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For elastic scattering, relations between spin-effects (for example, the well-known 
asymmetry-polarization equality) follow from time-reversal invariance. We show that if 
certain amplitude combinations vanish, there are strikingly similar relations between 
spin-effects for elastic and also inelastic reactions. This vanishing of amplitude com- 
binations (denoted M-purity) corresponds asymptotically to purely natural or purely 
unnatural parity in the crossed channel. The M-purity relations hold for spin-conflgura- 
tions much more general than do the corresponding time-reversal invariance relations. 

The experimental evidence for purely natural parity exchanges in high energy vector 
meson photoproduction from nucleons is shown to be good for all amplitudes involving 
nonzero meson helicity, but less conclusive for the zero helicity ones. Using time- 
reversal invariance and a vector meson-dominance argument, this implies no unnatural 
parity contributions in high energy Compton scattering from nucleons. 

Because of this empirical evidence for M-purity in these two processes, a detailed 
application to spin-effects in Compton scattering and in vector meson photoproduction 
is made. Some time-reversal invariance relations in Compton scattering resemble the 
correspondingI&purity relations though the applicability of the two is different,and there 
are examples where only one of the two exists. Out of our illustrations, the only M- 
purity relations which change in form due to the extra amplitudes present in the inelastic 
reaction are the M-purity analogue and extensions of the asymmetry-polarization 
equality (of Compton scattering) referring to the photon; the change is the appearance 
of the elements poo of the vector meson density-matrix p. Our other examples of M-purity 
relations do not change in form in going over from the elastic reaction (Compton 
scattering) to the inelastic reaction (vector meson photoproduction). 
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1. INTRODUCTION 

For elastic processes, time-reversal-invariance (denoted hereafter as T-invariance) 
leads to the equality [l] between the recoil polarization with an unpolarized target 
and the cross-section asymmetry with a polarized target. In general, there is no 
such result for an inelastic reaction. We show that if certain combinations of 
amplitudes vanish, there are such relations for even an inelastic reaction. We denote 
the vanishing of these amplitude-combinations by M-purity which corresponds, 
asymptotically, to having pure normality (natural or unnatural parity, but not a 
mixture) in the crossed channel. Spin effects in Compton scattering (yN + yN) and 
in vector-meson-photoproduction (yN + VN) from nucleons are considered in 
detail in order to bring out the comparison between the relations following from 
T-invariance and from M-purity and in order to illustrate the changes in going 
from an elastic to an inelastic process. Though our emphasis is on the application 
to these two processes, M-purity relations can be seen (e.g. Section 2) to be quite 
general. 

It is worth emphasizing that T-invariance is a general principle, while M-purity 
is a model that becomes empirically interesting in certain cases. We are pointing out 
the similarity of some M-purity relations to some T-invariance relations, but 
clearly, there are many nonoverlapping implications of M-purity and of T- 
invariance. Even when M-purity relations resemble the corresponding T-invariance 
relations, the regions of applicability of the two are not always the same, as will be 
discussed in detail. 

A. Dejinition of M-purity; Comparison with Restrictions on Helicity 
Amplitudes following from T-Invariance 

For the s-channel helicity amplitudes f tz of the process ab + cd where a, b, c, 
and d also denote helicities of the corresponding particles, parity conservation 
gives [2] 

f :;I; = +)a-c-b-d f ;g ) (1.1) 

where 7 depends on spins and intrinsic parities of a, b, c, and d. For elastic processes 
and for yN -+ VN, 7 = + 1. We define 

n dc 
ba = i(f;: + (-)“-“f-3, (1.2a) 

so that 

I.4 de 
ba = t(f ,“Q” - (->“-” f I$), (1.2b) 
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For the amplitudeft& M-purity is defined1 as M = + 1 or A4 = - 1: 

M= -1 means nfz = 0, 

M= +1 means & = 0. 

(1.3a) 

(1.3b) 

The n- and u-type amplitudes will sometimes be called M = + 1 and M = - 1 
amplitudes, respectively. Using the parity relation (l.l), nzzz is related to &z and 
24;:; to 24;; . The amplitudes of Eqs. (1.2) correspond,2 asymptotically [3], to pure 
normality in the crossed channel aZ + 6d. However, we shall need only the defini- 
tions (1.2) and (1.3) which hold for general values of the kinematical variables. 

For the elastic process ab -+ cd, T-invariance gives the relation [2] 

f;; = (-)a-c-(b--d) f&C 
ba 9 (1.4) 

where the particles a and c are the same and so are b and d. The T-invarance 
relation (1.4) and the corresponding parity relation (1.1) for elastic scattering 
overlap for only the helicity combinations b = -d, a = -c. Similarly, the T- 
invariance relation (1.4) overlaps with the M-purity restrictions (1.3) only for 
(a = c, b = -d) and similarly, for (a = -c, b = d). In fact, (1.4) implies M = + 1 
for the amplitudes f?ta,, and f”,‘?, : 

ba 
U-,,a = 0, M= +1, (ISa) 

u;:, = 0, M= +1. (1Sb) 

The T-invariance relation (1.4) does not restrict any of the &ji amplitudes, and 
restricts only sume of the & amplitudes. We shall call M-purity for the amplitudes 
f $, and f 2, as the M-purity of type 1; T-invariance gives A4 = + 1 for this type 
in elastic processes; M-purity for other helicity amplitudes will be called M-purity 
of type 2. 

For yN + rlv, Eqs. (1.5) are the only restrictions that T-invariance puts on 
helicity amplitudes, if one takes (as we shall do) parity-conservation (1.1) for 
granted. The fact that M-purity and T-invariance restrictions are related is con- 
tained in (1.5). While (1.4) is for elastic processes like yN -+ rlv, the M-purity 
restrictions can hold for any general reaction like yN-+ VN. It is now easy to 
imagine, for any general reaction, M-purity relations which resemble the T- 
invariance relations between spin-effects in elastic scattering. This is further 

1 This notation should not be confused with the Toller quantum number ‘M.’ For example, 
Toller poles with the quantum number ‘M’ = 1 conspire, and do not have M-purity in our sense. 

2 For elastic scattering and for yN --L VN, the n and u amplitudes refer to natural and unnatural 
parity contributions, respectively. 
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illustrated in Section 2 where the asymmetry-polarization equality following from 
T-invariance is compared with its M-purity analogs. 

While M-purity implies M = + 1 or M = - 1, T-invariance makes only some 
M = -1 amplitudes vanish. Of course, M-purity may also hold for only certain 
particular amplitudes. 

B. Interest in M-purity Relations; Why the Processes yN --f yN and yN + VN? 

The only established evidence against T-invariance comes from neutral kaon 
decays; there, too, the relative strength of the T-noninvariant amplitude is very 
small N 10-3. So, T-invariance is quite general, but M-purity is a model which is 
interesting in certain situations.3 A good point about the M-purity relations is their 
applicability to any general reaction even if the corresponding time-reversed 
process be very hard to achieve experimentally, e.g., projectile + nucleon -+ 
nucleon + anything. Secondly, very high energy diffractive processes may have a 
dominant natural parity contribution in the crossed channel; there are many 
experimentally interesting reactions in this category. In fact, present data on 
yN+ 4N support this hypothesis for the normality of the Pomeron.4 Thirdly, 
combinations of contributions which are expected to be M-pure can be formed in 
different processes, and M-purity relations of the type we consider can be used as 
tests of the M-purity of these combinations. In this sense, M-purity relations are 
relevant also to the dynamical interpretation of amplitude-analyses. 

Our detailed application of the comparison between T-invariance relations and 
M-purity relations to yN -+ yN and yN + VN is motivated by several reasons. 
These reactions are easily accessible experimentally and offer enough spin-com- 
plications so as to make this comparison feasible; some spin-effects are relatively 
easy to study experimentally because the vector meson density-matrix, polarized 
photons and polarized targets are already available. In contrast, in 7rN elastic 
scattering, for example, T-invariance and also the vanishing of unnatural parity 
contributions already follow from the parity relation (1.1) because of the spinless- 
ness of the pion-thus making the desired comparison impossible. One wants to 
consider an example in which there are some nonoverlapping restrictions on 
helicity amplitudes due to T-invariance and to M-purity, and in which 
T-invariance and M-purity do imply restrictions that go beyond those already 
implied by parityconservation. One such experimentally interesting case is 
JN + AN where ;i is a spin-$ baryon, but because both ;i and y have only two 
helicities, this example is not essentially different from yN + yN which we are 

3 There are known instances where M-purity is not a good approximation; for example, high 
energy two-body processes involving significant pion-exchange contributions. 

