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Abstract: An attempt is made, within a combinedlight-cone and parton approach, to estimate 
effects of multiphoton exchange in deep inelastic scattering. For the exchange of n photons 
in the Bjorken limit, contributions of the form (ln2Q2) n - I  times the one-photon approxi- 
mation are found. Under the assumption that they are the leading ones in each order, they 
can be summed up to a power-behaved function of Q2 which modifies the structure func- 
tions Iqi(v, Q2) in such a way that in the Bjorken limit they are no longer functions only of 
to. A rough numerical estimate indicates that corrections due to multiphoton exchange be- 
come important (10% of the one-photon contribution) at about Q2 ~ 10 4 GeV 2, but are 
always screened by the larger effect of radiative corrections at the electron vertex. They are, 
however, directly visible in do (e+p) - do (e-p) .  

1. Introduction 

Deep inelastic ep scattering has been considered in the one-photon approximation 
(fig. 1), and it is assumed that contributions of higher order (fig. 2) can be neglected 
when Q2 = _(k_k')2 is not very large. However, in the future larger values of Q2 will 
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Fig. 1. One-photon approximation diagram. 
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Fig. 2. Two-photon exchange contributions. 
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be accessible, and thus there may be some interest in a study of the contributions of 
two and more photons to deep inelastic ep scattering. 

Kingsley [ I ] has made an estimate of two-photon effects, within the patton mo- 
del of Landshoff, Polkinghorne and Short [2], and came to the conclusion that in 
fig. 2 there are contributions of the order (ln Q2)n in comparison to the one-photon 
approximation. The detailed form of this In term, however, appeared to be depen- 
dent on one of the specific features of the patton model: the fall-off of the parton 
amplitudes as a function of the parton masses. 

In the present paper we perform a study of two- (and more-) photon exchange 
in deep inelastic scattering, which as much as possible is based on the light-cone ap- 
proach. At some points, however, we shall use parton model results as well. To ex- 
plain our method we write down the amplitude of fig. 2: 

const [ fax 1 E (k')'TvD 17u  (k)D2D3] [ fdk'  (k').rv,D'l ,. (k) D'2D'3 ] * 

c" , i v . ( k .+} (k+k ' ) )  - i v ' l ( k ]+~(k+k ' ) )  (1.1) 
X J d x d y  ldy]ezqxe  " '  " e " 

X <pltT*(J,(-½x +½Y' l )J, ( -½x-½Y' l ) ) ,T(J(~x+~Yl)  ' ' J (~x-~Yl) ) ]  IP) 

(the momentum notation is contained in fig. 2; D stands for the Feynman propaga- 
tor). The hadronic part is represented by the matrix-element of four currents, and, 
apart from the integration over k 1 and k],  this expression occurs also in deep ine- 
lastic Compton scattering and deep inelastic electroproduction of massive muon 
pairs (fig. 3). This last process has been considered [3-5]  by use of the bilocal alge- 
bra of Gell-Mann and Fritsch [6], and it was pointed out that in certain kinematical 
regions of the external photon momenta the leading contribution to the process is 
given by the singularities of the current product, all currents lying on one light-like 
vector in configuration space. In this region the bilocal algebra is expected to be 
valid, and its application relates the two-photon process of fig. 3 to the structure 
functions of the one-photon process fig. I. The light cone part of the four-current 
product can be pictured by the quark patton diagram fig. 4. That the light-cone singu- 
larities are the most important ones means that other parton diagrams than that of 
fig. 4 are less important (e.g, fig. 5). All these considerations apply to products of 
currents with fixed large external photon momenta. In our case (1.1), however, the 
current momenta belong to loop integrals, and we have to find a way for handling 
the loop integral in the Bjorken limit (Bj-limit): 

e' /a. 

Fig. 3. Deep inelastic electroproduction of  massive muon pairs. 



174 J. Bartels, Multiphoton exchange 

f 
Fig. 4. Parton diagram which represents the light-cone part of the four-current product. 

Fig. 5. Another parton diagram for the four-current product. 

