
ANNALS OF PHYSICS 101, 22-51 (1976) 

Covariant Perturbation Expansion in 
Chiral Theories with Pions and Nucleons 

M. DANIEL* 

I1. lnstitut fiir Theoretische Physik der Universitiit, Hamburg 

AND 

R. R. HORGAN t 

Deutsches Elektronen-Synchrotron, DESY, Hamburg 

Received November 1, 1975 

A covariant perturbation scheme is developed to give a coordinate independent 
perturbation expansion of the chiral invariant pion model with nucleons. On the m a s s  

shell the covariant approach is shown to be equivalent to the standard perturbation 
theory. 

INTRODUCTION 

In a series of papers [1, 2] a nonlinear chiral SU(2) × SU(2) invariant Lagrangian 
(function of the pion fields only) was studied within the framework of coordinate 
independent perturbation expansion. This model was then used to calculate in a 
coordinate independent manner the phase shifts for pion-pion scattering at low 
energies in the effective range approximation. However, it is clear that the pion- 
nucleon scattering problem at low energies as well as the calculations on the 
corrections for the axial current coupling constant lie beyond the framework of the 
covariant formalism developed in [1, 2]. To deal with such problems one has to 
developed a covariant perturbation expansion of SU(2) × SU(2) invariant 
Lagrangians which are functions of the pion as well as the nucleon fields. In this 
paper we develop such a covariant formalism. Furthermore we show that on the 
mass shell, the covariant formalism yields results which are completely equivalent 
with the results of the standard perturbation expansion. The on mass shell 
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equivalence between covariant and noncovariant perturbation theory for the case 
of chiral invariant Lagrangians which are functions of the pion fields only was 
demonstrated in [7]. Our proof  for the equivalence theorem is very similar to the 
one given in [7], that is, we show explicitly how one can express covariant graphs 
by contributions of noncovariant ones and vice versa. 

I. ThE MODEL 

In this paper we study the chiral SU(2) × SU(2) nonlinear pion model with 
nucleons within the framework of coordinate independent perturbation expansion 
(Ecker, Honerkamp [1, 2]). 

The pion fields, which form an isovector, transform nonlinearly under chiral 
SU(2) × SU(2) transformations, and are taken to be the co-ordinates of a curved 
manifold, which is a 3-sphere, 5 ¢3, of radius F . ,  F ,  being the pion decay constant. 
The nucleon fields, on the other hand, transform in a quasilinear manner, and form 
an isospinor corresponding to isospin ½. The "standard form" [3] of such a realiza- 
tion is given by 

g ~ SU(2) × SU(2): ~r---~ ~", 5b --+ ~b' = D(e u'(')'v) 5b (1) 

where D is a linear two-dimensional representation of SU(2), and 

g e  È.A : e . ' . A e U ' ( . ) . v  

where 1I/and A, (i = 1, 2, 3) are, respectively, the vector and axial vector generators 
of SU(2) × SU(2). Any arbitrary nonlinear chiral realization is obtained from the 
standard form (1) by a redefinition of the fields (rr, 5b), e.g., 

~r ---~ ~r' = ~rf(Tr), f (0)  = 1 (2) 

where f(~r) is a SU(2) scalar analytic function of ~z. 
Following the prescription of Callan, Colleman, Wess, and Zumino [4] we 

write down an SU(2) × SU(2) invariant Lagrangian with pions and nucleons in the 
form 

~q~ = ½ gij(rr) O~rciS"rd + ~(iy"d,  --  m) 5b 

where g/j(~r) is the metric in 5 p3 (isospace of constant curvature F;2). The quantity 
0~r / is a contravariant vector under the pion field redefinition (2), whereas g/~-(~r) 
transforms like a covariant tensor [5]. We also remark that A corresponds to the 
operation of  covariant differentiation on the nucleon fields [4, 5]. We shall show 
later on that all the interaction terms in Lf are due to the curvature of 5 PS and 
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vanish in the fiat space limit. However, it is possible to add further terms that do 
not have this property. Such terms must be themselves chiral-invariant, because 
the minimal form of the Lagrangian given above is already chiral-invariant. We 
shall add one such term to the minimal form for the Lagrangian and take the 
Lagrangian density to be 

= (1/2) gi~(~) ~ , ~ " ~  + ~(iT"A, -- m) ~b + (1/2F=) (~757,1~i(w) ~bS"~ i (3) 

where Fi(~) are 2 × 2 matrices depending on the pion field and satisfying the 
Clifford algebra 

{Fi(~-),/'~(Tr)}+ = 2gi~(Tr). 

A representation of this algebra can be obtained in the form 

r i ( ~ )  = e~,(~) ~ 

where e~i (a = 1, 2, 3) are dreibein fields satisfying 

( eaie,j)(Tr) = gi~(Tr) 

eaiebi ~-- ~ab 

Like ~,Tr i,/'i(~r) transforms as a contravariant vector under pion field redefinitions 
(2). It is, therefore, clear that £f is a coordinate scalar. 

I I .  COVARIANT EXPANSION OF THE ACTION 

Consider the total action S---- f d4xZP(x). Our aim is to construct a covariant 
perturbation expansion of S with the terms of the expansion transforming co- 
variantly under pion field redefinitions of the type (2). To this end we follow [1], 
and write 

8(93", ~, ~)  : Sl(ff ) "~- S2("B" , ~, ~)  

where SI(Tr), and $2(7r, ~b, ~) represent the contributions from the first and the 
last two terms in (3), respectively. $1(7r), of  course, corresponds to pion self- 
interactions and its appropriate covariant expansion can be found in [1 ]. Confining 
ourselves, therefore, to S~(~r, ~b, ~) we introduce a classical pion field ~i(x) which 
satisfies the equation 

~S(~, 0, 0) 
~ i ( x )  + J,(x) = 0 (5) 

where Ji(x) is a classical source for the field ¢i(x). In the following we intend to 
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give a covariant expansion of $2 around the classical field ¢i. Let ~i(A) be the 
geodesics in Spa from ¢i to 7r i where the parameter A(O ~< A ~< s) measures the 
length for this curve, and ~i(0) = ¢i, ~i(s ) = hi. ~i(A ) (i = 1, 2, 3) satisfy the 
equations 

d2~i d~k d~t - -  0 (6) 
dA ~ + TT~z dZ dA 

where _P~ are the Christoffel symbols, of the second kind, for the metric gij.  
Before we proceed any further, however, it is necessary to consider in some detail 
the covariant spinor differentiation. 

Let ~z be a 9-component field defined by 

g2~ = lCab,[ra,  r~] (Cab~ = --C~a~) (7) 

where Cabz (the Weyl connection) satisfies the differential equation [6]. 

e~.~ ~ e a k , ~ -  F~eam - -  C~b~eok = 0 (8) 

(where eak ' ~ ~-- ~eaz~(~) /~z) .  Under the field transformations ~b -+ S~, 7r --~ ~r' we 
deduce from (8) that Q~ transforms like 

Q~----~ SQ~S -1 -t- S, gS -1. (9) 

The covariant spinor differential (or Weyl covariant derivative) is, now, given by 

¢.~ = ¢,z -- ,Q~b. (10) 

It is clear from (9) that ¢.z transforms like ¢, i.e., 

¢ .~S4 , . , .  
Similarly we write 

~b + = ~+ + ~+~Q~ (11) 
and 

d.~+ = ~.¢+ + ¢+~%0.,< 
(12) 
(13) 

We now turn to the problem of the covariant expansion of S2(rr, ¢, ~). 
We introduce two spinorial quantities 0~(A) and 0+~(A) satisfying the equations 

dO~ _ ~Qt~ d~ k 
d;~ ~ 7 2  0~ = 0 

dO +~ O+eQ~ d~ k 
& + ~k--~- = 0 

(14) 

(15) 



26 DANIEL AND HORGAN 

where ~ is the matrix element given b y  

S?~ = ~Cob~([~o, ~l)~ 
and 

(16) 

where 

d d¢' ~ dO~ ~ dO~ 
aA -- d~ d¢' + -dZ 80-~ + --dZ ~0--; 

with the arrows indicating left and right derivatives. Using Eqs. (6), (14), and (15) 
Eq. (18) yields 