4 If  the Pomeron factorizes, it must have M-purity, even if it be not a Regge pole [4]. 



558 DASS AND FRAAS 

considering in detail. From AN -+ AN data, there is no positive experimental 
evidence of M-purity, while our example has the advantage that yN -+ VN data 
(and to a large5 extent, also yN + yN) give evidence of being dominated by natural 
parity (M = +1) contributions. Next, the M-purity relations in yN --f VN (and 
yN + yN) predict some observables, and are therefore testable by future measure- 
ments. Looked at the other way, since the value of these predicted observables 
follows from only M-purity (which is experimentally supported), their measure- 
ment will not reveal6 further dynamical information for this process; this statement 
is already of some interest. 

Though yN -+ VN looks very similar to yN --f yN, the helicity zero component 
of the vector meson does give this process some essential features of an inelastic 
reaction so that a comparison between the M-purity relations in yN --f VN and in 
yN + yN is capable of showing some possible modifications due to inelasticity. 
Comparison between the M-purity relations and the T-invariance relations in 
yN + yN shows how the M-purity ones go beyond the T-invariance ones. 

We restrict our illustrations of the various comparisons to the following spin 
effects for an initial state polarized in generality: cross-section asymmetries, recoil 
nucleon and final photon polarizations, and the vector meson decay density-matrix. 
We shall not consider the correlations between the polarizations of the final 
nucleon and the final photon/vector meson; these correlations are difficult to 
measure experimentally. Our purpose is to mention some simple illustrations of the 
resemblance between M-purity relations and T-invariance relations among 
observable spin-effects, rather than to consider the complete set of these relations. 

The plan of the paper: Section 2 gives the standard asymmetry-polarization 
equality and its M-purity analogs, and compares the two; the generality of the 
polarization configuration under which this analog holds has been pointed out. 
Section 3 is devoted to some further notation used for yN ---f yN and yN --+ VN in 
the subsequent parts of the paper. In Section 4, we consider, for yN --f yN, some 
T-invariance relations and compare them with their M-purity analogs. The 
experimental evidence for M-purity in yN -+ VN, its comparison with and 
implications (based on a vector dominance argument) for yN -+ yN are 
considered in Section 5. The subsequent section is devoted to the M-purity 
relations for yN -+ VN, closely compared with those (of Section 4) for 
yN + yN; some comments on the modifications due to the inelastic feature of 
yN -+ VN are included. In Section 7, an overall summary of the paper and a 

5 This uses an argument based on the vector-dominance model; the available [5] density-matrix 
data for yN + VN indicate that in yN --f yN, even the unnatural parity contributions allowed by 
T-invariance are zero, or at most very small; Section 5. 

B The discussion of cross-section asymmetries with general initial state polarizations, given in 
the appendix, is relevant in this context. Many useful predictions about these asymmetries follow 
from only parity-conservation. and further ones from M-purity; see remarks 1 to 4 in the appendix. 
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short discussion are given. The Appendix gives a general treatment of cross-section 
asymmetries in yN + yN and yN + VN, in particular, the information 
obtainable from these asymmetry-measurements; only parity-conservation has 
been assumed. 

For a first reading of this paper, Sections 4-6 and the appendix may be omitted. 
For the reader who is not interested in details, the tables are a convenient summary 
of Sections 4.A, 4.B, and 6. 

2. THE ASYMMETRY-POLARIZATION EQUALITY FOR ELASTIC PROCESSES AND 
ITS M-PURITY ANALOGLJES 

Here, we consider the cross-section asymmetry A with the spin-4 particle b 
polarised perpendicular to the plane of the reaction 

a+b-+X+b’ (2.1) 

and compare it with the polarization is (perpendicular to the plane of the reaction) 
of the spin-i particle b’ when b is unpolarized. The polarization state of the system 
X is not observed and the system a may be arbitrarily polarized. 

The polarization H is 

(2.2) 

(2.3) 

where pa is the density-matrix for the particle a; the helicities /3, j, 01 and I in the 
amplitude ff; for the process (2.1) refer to the particles a, b, X, and b’, respectively; 
the helicities -& are denoted by f. The asymmetry A is 

where u2 is the Pauli matrix and p is the polarization of b. 
Using the hermiticity of pa, one can show that 

if either 

or/and 

A = MpP (2.5) 

j1; = M-f;;) (2.6) 

f’; = -flq;; ) (2.7) 
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where M = + 1 or - 1. The conditions (2.6) and (2.7) obviously mean M-purity 
for these amplitudes; 01 and 8 are arbitrary. One may note that for the corresponding 
elastic process, T-invariance gives M = +l in only (2.7) for only CL = 13; 
T-invariance does not refer to (2.6). 

For the case when the particle a is unpolarized, the matrix pa is essentially the 
unit matrix and using the T-invariance relation (1.4) one gets the standard asym- 
metry-polarization equality [ 1 ] for elastic scattering 

A =pP. (2.8) 

When the particle a is polarized, T-invariance relates A not to is, but to some 
elements of the final-state joint density-matrix which measure correlations between 
the two final particles. 

In the simple case when a and A’ are spinless, just the parity relation (1.1) gives 
M = +l (-1) when the product of the intrinsic parities of a and b is the same as 
(opposite to) the corresponding product for X and b’; the relation (2.5) then gives 
(2.8) for rrN -+ TN, VTN --f ZG’l, EN -+ EN, etc.; and 

A = -pP (2.9) 

for nN -+ EN, where E is a Jp = Of particle; no reference to T-invariance need be 
made. For elastic scatterings TN --, ~TN and EN + EN, T-invariance gives M = + 1 
for only the relation (2.7) with helicities (Y = B = 0, leading to (2.8), or (2.5) 
with M = + 1. On the other hand, the M-purity relation (2.5) would hold even if 
(2.7) be not valid, but only (2.6) is true; this is an example of the standard equality 
(2.8) being satisfied even if T-invariance did not hold [6]. 

So, the M-purity relation (2.5) holds in a much more genera1 situation than the 
T-invariance relation (2.8), the differences being in the requirements on (1) the 
nature of a and X, and of b and b’, and (2) the spin-states of a and X. The T- 
invariance relation (2.8) requires the particles b and b’ (and similarly, a and X) to 
be the same, and a = unpolarized .’ In getting (2.5), however, there is no such 
restriction on the identity of the particles b and b’ (or of a and X), nor on the 
polarization state of a; u and X could have different spins which need not even be 
known; b and b’ could have all quantum numbers (except spin) different; the 
relation (2.5) would hold for the rather general process 

anything + b -+ b’ + anything, (2.10) 

where b and b’ have spin = $. 

’ See, however, the remark (3) in the Appendix; for some special polarizations of n, the asym- 
metry may be the same as for unpolarized a. 
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We shall not discuss extensions of these considerations to other spin values for 
b and/or b’; the case of unequal spins for b and b’ offers no interesting comparison 
to the T-invariance relation (2.8). In yN + yN and yN -+ VN, we shall encounter 
M-purity relations similar to (2.5), but involving spin-l effects, others involving 
spin-4 effects, and also those involving both spin-l effects and spin-& effects. 

The example of this section illustrates the point that M-purity relations for spin- 
effects can hold for more general configurations than do the corresponding T- 
invariance ones. In some cases, there may be no corresponding T-invariance 
relation; this is the case for relations due to M-purity of type 2. It is interesting that 
any statement resembling the asymmetry-polarization theorem is at all possible for 
a general inelastic reaction; in fact, the generality of the configuration for which 
(2.5) holds is remarkable as compared to that for (2.8). 