Q2 = _q2 _(k_k,)2 .+ ~, u = p" q ~ 0% 2v fixed. (1.2) 

From studies of the high-energy behavior of Feynman diagrams by means of Sudakov 
techniques [7] it is known that only certain subregions of the loop momentum inte- 
grations are responsible for the high-energy behavior, and one might expect that this 
is the case also for (1.1), because it differs from a usual Feynman diagram only by 
a T-product of full currents instead of a Feynman propagator. Furthermore, it is 
plausible that in the Bj-limit the photon momenta in (1.1) are somehow large and 
the light-cone (LC) singularities are important. If this is right, one arrives at the quark 
parton diagram of fig. 4 (the electron lines added), and can use the results on the 
asymptotic behavior of Feynman diagrams for the calculation of (1.1) in the Bj-limit. 
This is the method that we shall use in our paper. We isolate subregions of the loop 
integration and show the LC dominance for them. Then we use the bilocal algebra 
and arrive at a Feynman-like expression (fig. 4), multiplied by SU(3) structure func- 
tions, just as in ref. [3]. The remaining loop integrations, restricted to these subre- 
gions, give just a ln2Q 2 times the one photon approximation (in fact, one In2Q 2 for 
each loop in fig. 2). In the same way we proceed for the multiphoton exchange, 
and when summing up these logarithms (including vertex corrections at the electron 
part, which also give rise to ln2Q2), we arrive at a power dependence on Q2 for the 
overall deep inelastic process including multiphoton exchange: 

( Q 2 ) - l + c o n s t . ~  cos (const In Q2),  (1.3) 

instead of (Q2)-I  for the single photon propagator in the one-photon approximation. 
For all this we use results on QED diagrams from Gribov et al. [8, 9]. A quantitative 
estimate of (1.3), however, shows that the corrections due to multiphoton exchange 
become important only for Q2 ~ 104 GeV 2. 
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In sect. 2 we consider the two-photon case, isolate the important momentum re- 
gions, discuss the LC dominance, and, by application of  the bilocal algebra and the 
results of  ref. [9], come to the ln2Q 2. In the next section we extend this to more 
photons, and the last section is devoted to a discussion concerning the relevance of 
our results for present and future energies. 

2. Two-photon contributions 

As already mentioned in the introduction, we expect the LC contributions (fig. 4) 
to be important  in the Bj-limit. Therefore, as a preparation, we consider the asymp- 
totic behavior of  the diagrams fig. 6a, b in the limit Q2 = _(k_k , )2  ~ 0% u = (1" + r") 2 
fixed. 

The wavy lines are photons, and for the moment  we give them a mass ~. to avoid 
• 1 infrared divergencies• The solid lines belong to spm-~- particles. It is abvious that figs. 

6a, b in the limit under consideration show the same behavior as figs. 7a, b respecti- 
vely, in the limit s = ( k - k ' )  2 -+ oo, " t "  -- (r  + r ' )  2 fixed, when s is replaced by _Q2.  
This behavior has been studied in ref. [9], and the result is that fig. 7a behaves as 

1 ~ (ln2 s ) f ,  (oe = e2/2rr) (2•I) 
2 277 

and fig. 7b as 

1 o~ ( l n2s ) f ,  (2.2) 2•~-  g~ - 

K+r K'+r 

K'-- r' K -r '  

a b 

Fig. 6. Two-photon exchange between electron and parton in the Bjorken limit, 

1 T 

K + r ~  ~,~ ' - r '  
z 

n b c 

Fig. 7. Two-photon exchange in e+e - ~ u+ta-. 
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where f i s  the amplitude for the Born approximation fig. 7c. By introduction of Su- 
dakov variables 

k 1 = a k + 1 3 k ' + k l i ,  k l ± . k = k l ± . k ' = O ,  (2.3) 

(we chose a reference frame where k, k'  are large and have only z-components),  one 
can isolate the responsible integration regions. For fig. 7a the behavior (2.1) is due 
to those values of  k 1 , where both photons are off-shell and have large transverse mo- 
menta: 

1 < o ~ <  1 , 1 < / 3 <  1, 1 " ~ -  k~± : so~. (2.4) 
S 

In fig. 7b there are two regions: one of the photons carries the whole large momen- 
tum k - k '  and is far off-shell, whereas the other photon is real, both of  them having 
large transverse components:  

1 < ~ < 1 ,  / ~ 1 ,  l ~ - k 2 ± = s o ~ 3 ,  
S 

s - l ,  (25) 

[each of the regions contributes ~(~2rr)fln2s]. 
Now we return to fig. 2 and formula (1.1) and see whether we can find here such 

a ln2Q 2, too. We take the proton rest flame, k along the z-axis and are looking for 
the limit Q2 ... v -+ ~,  co fixed, and 0 fixed (0 = scattering angle of  the electron). 
This is equivalent to 

- t  = - ( k - k ' )  2 = 0 2 -~ ~o, 

u = (p - k ' )  2 = M 2 (1 
nucleon \ 

S = (19 + k) 2 ~ 2v --* 0% 

co( l - cos  0) 
(2.6) 

