependence of  
the total cross section is a rather insensitive test (note also our remarks concerning 
the ambiguity of  the W behaviour corresponding to different choices of  covariants). 
Consideration of  more detailed distributions, such as those worked out in this paper, 
should lead to a clearer understanding of  the dynamical mechanisms. 
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cr ( n b ]  

2O 

10 

I i 
1,0 1.5 2.0 2.5 3.0 

w ~GeV) 
Fig. 8. Cross section o (p°Tr+zr-) for e and 7r exchange model compared with experimental data 
of  ref. [5]. 

4.3. A 1 exchange  

In attempting to calculate the contribution of  the A 1 exchange diagram, fig. 3d, 
we are faced with the ambiguity concerning the form factors used for describing 
the A , p n  vertex. One can use, for example, G 1 (W2), G 2 (W 2) of eq (B 4), 

J- ,~  p ' r r  ,'~ p T r  " " 

or F 1 p~r(W2), F 2 pTr(W 2) of eq. (B.7). As cleJrly shown by eq. (B.8)which 
1 1 . . 

relates the F and tt/e G form factors, assuming VDM for the F form factors will 
lead to a W dependence of the G form factors different from that given by VDM, 

-(y(nb) 

#-~ " i  / rA~ =50McV 

~ FA~=50 MeV w i th  cu t  

I , , , I I [ i I I , = I ~ I I ] 

to l.s z,o W(GeV) 

Fig. 9. Comparison of  the contribution of  A 1 exchange in the t-channel to o in zero-width 
approximation (dashed curve) with finite width calculation with PA = 0.05 GeV. Integrating 
over the Dalitz plot in the region of  the A 1 resonance yields the fulllcurve, integration of  the 
complete Dalitz plot gives the dashed-dot curve. 
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Fig. 10a. Dalitz plot for exchange mechanisms as in fig. 9 for W--- 1.6 GeV. 

eq. (4.1), and vice versa. For illustrative purposes we here use the VDM prescription 
for the F form factors, and set F l l  pTr(W2 ) _  = F21 p,r(W2 ) _  We take mAt = 1.07 GeV 
and FA = 0.05 GeV. 

1 
Fig. 9 shows the total cross section resulting from A 1 exchange in the t-channel 

compared to the result of a zero-width two-body calculation. The finite-width cor- 
rections are seen to be more important here, at the higher energies as well as near 
threshold, than in the previous case. This follows from the higher spin of the 
exchanged system, and the resulting polynomial t-behaviour of the numerator of 
the propagator, eq. (3.14). Atthe pole position t = m2A. and in the narrow width 
approximation PAl ~ 0 the expression for the cross section is identical to that of 
the two-body calculation. However as t takes on off-mass-shell values the numerator 
of the propagator changes, leading to a modified result after integration over the 
Dalitz plot. The effect increases at higher energies, as the phase space expands and 

I 
Ep (GeV) 

11 1.0 = 3 GeV 

09 

0.8 

I I i I I 
o.z 0.3 ox. o.s ~o.6 E~zlGeV) 

A1 

Fig. 10b. Dalitz plot for exchange mechanism as in fig. 9 for W = 1.8 GeV. 
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15 - o ' ( n b )  / j "  

~ - . . . . . . . .  t and u channel 
exchange with cut 

t channel exchange 
10 with cut 

5 

/ 
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, 7  
I J l  i t I , i , , I 

1.0 1.5 2 . 0  W(GeV) 

Fig. 11. o for A 1 exchange inthe t channel (full curve), t- and u-channel (dashed curve), t- and 
u-channel integrated over the complete Dalitz plot (dashed-dot curve). 

the far regions of the Dalitz plot are even further removed from the resonance region. 
Above a certain energy the rising polynomial effect in the numerator of the pro- 
pagator overcomes the damping effect of the Breit-Wigner denominator, and in the 
integration one begins to pick up significant contributions from regions of the 
Dalitz plot which are not in the vicinity of the resonance. In the present process 

this phenomenon shows up as an enhancement in the upper left hand corner of the 
Dalitz plot, which, as seen in figs. 10a and 10b, sets in rather abruptly at W ~ 1.6 GeV. 
Whether this enhancement should be considered physical, or whether it arises from 

the inadequacy of using the simple Feynman-graph prescription in kinematical 

I0 - cr ( n b }  

5 

_if Cr T 

= , , , , I = = , , I 
t O  I .S Z . O  W ( G e V )  

Fig. 12. Cross sections o U, o L and o T for A 1 exchange in the t- and u-channel integrated over 
the complete Dalitz plot. o I ~ 0. 