The importance of the theorem (2.8) can hardly be overestimated: a measure- 
ment of A avoids the need of a subsidiary experiment to measure P. Similar remarks 
would hold for M-purity relations of the type of (2.5) for situations in which there 
is evidence for M-purity. Looked at the other way, a measurement of both sides of 
(2.8) would test the underlying symmetry; similar is the case of testing M-purity by 
using relations like (2.5). 

3. SOME FURTHER NOTATION FOR yN+ VN AND yN-+yN 

We use s-channel helicity amplitudes fii&“‘(s, 1); four-momenta and helicities are 
defined as follows: (p, , i) for the target nucleon N; (p,‘, i’) for the recoil nucleon 
N’; (k, , a) for the initial photon y; and (k,‘, (II’) for the final photon y’ or vector 
meson V. The invariants are s = -(p + k)2 and t = -(p’ -p)“. 

As in Refs. [7] and [B], the polarization of the photon beam and of the target 
nucleon are described by the conventional density-matrices 

and 

(3.1) 

(3.2) 

where the “four-vector” notation implies PO = co = 1, u. = the unit matrix, and Q 
represents the three Pauli matrices. The vector 

P = 1 P I(-cos 24, - sin 240) 

595/w-16 
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describes linearly polarized photons with an angle CJ between the reaction plane 
(taken as the X2 plane) and the polarization vector 

E = (cos 4, sin 4, 0) 

of the photons; P, corresponds to circular polarization. For the target nucleon, 
& and c2 are the transverse polarizations, respectively, in and normal to the reaction 
plane, and & is similarly the degree of longitudinal polarization. The parameters 
Pi and & are restricted 

[ & 1 < 1 and I Pj I < 1 (j = 1,2,3). 

The (unnormalised) joint density-matrix of the vector meson-nucleon final state 
is 

i’j’.a’/3’ 
fN’.V (3.3a) 

where the vector-meson V can also be the final photon (7’). The (unnormalized) 
density-matrices ~“‘6’ of the vector-meson and pc!’ of the final nucleon are, respec- 
tively, 

6’i’ a’4’ 
pN’;V 

and 

(3.3b) 

i’j’ f.P I , 

fN’ = c pa,?**; OL 

(3.3c) 

The (unnormalized) density-matrix p,,’ of the final photons in yN + yN is defined 
in the same way as p for the vector meson in yN + VN. The normalization of the 
helicity amplitudes is provided by the differential cross-section 0 as 

co = c p;f;p’ = c p;f’ = c pa’s’ = tr p, 
i’.d i’ a’ 

C = (277/E*)-2, 

where E* is the initial photon energy in the C.M. system. The polarization P’ of the 
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final photon and the polarization <’ of the final nucleon are described analogously 
to the corresponding initial polarizations in (3.1, 2): 

5,' = 2 Re pz;/tr pN’ , 

521 = -21mpL7/trpN’, 

5; = (p? - pid/tr pN’ ; 

PI' = 2 Re &Itr p,,~ , 

P2' = -2 Im p,‘;ltr pV, , 

P,' = (&' - 63ltr w  

(3.5) 

where + and - stand for the nucleon helicities ++ and -4, and for the photon8 
helicities + 1 and - 1, respectively. 

For a given initial polarisation configuration (Pm, [,), (m, n) = fixed, but # 0, 
we expand the cross-sections u and the density-matrices pN’,v, p, pN’, andp,’ as for 
example 

p(P, , 53 = p&40> + P,ptm, 0) + S,P(Q n> + P&ptm, 4 (3.6) 

where the expansion coefficients p(m, n) are very convenient bilinears of amplitudes, 
and p(P, , c,,) = ~(0, 0) for the unpolarized case; in (3.6) the initial density-matrices 
are 

pv = u + PdJm), PN = tu + LP3, (m, n) = fixed. 

For the expansion coefficients, one gets, for example, 

The coefficients p(m, n), pN$m, n), pN’,V(m, n) ,... contain al1 the information; no 
loss of generality is incurred by not considering mixtures of these polarizations in 
the initial state. One can expand only the unnormalized density matrices as in (3.6), 
but not the normalized ones 

&Pm , L) = p(P, , S,)/tr Mm, 5,), (3.8) 

which are not simple polynomials in Pm and 5, ; similarly, cj’ and Pj' of (3.5) 

8 This notation will be followed also for the vector meson density-matrix p. 
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cannot be so expanded. Our unnormalized “actual” polarizations Pj’ and &‘, 
defined as9 

and 
(3.9a) 

%j’(pm , 5,) = 5iVm , 54 tr pNVm , LA (3.9b) 

can indeed be expanded like (3.6), as for example 

L’(pm , 5,) = L’<O, 0) + P,d’(m, 0) + LG’CO, n) + P~LSi’(m, n)- (3.10) 

Similarly, the “universally normalized actual” polarizations 

and 
(3.11a) 

l,‘<pm , 5,) = tj’(pm , LJ/tr PN@, 0) (3.11b) 

can be expanded in terms of their coefficients, as in (3.6). The definitions (3.11) 
obviously imply 

&Y&l 9 53 = P,‘Vl3 , 53, (3.12a) 
and 

%mJ , 5,) = 5;(po , 53. (3.12b) 

A universal normalization independent of initial polarisation has been used by 
Schilling et al. [8]: 

so that 

(3.13a) 

(3.13b) 

This comparison (3.13) is important for our use of yN+ WV data [5] (Section 5) 
because their [8] notation has been used in Ref. [5]. 

It is worth noting that for the following combinations of (m, n), parity-conserva- 
tion makes tr p(= tr pN/) vanish [7, 81: 

p$?(m, n) = -pGT(m, n) and p::(m, n) = -p;(m, n) (3.14) 

D One may note that while for some choice of m and n, tr p(m, n) can be zero, tr p(P, ,I&) is 
nonvanishing for all (m, n) because the unpolarized term tr p(0, 0) is always nonzero. The same 
remark applies to the other density-matrices: P,,’ , ,oN’ , pNeSV. In (3.5), the argument of the trace 
is (Pm , 5,). 
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for 

m = (0 or l), n = (1 or 3); and m = (2 or 3), n = (0 or 2). (3.15) 

The notation for cross-section asymmetries is given in Eqs. (A.lO-A-12) of the 
Appendix. 

The notational phrase “nth equality of (5.1 or 5.2)” is defined when 
Eqs. (5.1 and 5.2) first appear (Section 5). 

4. SOME T-INVARIANCE AND M-PURITY RELATIONS IN y~+y~ 

Assuming (as throughout) parity-conservation, there are only eight independent 
helicity amplitudes for yN -+ yN: 

ft:, f-1 ,fE ,f;?, f?T ,f;T ,fI_‘andfT;. (4.1) 

Out of these, the first two are not restricted by the T-invariance relation (1.4), 
while the last four are 

f’: = -g;:, 

fF = fL f 
giving 

22; = 0, u++ 9 -+ = 0 

uy = 0, 24;; = 0 , 

as examples of Eqs. (1.5). The relations 

(4.2a) 

(4.2b) 

(4.3a) 

(4.3b) 

f-+:/f;; = fQf;t = -1 (4.4) 

involving the remaining two amplitudes of (4.1) are given by both parity-conserva- 
tion (1.1) and T-invariance (1.4); (4.4) does not restrict any n- or u-type amplitudes. 
We distinguish the consequences of (4.3) which is characteristic of T-invariance 
from those of (4.4). Because of (4.3), the only independent nonvanishing u-ampli- 
tudes are 

uz: and u+l , (4.5) 

while the n-amplitudes 
\ 

++ n,, , n? , n?T and nzt (4.6) 

allowed by parity-conservation are also allowed by T-invariance. 
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A. T-Invariance Relations 

Using only parity-conservation which includes the T-invariance constraint (4.4), 
one gets [7] 

L’(O, 0) = R(L 21, (4.7) 
L’U, 0) = mo, 21, (4.8) 
L’K4 2) = m, 01, (4.9) 

and 
Ci(l, 2) = &‘(O, 0). (4.10) 