(k' has finite components in our system). First we consider the region (2.4). Again, 
k 1 = o& + (3k' + k l . t ,  and the two photons have the momenta,  according to fig. 2: 

k 1 + k = (1 + a) k +/3k' + kl± -+ (1 + a) k + fixed vector, (2.7) 

k 1 + k '  = a k  + (1 +/3)k' + kl± -+ ak  + fixed vector. (2.8) 

Since k '  is finite and Ikl±l is smaller than the two large components of  k, both of  (2.7) 
and (2.8) are nearly parallel to the large light-like vector k (the electron mass may 
be assumed to be zero). Now we use the result of  ref. [3]: if the momenta  of  the 
photons can be parametrized as uie  + b i (i = 1,2; u i large numbers; b i fixed vectors; 
e fixed light-like vector, common for both  photons), then in the limit u i -+ ,,o the 
dominant contributions to the current product is given, when all currents are on one 
common light-like vector, and in this region the bilocal algebra is applicable. 
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For the region (2.5) the LC dominance is less ob~cious. Fritsch [3] has given ar- 
guments that for the two-photon deep inelastic process (fig. 3) with one or both 
photons being real and having small transverse momenta: 

- ( q l - q 2  )2 ~ 0% 2pql ~ 0% 2pq2 ~ 0% 

q~ and/or q~= O, q~± and q~l small, 

2p(q l -q2  ) 
- fixed, (2.9) 

-(ql  -q2 )2 

the leading LC contribution leads to a wrong behavior of the amplitude. But he ar- 
gued that this could change, if the photon momenta ql and q2 have large transverse 
components. Also in the parton model of Bjorken and Paschos [10] large transverse 
photon momenta enforce contributions with both photons attaching the same par- 
ton, in comparison with diagrams, where the photons interact with different partons. 
For the probability that a patton system, containing two partons with large trans- 
verse momenta, combines into one hadron goes faster to zero than the probablity 
for a process where both photons with large transverse momentum interact with the 
same patton and leave '" without large transverse momentum. Furthermore, the LC 
dominance is also supported by the parton model of Landshoff et al. [2]. Kingsley 
[11 ] pointed out that for the two-photon process fig. 3 the disconnected diagram 
fig. 4 dominates the other patton diagrams, whenever the external invariants (p + ql)2, 
(p-q2) 2 are large (ql 2 and q2 can be small or large). Summarizing all arguments, we 
conclude that there is strong evidence for region (2.5) to be LC dominated, and we 
shall use this in the following. 

Having ensured that the conditions of validity of the b/local algebra of Gell-Mann 
and Fritsch are fulfilled we calculate the LC part of (1.1): the hadronic part of(1.1) 
is: 

fd4x e/qx id4y  1 d4y,1 eiYl (k 1 +-~ (k+k'))e-(V' 1 (k' 1 +½(k+k')) (2.10) 

1 P 1 1 r 1 1 
X (p[ [T*(Jo(-½x+ : Y l ) J ( - 2 x - 2 Y l  ))' r(Jv(~x +½Yl)J(zx-2Yl ))] [p)" 

With the notations: 

J (x) = ~(x) 7uQ~J(X), 

Q = ~0t 3 + x/'~ X8), 

1 1 X i +_(x, y)  = i +- 2 (2.11) 

(where X i are the SU(3) matrices) the LC part of (2.10) is just the quark parton line 
in fig. 8 with formal massless quarks: 

rr P ~u (k 1 +k+p/~)2+ie ~v (~/c° + cl)~'a 

0 =p" 

k' 14+ploo ] 

(k' l+k+p/o3) 2-ie  ~/o] ' 
(2.12) 
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K'+K1. IK'+K +•oPf ermutati°ns 
photons 

Fig. 8. Light cone part of (2.10). 

and similar expressions for the other permutations of the photon lines on both sides 
of the diagram. (2.12) has still to be multiplied by a term that reflects the SU(3) 
content of the four current product. With the identity: 

= 1 1 l)k 2 3 - - V 3  7.~k8], (2.13) Q4 (~)4[v/~5 ½;ko + g ) t3+~/5  ~. 8] +(_~)412v/~_~.;k 0 _ ! ~  . / !  , 

we obtain for the SU(3) decomposition: 

(~)4 [X/~--~ G 0_ (1/co) + G 3(1Iw) + ~ GS_(l/w)l 

+ (_~)4 [2x//~ G O (llco) - G3 (llco) - ~ G 8_ (]/co)l 

= (2)4 AI(CO) + (_~ )4  A2(co)  , (2.14) 

with the structure functions G~ (~) defined by: 

(pljiu+(x, 0)lp) = Pu fd~ e itp'x G~ (~) + terms prop. x u (2.15) 

(axial currents do not appear in our result (2.14), because they drop out after aver- 
aging over the target spin). 