82(~(~), 0(A), 0(~)) : 0a(0) Afl(~(0)) 0~(0) @ )t((d~i/d)O Oc~(,~) A~.i(~(,)t)) 0~(~))a= 0 

+ (~t2/2l)((d~'/dA)(d~/dA) O~(A)A~m(~(A)) O~(A))a= o + .-. (19) 
where 

Afl(~0)) = (g/80~(A)) &(~0),  00),  0(~))(8/80~0)) 

A~.,(~(A)) = (aA,~(~'(A))/8~"(A)) -- g2~,A~(~(A)) + A~(~(A)) Q~, 

A~.,~(~(~)) = (SA~.,(~(~))/~0)) ~ ~ " ~ - -  ~?~A~.~(~(;~)) + A [ . / ~ 0 ) )  ~2~,- - -  P,A~.,,(~()O) 

and so on. Hence by virtue of the fact that d~/d?t ]~=0 = F j/s, where f ' j  is a chiral 
bivector defined in [1], we get for A = s 

= ~ A~.~,...~,(~) ~:~-P!~*--" (20) 

0~(0) - ~ (~) ,  O~(s) = 4~('0 

0+~(0) =- ~+~(~), O+~(s) = 4~+~(,0. 

We remark that in the case of vanishing curvature Eqs. (6), (14), and (15) imply the 
absence of pion-nucleon interactions arising from the covariant derivative of the 
nucleon fields. The last term in (3) reduces, in this flat space limit, to the gradient 
coupling term (1/2F~)q~ysy,~¢-O, -~. This term, however, gives a vanishing 
contribution due to the choice of the coupling constant. Now, we can write 

S2(rr, ~b, ~) = S2(~(A), 0(~), 0(~))la=, (17) 

The functional on the right-hand side of (17) is an ordinary function of )t with a 
Taylor expansion 

S2(~(A), 00), O(a)) = S~(~(O), 0(0), 0(0)) 

+ ~((d/d~)&(~(Z), 00), 0(~)))~=o 

+ (~/2!)((d~/d~ 2) S~(¢(a), 00), 0(a)))~=0 + "'" (18) 
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The corresponding expression for Sl(~r) given in [1] has the form 

S~(rr) = S~(¢) + ~ (l/n ]) Sa:e~...e.(¢) ff.~ . . . .  F. ~'~ 

where the covariant derivatives of the coordinate scalar Sx are defined in the usual 
manner, i.e., 

S 1 ;  i : 8 1 .  i 

S l : i j  : S l . i j  - -  I ~ : j m X l ; m  , 

Before closing this section it will be instructive to look at the expansion (20) 
from a slightly different point of view. First we observe that any integral curve of (6) 
is determined by a point, which is taken to be the point corresponding to ¢~ and a 
direction at this point, namely d~i/dh [a=o = F j / s  Thus we have 

F.  i 1 d2~ i a=oA2+... 
~r~(A) = ~(0) + s ,1 + 2-! d,~ ---g- 

The coefficients of A 2 and higher powers in )t are given by (6) by differentiation with 
respect to h and replacing the second and higher derivatives of ~ by means of (6) 
and the resulting equations. Thus by putting h = s we finally obtain 

rr' = ¢ '  -- ~ (1/n 0 / ' ~  ~ F  kl ... p.k, (21) 
n=l  

where F~c..k, are the generalized Christoffel symbols (symmetric in the lower 
indices) with /-'k i = --3~i. Similarly we observe that the integral curves of the 
first-order Eqs. (14) and (15) are determined by a point, which is taken conveniently 
to be ~:~, and $~, respectively. Applying the same procedure as above we obtain 

where 

= f2~k~:~F. -5 (1/2 !) Oz ~ r,~lr, k~ ± ... ' a ~ a k l k 2 " o B  ~t . ± .  I 

= ~.~x ~ r k ,5.Ox~ Fl~lFT~ ~" ~" + ~ ~k~. + (1/2!) + ..- ",o Bk l l e  ~ . . 

B B 
Xc~k = - - ~ c d c  

= ~ a m F k ~  ~P[g2.~,~ + fLS2~d 
o~ 1 oc ,y o~ ot ~ 
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where P before an expression indicates symmetrization with respect to the chiral 
indices. In general we can write 

¢~ ~:~ @ ~ (l/n!) ~kr"k,S~--. " • = ~ ~/-kl .../,,% 
n = l  

(22) 

= ~ ~ --~ '- . -F.  k" (23) 
n = l  

,~ ~, = ¢~ X t with ~ , . . - k ,  and X~k~...k, both symmetric in the chiral indices. Let rr i -I- 
and expand the functional S(rr, ¢, ¢) around eL Then 

S(qT, ¢, I~) = S1(¢) -1- f i  d in  !) S1,/Cl.-.kn(¢) X k l ' ' "  X kn 
'o.=1 

+ ,~%"(¢) ¢,, + Z (1/,~) ,~£.,~,...,~.(¢) CBx '~' . . -x% 

From (21) we have 

x ~ ~-, ¢~ ~ ' ~1 r,.~. . . . .  ( l / n ! ) / " , ~ r . . ~ , F .  "" 
n = l  

(24) 

(F/=  -8/). (25) 

Inserting (22), (23), and (25) in (24) we readily obtain the covariant expansion 

s(,~, ¢, ~) = s1(¢) + Z (1/,o s,;~,. . ,°(¢)r.  ~, ... v F  
n ~ l  

-t- $"A.B(¢) ~ + ~ (1/n !) ~A~.kr . .k . (¢ )  ~Fk. ' "'" -P~.". (26) 

We remark that in general summation over repeated indices implies integration 
over their associated space-time coordinates, e.g., 

and 

where 

. . .  ~ k~ 82S1 r ~X~,(x) si 
k l , / c~  = 

a,B 

B t & (x, x ) = (a/aCXx)) &(¢, ¢, ~)(~/~¢~(x')). 
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III. COVARIANT PERTURBATION SCHEME 

In this section we shall develop a covariant perturbation theory, as well as the 
noncovariant analogue of it, using functional integral techniques. The starting 
point is the generating functional for connected Green's functions, ,,,(J, ~, ~), 
given by 

e '~(s,~,z) = (I /N)f  1-I l-[ dTri(g(zr)) 1/2 U dtfia H d~ s 
x i a 

× expi  IS(,, ~b, ~) q- f [Ji(x)~ri(x) + q~(x)~%(x) -}- ¢/~(x) ~b~(x)] dx I 

(27) 

where ~/, ~/are spinor sources of the anticommuting type, and N is a normalization 
factor which is fixed by the condition e ~(°) ---- 1. We remark that the factor (g(~r)) 1/~, 
with g(~r) ---- Det(gi~.(zr)) is required to maintain a formal invariance of the functional 
measure with respect to pion field redefinitions. In general we have, using a con- 
densed notation, 

~I I-I (g(Tr)) 1/~ dzri ~ d¢~ ]-I de B ---- e{°/2)~(a)(°)I1n°(x)ax} Dzr D~b D~. (28) 
x i a B 

To obtain a covariant perturbation expansion one proceeds by inserting the 
covariant expansion for the action (26), and the expansions (22), (23) and (25) into 
the expression (27) for the generating functional. After changing the integration 
variables from ,/7 -i to /~.i and from (q~% ¢,) to (~% ~,) one expands all the exponentials 
except for the term that involves ½S1:~k~(¢) F.k~T'. k~ q- ~"A,'(¢) ~ .  In this way one 
obtains an expression for the generating functional of connected Green's functions 
in the covariant theory, which we denote by F(J, V, ~/). This is written as follows: 

e ir(J'''~) = (l/N) e i(sx(~)+s~¢~) f DF.(~r/~F.) gl/2e(i/2)s1;lcl~2(~)1"k'11"*~ 

× f D~ n~(~/~) (~b/~)  e i(~A"~(~)~B+~+~'~) 

X exp l ( - - i  ~2 (l/n,)Jil'v~'nl lln) "2u (i ~=1 (I/F/')~]a~'~In~[3Pln ) 

(~ ~.~(¢) U'.~) ~ 
n/>l (~)n v=l 
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n/>3 (aJ n v = l  
hl=h~=0 

n--1 n - r  

-]- Z Z Z iZa"K(A)n -r Z iZ"oK(/~)" l~ (~A~"o5["I~) a" 
n>/4 r=3  (~)n--r (u) r o=1 

.Ul=~2=0 

where we have used the concise notation of [7]. (A)n is a partition of  n, that is, a 
sequence A1, A2 ,..., An of natural numbers (A, ~> O) such that ~=1  ray = n. Such 
partitions are denoted as follows 

(A)n = (1~12 ~ . . .  n~"). 