These can be expressed in terms of the actual polarizations pl’(P, , &) and 
&‘(Pr , &J, and also in terms of the cross-section asymmetries defined in the 
appendix. The four relations (4.7)-(4.10) combine to give 

(4.11) 

where the argument on the right-hand side expresses the relevant values of P1 and 
5 respectively. Because 1 P, 1 < 1 and 1 l/P, 1 < 1, this relation is meaningful 
f:r’ only P1 = il and similarly, for ?& = &l, giving 

Pi<P,, L) = PILL’(P1, ii) for PI = A-1, l2 = PI or --PI . (4.12) 

Further use of the T-invariance restriction (4.3) in (4.7) and (4.10) gives 

&‘(O, 0) = Cu(0, 2) (4.13) 
and 

&yo, 0) = Cu(1, 0) (4.14) 

which provide examples of the standard asymmetry-polarization theorem for 
elastic scattering. In fact, using the asymmetries A(P,, , 55,) and A(-+P, , L,) of 
Eqs. (A.15) and (A.16) of the Appendix, the above two relations read, in terms of 
the normalized polarizations c2’ and P1’ as 

and 
(4.15) 

atPI, co> = PI * plvo 3 5,) (4.16) 

which are the equality (2.8) corresponding to the nucleon and the photon, respec- 
tively. 

Another consequence of T-invariance (4.3) is to relate [7] different final photon 
polarizations 

I’,‘(2, 2) = &(3,2) (4.17) 
and 

&‘(3, 0) = -&(2, O), (4.18) 
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which can be expressed in terms of the actual polarizations as, for example 

mw, 3 5,) - etp3 2 m = &[etp2 2 5,) - m-c > 531 (4.19) 

and 

T-invariance (4.3) also gives relations [7] between the final nucleon polarizations 
in the reaction plane and final photon polarizations: 

Jw, 1) = m, O), (4.21) 

&‘(O, 3) = -l;(2, O), (4.22) 

JY(O, 3) = L’(3, O), (4.23) 
and 

Iy(O, 1) = -&‘(3, 0) (4.24) 

which may be rewritten in terms of the actual polarizations as, for example 

and 

p2wTl 3 51) = 51Lv2 3 53, (4.25) 

p&v0 2 53) = -5,Lv, 7 50>, (4.26) 

M%& 3 53) = 53Lv3 7 l-o), (4.27) 

&WPo > 51) = --s1L’(P, 7 53. (4.28) 

B. M-Purity Relations 

In Section 4.A were considered some relations as consequences of the M-purity 
(M = +l) of type 1, as embodied in (4.3). If one has full M-purity (of type 2 as 
well), simplifications in these relations occur, and some new relations hold; we 
consider the two separately. 

1. M-Purity Modijications in the T-Invariance Relations of Section 4.A 

The relations (4.7)-(4.10) involving recoil nucleon polarizations normal to the 
reaction plane become, under M-purity, 

&‘(O, 0) = &‘(l, 2) = MC 0(0,2), (4.29) 

[s’(l, 0) = E’,‘(O, 2) = MC a(l, 2), (4.30) * 
&(O, 2) = &‘(l, 0) = MC a(0, O), (4.31) 

[Z’(l, 2) = Pl’(O, 0) = MC a(1, 0). (4.32) 
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Out of these only (4.29) and (4.32) have T-invariance analogs in (4.13) and (4.14). 
In fact, the four cross-section coefficients in (4.29~(4.32) are the only nonvanishing 
ones for yN -+ yN and yN + VN under M-purity; all the nonvanishing cross- 
section asymmetries are then related to recoil nucleon polarizations perpendicular 
to the reaction plane (or, equivalently, to the corresponding final photon polariza- 
tions PI’). Combining the four relations (4.29)-(4.32), full M-purity gives 

%,‘<Pl , 53 = MC 52 U(Pl 3 l/52) (4.33) 
and 

~;<P, , C-2) = MC Pl d/P, , t-21, (4.34) 

where the arguments on the right-hand side express the relevant values of PI and 5, , 
respectively. Because of the restrictions 1 PI I < 1, I l/P, I < 1, (4.34) is meaningful 
for only P, = -+l, and similarly, (4.33) for 5, = *l giving 

and 
k’(P, , 52 = zkl) = f-MC @I, 52 = fl) (4.35) 

PAP, = fl, 53 = &MC @‘I = fl, 62, (4.36) 

which read as 
LV’l ,52 = rt 1) = &M (4.37) 

and 
Pl’(Pl = fl, 5,) = ikM (4.38) 

in terms of the normalized polarizations. The M-purity relations (4.37 and (4.38) 
have the interesting feature that there is no dependencelO on the polarization of the 
“other” particle: If the initial nucleon (photon) is fully polarized, so is the final 
nucleon (photon), independent of the value of the initial photon (nucleon) polariza- 
tion Pl(Q, the relative sign between the initial and final nucleon (photon) polariza- 
tions being given by M. 

The relation of (4.29) and (4.32) to cross-section asymmetries is, apart from the 
factor M, the same as in (4.15) and (4.16). The relation of (4.30) to various cross- 
section asymmetries may be written in terms of the double asymmetry A(fP, , 2~5~) 
and the single asymmetries A(P, , j&J and A( i-PI , Co) as 

lo The forms (4.37) and (4.38) are suitable for generalization to yN + VN. For yN + yN, taking 
into account the T-invariance relations (4.11) and (4.12), one gets 

Lvl , r* = rtl) = z!zMGfp,, 58 = *M)lo(Pl, 1, = xkl) 
and PI’(PI = f  1, 5,) = &14a(PI = f  M, MQ/u(P, = i 1, cp), where M = + 1 has been taken 
for purity of the type 1; in these relations, the right-hand side does depend on PI and 5% for M = 
-1 (but not for M = +I), M now referring to (4.30) and (4.31). 
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or equivalently in terms of these single asymmetries and A(P, , +&) as 

where, of course, the left-hand side may be expressed in terms of the actual polariza- 
tions as for example [[,‘(P, , 53 - S,‘(P, , &)]/P1 or replaced by the corresponding 
expressions for p:,‘(O, 2). The relations (4.39 and (4.40) expressing the recoil nucleon 
polarizations in terms of cross-section asymmetries have no T-invariance analog 
because the “other” particle (the photon in c2’(l, 0) or the nucleon in pI’(O, 2)) is 
initially polarized. 

The relation (4.31) shows that under M-purity, the final state polarization 
coefficients t2’(0, 2) and pI’(l, 0) when the corresponding initial particle is 
polarized, but the “other” particle initially unpolarized, are determined by the 
unpolarized cross-section ~(0, 0). 

The relations (4.29)-(4.32) also provide interesting M-purity analogues of the 
depolarization relation of nN scatteringll 

Final Polarization = D . Initial Polarization + P (4.41) 

where all the polarizations are perpendicular to the reaction plane; P is the recoil 
polarization obtained with an unpolarized target; D is the depolarization coefficient; 
fornN+rrN, D = +1 andfornN --+ EN, D = - 1. The relation closest to (4.41), 
arising from (4.31) reads in terms of the “universally normalized actual” polariza- 
tions as 

t2vo 9 53 = MS2 + ~2vo > 53 (4.42) 

or equivalently 

fwl , 5,) = MPl + f;‘(Po 9 &A (4.43) 

the role of the depolarization coefficient being taken by A4 now. The corresponding 
relations arising from (4.29), (4.30), (4.32) look less simple, but are straightforward 
to write. 