Now fig. 8 is a product of two Feynman diagrams, and it is easy to see that in the 
Bj-limit we can just use our results (2.1) and (2.2). Thus the asymptotic behavior 
of fig. 8 (the LC part of fig. 2) is: 

L [ e2] 2 [ 2 1 l _  3 c ~  , 2 + ~-~-m Q 2 ) r r [ ~ p T u ( l l  3 q)')'o] Up\Q2] 

~)4 × 2 ~  [(2)4 Al(CO) + (_ A2(co)]. (2.16) 

(Luo stands for the leptonic part, the trace of the electron spinors.) For comparison, 
we write down the one-photon approximation (fig. 1): 

2 1 ^ ^ ~" 
Luo ( ~2 ) rrf l P Tu ( ~P+q) 701 - ~  [(2)2Al(W)+(-~)2A2(w)]" (2.17) 

By comparison of (2.16) and (2.17) one verifies that the two-photon term is essen- 
tially the one photon part, multiplied by a ln2Q 2. 
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To summarize our result, we have isolated two regions of the loop integration in 
fig. 2; where the light cone is of importance, and its contribution yields an enhance- 
ment ln2Q 2, compared with the one-photon approximation. We cannot exclude that 
other parts of the integration could equally lead to such logarithmic factors. If they 
exist, they are not light-cone dominated, because we have picked up the leading term 
of the quark parton diagram fig. 8. Within the parton model of Landshoff et al., 
Kingsley [ 1 ] found only two regions, which are important in the Bj-limit, and they 
are the same as ours. For the rest of the paper, we shall assume that there are no 
other contributions that give rise to ln2Q 2 or even more. With these assumptions, we 
can treat also the exchange of three and more photons. This will be done in sect. 3. 

In order to complete our discussion of two-photon exchange contributions, we 
still have to study the interference diagram (fig. 9): In this diagram the photon states 
on the right- and left-hand side have different behavior under charge conjugation, and, 
as a consequence of this, we obtain in the Bj limit for fig. 9: 

UOlQ2] ( - 4 n  - ln2Q2)  rr I 1 / 3 7 u (  1/3 

X ~ [(2)3 SI(6O) + (_ 1)3 82(6o)1. (2.18) 
2Q 2 

Here the SU(3) decomposition contains matrixelements of the symmetric bilocal 
operators cf. (2.14)]: 

Sl (~  ) = ~ G O (1/6o) + G? (1/¢o) + ~ G+ 8 (l/co), 

S2(co) = 2X/~ G O (l /w) - G? (l /w) - ~ G 8 (1/6o). (2.19) 

In sect. 4 we discuss how to get an estimate of the A i and S i. 

3. Generalization to many-photon exchange 

In the general case (fig. 1 O) of n photons between electron and hadronic part we 
have to consider seperately four classes of diagrams, according to the charge conju- 
gation properties of the photon systems. By (+, +), we denote the amplitudes, where 
on both sides there is an even number of photons (C = +), and the analog holds for 
the three other cases ( - ,  - ) ,  (% - )  and ( - ,  +). For (+, +) and ( - ,  - )  the SU(3) de- 

Fig. 9. Interference diagram in ep-deep inelastic scattering. 
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/ \ 
\ \ . . . \ ,  /...// 
(n' 1 n2 ) -- 

Fig. 10. n-photon exchange contribution. 
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K -  / \ 

Perm [ 
~"P lp+q 

Fig. 11. LC-part of fig. 10. 

composition is 

(2)nl+n2 I nl+n2 
A 1 (co) + ( -  5) A2(co) , 

and for the interference terms (+, - ) ,  ( - ,  +): 

(3.1) 

(.~)nl +n2 i nl+n2 
SI(CO ) + ( -  ~) S2(oa ). (3.2) 

Taking only the leading LC singularities in the multiple current product of the ha- 
dronic part of fig. 10, we obtain, just as in sect. 2, the quark parton diagram fig. 11 
with massless quarks: Here the sum has to be taken over all possible crossings of the 
photons on both sides. For large Q2 (i.e. the Bj-limit) the asymptotic behavior can 
be calculated, as in sect. 4, by use of ref. [9]. The diagram behaves as: 

_ _  _ _  2 n2-1 1 (ln2 02;1-1 1 (ln2 Q ) , ( 3 . 3 )  
Q2 Q2 

and this behavior is determined by those regions of momentum integration, where 
at least one photon on each side is highly virtual. Furthermore, all photon momenta 
have large transverse components. Thus we can apply the arguments of sect. 2 to 
show LC dominance. 