Each partition carries its own symmetry number, K(A)n, given by 

1 
K(A) n : H n 

The index In is a shorthand for indices kl "'" k , .  It is clear that, apart from off 
shell contributions, the right-hand side of (29) is independent of the choice of the 
pion field coordinates. We also remark that in (29) we have disregarded contribu- 
tions of the 3(4)(0) type, which arise from the Jacobian functions (~r/al'.), ( ~ / ~ ) ,  
and (~b/O~), as well as from gl/2 (see (28)). This is certainly in agreement with the 
BPH point of view. In (29) we neglect all explicit couplings of the sources to non- 
linear functions of the fields, since these terms contain no single particle pole in their 
matrix elements. The functional integral now reduces to a series of functional 
integrals that can be calculated in a standard way. These integrals are either of the 
Gaussian type [1], or of the type 

f D~ D~ e i[~Aaf3(4~)eB+~ea+~%n] " "  ~ a ~ B . . .  

= Det((iA)B~)(3/i~ ~) ... {e-(i~)"(*)'(i')} ... ( 3 / i ~ )  (30) 

where B is the operator inverse to (iA), and Det((iA)~) is the functional determinant 
of (iA). Thus in order to calculate the functional F(J, ~7, ~) we need to know the 
vertices 

S1; ln  ~ S1 ;kx . . . kn  l~l = 3, 4 . . . .  

and 

A~.I. ~ A B ,.k~k~...~, n : 1, 2, . . . .  



COVARIANT PERTURBATION EXPANSION 31 

From [2] we have 

4n-l~ ,-/)mR ]~?'1 rn_ l  u re 
Sl;ki'"I¢2n(¢) : /z'/" -'/kl]g2~'l-'~:g,/~4~'g *'" R]g2._lk,2nT ~ ¢ 

+ 4"-1(D,);" R m ~ R ; : ~  " Ri:/_;~°_~(D");:, (n >~ 2) (30 

S~,~ .. ~,+~ = 4 % ¢ ~ R ~  ..-R;:;:I~,~o(D");L+ ~ 0 ~> 1) 

where Rm~kz is the Riemann curvature tensor. In the present case, where the curved 
isospace, 5 pa, has a constant curvature F -e, we have 

Rmn~t = F ~ 2 ( g ~ k g , n  - -  g m z g . k )  8(Xm - -  X,,) 8(Xm - -  xz~) ~(xm - -  x t) .  

Also (D")~ is the differential operator given by 

i ~ l ( 0 %  = (G'e  "(i) + G~o ¢ ) S(xi - x~) 

where ~"") indicates differentiation with respect to x i .  We shall now obtain expres- 
(n ~ 1). From (7), and (1 l) we obtain sions for the vertex functions A..~ 

(A~)(¢) • .  = zy (A)~ -- m3~' -}- (1/2F.) r57.(ra)~ eag~t~¢ ~ 

with 

We first calculate 

This is given by 

(A S = a oO(~) ~ z - ~ c o ~ G ¢  ( [ ~  ~ ] L .  

(A . )G (A. )G " ' " ' = (A,), Sg,~. -- f2~k(A.). -5 

(A)~.~ = ~.([r ~, " r ]L R,,,n~a,¢ ~. 

Similarly, for 

1B g ('~oea~ ¢ L,~ --  eo~e"¢) ((~o)~ ~o2"¢ i) S% 

We obtain 
u lB ~ B (~'aea~ ~ ¢ )~.~ (Ta)~ ea l (n")~  . 

These results can be generalized to the nth derivative case giving rise to the expres- 
sions 

A~ k, k~,(~) = -- (1/4) Eabc(Tc)Ba e ~eb"R~.a.~R;~k~r2 . . .  R ~"-~ (FLY, 

-~- ( l / 2 f )  ~5(Ta)a B eaiR~.lk2rl"" R rn-llcen_Ikenrn~, r~o~ rn (H ~ 1) (32) 

595/IOI/I-3 
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and 

E l T \8 m nat1 . . .  g r n  ~'n+l 
A~ .k l . . . l c z . + l (¢ )  = - -  (1/4) ~b~( c)~ ea eb ~;q,,~kl~ 1 ~2.k2.+17.+1 r~  

"-r .8 R i . . .  R ~.-1 ( D V .  (n  ~ 1). (33) + (1/2F) Ys( ~)~ eai elk2q k2,_tk~.r ,~,k2.+1 

In deriving these formulae we have used the fact that, due to the constant curvature 
situation, the covariant derivatives of the Riemann tensor are zero, as well as the 
fact that the Weyl derivative of the dreibein field is zero due to Eq. (8). Further- 
more, owing to the form of the generating functional in (29), only the symmetric 
part of the vertex functions makes a contribution. Therefore, complete symmetriza- 
tion of the kl "'" k ,  indices is understood in (31), (32), and (33). 

In the dreibein field formalism one is not dealing directly with chiral tensors 
T q . . . i , ,  but only with their components along the dreibein fields themselves, which 
form the basis functions of a local 3-D Euclidean spac~ These components are 
scalars T~ .... , given by 

Ta 1 ~. = e~ ~, . . .  e ~ " T i  . . 
" " "  1 an 1 " "  "$n 

Thus we have 

(S1 )a  . . .a  n : e ~  ""  e~:S1;kc . .~ ,  ' 

where the expressions ( S 1 ) a l  . . . .  n (n >~ 3) are given in [2]. Also from (32), and (33) we 
obtain 

k n o b  
( A a 8 l a l . . . a n  = ekail . - .  e a n A a . k l . . . k  n 

where 

(A~B)~I...a2, = ((-- 1)'~/2F~ ") Eal~(r~)~ 3~,~ "'" ~a2n_2a2n_l(~)bfl2n 

8 (A~)a 1 . . . .  2n+1 = 

+ ( ( _ l ) n - i / 2 F ~ - + i )  ~ 8 

(34) 

((--1)"/2F~ "+~) ~5(%)~ [3~b3al~, -- 3aa,3b~] 3 ~ ,  ... 3~._l~.(D)b~.+~ 

+ ((--1)n+i/2F~ ~+1) ~a~(~'3~ ~oai ' ~o~.o~.+~¢4 "~ ( .  >~ 1) (35) 
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and 

(Ac,~)a~ (1 /2F~ . )  'r B = 75(  a)c~ (JO)aal "Jv ((--l)/2Frr)(Tc)~ 6albC~5 b (36) 

where ~.5 ~ = eia~,5 i. 
We remark that under dreibein field rotations, which, of course, leave the 

metric invariant, (S1)a~ .... . and (A~). 1 .... . transform like Euclidean tensors. 
We now turn to the noncovariant perturbation theory, which can be developed 

along similar lines. The starting point is again the generating functional (27). 
Inserting (24) in (27) we obtain 

e ~(s'' 'z) : ( l /N) e ~(s~(~)+s~) f D X gme("2)sa.k?2 (~))'?'~ 

X f DCDCe i[¢~A~/3(~)~B+V6~+5%J 

X l l-4~ Z Z iZavKOOn f i  -a ~ (¢ AaA.(5) CBX") ~" 
n/>l (~)n v=l 

+ Z Z iXa~K('~)- l~ ($1,I~(5) XI~) ~" 
n~3 (~t n v=l 

,~l=h2=0 

n--1 

+ Z Z Z iZa°K('~),~-r Z iX"°K(ff)~ 
n)4  r=3 (~)n--r (u)r 

/~l=tZ2=0 

n--~" r I X YI -" ~ a,, SI.IoXIO ,~ (¢ £,.,',~(5) ,d'eX '~') 1~ ( ) • 
(7=1 o=1 

(37) 