Coming to the M-purity analogs of (4.17) and (4.18), one gets 

&(2, 2) = M~~‘(3, 2), (4.44) 

&(3,0) = --M&y2,0). (4.45) 

Equations (4.17) and (4,18) are the A4 = + 1 examples of these relations. 
The T-invariance relations (4.21)-(4.24) between final nucleon polarizations in 

the reaction plane and final photon polarizations involve interference between 

I1 For a summary, see Ref. [9]. 
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TABLE I 

Summary of the T-Invariance and the M-Purity Relations for yN -+ yN Given in Section 4 

No : Equation; Its source Quantities related Remarks 

1 (4.7)-(4.12); 
T-invariance con- 
straint (4.4) which 
overlaps with parity- 
conservation 

2 (4.13) and (4.15); 
T-invariance con- 
straint (4.3) 

3 (4.14) and (4.16) 
T-invariance 
straint (4.3) 

4 (4.17X4.20); 
T-invariance 
straint (4.3) 

5 (4.21)-(4.28); 
T-invariance 
straint (4.3) 

con- 

con- 

con- 

Final nucleon polarizations normal 
to the reaction plane TO Final photon 
linear polarizations normalorparallel 
to the reaction plane when the 
initial polarizations are also along 
these directions, or are zero. 

Cross-section asymmetry with initial 
nucleon polarized normal to the 
reaction plane and photon un- 
polarized TO recoil nucleon polari- 
zation normal to the reaction plane, 
the initial nucleon and photon being 
unpolarized. 

Same as in No: (2) with nucleon 
tt photon and with polarization 
normal to reaction plane + linear 
polarization normal or parallel to 
reaction plane. 

Different final photon polarizations 
either linear at 45” (135”) to the 
reaction plane or circular, when the 
initial photon is also polarized along 
one of these directions, but the 
initial nucleon is either unpolarized 
or polarized normal to the reaction 
plane. 

Final nucleon polarizations in the 
reaction plane, initial nucleon being 
unpolarized and photon being 
polarized either linearly at 45” 
(135”) to the reaction plane or cir- 
cularly TO Final photon polariza- 
zation, either linear at 45” (135”) 
to the reaction plane or circular, 
the initial photon being unpolarized 
and the nucleon polarized in the 
reaction plane. 

Not necessary to invoke 
T-invariance. 

Standard asymmetry- 
polarization equality for 
elastic scattering. 

Same as above. 

M-purity analogs are in 
(4.44) and (4.45). 

M-purity analogues are 
null identities because 
both sides are an inter- 
ference between ampli- 
tudes of the n- and U- 
types. 

Table continued 
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TABLE I (continued) 

No: Equation; Its source 

6a (4.29) and (4.32); 
M-purity 

6b (4.30) and (4.31); 
M-purity 

7 (4.39) and (4.40); 
The M-purity relation 
(4.30) 

8a (4.42): The M-purity 
relation (4.31) 

8b (4.43); The M-purity 
relation (4.31) 

9 (4.44) and (4.45); 
iu-purity 

10 (4.46) and (4.47); 
M-purity 

Quantities related Remarks 

Cross section coefficients for initial 
nucleon polarization zero or normal 
to the reaction plane and photon 
either unpolarized or polarized 
linearly normal or parallel to the 
reaction plane TO Recoil nucleon 
polarizations normal (or photon 
linear polarizations normal or 
parallel) to the reaction plane when 
the initial polarizations are the same 
as those for a particular cross 
section coefficient. 

Recoil nucleon polarization normal 
to the reaction plane for initial 
nucleon unpolarized and photons 
polarized linearly normal or parallel 
to the reaction plane TO Cross sec- 
tion asymmetries with photon and 
nucleon polarization either zero or 
along the above directions. 

Final nucleon polarization when 
initial nucleon is polarized TO that 
when initial nucleon is unpolarized 
and TO the initial nucleon polariza- 
tion, all polarizations being normal 
to the reaction plane, and photons 
unpolarized. 

Same as in no: 8a), with nucleon t-t 
photon, and nucleon polarizations 
normal to the reaction plane + 
linear photon polarizations normal 
or parallel to the reaction plane. 

Same as in no: (4) 

Same as above. 

M-purity analogs of 
(4.13) and (4.14). 

No T-invariance analog. 

Cross-section asymmetry 
version of (4.30); Can 
be expressed in terms of 
recoil photon (instead of 
nucleon) polarization; No 
T-invariance analog. 

Resembles the Depolari- 
zation Relation in WN + 
wN, No T-invariance 
analog; Similar relations 
follow from (4.29), 
(4.30), and (4.32). 

Same as above. 

T-invariance version is in 
(4.17) and (4.18). 

No T-invariance analog. 
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amplitudes of the n- and the u-type so that for full M-purity, they become identities 
of the 0 = 0 type. 

2. New M-Purity Relations 

Here we mention only two relations resembling (4.44) and (4.45) between final 
photon polarizations: 

&‘(2, 0) = MF,‘(3, O), (4.46) 
&‘(3, 2) = -MPs’(2, 2). (4.47) 

Taken together, the M-purity relations (4.44)-(4.47) cover the case of both un- 
polarized targets and targets polarized normal to the reaction plane. Written in 
terms of the actual polarizations, (4.46) and (4.47) read respectively as 

and 
w%p2 9 5,) = --p,mp, 3 MA), (4.49) 

where the T-invariance result (4.18) has been used in (4.49), and MC2 in the 
argument on the right-hand side of (4.49) gives the relevant value of & . 

C. Remarks on the Comparison between the T-Invariance and the M-Purity 
Relations in yN --f yN 

A convenient summary of Sections (4.A) and (4.B) is given in Table I. In some 
cases, there are only T-invariance relations and no corresponding useful M-purity 
ones (no: 5); in other cases, there are only M-purity relations but no corresponding 
T-invariance relations (nos: 6b, 7, 8, 10); in still other cases one has both the T- 
invariance relations and their corresponding M-purity analogues (nos: 2, 3,6a; 4,9). 
The fact that M-purity relations like the asymmetry polarization equality can hold 
even when the “other” particle is polarized is illustrated by item no: 7 which is 
based on (4.30). Another example where an M-purity relation goes beyond T- 
invariance is the depolarization-like relations (4.42) and (4.43) based on (4.31). 

There is some vector meson-dominance argument (Section (5.B)) for full 
M-purity (with M = + 1) in yN + yN, the argument is not model-independent. 
To decide whether data favour only T-invariance (M-purity of type l), or full 
M-purity, one can consider situations where either only T-invariance relations or 
only M-purity relations exist. For example, are the T-invariance relations [(4.21)- 
(4.28)] nontrivial, or only null identities as full M-purity would give? Examples of 
the other type are to test the consequences (4.39), (4.40); (4.42), (4.43); (4.46), (4.47) 
of full M-purity; these consequences do not follow if one had only T-invariance. 
The above tests require measurements of final state polarizations. 
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5. EXPERIMENTAL EVIDENCE FOR M-PURITY IN yN-+ ViV; 
IMPLICATIONS FOR yN+yN 

A. yN+VN 

Data on the vector meson density matrix are available [5] for linearly polarized 
photons, and unpolarized target nucleons. In order to examine the M-purity 
implications of these data, we recall [4] the M-purity restrictions on elements of 
the vector meson density matrix for various initial polarizations. Stated in terms 
of the density-matrix coefficients pij(m, k), these relations read as 

poo(l, 4 _ Re p+-(0, k) = Re p+-(1, k) Re p+O(l, k) 
poo@, 4 p++(l, k) p++(O, k) - - Re p+O(O, k) 

=M=l/M 

and 
_ Im P+-(2, k) = Im p+-(3, k) 

p++(3,k> p++C4 W 
= M= l/M, 

(5.1) 

(5.2) 

where k is 0 or 2. The equality of the first, second, third, and fourth expressions in 
(5.1) to M would be called the first, second, third, and fourth equalities of (5.1); 
and similarly for (5.2). The denominators in (5.2) do not appear in the decay 
distribution of the vector meson. If one had M-purity of only type 1, one 
would obtain the second equality of (5.1) for k = 0, the third equality of (5.1) for 
k = 2, the first equality of (5.2) for k = 2 and the second equality of (5.2) for 
k = 0. The first and the last equalities of (5.1) obviously involve amplitudes with 
zero V-helicity. 