228 A. C Hirshfeld, G. Kramer, e+ e - annihilation 

stand u channel ./exchange 
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Fig. 13. a for A 2 exchange in tim t channel (dashed curve), t- and u-channel (dashed-dot curve) 
and for zero-width approcimation (full curve). 

regions so far removed from the resonance pole, is unclear. A better method might 
be to allow for the reggeization of the exchanged particle off-mass-shell, and the 
subsequently modified behaviour of  the propagator. We have not attempted here 
any such refinements. We merely note that the onset of  the effect is clearly indi- 
cated in the Dalitz plots, it is clearly separated in phase-space from the resonance 
region, and in the full curve in fig. 9 we have simply subtracted it by hand from the 
total cross section. In the case of  A 2 exchange the still higher spin and the cor- 
respondingly stronger damping effect of  the (p/pR) 21+1 factor in the Breit-Wigner 
denominator cancel this effect entirely. 

The A 1 exchange contributes in both the t- and u-channels, and when we include 
both in the calculation we find that interference between the two channels gives 
rise to an approximately 10-15% effect in the total cross section (fig. 1 1). 

Fig. 12 shows the separation of  the cross section according to the polarization state 

Ep(GeV) 
1.0' 

AI At 
\ I W= 1.5 GeV 

0.90.8 

02 0.3 0.t, 05 Ert2(GeV ) 

Fig. 14. Dalitz plot for A 1 exchange at W= 1.5 GeV. 
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Fig. 15. Dalitz plot for A 2 exchange at W = 1.8 GeV. 

W= 1.8 GeV 

of the virtual photon. We see that here o U and O L a r e  of comparable magnitude. 
The rise at high energies due to the numerator effect mentioned previously occurs 
only in a L. 

4.4. A 2 exchange 

Fig. 13 shows the total cross section resulting from A 2 exchange, with mA2 = 
= 1.31 GeV, PA2 = 0.076 GeV. Although as mentioned before the factor ( p / p R )  2i÷1 

in the Breit-Wigner denominator cancels the effect of  the rising numerator far from 
the resonance pole, the high spin nevertheless causes this variation to be of im- 
portance in the pole vicinity, and the finite-width corrections are correspondingly 
larger than in the previous cases. We also show here the effect of t- and u-channel 
interference. We see that with the couplings we have used the contribution of this 
mechanism is much smaller than that of those previously considered in the energy 
range of interest. 

cr(nb) 

2O 

10 

I T 
1.0 1.5 20 2.5 3.0 

W(GeV) 
Fig. 16. o(pO~r+Ir -) for ~r + e + A I model compared to data of  ref. [51. 
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Fig. 17a. Dalitz plot for pure e exchange at W = 1.8 GeV. 

4.5. Comparison o f  various exchange mechanisms 

Clearly interferences of t- and u-channel contributions corresponding to a specific 
exchange and interferences of different resonance contributions are much more 
prominent in the Dalitz plot distribution than in ato t. The previous figs. 11 and 13 
show the effect of the t-u channel interference for A 1 and A 2 exchange. Figs. 14 
and 15 exhibit this effect in the Dalitz plot distributions. Fig. 14, the Dalitz plot 
for A 1 exchange at W = 1.5 GeV, is a case where the resonance bands intersect 
outside the physical region below the lower boundary. Even in this case we see an 
enhancement in the overlap region of the resonance bands. For increasing W the 
bands emigrate towards the boundaries so that the intersection moves further 
away from the physical region (see (3.1) for the locations of the two bands in the 
El ,  E 2 plot). 

Ep(GeV) A1 W = 1.8 GeV 

1.1 A~ 5 

1.0 

0.9 

0 .8  

I i I ~, I 11 I I 
0.2 os 0,4 o.5 0.6 o.7 o.8 E~2(GeV) 

10 

7 15 
~20 
,~- 30 

- - - - - E :  

Fig. 17b. Dalitz plot for ~r + e + A 1 model at W = 1.8 GeV. 
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Fig. ] 8. Comparison o f  four pion mass spectrum is "yp ~ n+n-~+~  - p [20] wi th e + ~r exchange 
model. 