At this stage it is convenient to introduce certain abbreviations [7]. Let 
,[x.cl-L~=l re .,z,~a, be the contribution to the integral f D X exp{1Slx(¢)xix j} Ual,lvA } 

r I n = l  (81 ,1 , , (¢)XIv)  1v which corresponds to the connection mapping C associated 
with the particular pairing for the X's. It corresponds to a graph with no external 
lines. The vertices of the graphs are fixed by the partition (A), (see [7]), and C 
describes which vertices have to be connected by full pion propagators iGij. (A 
full propagator is the one that includes all possible tree insertions). Similarly 
I,.~.~.c F I L  -~ /3 (¢ A,.t~(5) ~b/3x1~) a~ is the contribution to the integral f D X exp{½Sl.ij 
(5) xix j} f DCD~ exp{i(¢~A~O(5) ¢/3 + ~b~  + 5~7~)} 1-Iv=l -• /3 - (¢  Ao.d¢)  ¢,~x'0 ~ 
which corresponds to the connection mapping C associated with the particular 
pairing of the X'S as well as the ~b~ B, ,/~¢~, and ~b,~e pairings. Again this cor- 
responds to a graph with no external pion lines, but with possible external nucleon 
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lines coupled to the appropriate nucleon sources. Such external lines arise because 
of (30). With this notation we obtain for .., (J, ~, ¢]) the expression 

i ,,,(J, n, ~/) = i ,,,~ree(J, n, ~) ~- i uJ]loop(J, n, ~/) 

Z ~ c f f i  ( s l  
• Yqa v I v av + t K(A). ,I~X ) 

n : 3  (~)n X,C v=l 

+ Z E iY'a"K(A)- ( l-I i~" r~-t~ ' . "  ,..a.) 
n = l  (20 n c d x , ¢ , 6 , e  P=X A a ' - V I B X  

o~ n-1 
~- ~ ~ E E E iY~a°K()O. -r iZ"oK(/~)r 

n=4 r=3  (,D~,_ r (u) r e 

× [ I'-[ f ,T,~ ,t, ..zoaao -~ 10~.0 
Jx ,¢,(0,c a = l  o=1 

(38) 

The tree , ~ , t r e e  as well as the one loop ,,,'xloop contributions arise from 

(I/N)ei(S1(¢)+Ji~i) f D X e(i/2>sl,'i'~)xixJ f D ~  D e  e i[~°~Aa~(~>~B+~%Oa+~%°l] 

w ~ree and ),, ~xoop contain, respectively, all the tree and one loop contributions due 
to pion self interactions; they also contain some tree and one loop contributions 
arising from pion-nucleon interactions. The remaining contributions of the latter 
type arise from the last two terms in (38). 

In a similar manner Eq. (29) yields the following expression for the generating 
functional l'(J, ~7, ¢)) 

iF(J, ~, ¢1) = il-'[.ee(J, ~, ¢1) + iF~loop(J, ~1, ¢1) 

hv + iEa"K(A). ;I~ 
n=3 (~)n c c -, v~± 

Al=h2=0 

n=1 (h)n c .,~,~,e v=1 ~'% "aeX'IvbB"-" J 

+ ~ ~ ~ ~ ~iZa'K()O.-~ .iZuoK(l~), 
n=4 r=l  (h)n_ ~, (u) r c 

n--r r 

fr I-I t~AB ¢ rr~9. I-[ (Sl;,or:°)"o. 
)(' ,,$,~,c (r=l o=l 

(39) 
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It is clear from (39) that the basic ingredients of the covariant perturbation 
expansion (for the on shell connected Green's functions) are the covariant vertices 
S~;I,(~) and A~%(~) given by (31), (32), and (33), and the full propagators GiJ(~) 
and B~(~), which are the inverses of S1;ij(~) and (iA)~ (~), respectively, i.e., 

f t t  t .  d%"  S 1 ; i j ( X  , X , 4 )  Gi~( x",  x ,  ~) = 3ik3(x -- x') (40) 

f r/. *~ r/ t .  - -  d%"(iA)~ (x,  x , ~)  B~ (x  , x ,  ~)  = 8~,~'~(x x ' ) .  (41) 

The full propagators GiJ(y, y ' ;  ~) and Ba~(y, y ' ;  (~) can be depicted graphically 
as shown in Fig. 1. Strictly speaking, the graphical representation shown for G ~j 
corresponds to the full propagator in the noncovariant theory. 

We define 3~G0 and 3~BS F to be the limits of G ~j and iBm, B, respectively, when the 
pion source J is taken to zero. 

f t 
x F x- ,-~---x 

iG ~ J ( y , y ' , ¢ J =  • 1 ' ,  / I 

x 
i ~, ~ ~, ~--+-~ 

t5 , , I , ,* * - - - - - -o- - - - -  ÷ 
i BCL(y, y'; 01= y Y ~ e - - . ~ y ,  Y Y'+ Y I y, ~ " ~ - e ' ~ ,  ÷ ... 

Thus 

where 

and 

where 

where: . . . . . . . .  x =G,J  and _ _  : S  F 

FIGtmE 1 

GiJ(x - -  x ' )  --+ 3iJGo(x - -  X') 

Go(x) = i/4zr2(x 2 - -  iO) 

i t L B ( x  - x ' )  ~ ~ B S r ( x  - x ' )  

(i¢ (x) - -  m ) S F ( X  -- X') = 3(x -- X') 
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I V .  R E L A T I O N S  B E T W E E N  C O V A R I A N T  A N D  N O N C O V A R I A N T  D E R I V A T I V E S  

In this section we shall establish the connection between the covariant and 
noncovariant derivatives of the total action S = $1 -4- $2 • For the first part of the 
action $1, the required connection is given in [7]. This reads 

SI.&X & = n! Z K(A)n $1;,,...,~. I~I '''''it z,,x""'~") (42) 
(A) n v= l  

with r ~=1 v The coefficients T ~ ~ T i are symmetric in the lower indices, • I v /el'-"/c v 
and can be expressed in terms of the generalized Christoffel symbols F. ~ • which 
occur in (21)• We confine ourselves, therefore, to the second part of the action, S~. 
From (24) and (26) we obtain 

S2(w, ~, ,~) = ,~'A~,t~(¢) OB 4- ~ (l/n0 ,~A~,I,(¢) ,4"BX& 
n = l  

(43) 
= ~"A,~(¢) ~ 4- ~ (1/n !) ~A~.&(¢) ~ F .  &. 

Now the relations (22), (23), and (25) can be inverted to express F j,  ~ ,  and ~ in 
terms of X ~, ~b,, and ¢~, respectively• Thus we obtain 

= ,'r,i I n = ./".~ ~ (l/n!) "&X (T/  r~/) (44) 
,rt,=l 

m~ a. r,& (45) 
= + c 

n = l  

~ = ~ 4- ~ ( l /n0 ~t~X~5.1"z." (46) 
n = l  

where q)~t, and X~5" can be expressed in terms of D~& and x~5" , respectively• In (45) 
and (46), of course, F{- has to be expressed in terms of X & via (44)• Inserting (44), 
(45), and (46) in the right-hand side of (43), and equating expressions with the same 
power of X on both sides of the equation we obtain a formula analogous to (42), 
namely, 

A~.&(cfi) ~b~X', n E 
~l-~n2~-n3=n 

i=1 .=, [li~')X" )~ J ¢~ (47) 

v ~ ( i )  
= v " ,  a ( i )  and ni = ~ 2 1  - - ~  • where vi ~-v=l "v 
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x n / 
~ ,~ .~ .  t/t` ~ . ~ .  / , / 

S1~In St ; In  T~ 
n 

[i] (ii1 {iii] 

37 

, .n./ . n /s ". / ... .... -, .".. / ",,."../" 

t~I  n 

fly} Iv{ (vii [vii} 

F I G U R E  2 

Following [7] we introduce, for each symbol, the graphical notation shown in 
Figs. 2(i)-2(vii). This notation is used to express the formulas (42) and (47) in a 
graphical manner and examples of this are given in Fig. 3 for small values of  n. 