For our purposes, the available data [5] refer to only (5.1) for k = 0 (unpolarised 
targets). The highest energy (9.3GeV photon energy) data on yN + pN show that 
all the density-matrix elements in (5.1) except those in its third equality are rather 
small, and consistent with being zero, especially for small momentum transfers. The 
elements in the third equality are both equal, giving 

Re p+-( 1, O)/p++(O, 0) = + 1 (5.3) 

within experimental errors which are not large. The highest energy (9.3GeV photon 
energy) data on yN - wN, #IN also show [5] the same features, though the errors 
are larger than for yN -+ pN. Written in terms of the n- and u-type amplitudes, 
(5.3) reads as 

(0 - b)/(a + b) = + 1, (5.4a) 
where 

a = aI + a2 , 

a, = I nZ I2 + I nI= 12, (5.4b) 

a2 = I nI+ I2 + I nf+ 12; 
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(5.4c) 

Equations (5.4) imply that within the experimental errors, 

in yN-+ VN. This result is remarkable in that the single ratio (5.3) implies the 
vanishing of all the u-type amplitudes with a nonzero helicity of the vector meson. 
The FZ- and u-type amplitudes with a zero helicity of the vector meson are experi- 
mentally small, and do not provide such a clear-cut conclusion, though data are 
consistent with the vanishing of these u-amplitudes also. 

The direct experimental evidence for 

Re p+-(0, O)/p++(l, 0) = + 1 (5.6) 

is weak since these density-matrix elements are small and consistent with zero. 
However, (5.5) implies (5.6). Similarly, (5.2) fully and the second and third equali- 
ties of (5.1) for also polarised targets (k = 2) are implied by (5.5). One may note 
that M-purity of only type 1 would not lead to the result (5.3). 

Further experimental evidence for M-Purity in yN --+ VN comes from data for 
the asymmetries P, and Z defined as [5, 81 

P, = (UN - u”)/(uN + u”), 

,JT = (UII - ~d/(~il + fJ.I) 
= @++(I, 0) + Re p+-(1, W/(p++(O, 0) + Re p+-(0, ON, 

(5.7) 

(5.8) 

where uNsU are contributions to the cross-section from natural and unnatural 
parity exchanges, respectively, in the t-channel; u,, ,I are cross-sections for 
producing pseudoscalar meson-pairs (from V-decay) parallel and normal respec- 
tively to the photon polarization. To leading order in energy, 

P, = (2 Re pf-(1, 0) - poo(l, O))/tr ~(0, 0). (5.9) 

The second and third equalities of (5.1), if used in (5.8), lead to 

.Z=M. (5.10) 
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From these definitions, and the fact that p++(l, 0), Re pf-(0, 0), poo(O, 0) and 
poo(l, 0) are experimentally small, it is clear that to a good approximation, P, and Z 
depend primarily on only the large matrix-elements Re p+-(1, 0) and p++(O, 0) 
which occur also in (5.3). The main experimental evidence for M-purity in yN + VN 
is, therefore, based on (5.3) which implies M = +l for all amplitudes with nonzero 
V-helicity. 

We estimate the experimental errors associated with M-purity in yN + VN 
using yN + f”N data [5] for unpolarized targets at 9.3 GeV/c at a typical small 
1 t / value, t = -(O. 12 + 0.1 8)(GeV/c)2. Equation (5.1) then reads as 

-0.05 & 0.04 0.01 f 0.03 0.48 * 0.05 -0.01 f 0.03 - = = = 
- 

= 
0.03 f 0.02 -0.02 f 0.04 0.485 f 0.01 0.03 & 0.02 

M 

(5.1 la) 

or 

1.6 f 1.7 = -0.5 & 1.8 = 0.99 & 0.11 = 0.33 + 1.02 = M, (5.llb) 

where the correlations between the various errors have been dropped (also 
hereafter). Except for the ratio (5.3), the errors in (5.11) are too large to justify a 
firm conclusion about A4 = +I, though M = +l is allowed. For the ratio (5.3), 
the quantity b/a is seen to be small. Neglecting second and higher powers of b/a, one 
gets from (5.11 b), 

b/a = 0.005 f 0.055, (5.12) 

which shows that the M = - 1 combination b is at most about 5% of the M = + 1 
combination a. 

In fact, the numbers for Re pf-(1, 0), p++(O, 0), and Im p+-(2,0) imply [7] that 
any of the three combinations a,, bI , and b, are at most a few percent of 
the dominant combination a, : 

a, - b, = (0.96 f 0.064) d, 

a, + a, = (0.965 f 0.051) d, 

a, + b, = (0.965 f 0.041) d, 

b, + b, = (0.005 f 0.051) d, 

a2 + b, = (0.005 i 0.041) d, (5.13) 

a2 - b, = (0.0 i 0.064) d, 

where d is the overall normalization. Taking 0.05d as the typical upper limit on bl 
and b,, the A4 = -1 amplitudes occuring in b are consistent with zero, and 
bounded in magnitude by about a fifth of the A4 = + 1 combination 

(I nzz I2 + I n-t: I”)““. 
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It would be nice to have much smaller errors in (5.12). We use b/a = 0 in 
Section 5.B. 

Using data on ~~(0, 0) and poo(l, 0), one similarly gets 

1 nz I2 + 1 n+l: I2 = (0.04 f 0.022) d, 

[ u:“, I2 + 1 u?: I2 = (-0.01 f 0.022) d. 

(5.14a) 

(5.14b) 

It is, therefore, difficult to make a firm statement about M-purity of these small 
(helicity-flip) amplitudes. Because the remaining available [5] density-matrix- 
elements depend on unknown relative phases between different helicity amplitudes, 
it is hard to get further numerical estimates for M-purity. 

B. Implications for yN + yN 

The result (5.5) is interesting also for yN --+ yN. The vanishing of uZ= and u,+Z 
is M-purity (M = + 1) of type 1, as given by T-invariance in yN + yN, but 
vanishing of the amplitudes ~1: and u?? means M-purity (M = + 1) of type 2 
which is not required by T-invariance in yN -+ yN. One may regard M-purity 
(M = + 1) of type 1 in yN + VN as support12 for the vector-meson dominance of 
the electromagnetic current, since the corresponding purity in yN --+ yN is already 
guaranteed by T-invariance. The smallness of the yN -+ VN amplitudes with zero 
V-helicity may be regarded as another support for vector meson dominance, since 
these amplitudes are absent in yN -+ yN. With this support from data, one may 
turn the argument around: One can use the vector meson dominance model to 
deduce that the vanishing of uz: and u+t in yN ---f VN implies the vanishing of 
these amplitudes also in yN --f yN. Since u$$ and u?l: are the only independent u- 
amplitudes in T-invariant yN + yN, the result (5.5) coupled with vector dominance 
implies that there are no u-type amplitudes in yN - yN. 

This full M-purity in even yN -+ yN has obvious implications for the comparison 
betweenM-purity relations and T-invariance relations, considered in Section4.C. An 
experimental test of these consequences of full M-purity would throw light also on 
the vector dominance model, as the above argument shows. One should, however, 
note that at present there are some experimental errors associated with (5.5) on 
which our argument for full M-purity in yN + yN is based. It would be nice to 
reduce these experimental errors. 

I* We note that our considerations involve only ratios of density-matrix elements; these ratios 
will remain unaffected even if the overall normalization [5] provided by the vector dominance 
model is not correct. In the vector dominance model, the effective p-contribution to the Compton 
amplitude is an order of magnitude larger than the corresponding w- and +contributions so that 
the errors in yN + UJN, #N data in connection with (5.3) are not very important. 
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6. M-PURITY RELATIONS IN yN-+ VN; COMPARISON WITH yN-+yN 

Section 5.A shows that there is good evidence for M-purity (A4 = +l) for 
amplitudes with nonzero V-helicity in yN --+ VN, while that for amplitudes with 
zero V-helicity is not so good. These latter amplitudes are relatively small [5], 
making M-purity a good approximation in yN + VN. The extra (= zero) V-helicity 
in yN + VN as compared to yN + yN allows one to study the effect of inelasticity 
on M-purity relations as a question of principle. As we shall see, this feature of 
inelasticity does not modify some classes of M-purity relations, exemplifying their 
generality. 