For A 2 exchange at W = 1.8 GeV the intersection of  the resonance bands is at 
the center o f  the Dalitz plot (fig. 15). With increasing I¢ one obtains a plot similar 
to fig. 14 (for the A 1 case). 

To see the effect of  interference between different resonances we have calculated 
the cross section due to combined n, e and A 1 exchange (with G2A ~ = 0). Fig. 16 

• . ° , ' L i t  

gives o for e+e - ~ p0zr+rt- as a function of  W. Comparing this to fig. 8 we see that 
the addition of  A 1 exchangewith G2 A = 0 and PAt = 0.050 GeV modifies ti 
only slightly near threshold. However als~we see in fig. 17a, b the A 1 contribution 
shows up clearly in the Dalitz plot. 

5. C o n c ~ o n s  

In this paper we have presented the general formalism for quasi-three-particle 
production in e+e - collisions. In the one-photon exchange approximation the cross 
section is given as sum of  four terms Ou, o L, o T, o I which have a simple interpretation 
in terms of  the polarization states o f  the virtual photon along the z-axis o f  the decay 
system (in our case along the momentum of  one of  the outgoing particles). This is 
analogous to the familiar decomposition of  the electroproduction cross section. The 
dynamical information is contained in helicity amplitudes which can be partially 
disentangled by determining the cross sections Ou, OL, tl T and (7I. In order to obtain 
further dynamical information it would be necessary to consider the polarization 
o f  the final state particles and/or o f  the incoming beams [4]. 

For the particular final state pzrlr we have calculated various distributions o f  
experimental interest. When empirical data are available this should be of  help to 
distinguish possible dynamical mechanisms. 

In the energy range from threshold to W -~ 3 GeV it is possible that the cross 
section is dominated by resonances which can couple to the various channels. In 
this spirit we have considered the contributions o f  e exchange in the s channel, 
A 1 and A 2 exchange in the t- and u-channels as well as the background terms arising 
from exchange of  the stable particles rr and co. 

We find that a reasonable interpretation of  the Frascati data for e+e - ~ ~r+zr-lr+rt - 
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can be achieved by assuming the dominance of the e exchange diagram and using 
the naive p dominance model for the coupling of the photon to hadrons. We can 
give a similar interpretation to the four pion enhancement in the photoproduction 
process 7P -+ n+n-7r +Tr- P, observed at S LAC [ 19 ]. This is shown in fig. 18. Thus 
the experiments which are taken as the evidence for the existence of a heavy vector 
meson p'(1600), coupling directly to the photon, can be as well understood without 
invoking any new particle. One should note that in our interpretation the pe electro- 
magnetic form factor is dominantly real in the W range considered whereas the 
existence of a p' would give a dominantly imaginary form factor. 

It has been claimed in the literature [20] that our interpretation of the four 
pion enhancement is refuted by an experiment of Eisenberg et al. which looked 
for a similar signal in the reaction lr+p --> p01r+Tr-A ++. Unfortunately their con- 
clusion depends on an ad hoc background subtraction. With another background 
curve their results could as well be compatible with the expected event rate from 
the p tail. 

Appendix A 

Here we list the transformation coefficients f~l K, defined in (3.9), which relate 
the helicity decay matrix elements to the invariant amplitudes Ai(s,  t) (see (3.8)): 

f l+  = _ ( qp l )  ' 

.f~2 = --2(qp 1 ) p2 sin 2 0-- (Qp) (QPl)  ' 

f+3+ = _ W 2(p 1 Q) ,  

2 f~_4 = _(Qq)  mo , 

fi5+ = _ W 2 m  2 . (A.1) 
p ' 

f l  =r3 _ 4 = :s  =0 
+ _  - - f ; _  + _  , 

H -  -- -2 (qpl )  sin20 ; 