, , / ", - 
% ~ t , / y ' =  ,~ . ff 

0 

\ I , '  N i l '  31 N 

-.o-6-.- 

' ,  / /  ' / ~ 1 
_ V k / _ ,  
-. -~ = ~ + 2! ( - 3-~ ÷ =* o - ~ . ~ ) .  

• • s' 
• , ~ ', , %, ",~ 

FIGURE 3 

For later convenience we introduce the notion of a generalized partition: A 
sequence ,,1~(°,-.., ) ~  (i = 1, 2 ..... M)  of natural numbers h~ i) > / 0  is called a gene- 

• n i M ralized partition of n, ]f ~v=l vh~ ~) ---- ni and ~ = 1  n~ =- n. We denote such generalized 
partitions as follows: {h}n {(la~ 1) a(*)~ a(M'~ ------ nlnl) (la~ u) The symmetry . . . . . . . . .  nMnMJj. 
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number associated with {h}n is denoted by K{A}. where K{A}. = H ~ I  KO'(il).i. It 
is now possible to rewrite (47) in the following way 

Ao,,I.(4) ~BX I" n] Z K{A}nXo, q'"'qAv'q"",. 2 aq'"t,. 3 
{a}. 

i=1 ( t ; J ' )Xv )~  ] ~bs (48) 

where ri ~- ~.=1 ;~o (i = 1, 2, 3) with q 0 and ra 0 implying X J  = 3 J  and 
• o ~ = 3~ ~, respectively. 

V. THE EQUIVALENCE THEOREM 

It is desirable to show the equivalence of the noncovariant and the covariant 
perturbation expansions on the mass shell. That is, we expect that, on the mass 
shell, the generating functional tu(J, ~7, ~) and ['(J, ,q, ~ ) for  connected Green's 
functions in the noncovariant and covariant theory, respectively, are equivalent up 
to contributions of the type 8(4)(0). It is the purpose of this section to establish the 
equivalence in some detail. This equivalence will serve as a possible link between 
the usual BPH approach and the covariant approach. We shall follow closely the 
proof  of the "Equivalence Theorem" in the case of pure pion selfinteractions given 
in [7]. To this end we decompose each contribution from (38) into a sum of contri- 
butions containing (i) the corresponding covariant contribution from (39), (ii) 
contributions which vanish on the mass shell, and (iii) contributions which do not 
vanish on the mass shell and are not covariant. However, it can be shown that 
contributions of the type (iii) are either of the type ~(4)(0), or they are cancelled out 
by analogous contributions, which arise from the decomposition of a finite set of 
other contributions from (38). 

To proceed any further we need to introduce the notion of a double generalized 
partition. In [7] a double partition, denoted by [(A)~] is defined to be the mapping 
(A) -+/~(~) which assigns to each partition (A) a natural number/~(a) ~ 0 which is 
called the multiplicity of (A). In a similar manner we introduce a double generalized 
partition, [{)~}"~], defined to be the mapping {A} --+/~(a} which assigns to each the 
multiplicity/z{~} >~ 0. Suppose all the generalized partitions that occur in [{A}'~] are 
of  the form 

J = l  

with m = 1, 2 ..... N. Then 

"~n tin) x r  
[{~}~] -- h (la~)(~) "'" n~ ~) J )I (49) 

j = l  
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where the order n of [{A}~] is given by 

m=l m=l = v=l 

We also define the symmetry number associated with [{A}~] to be 

N 3 n (m) 
m=~ • I-L=~ ffm ! (YIj=I  I - IA1 ;~1"~ (~)'. (v  !)~p)(m)).~ 

( 5 0 )  

The contributions from t.U{ree and uJ'noop coincide (on the mass shell) with the 
corresponding contributions from / ~ t r ee  and T'~loo p . Hence it is only necessary to 
establish the equivalence between w(J, ~7, 71) and o~(J, ~7, 71), where 

w ( J ,  ~, ~) = , , , (J ,  ~, ~) - '"i~ee(J,  ~, ~) - -  "';~oop(J, ~, ~) 

and 

c o ( J ,  V,  ~ )  = F ( J ,  T], ~7) - -  F ~ r e e ( J  , T], ~ )  - -  ] - ' ; l o o p ( J ,  7], ~ ) .  

From now on, however, we shall neglect the contributions to w(J, ~, 71) which 
contain only pure pion selfinteractions. Such contributions are dealt with in [7]. 
Let ~(J, ~?, 71) denote the remaining contributions in w(J, ~7, @). Inserting (42), and 
(48) in (38) we obtain the following expression for ~(J, ~?, 71) 

i~(S, ~/, 71) = Z ~ .~ iz~-"'mK[{A}~] 
n>M [{~}~] c 

m=l [ x ~ a 

n - - 1  

~- Z Z Z ~ ~ izM-"mK[{A}~ -r] izN'o'K[( a)r°] 
n>a r=3 [{a}#_~] [(~)~] o 

, , ,  m = l L  ~ ~ a 

n (~ m ) 

x [] [si~,,...~,, ~ "~' '(~)'o('q°' (51) 
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where in the first term n = Y:.,=I/~m ~z~j=1 ~=i ~ ~ M j ~ ~ -- ~=i 

( j  = 1, 2, 3), whereas in the second term n --  r = ~,~=1 ~m (~j=l ~ = 1  ~ ~, 
r(m) ~ n j t m )  (m) O) N n i 

= z ~ =  1 A v ( j  = 1, 2, 3) and r = Zi=l  Pi (Zv=l lu°'(i)) with r i = Zv~=l ~7 ). 
Each term in the first par t  of  (51) is characterised by a double generalized part i t ion 
[{A}",] and a connection mapping C. It corresponds to a graph (with no external 
pion lines, but  with possible external nucleon lines, coupled to the sourced 71 and ¢/) 
where each vertex of  the type shown in Fig. 2(iv) is replaced by the cor- 
responding vertex shown in Fig. 4(ii) with the same number  of  pion lines (xi). The 
connection mapping C acts on the xi 's as well as the ~b's and q~'s. The  multiplicity 
of  each type of  vertex is determined by t~m (m = 1, 2 ..... N). Similarly each term 
in the second par t  of  (51) is characterized by a pair of  double partitions [{A}",_~] and 
[((r)~], and a connect ion mapping C. It can be represented by a graph (with no 
external pion lines, but  with possible external nucleon lines coupled to , / a n d  ~/) 
where each vertex of  the type shown in Figs. 2(i) and 2(iv) are replaced respectively, 
by the corresponding vertices shown in Figs. 4(i) and 4(ii), with the same number  
of  legs (Xi). 

x i . . .  / 
',, 'vJ', \/ ',, v.. / 

"\.N/ 5 P  %* 
( i )  { i i )  

FIGURE 4 

We consider first the contr ibut ion to ~(J,  7/, ¢/) characterized by the particular 
double partitions 

[{h},~] = {(O)(l"~)(O)}'" , n = F,~n,~ 
~n=l 

and 
M 

M N 
with n - -  r = ) '~,m=l/~mnm, and r = ]~i=1 pini • By examining the symmetry 
factors K[{A}"~], K[{A}"~_~], and K[((r)~] we can infer that this part  of  ~(J,  7/, @) is in 
1-1 correspondence with oJ(J, ~/, ¢/). 