Before we take the sum over n 1 and n 2 (seperately for even and odd values), we 
still add to fig. 10 all possible vertex corrections along the electron lines. It is known [ 12] 
that they also contain In 2 Q2 terms. As to the hadronic side, it is not quite clear, 
neither from the point of view of light-cone dominance nor within the patton model 
of Bjorken and Paschos, how to calculate electromagnetic corrections. Kingsley [ 1 ] '  
has tried to include them into his analysis within the softened parton model. He 
argued that there might be logarithmic renormalization effects within the hadronic 
part, but he did not determine them. In our study, we make no attempt to examine 
this point in further detail. Vertex corrections along the parton line might be part 
of electromagnetic corrections, and they would give contributions ln2Q 2 just as at 
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the electron vertex. However, in our final result which we shall write down in a mo- 
ment they would not affect the general form but only modify the value of certain 
parameters. The same will probably hold for other electromagnetic corrections on the 
hadronic side. For consistency we shall omit the vertex corrections along the parton 
line, having in our mind that our result will not represent all sorts of higher order 
electromagnetic effects, but only those on the electron side and those between elec- 
tron and hadronic part. 

Calculating now the sum of all diagrams (details of how to derive our results from 
ref. [9] are given in the appendix), we obtain for the different charge conjugation 
parts: 

L [e 2 ,2 1 

/T 
X 2 ~ -  [(~)2 Al(W ) F?+(Q2) + (_ ½)2 A2(w ) F2+(Q2)], 

(-,-) (l b+o)'/,J 
(3.4a) 

/r 
X 2 ~  [(3)2 Al(C°) F?- (Q2)  + ( -  ])2 A2(w)F2_(Q2)] ' (3.4b) 

C' 
( % - ) = ( - , + )  L O~Q2] rr P~'u\w 

lr 
X ~Q~ [(~_)2 S1 (6o) Fl+(a2 ) FI_(Q2 ) + ( -  ½)2 S2(a)) F2+(Q2) F2_(Q2)]" 

The functions Fi+(Q 2) are also given in more detail in the appendix. Here we show 
only the first terms of the low energy expansion (for the case that vertex correc- 
tions on the parton line are emitted): 

Q2 34 ( o ~ ) 2  FI+(Q2) = - ~ -  ln2 + ~ -  2~-- ln4Q2 -+ . . . .  (3.5a) 

o~ Q2 41 (2_~_) 2 Q2 FI_(Q2) = 1 - ~ In 2 + ff~- In 4 -+ . . . .  (3.5b) 

ot Q2 17 [ ~ _ ] 2  Q2 
/72 + (Q2) = _ 2 7  ln2 - 24 \27r ] ln4 -+ . . . .  (3.5c) 

c~ Q2 17 ( c ~ ) 2  Q2 F2_(Q2 ) = 1 - ~ -  In 2 + ~ -  ~ -  In 4 + . . . .  (3.5d) 

and the behavior for large Q2 : 
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F/+(Q 2 ~ const.cosh (V~/2rr x In Q2) cos ( v ~ y  In Q2) 

Nconst.(Q2) x ' / ~  cos ( , v / - ~  y In Q2). (3.6) 

The parameters x, y are found according to the description in the appendix, and we 
give no numerical values for them, because (3.6) is to be considered only as a quali- 
tative result. We shall discuss this in sect. 4. In the low-Q 2 expansion (3.5) one veri- 
fies that the lowest terms, inserted into (3.4), reproduce the contributions of figs. 
1, 2 and 9. 

For the differential cross section of ep deep inelastic scattering we add (+, +), 
( - ,  - ) ,  ( - ,  +) and (+, - )  terms, and after the decomposition of the trace term into 

rr [ l  ~2/u (lp+q)~/ul̂  = 2Q2I_ (g~v q~qUq2 ~] 

we obtain for the structure functions Wl(U, q2) and W2(u, q2) in the N-limit: 

Wl(u ' q2)= ~ (~)2AI(~)[F~+(Q2) + F~_(Q2)I + (~_)22S1(~o) FI+(Q2)FI_ (Q2) 

+ (_ _~)2 A2(c~)[F22+(Q2) + F2_(Q2)] + (_  ~)22S2(6o ) F2+(Q2) F2_(Q2)}, 
1 

W2(v'q2) = 5 Mn2ucl WI(~' q2)" (3.8) 

This has to be compared with the one-photon approximation: 

Wl(u ' q2) = ; (~)2Al(co) + (_ ~)2Az(w ) . (3.9) 

4. Results and discussion 

The result of our considerations is contained in (3.8) and states that in the Bj-li- 
mit (for very large Q2) W1 (v, q2) is not simply a function of co (as it was the case 
in the one-photon approximation). The Q2 dependence, however, is completely con- 
tained in the Fi+(Q2), which for small Q2 are almost 1 or zero and for large Q2 have 
a power dependence on Q2. 