For yN + VN, one needs to consider the vector meson density-matrix instead of 
the final photon polarization of yN --f yN. Using the relation of this polarization 
to the photon density-matrix, one translates the relations involving these polariza- 
tions into the corresponding yN --f VN relations. The relations (4.7)-(4.10), for 
example, now become [7], respectively, 

and 

t2’(0, 0) = 2Re p+-(1, 2) - poo(l, 2), (6.1) 

ci(l, 0) = 2Re p+-(0, 2) - poo(O, 2), (6.2) 

12’(0, 2) = 2Re p+-(1,0) - poo(l, 0), (6.3) 

t2’(1, 2) = 2Re p+-(0, 0) - poo(O, 0), (6.4) 

where the elements poo represent the modification due to amplitudes with zero 
V-helicity; these relations now depend on only parity-conservation (1.1). 

We now consider the yN - VN analogues of the M-purity relations of Section 4. 
The M-purity analogues of (4.29~(4.32) can be obtained by combining (6.1)-(6.4) 
with the first three equalities of (5.1): 

&-‘(0, 0) = 2 Re p+-(l) 2) - poo(l, 2) = MC ~(0, 2), 

I,‘( 1,O) = 2 Re p+-(0, 2) - poo(O, 2) = MC U( 1,2), 

&‘(O, 2) = 2 Re p+-(1, 0) - poo(l, 0) = MC ~(0, 0), 

c2’(1, 2) = 2 Re p+-(0, 0) - poo(O, 0) = MC ~(1, 0). 

(6.5) 

(6.6) 

67) 

(6.8) 

The way in which the cross-section coefficients appear in these relations is the same 
as in yN + yN. For full M-purity, the relation between recoil nucleon polariza- 
tions and these coefficients is also unchanged. 

Unlike yN+ yN, there is no T-invariance analogue of (6.5) and (6.8) now, but 
we consider M-purity of only type 1 to illustrate how the inelastic component 
(i.e., amplitudes with zero V-helicity) behaves so as to leave the relations between 

595/W-17 



578 DASS AND FRAAS 

5’ and a’s for full M-purity unmodified. For M-purity of only type 1, the interesting 
elements are Re p+-(1, 2) and Re pf-(0, 0). The relevant relations (6.5) and (6.8) 
then become 

&‘(O, 0) = 2 Re p+-(I, 2) - poo(l, 2) = MC ~(0,2) - [~poo(o, 2) + #@(I, 2)], 
(6.9) 

&‘(I, 2) = 2 Re p+-(0, 0) - poo(O, 0) = MC ~(1, 0) - [Mpoo(l, 0) + poo(O, O)]. 
(6.10) 

If M-purity holds also for amplitudes with zero V-helicity with the same value of M 
as for the other amplitudes, the first equality of (5.1) shows that the square brackets 
in (6.9) and (6.10) vanish and one recovers, for full M-purity, the analogues 
(6.5) and (6.8) of the T-invariance relations (4.13) and (4.14) for even the inelastic 
reaction yN-+ VN. A similar remark applies to analogues (6.6) and (6.7) of the 
full M-purity relations (4.30) and (4.31). 

Because the above relations between recoil nucleon polarizations and cross- 
section coefficients are the same as in yN-+ yN, the relations (4.33), (4.35), and 
(4.37) which determine recoil nucleon polarizations hold also for yN+ VN; so 
does the M-purity version of (4.15). Similarly, the relations (4.39) and (4.40) 
between recoil nucleon polarizations and cross-section asymmetries remain 
unmodified. Also, the relation (4.42) resembling the depolarization relation for rrN 
scattering is not modified. 

Using the definition of I’i’ and (3.14), one sees that the yN + VN analogues of 
the M-purity relationP3 (4.44)-(4.47) are all contained in (5.2). Similarly, the 
M-purity relations [like (4.34), (4.36), (4.38), and (4.43)] concerning PI’ all get 
translated into the yN -+ VN case by using the second and third equalities of (5.1). 

The M-purity analogs of (4.21)-(4.28) continue to be null identities, as in 
yN -+ yN. 

Some comments on these poo modifications. They occur already in the relevant 
relations (6.1)-(6.4) following from only parity-invariance, but appear system- 
atically in such a way that for full M-purity, the form of the relations (6.5)-(6.8) 
between recoil nucleon polarizations and cross-section coefficients is not changed 
as compared to yN -+ yN. The M-purity equalities relating Re pf-(i, k) to p++(.j, k), 
(i, j) = (0, l), i # j, k = (0, 2), embodied in (5.1) do not get modified13 in going 
over to yN -+ VN. It is the relation of p ++ to tr p (and therefore, to u) that gets 
modified by the poo contributions. The interesting point is that the poo modifications 
occur in such a way that under full M-purity, the trace of the final photon density 

I8 These relations do not involve amplitudes with zero V-helicity, and go over from yN + yN 
to yN + VN unchanged. 
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matrix p+ in yN-+ yN gets replaced by exactly the trace of the vector meson 
density matrix p in yN -+ VN. 

There is thus a “vertex-dependence” in the effects of inelasticity on M-purity 
relations: The relations (4.29)-(4.32) between recoil nucleon polarizations and 
cross-section coefficients are not modified in going over to yN + VN. The cor- 
responding relations (4.29)-(4.32) 

2 Re p:T(i, k) = MCu(j, k), i # j, (i,.j) = (0, l), k = (0, 2) (6.11) 

of yN -+ yN become (6.5)-(6.8) 

2 Re p+-(i, k) = MC u(j, k) + poo(i, k) (6.12) 

for yN --f VN. In contrast to the “unexcited vertex” (nucleon -+ nucleon), there is 
a modification at the “inelastic vertex” (photon --f vector meson). 

7. SUMMARY AND DISCUSSION 

We have considered M-purity relations for spin-effects in elastic and in inelastic 
scattering; the emphasis was on relations which resemble those following from 
T-invariance in elastic scattering-in particular, the asymmetry-polarization 
equality of Section 2. The clue to why some M-purity relations resemble T-invarian- 
ce ones is the fact that T-invariance forbids some A4 = -1 amplitudes in elastic 
scattering, Eq. (1.5). The M-purity analogs of the asymmetry-polarization theorem 
hold, however, for spin configurations much more general than that for the 
theorem, as discussed in Section 2. It is interesting that any relations resembling 
those following from T-invariance do exist between spin effects also for inelastic 
reactions. 

Several reasons were given in Section l.B why M-purity is experimentally 
interesting, but perhaps the cleanest case where there is already experimental 
evidence (Section 5) of M-purity (with A4 = + 1, especially for amplitudes with 
nonzero V-helicity) is yN -+ VN for which M-purity relations were given in 
Section 6 and compared with the corresponding ones for yN -+ yN. The M-purity 
relations for yN -+ yN were compared with the corresponding T-invariance 
relations in Section 4, the results being summarised in Table I. 

Our examples of the T-invariance relations could be divided into three classes: 
(a) relations between different final state photon polarisations, (4.17) and (4.18), (b) 
relations between recoil nucleon polarizations in the reaction plane and final 
photon polarizations (4.21)-(4.24), and (c) relations between recoil nucleon 
polarizations normal to the reaction plane and final photon polarizations, (4.7)- 
(4.10). It is to class (c) that the two examples (4.15) and (4.16) of the standard 
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asymmetry-polarization theorem in yN -+ yN belong; in fact, the M-purity 
analogs and extensions (4.29)-(4.32) and (6.5)-(6.8) of the class (c) all resemble the 
theorem. The M-purity analogs of the class (b) are only null-identities; those of the 
class (a) are the relations (4.44)-(4.47) for yN --+ yN and (5.2) for yN -+ VN (and 
yN --+ yN). But the M-purity analogs for the classes (a) and (b) do not reveal 
interesting information about the transition from an elastic to an inelastic reaction; 
they do not involve the inelastic component (i.e., amplitudes with zero V-helicity), 
and go over unchanged to yN+ VN. The M-purity analogues of the class (c) do 
offer this information; we discuss this class now. 