Let  us consider now the contr ibut ion to ~(J,  ~q, ~/) arising f rom the second par t  
in (51), when the double part i t ion [(a)~] contains at least one part i t ion (a(i)) with 
5-'.,=1 0,-(° = 1. Such partitions give rise to vertices of  the type Sl,~T~1%... . However,  
because of  (5) $1,~ = --J~ and graphs containing at least one such vertex, therefore, 
give vanishing contributions on the mass shell. 
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Let  A~(J, ~1, ¢1) denote the remaining contributions to (51). Then 

i ,~ (J ,  n, ~) = F~ }2' Y~ iz~-"~K[{a}~l 
n>l [{A}n~ j C 

X fx,¢,~,c ~ r-r~v~l ~ a  ebb .,. 
m=l  L • ~ " 

j : l  ( vI~=l ~ ' ~v(m,O,X v )v ) J  

n--1 

n>4 r= l  [{a}~_~] [(~)~] c 

× f i r . , .  . . . .  o , 7 ~ A~h. . . td ,~)~v.h . . . t~( ,~)  ~h...t~(m)q'~ 
m = l  L • o o 

(52) 

where the summations 27' indicate that  the double generalized partitions [{A}~] and 
[{A}~_~] should not  consist of  generalized partitions of  the type {(0)(lk)(0)} alone. 
Also the summation 27" indicates that  the double parti t ion [(~)o] should not  (i) 
consist of  partitions of  the type (1 s) alone, and (ii) contain partit ions of  the type 
(a (i)) with E v = I  ~(i} = 1 u v 

The equivalence between covariant  and noncovar iant  per turbat ion expansions 
will be established, if we can show that, up to terms which contain 3(4)(0) factors, 
A~(J, ~/, ~/) vanishes identically on the mass shell. In order  to prove this we shall 
make use of  the following list of  identities (due to (40), and (41)): 

(i) 

(ii) 

(iii) 

(iv) 

" .  A~ S EX"  '" - ~  S1; i l . . . (X;  ¢ )  i G i l l ( x ,  X , "k', 1;/i2\ , X ,  ¢ )  T ! ! . ( x  t) iS1; i l . . . ( x ;  ¢ )  T i l . ( x ) ,  

(53) 
i l  A~.q...(x; ¢) iGqt(x, x" ; ¢) S1;li2(X tt, X' ; ¢) T i 2 . ( x  ')  = iA~.ir..(x; ¢) T...(x), 

(54) 
A ~ • ~ ,,. - ~  ,, ,. ~ ,  - ,, ~.,,...(x, ¢) B~ (x, x , ¢) x ,  A~ tx , ¢) ~ . . . t x  ) 

( - i )  ~ " " = A~.~l...(x, ¢) ~ i 2 . . . ( x ) ,  

X ~  ~ 3e tt. t • ¢, ~,,...A~ tx, x ,  ¢) Bf(x" ,  x ; ¢) A~.,2...(x , ¢) 

---- (--i) X~ir..(x) A~.iv..(x; ¢). 

(55) 

(56) 
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The above identities show the possibility of contractions of full pion as well as 
nucleon propagators. The factors appearing on the right-hand side of (53)-(56) play 
a very important role in the proof  of the equivalence theorem. In general we shall 
have to examine the change of factors of i in A~ due to contractions. It is clear that 
each contraction reduces by one the number of vertices of the graph under con- 
sideration leaving, therefore, a factor of i (see factors of i in (51)). In (53) and (54) 
there is a factor of i due to the fact that full pion propagators always appear in the 
form iG and not simply G. This comes about because of the functional integral 

1 e(i/~)sl iJ(6)xiX~x tel l 
f D X " "" X k~" = const [Det(Sl,i~)]l/z ~ iGT~ikJ, ... iGk~,-~kJ2, 

(57) 

where the sum in (57) is over all possible pairings of the Xi,S. Thus every contraction 
corresponding to (53) and (54) gives rise to an overall factor i 2 = --1. Equations 
(55) and (56), on the other hand, correspond to full nucleon propagator contrac- 
tions. Now, from (30) it is clear that in order to get an internal nucleon propagator 

corresponding to ~b~ ~ both left and right derivatives ~3/i3~f and 3/i3~7~ have to act 
on the same term (i¢/) ~ B~,S(~)(i~)~ in the expansion of exp[--(i~) • B .  (hl)]. Thus, 
we pick up an additional factor (--  1). Taking now into account the factor of (-- i)  
appearing on the right-hand side of (55) and (56) we see that, once again, the overall 

/ "  ( i )  " " :  ~- ( f i i )  

c i:.~: 

j -  - 

( i v }  

FIGURE 5 
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factor is i 2 = --1. Hence we reach the conclusion that every contraction of a full 
internal propagator gives rise to a factor (--1), which must be taken into account. 

We remark that (53) and (54) correspond to contractions described in [7]. From 
the work of [7] we know that the vertices Slm giving rise to contractions arise 
necessarily from partitions of the type (1, k) k ~> 2. Each partition (1, k) contained 
in [(a)p] gives rise to a vertex factor S~;izT],oX~X~. Let X ~ be connected to X j by the 
action of C. Then, either X j is connected to S,,~... or to a nontrivial T, i.e., T~... 
(but not T~).  In general we have the graphical representations shown in Fig. 5. 
A vertex or a graph containing Sl,i~ of the kind corresponding to 5(i) and 5(ii) is 
called contractible. Now let us examine the cases due to internal nucleon propaga- 
tor contractions. We note that vertices A~ B may arise from the following types 
of generalized partition: (i){(Atil)~(O)(O)}, (ii) {(A(~I)n~(O)(AIS))n~} and (iii) {(0)(0) 
(A(a))~}. Each generalized partition of the type (i) implies a vertex factor ,T,~X~' 5" c~-ll.-. 

n ~ 1 )  

Av B I--L,~1 (7-] X1,)a, ¢~. Let ¢~ be connected to ¢~ by the connection mapping C. 
- -  v _ - -  

Then there exist two possibilities. Either Cs is connected to a vertex described by a 
generalized partition of the form {(0)(AI2)'),((Z(z)'), ,} or to a vertex{(A(~)'),~ , (A(2)'),( 
(A(ze), ,}. Graphically we have the representations shown in Figs. 6(i) and 6(ii). A 
graph of the kind 6(i) containing A~ ~ is again called contractible. Similarly in the 
case when A~ ~ arises from {(0)(0)(A(z)),,} we have the two possibilities shown in 
Figs. 6(iii) and 6(iv). In this case it is only 6(iii) that leads to contractible vertices or 
graphs. Finally the case where A~ ~ arises f r o m  {(~(a))n I (0)(h(3))nz} leads to no 
contractible vertices (or graphs). 

t i )  ( i i )  

( i i i )  ( iv)  

FIGURE 6 

In general A~(J, 7, 7) contains contractible graphs. If one applies the identities 
(53) -- (56) to the contractible vertices of such a graph, one gets an uncontractible 
graph. It is understood of course, that the connection mapping of the original 
contractible graph has to be restricted to the remaining ¢~, ¢~ and X i. Now (52) 
shows that this contribution of such a contractible graph to A~ is equal to the 
contribution of the associated uncontractible graph, explicitly present in (52), apart 
from a sign and a combinatorial factor (due to the presence of  the symmetry 
factors K[{A)"~], or K[{h}~_r] • K[(~)~] and the possibility that the different connection 
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mappings of the contractible graph give rise to the same connection mapping on 
restriction to the uncontractible graph). The sign arises in the way described in the 
remarks made following Eq. (56). Following [7] we remark that the uncontractible 
graphs of A~ give rise to an equivalence relation among the totality of the graphs. 
The equivalence classes consist of all graphs, which, after complete contraction (by 
means of repeated applications of (53)-(56)), lead to a fixed uncontractible graph, 
Thus, what we have to do, is to deal with a general equivalence class, ~(g0) cor- 
responding to an uncontractible graph go, and show that A~ If(%)= 0, where 
A~ 1~(%) denotes the partial sum of A~ taken over the class ~(g0). It is shown in 
[7] that, in the case of pure pion selfinteractions alone the corresponding class 
e(go), which is in general quite large, can be divided into smaller classes with 
vanishing partial sums. The same is true in our case, and this is what we would like 
to show in the remaining part of this section. 