For practical use one needs a quantitative estimate of the multiphoton influence. 
For this we have to know the functions S i and A i and the scale mass of Q2 in the 
Fi+(Q2). In the previous sections we have always, for simplicity, written: ln2Q 2, 
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but there is, of  course, still a scale mass in the logarithm: ln2(Q2/m2), and for nu- 
merical statements we have to take care of  this mass. 

First we look at the functions S i and A i. Three of  them, A1, A 2 and S 1 can be 
expressed by structure functions of  deep inelastic ep, en, vp, and un scattering: 

Al(co ) = ~ G_ 0 (1/oo) + G3(1/co) + ~ G8(1/co) 

oo[3 ~ep  _2r~,ep en l up vn = --2 - - 3 t "  2 +F2  ) + a ( F 2  + F 2  )1' (4.1) 

_ 1 8 A2(co) = 2V'~ G o (1/co) - G_ 3 (1/co) - ~ G_ (1/co) 

= co [ -  3F~ p + 2 (F~ p + F~ n ) - ~ (F~ p + F~ n )1, (4.2) 

Sl  (co) = vq~ a ° O/co)  + e 3+ (1/co) + v ~  G+ s (1/co) 

= 41-- ( F ?  + F~n)+  ¼CO(F2uP- F~n). (4.3) 

The remaining function S 2 cannot be built up in this way. Thus we must use mo- 
del-dependent assumptions for an estimate. In the quark parton model (x = 1/co, 
M nucleon mass): 

1 
A 1 (co) = ~ (u (x) + ~(x)) ,  

1 
s 1 (co) = ~ 7  (u (x) - ~(x)), 

1 (d(x) + d(x)  + s(x) + g-(x)), (4.4) A2(co ) = 

S2(co ) = ~  (d (x )  - d ( x )  + s (x )  - s-(x)),  

where u, -if, d, d, s, ~ are the momentum distributions of  the quarks and antiquarks. 
Under the assumption that antiquarks are not important we expect that the func- 
tions S i are of  the same order of  magnitude as the A i. The validity of  this can be 
checked be comparison of  the experimental values of  (4.3) and (4.1). 

We finally come to the question, for which values of  Q2 the functions Fi(Q 2) 
can no longer be approximated by their low energy limits 1 (for F i_)  and zero 
(for Fi+ ). This will be the case, when the first term ln2Q 2 in the expressions (3.5) 
are not negligible, and at the same time this gives also a condition on the range of  
validity of  our approximation methods. For each power of  a we have taken into 
account only the leading term (ln 2 Q2)n, and this is justified only when the leading 
term is larger than the next one. 

In this discussion we also have to take care of  the infrared problem. In sect. II 
we have seen that the integration regions, which determine the leading In 2 Q2 term, 
contain real photons and are thus under the influence of  infrared divergencies. For 
this reason we introduced the photon mass )L and our final result (3.8) still de- 
pends on it. In order to obtain a result free from infrared divergencies and photon 
mass, we have to add to the diagrams with virtual infrared photons still those with 
bremsstrahlung [13], and only the sum of  both can be considered as a quantitative 
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result. For a treatment of the bremsstrahlung, however, there are difficulties. The 
bremsstrahlung contributions also contains ln2Q 2 terms (which can be calculated 
in the same way as the logarithms of the last sections, because they involve large 
transverse momenta of the photons), and in part they cancel those of the virtual 
photons of the last sections. Because of this cancellation one needs, besides the 
terms In 2 Q2, also the next leading contributions, and for their calculation a 
method has to be found how to treat, e.g., the interaction of soft photons with the 
final hadron states ("anything"). Because of this unresolved problem we do not 
try to take into account bremsstrahlung in all orders, and our result (3.5) of the pre- 
vious section describes only qualitatively the influence of many-photon contribu- 
tions. For the rest of our paper, we only try to find an estimate of the lowest order 
corrections ~ ~, the two-photon contributions. 