IJ+ :Ion+ =Io'+ : o,  

fg+ = (qp l ) /mp( IP l IQo-E1  ([pl [ + 2[P21 cos0)x/21P21 sin 0 

- ( p l  Q)lpl  l qo xf2 IP21 sin O /m° , 

f 4 + = - V ~ m o  IPllqo IP21 sin0 ; 
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f l 0  = f ?  0 _ 4 - &  :I o =o, 

f20 = - ( q p l ) X / 2  [p21 sin 0 (21P2l cos 0 + ]Pl I) + Qp x/2 [pl [ [p21 sin 0 ,  

f30 = W2 X/'} IPll IP2l sin0 ; 

f l  =-qomp , 

fgO = { - ( q P l )  (IPll Qo-E1 (IPl[ + 2 [p21 cos 0) (21P21 cos 0 + IPl l) 

+ (q Q) (IPllQo-E 1 (IPll + 2lP2l cos 0)) I Pll 

+ (Pl Q) IPll qo(21P2 [ cos 0 + IPl I) - (ap) (QPl)E] }~rap , 

f300 = W2/mp (IPl[ Qo-E1 (IPll + 21P21 cos 0) IPll - (aPl)E1) ,  

f040 = mp IPll q0 (21 p21 cos 0 + Ip I I) - (Qq) mpE 1 , 

f 5 0 = - m p  W2E 1 . 

In these formulas 0 is the angle between Pl and P2 and is given by (see (2.12)): 

_ 1 (W_El_E92_m _p _@ (A.2) cos 0 21P111P2 ~ 

Appendix B 

In this appendix we collect the definitions of  the various couplings which are 
needed to calculate the diagrams in fig. 3a-3f .  We start with the couplings of  mesons 
to the photon. They are: 

(n'+(Pa), ~ ' - ( p b ) [ L ( 0 ) I 0 )  = (pa -Pb)~  F n ( W 2 ) ,  (B.1) 

<rr0(pa), w ( p  b, 7)1Ju(0)]0) = ie~o~#.rp~apO b F~w.r(W2 ) , (B.2) 

(rr+(Pa),A2(Pb, 71,72)[  Ju(0) [0)=  i eu~#~lPaq¢ pa.r2F A2~,(W2). (B.3) 

In (B.2) the index 3' stands for the polarization of the w whereas in (B.3) 3'1 and 3'2 
are the tensor indices which multiply the polarization vector of  A 2. In the cases 
3' ~ 7rlr, 7rw and rrA 2 we have only one independent form factor. This is not the case 
for 3' ~ 7rA1, where we have two independent form factors. We used the following 
decomposition: 
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( "n'+ (pa), A l ( P b ,  V)l J~(0)10) = GIA, ~(W 2 ) ((pbq)guv-pbt~qv) 

+ G2AI,r(W2) (Pb q) ((Pbq)qUPbv- W2pbuPb~,)--m21((Pbq)ququ-W2pbtaPbL,)) • 

(B.4) 
The decomposition (B.4) obeys 

qU( r r+(Pa)A-(p , v)l Ju(0)10) = 0 1 b 
but also 

pV(Tr +. \ A 1  (pb'v)lJ~(0)10) =0  b (Pa L 

(B.5) 

(B.6) 

where v stands for the polarization component of  the A 1 meson. In ref. [ 15] a dif- 
ferent definition for ~rA 1 transition form factors was introduced. This is the fol- 
lowing: 

(lr+(Pa),AI(P b, v)l Ju(0)10 )= (flrAl.y(W 2) + F2A13,(W2)) 

2 2 2 (gl~v(qpb)_Pbt~qu) (B.7) X (guy q -quqv ) -FnAl . t (W ) 

The decomposition (B.7) does not obey (B.6). The relation between the form fac- 
tors G 1 and G 2 a n d F  1 a n d F  2 is: 

G l (qpb ) = (F  1 + F 2) q2-F2 (qpb) ,  

G 2 m21 (qpb)  = F 1 + F  2 . (B.8) 

The same couplings (B.4) and (B.7) are used for 3' -~ ep where 7r and A 1 in (B.4) and 
(B.7) are replaced by the labels e and p. 

It is clear that the same definitions (B.1) to (B.8) can be used for the coupling of 
the p to nrr, rr¢o, irA2, rrA 1 and ep. The form factors F~r, Fnto,y etc. in (.B.1) to (B.8) 

l are replaced by appropriate coupling constants gmrTr, F~rtop, F~rA2 p, G~rA x P and 
i Gepp. 
The coupling constant of the e to rrrr is-defined by 

<~r+, rr- I Je(0)10) = g~rTr " (B.9) 
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