Let go be an uncontractible graph, and E(g0) the class generated by it. c(g0) is 
precisely obtained by doing all admissible blow ups (a blow up is an operation 
corresponding to the inverse application of (53)-(56)). Let there be No admissible 
blow ups on go, then No = #~(go). Thus one way of dividing E(g0) into smaller 
classes is to divide all blow ups on go into a sequence of independent types. The 
application of a blow up of a given independent type (keeping everything else fixed) 
then gives rise to one such smaller class. This is in fact the construction of (s, x) 
equivalence classes in [7]. To this end we choose a vertex from go, which allows 
blow ups. If  this choice corresponds to a vertex arising from pion selfinteractions, 
then the results of [7] are directly applicable with only trivial modifications. With- 
out loss of generality we assume that our choice corresponds t o  a vertex {x} 
{(0)(lk)(0)}. Let {x} be given by {x} = {(x(l~)~ 1 (x(2))~ (x(~)~3}. The vertex {x} allows 
in general, three types of blow up with blow up factors given by (i) the generalized 
partition {(x(1))nl (0)(0)}, (ii) the generalized partition {(0)(0)(x(8))n~}, and (iii) a non- 
trivial T of the form T]li~ .... Now, le t /z~  be the multiplicity of {x} in go • Next we 
proceed as follows. We blow up the vertices :/- {x} of go in an arbitrary way. Then 
we blow up the vertices {x} of go arbitrarily except for factors {(x(1))n~ (0)(0)} and 
{(0)(0)(x(a)n~}. Thus, each of t he / z~  partially blown up vertices is described by a 
generalized partition 

{(x(1))~ (1~ ~)" ... ne~-~(~)',,-.(a),)t~ )~sx 

with 

x~-(2)' ~ xi-(2) ( i )  2) and x~ 2)" = x~-(2). 
t = l  i = l  

The last relation fixes x(12)" uniquely. Next we define 

(,~(2)~ I ," .x(2)" - x ( 2 ) ' ,  = m a x ( l  1 - . -  ~t7 2 H2n~ J ,  
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the maximum taken with respect to the lexicographic order of the partitions 
(1,1~r -~,~," "- n n, ). Let n o of the/z{~} vertices be of this maximal type. They define a 
double generalized partition 

(~,(2)] (v(3)] tnol [{(x%~1, ,~.~ ,.~ , ~ ,  

This set of vertices can be distinguished uniquely from the remaining/z{~} -- no 
nonmaximal partially blown up vertices. We then blow up an arbitrary set of these 
nonmaximal vertices in the way that gives blow up factors of the form 
{(xm)n~ (0)(0)) and {(0)(0)(xt3))n~}. Our partially blown up graph is now described 
by the following double generalized partition: 

[{(X(1))K 1 (0)(0)} M0 ((0)(0)(X(B))t/a}N° {(X(1))1/1 (,~(2))K 2 (X(3))t/a}n° 

x {(o)(~%,~ (x%..} ~ {(x%~ (~(~)).~ (o)} N' {(o)(~%~. (o)}~q 

X [{Ra}r~][(R2) r2] (57) 

where the multiplicities are determined by the condition that the remainder 
factors [(R1}~l][(R2) r~] are disjoint from the first factor in (57). The above double 
generalized partition together with a connection mapping Co (specified during 
the blow up processes) define our {x}-collapse graph. Define an {x}-contraction to 
be a contraction on g e E(go) given by one of the following cases (i) a contraction 
of a vertex {(x(X})~l (0)(0)} with a vertex {(0)(~(2))~ (x~a))~3}, (ii) a contraction of a 
vertex {(0)(0)(x(a))n,} with a vertex {(xm)n~ (~2))n, (0)}, and (iii) a contraction of two 
vertices {(xm)a~ (0)(0)} and {(0)(0)(x(a))n.} with a vertex {(0)(~12))n, (0)}. Our {x}- 
collapse graph does not admit any {M-contractions. Two graphs in fig0) are 
called {x}-equivalent, if they become equal (up to a numerical factor) after per- 
forming all the appertaining {M-contractions. This equivalence relation splits 
e(g0) into smaller classes. Each of these classes contains exactly one {x)-collapse 
graph. Now for each {M-collapse graph we can do the remaining blow ups, which 
give rise to blow up factors {(x(1))~ I (0)(0)} and {(0)(0)(xCZ))a3}. Each such blow up 
results in a graph, which is described by one of the following double generalized 
partitions. 

[{(X(1))t/l (0)(0)} M°+s+u {(O)(O)(x(g))~3}No+I;+u {(X(1))n 1 (X(2))t/2 (x(a))~8}n°-s-t-u 

(2) (z) M~+ s (1) × {(0)(~ ),~(x )~} '{(X )~ (~(~h, ,.~ (0)} N~+' 

× {(o)(~%~ (O)}P~+"I[{R~Vq[(RO~q (58) 
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with 0 ~< s + t + u ~< no. The next step is to evaluate how many connection 
mappings C exist, for a given double generalized partition (58), which will give 
Co after restriction to the {x}-collapse graph. This is straightforward. We obtain 
the following factor 

(--1)  ~ + * ( M o + s + u ) ! ( N o + t + u ) ! ( M l + s ) ! ( N l + t ) I ( P l + u ) !  (59) 
M0! N0[ MI! Ni! PI! s! t! u! 

where the factor (--1)  ~÷* arises from the fact that every contraction gives rise to a 
factor i 2 : --1.  Now it is clear from (52) that we have to calculate also the sym- 
metry factor associated with the blown up graphs described by (58). It  is important, 
however, to remember that the disjoint factors [{R1}*I][(R2) **] give rise to numerical 
factors, which are independent of  s, t, and u, and therefore, can be omitted. Multi- 
plying the required symmetry factor with (59), and summing over all the elements 
of the {x}-class we get: 

no! ( - -  1)~+~ Constant factor independent of  s, t, u ~ (no - -  s - -  t --  u)! s! t! u! 
I?O ! O<~s+t+u<~% 

Const factor 
- -  no! (I @ 1 - -  1 - -  1) n ° :  0. 

There remains the exceptional case where the choice of  a vertex leads to a 
generalized partition of the form {x} = {(0)(x~21)~ (0)}, with (x(2))n * # (1~2). In this 
case one will proceed in a manner completely analogous to [7]. Here we sketch the 
main steps. First we blow up the vertices # {x} of go. Then we blow up the vertices 
{x} of go except for the factors T ~ (s being a fixed given natural number). Now i l ' .  - i  s 

each of the/ , (~ partially blown up vertices is described by a generalized partition 

{(0)(lXl (~)" sX~ ~) -~(~)' . . . . . .  n2~ )(0)} 

with x~ 2)' ~ x~ 2) (i ~ 2), ~ ~ 2  ,,(2)' ~2 x~2, x(12r. ano 2~i=1 ~i = 5Zi=1 which fixes Then we define 

(2~ ~) ~@) -(~)- g~) -~(~)', • . g~o ) max(2@ v . . . .  2 " = . . . . . .  n2 /~2  ) 

and 
if2 t~z 

. . . . . . .  n~n~), with x~ = x ~  , ~ = ~ xi 
i = l  i = 1  

where ^ implies omission and the maximum is again taken with respect to the 
_X(2)" 

lexicographic order of  the partitions (2~ ~'" ... Y/2~2 ). Now, let n0 be the number of  
these maximal vertices. They define the following double generalized partition 

[{(0)(14 ~) s ~ )  -~(~ . . . .  ~-o~ . . . . . .  n2n2)tuLt i .  
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We consider now the remaining/~{x} -- no nonmaximal vertices, and we fix them 
by blowing an arbitrary set of them in a way that gives blow up factors T~l...i,. 
Thus, our partially blown up graph is described by the following double generalized 
partition 

. . . .  - - ~  (2) n v  

where, once again, [{R1}rl][(R2)~2] are disjoint from the first two factors in (60). The 
above double generalized partition (60) together with the conncetion mapping 
Co (specified during the blow up process) define our (s, {x})-collapse graph. Such 
a graph does not admit any (s, {x})-contractions, where an (s, {x})-contraction is 
defined to be the contraction in g e e(go) which contracts a vertex (1, s) with a 
vertex {(O)(le[ ~'+ . . . .  : 7 '  . . . . .  n~(~)~)(O)}. Such contractions characterize the (s, {x}) 
equivalence class. Each class contains exactly one (s, {x})-collapse graph. For each 
(s, {x})-collapse graph one can do, now, the remaining blow ups of the remaining 
n o maximal vertices, giving rise to blow up factors T i c .  % . Each blow up results in 
a graph described by a generalized double partition 

~(2) Frets 2) 
[(1, s) o+Z~i,~,] {(0)(1~>+ . . . .  s ,  - . . .  n : ~  j ~ t , : ~  

1 -x(2) no-~ × {(o)(1~ ~) ... : ~ ) - . .  n:~)(o)) | [(R1yq[(R~:~] (61) 