For these we found three terms that contribute: the regions (2.4), (2.5) and the 
vertex correction in lowest order at the electron vertex (we omit those of the parton 
line). In region (2.4) both photons have a large mass, and the photon mass X plays 
no role in this contribution. The patton line in Fig. 8 was massless, as a consequence 
of our EC approach, and since the electron mass is the only mass in the diagram, 
we obtain (ln(Q2/electron mass2)) 2. Thus the contribution of region (2.4), relatively 
to the one-photon approximation, 

2~1 o~ Q2 
2 parton charge ~-]~-~-~ In 2 2 ' (4.5) 

m e 

is about 1~ already at Q2 ..~ 3 GeV 2, and if the pure LC approach is correct, one 
should see the influence of two photons already at present energies. On the other 
hand, if we use a parton picture and give the parton a mass mparton , which at any 
rate will be much larger than the electron mass me, then we have two masses in the 
diagram. But the electron mass is zero in comparison with the parton mass, and the 
logarithmic term will contain the parton mass. For m_arto n = 1 GeV, (4.5) reaches 
the value ~ at Q2 ~ 10 5 GeV 2, for mparton = 0.3 GeX~ at Q2 ~ 10 3 GeV 2. Now 
we consider the vertex corrections at the electron vertex together with the corre- 
sponding bremsstrahlung diagrams (fig. 12). 

Fig. 12. Bremsstrahlung at the electron vertex. 

Fig. 13. Bremsstrahlung between eleectron and hadron. 
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Both of them contain terms In2(Q2/m2), but they cancel each other. For the cal- 
culation of the remaining terms we take, as an approximation, for the final hadron 
state the lowest mass, the nucleon mass M, and then use ref. [ 14], where ep elastic 
scattering together with bremsstrahlung is studied in detail. According to this, we 
obtain, for the electron vertex correction and bremsstrahlung of fig. 12: 

+ (1-cos 0;)) a E (1 \~-~- -~- - ( I n  Q~ [2 In ~ . F - 3  ln(MQ ~ 6°2 - c o s  0))1 l ln2  ( Q2 602 
lr 4 

me (4.6 

(AE is the limit of Bremsstrahlung energy, E the energy of the incoming electron, M 
nucleon mass, m e electron mass). If E/AE is large but fixed when E is increasing, the 
second and third term in (4.6) grow faster than the first and will doininate for large 
Q2. When we take E/AE of the order 100, 1-cos 0 ~ 0.1,¼602 ~ 1, then the first 
term will dominate up to Q2 < 103 GeV 2 and yield an effect up to 50%. For 
larger values, Q2 > 104 GeV2_the second term will dominate, and (4.6) grows as 

3~ 
-~- In m-2 In M~-~- -  (1-cos O) . (4.7) 

e 

In the regions (2.5) of the two-photon exchange one photon is in the infrared region, 
and we have to add the bremsstrahlung diagrams of fig. 13. In order to obtain an esti- 
mate of their sum we have to fihd a way to treat the bremsstrahlung at the hadronic 
vertex. For simplicity, we assume that the most important contributions are due to 
the nucleon in the final state and than use again ref. 14. There we find that the sum 
of fig. 13 and the two-photon exchange contains terms of the form 

o~ 2 Q2 (4.8) 
~ - l n  ~ - ,  

but no logarithms with the electron mass in den denominator. (4.8) will be of the 
order ~ at about Q2 ~ 104 GeV 2. 

Summarizing what we.have found for the influence of two-photon effects, we ex- 
pect that for Q2 up to 104 GeV 2 the main contributions will be due to the first 
term in (4.6), i.e. the radiative corrections at the electron vertex. The influence of 
two-photon exchange will be small. For larger Q2, the radiative corrections con- 
tinue to yield the largest effect, but in the two-photon exchange there are now con- 
tributions (4.5) and (4.8), which are no longer negligible in comparison with the 
one-photon approximation (~ 10%). To make them visible one either has to sub- 
tract in ep deep inelastic the radiative corrections of the leptonic vertex or to use 
data of e+p and e -p  deep-inelastic scattering, because the lowest order contribution 
to da(e+p) - da(e-p) is just the interference diagram fig. 9. On the ground of our 
estimate we expect, that this diagram will be 10% of the one photon approximation 
at Q2 ~ 104 GeV 2. For a precise prediction of the behavior of the ep deep inelastic 
cross section as a function of Q2 at large values of Q2, a detailed study of brems- 
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strahlung in this process is necessary. Our considerations show that, for Q2 ~ 104 
GeV 2, multiphoton exchange together with radiative corrections and bremsstrahlung 
(E/AE is assumed to be fixed when Q2 is increased) yield some power behavior of  
Q2, multiplied by a bounded function of  Q2, such as in (3.8). 