X~ 2) 
with l = ~=~  l~ and 0 ~< l ~< no. As in the previous case one has to evaluate how 
many connection mappings C exist for a given double generalized partition (61), 
which will give rise to Co on restriction to the corresponding (s, {x})-collapse graph. 
From [7] we know that this is given by 

+ Z.~: , vl~)I ~'?' (n~ -I- l,)I i~i (.~ + p)z,,. (62) /Nn 
( - -1)~:  ~ " No!  I~ n~! l~] (v!) z, 

v=l p=l 

Multiplying (62) by the symmetry factor associated with (61), and summing over 
all the elements in the (s, {x))-class one readily obtains 

X!2)\1 lv 
~,:, [ ( -  1)~ no! Const factor independent of 1~ ~ (no -- 1)! l~! 

n0 ! o<~<n o ~=1 

I x~ 2~ X(2) no Const factor 1 
÷ x : :, I)~)}~o ~.~ 0 

no ! ~=1 

595/Ioi/x-4 
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We have, now, to examine certain cases when the general cancellation procedure 
is not applicable. Supposing for all choices of { x ) e g  o one gets {x) = ((x(1)(i)),~ 
(0)(0)) This vertex does not allow any blow ups. Hence E(g0) consists of only one 
element. In this case go is characterized by the double generalized partition 
[{(X(1)(1))nl(O)(O)}M1 "''{(X(1)(i))ni(O)(O)}Mi "*'] and a connection mapping. The 
latter gives rise to three possibilities: 

(i) Vertices of the type {(x(i)(i)),, (0)(0)} form a closed fermion loop. Such a 
graph is of the 3(4)(0)-type, and is, therefore, disregarded. We remark, however, 
that such loops may also occur in graphs containing vertices {(x(1))~ 1 (x(2))n ~ 
(x(Z))n,} for which the general cancellation procedure works. They formally cancel 
out. If, however, the graph under consideration contains only such loops besides 
pure 

o r  

vertices, its class E(g) contains just one element and its contribution does not 
vanish, but can be ignored being of the 8(4)(0)-type. 

(ii) Vertices of the type {(x(1)ti))n, (0)(0)} are all coupled to the appertaining 
nucleon sources. Such graphs give contributions which vanish on the mass shell. 

(iii) Some vertices are coupled to nucleon sources and some form closed 
loops. Again such graphs are of the 8c4)(0)-type and are disregarded. 

The same three possibilities occur, when, for all choices of {x} e g, one gets 
{x} = {(0)(0)(x (3)(I))~,}. Once again the contributions arising from these possibilities 
are either of the 8(~)(0)-type, or vanish on the mass shell. 

Finally we have the same three possibilities in the case when {x) = {(x(1)(i))@) 
(0)(x(3)">).7>) 
These three possibilities are shown graphically in Fig. 70) to 7(iii). 

,,?~";..:..~ , 
• ' ~ ' " K - > -  

(i~ 

;a . . ' " " "  , .  6 ~ . . '  

(ii) ( i i i )  

FIGURE 7 
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The cases 7(i) and 7(iii) are disregarded being of the 8141(0)-type. However, it is 
clear that in case 7(ii) blow ups giving rise to factors of the form {(x~l)c°),~l> (0)(0)} 
and {(0)(0)(x~3~i)n}3~} can take place, and the general cancellation procedure is now 
applicable. 

We remark that the above exceptional cases cover all the possibilities for gene- 
ralized vertices, which do not allow any blow ups. We see, therefore, that in the 
cases, when there exist no possibilities for blow ups (and, therefore, the general 
cancellation procedure does not work), we always get contributions of the 8~41(0) - 
type, or contributions vanishing on the mass shell. We may conclude that, on the 
mass shell, d ~  = 0 up to contributions of the 3~4~(0)-type. This concludes the 
proof of the Equivalence theorem. 

It is easy to classify the graphs which will contribute to the cancellation of the 
noncovariant parts in A~ arising from a given graph, g, in the noncovariant expan- 
sion. First we assume that g has no external nucleon lines. Now, let n ~ 1 and 
consider all partitions of the form 

2n 

(p),, = e °° w i t h  t91 ~ t9 2 = 0 
\a=l / 

n 2 and ~ = 1  ( ~ -  2)p~ = n2, where n l -~  n2 = n. Take all the graphs in the non- 
covariant expansion, which are described by partitions of the type (~) or (/3). 

First we shall examine more closely the graphs of the type (~). They correspond 
to graphs arising from pion-nucleon interactions only. Let g' be a graph of this 
type. Let P(g ' )  be the power of F~ -1 associated with g', Then 

2n 

P ( g ' )  = Z vA~ = 2n = 2LB(g') 
v= l  

where LB (g ')  is the number of pion lines in g'. In general, however, N ( g ' )  = 
L(g ' )  -- V(g') + 1, where N(g ' )  is the number of  loops in g'. L ( g ' )  = LB(g')  -}- 
Lr(g ' )  with Lr(g ' )  being the number of  nucleon lines in g', and V(g') is the total 
number of vertices in g'. Since g' has no external nucleon lines Lv(g') = V(g'). 
Hence N(g ' )  = LB(g') q- 1, which implies that 

P ( g ' )  = 2n = 2(N(g') -- 1) = 2(N(g) -- 1). 

Thus the graphs of the type (~) are all the connected graphs with n + 1 loops 
arising from pure pion-nucleon interactions. 
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We proceed now to examine the graphs of  the type (/3). Let g" be such a graph. 
Then 

P ( g " )  = v)t~ + ~ (~r - -  2)ptr = 2n. 
o=1 nt+n~=2n 

(63) 

Now V( g") = Vtl)( g ") + VIZ)( g"), where V(1)( g ") is the number of vertices in g" 
due to pion-nucleon interactions, and V{2)(g") the number of vertices due to pion 
self-interactions. Also LB( g") 3 = ~,~=i L ~ ( g  ") where L~ ) is the number of pion 
lines connecting vertices belonging to the set V {1), Lg ~) is the number of pion lines 
connecting vertices belonging to the set V (2), and Lg 3) is the number of lines con- 
necting pairs of vertices one of which belongs to V ~1) and the other to V ~2~. Since 
g" has no external nucleon lines 

U ( g " )  = L ( g " )  - -  V (g" )  + 1 --- L s ( g " )  - -  V(2)(g") + 1 (64) 

From (63) and (64) we obtain 

P ( g " )  = 2n = 2LB(g")  - -  2V(2)(g  ") = 2 ( N ( g " )  - -  1). 

Thus the graphs of the type (fl) are all the connected graphs with n + 1 loops 
arising from pion-nucleon as well as pion self-interactions. The totality of  the 
graphs of the type (~) and (fi) constitute the class E2n. 

EXAMPLE. 

E 2 ; 

g l g 2 g3 'g4 

FIGURE 8 

In general the sum over E2~ of graphs with noncovariant vertices is equal (apart 
from contributions which vanish on the mass shell, and contributions of the type 
3t4)(0)) to the corresponding sum of  graphs with covariant vertices. 

Consider the example of the class/?2 shown in Fig. 8. Then on the mass shell we 
have: 

-- 2~" -~-r'~,,..J ~ ~: ~ ,,._./ 2! ~ j " ,  ..... , 

FIGURE 9 
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We turn now to the case when the given graph g has external nucleon lines. In  
order to get all the graphs, which contribute to the cancellation o f  the noncovar iant  
parts arising f rom g, we proceed as follows. First we construct  a graph g obtained 
f rom g by closing the external nucleon lines in an arbitrary (but admissible) way 
in order to form loops. Thus g has only internal nucleon lines, the number  o f  which 
is I/ll~(g). Then we consider the appropriate class Ezn, which contains g. We now 
split the nucleon loops of  every element in E2n in all possible ways, and select those 
graphs which have the same number  o f  external nucleon lines, and the same number  
o f  loops as in g. These are the graphs that  will contribute to the cancellation o f  the 
noncovar iant  parts in g. Let this set be denoted by ~ (g ) .  We remark that  the same 
element in ~ ( g )  may arise f rom different elements in the class E~n(g) Fur thermore  
the sum over ~ o f  graphs with noncovar iant  vertices is equal, on the mass shell, to  
the corresponding sum of  graphs with covariant  vertices (up to contributions o f  
the 8141(0)-type). 
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