Note added. After having finished this paper we learned about a study of  P. Fishbane 
and R. Kingsley on the same subject (Phys. Rev. D8 (1973) 3074). They examined 
the contributions due to the exchange of  two photons, and their results qualitatively 
agree with ours. In the numerical estimate of  the value Q2, for which the two-photon 
contributions reach 10% of  the one-photon approximation, we disagree. They 
estimate Q2 to be of  the order 20 GeV 2, which is the value for which a ln2(Q2/m 2) 
= ~ .  However, we find that the ratio of  the two-photon term to the one-photon part 
is (a/2n) ln2(Q2), and since Q2 appears only as logarithm, the actual value of  Q2 de- 
pends strongly on this factor 1/27r. This explains our disagreement. We also have 
chosen another scale mass, but this accounts only for a factor ½ for Q2. 

I am indebted to Professor G. Kramer for suggestions and useful discussions, Dr. 
T. Walsh and Dr. W. Bartel for very helpful comments. The results on QED asympto- 
tics I learned during a stay at the Leningrad Institute of  Nuclear Research and I 
would like to express my gratitude to Professor V.N. Gribov and Dr. L.N. Lipatov. 

Appendix 

The results of  ref. [9] can be summarized in the following way. For the process 
1T ~ 22- (fig. 14) with particles 1 and 2 having charges e and e' (in units of  the ne- 
gative electron charge), the amplitude at s large, t timed takes the form (photons 
with mass X): 

c+i~o D' #(z) 
1 f d z c o s h ( z x / ~ l n s ) ~ p ( z ) ~  (A. I )*  T e, e' =f2-~-f 

c-ioo 

t-----~ 

i T 

I \X 
2 

a b 

Fig. 14. (a) General contribution to the process 1]- ~ 27. (b) Lowest order diagram. 
* Formula (A.1) is taken from ref. [9], but the solution given there in (II.11) is not quite cor- 

reck Instead of exp(zTp), there has to be a eosh(zTp). As given in te l  [9], the solution is not sym 
metric under p ~ -p,  as it should be. It also does not satisfy the boundary condition (11.2). 

Furthermore, since we have given the photon a mass h, all contributions in ref. [9] with 
k2~ 1 are omitted. 
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where f is the amplitude for the Born approximation (fig. 14b), D n the parabolic 
cylinder functions of  order n and the parameters 3, 7 have the meaning: 

c~ ( - 2 e e '  + e 2 ,2 3' = ~ -  + e ), (A.2) 

c~ - e e  (A.3) 
3 -  27r 7 

In (A.2) the second and the third term e 2 and e '2 are due to the radiative (vertex) 
corrections for particle 1 and 2, and they have to be omitted if radiative corrections 
are not taken into account. For e ---e','y can be zero, and in this case (A.1) is not 
valid, but one has to use the result of  ref. [8]. (A.1) is a Sommerfeld-Watson integral 
and is determined by the singularities of  the integrand. ~(z) is an entire function, 
and constraints on it are imposed by (II.2) of  the appendix of  ref. [9]. From this 
it follows: 

d 
c-i~ d H_3(z + ~) ~ H_3( - z -~ )  

1 f [dz ~o(z)~-- ] (A.4) 1 = }-~ 2H_3(z) + ~o(-z) 2H 3( -z )  ' 
e -  i ,~ 

H_3(z ) = e  - ¼ z 2 D  3(z), ~ = l n s .  

The cylinder functions D n have a finite number of  simple zeros. For large values of  
In s, in (A.1) only the two complex conjugate poles z k and 2- k with the largest real 
part are important:  

T ~f~O(Zk) cosh (Re z k x/~ In s) cos (Ira z k v~- ln  s) 

1 ReZk',~ 
~f~o(Zk) ~ s cos ( lm z k X/~ In s). (A.5) 

If in (A.1) 3' < 0 we have to interchange in (A.5) Re (Zk) and lm (Zk) and to take the 
zero with the largest imaginary part. For small values of  In s we have the expansion: 

[ ~ T  s ln4s 2"" 
T = f  1 -  . 7(1+3)+~-~- .~ 3' t 1 + 3 ) ( 3 + 2 3 ) -  + . . . .  (A.6) 

To derive from this our results (3.5) and (3.6) we have to have in mind that our pro- 
cess is e - e  + ~ parton + antiparton with energy q2 = _Q2,  the partons having charges 
2 and - ~-. Thus e = - 1  and e' = -~ ( -  ~-) in (A.2) Finally, we have to consider sepera- 
tely even and odd numbers of  photons between electron and parton. This is achieved 
by taking instead of  Te,e,, the even and odd combinations ~ (Te, e, -+ Te,_e, ). 
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