Consider first the recoil nucleon polarizations and their relation to the cor- 
responding cross-section asymmetries. From T-invariance, one gets the standard 
theorem (4.13) for yN -+ yN. The corresponding M-purity relations for yN + yN 
and yN -+ VN are, respectively,14 (4.29) and (6.5). The interesting point is that not 
only do the u-amplitudes forbidden by T-invariance in yN + yN appear in the 
proper way so as to give the relations (4.29) and (6.5), but also do the extra am- 
plitudes (of both n- and u-types) with a zero V-helicity appear properly so as to 
give (6.5). The relations (4.30) and (6.6) provide examples of M-purity relations 
having no T-invariance analogs; these relations between cross-section asymmetries 
and recoil polarizations have the “other” particle polarized. The comment about 
the extra n- and u-amplitudes with a zero V-helicity appearing properly so as to 
leave the form (4.30) unchanged applies again. Similarly for the transition from 
(4.31) and (4.32) to (6.7) and (6.8). 

While the form of the relation of cross-section asymmetries to recoil nucleon 
polarizations is not changed in going from yN + yN to yN + VN, there is a 
change in the form of the corresponding relation to recoil photon polarizations PI’ 
written as 2 Re p;:. These changes due to the inelastic component are conveniently 
summarized in Eqs. (6.11) and (6.12) where an extra positive semidefinite quantity 
poo adds on to the appropriate cross-section coefficient. 

This implies a “vertex-dependence” in the effects of inelasticity on the M-purity 
analogues and extensions of the asymmetry-polarization theorem: When one 
considers the recoil polarization and the cross-section asymmetry corresponding 
to the unexcited vertex (nucleon -+ nucleon), there is no effect of inelasticity. For 
the excited vertex (photon -+ vector meson), there is a modification due to in- 
elasticity. While the example of yN + rN, VN is interesting, it provides only a 
rather simple form of introducing inelasticity. On the basis of only this example, it 
is difficult to make statements about the changes in M-purity analogs of the asym- 
metry-polarization theorem in going over to a more generally excited vertex (for 
example, a spin-change: Jp = l- to Jp = 2+). The corresponding relations for the 

I4 Of course, (4.29) is interesting mainly for its comparison with yN -+ VN because for yN --t yN, 
M = +1 is given by T-invariance, leading to (4.13). 
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unexcited vertex (nucleon -+ nucleon) are just an example of Section 2 where 
these relations were illustrated for the case when the only restriction on the un- 
excited vertex was the equality of the initial and final spins. The y --f V vertex goes 
only a little farther than this. Because the case of a more general excited vertex has 
no direct T-invariance analog, we do not consider the M-purity analogs of the 
theorem for such a vertex. 

In Table II (which is only another version of Table I) is given a summary of our 
illustrations of the T-invariance and the M-purity relations for yN + yN; and in 
Table III, a summary of the modifications in these M-purity relations in going over 
to yN --f VN. 

The information to be obtained from cross-section asymmetry measurements in 
yN + yN, VN has been considered in the appendix. The question: “Which 
asymmetries are necessary (and which determined therefrom by parity conserva- 
tion)?” has been answered, see remarks (especially no: 1) there. A simple observa- 
tion concerning the asymmetry-polarization theorem is that though T-invariance 
relates the recoil polarization for an unpolarized initial state to the cross-section 
asymmetry with the “other” particle unpolarized, parity invariance equates this 
asymmetry also to the corresponding asymmetry with some special nonzero 
polarizations of the “other” particle; the various asymmetries in Eqs. (A.15) and 
(A.16) of the appendix provide the relevant examples. 

APPENDIX: CROSS SECTION ASYMMETRIES IN yN-+ VN AND yN-+yN 

Some consequences of parity-invariance for cross-section asymmetries in vector 
meson photoproduction and Compton scattering are now considered. Using an 
expansion like (3.6) for the complete set of the actual cross-sections u(P, , LJ, one 
gets 

(A.11 

64.2) 

(A.31 

(A.41 

(A-5) 

G4.6) 

(A-7) 

@-8) 
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where use has been made of the vanishing [7] (because of parity-invariance) of eight 
coefficients out of the sixteen possible ones: 

a(0, 1) = a(1, 1) = a(2,O) = o(3,O) = 0(2,2) = 0(3,2) = a(0, 3) = u(1, 3) 

= 0. (A.9) 

The cross-section asymmetries are 

UP*, 53 - uvi 2 -53 wi ’ *53 = U(Pi ) &) + u(Pg , -&J ’ 
Qi, 5J - UC-Pi , 53 A(*Pi’ 5k) = upi, &J + u(-Pi, &J ’ 

and 

(A.lO) 

(A.ll) 

(A.12) 

where (i and k) can be (0, 1,2, and 3) but the subscript of the polarization ap- 
pearing with both signs in the argument of an asymmetry cannot be zero; the 
asymmetries (A.lO) and (A.ll) can be called “single” asymmetries in contrast to 
the “double” asymmetry (A.12). As shown below, the double asymmetry 
,4(&P, , -J&) is interesting, but the other nonzero double asymmetries are very 
simply given by some single asymmetry because of panty-invariance. 

The parity-conservation results (A.l)-(A.8) give, for the single asymmetries, 
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and, for the double asymmetries, 

&kP, 7 ztL> = 4It~2 3 ItA-,) = wc~, 3 151) = 4fP, 3 ItA,) = 0, (A.24) 

-4fP,, -+5,) = 4f~1, *5,> = PI4 w44 Oh (A.25) 

&t3,, Ita = ate, 3 &C5,> = MO, w43, (9, (A.26) 

4f~l~ &) = [~I417 0) + 524 2M64 0) + ~,Lxl, 91. (A.27) 

The double asymmetries (A.25) and (A.26) are related to the single asymmetries 
(A. 16) and (A. 15) which are interesting for T-invariance in yN + yN. One gets 

&u, 9 Ik-td = &t~l, 51) = 43!2,, 5,) (A.28a) 

= &tf’, , i5,) = &tf’, , 53) = -&tf’, , 53, (A.28b) 

&tP, 7 zt5,) = -w,, &) = &PO 9 &) (A.29a) 

= &tP, , iII,) = W, , HI,) = W, , xtt5,). (A.29b) 

The remaining double asymmetry (A.27) can also be related to single asymmetries, 
but the relation is not equally simple. One gets 

&t~, , 5,) + A@‘,, , rid,) = 4IP,, &:5,)[1 + ~,Lu(l, W(O, ON; (A.30) 

since the factor P,&P(~, 2)/u(O, 0) also occurs in the single asymmetries (A.21) 
and (A.22), one gets 

4Pl 7 f52)[1 + 4H, 7 5o)l - 4Po rt 5‘2) 
= -1 + Mf~l , 5,) + 4Po 9 I!.mI&t~1, +3, 6431) 

used in (4.39) and (4.40). Because of (A.23), a corresponding relation holds between 
kkPl, 54 and 4ff’19 315~). 

Some Remarks 

(I) Out of the eight independent nonvanishing cross-section coefficients, the 
seven independent ratios 

4, wJ(O, O), 4% lM0, 01, 4& 3)/4x (9, 43, 1)/e, O), 43, 3)/&J O), 

41, WV4 0) and 40, W@, 0) (A.32) 

represent the information obtainable from asymmetry measurements. This informa- 
tion is contained in seven independent asymmetries-for example, the set 
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or equivalently, the set 

(2a) Asymmetries requiring a reversal of target polarization in the reaction 
plane may be regarded unnecessary because (a) some of these vanish, as in (A.13), 
and (b) the others are related to asymmetries requiring a reversal of the photon 
(but not nucleon) polarizations, as in (A. 17)-(A.20). 

(2b) One can make a corresponding statement for asymmetries requiring a 
reversal of photon polarizations which are either circular, or at 45”(135”) to the 
reaction plane because (a) some of these vanish, as in (A. 14), and (b) the others are 
related to asymmmetries requiring a reversal of the nucleon (but not photon) 
polarizations in the reaction plane, as in (A.17)-(A.20). 

Of course, either photon or nucleon polarization reversal is necessary to 
measure the asymmetries (A.17)-(A.20). The same remark applies to (A.21) and 
(A.22) though the polarization directions now relevant are different. 

(3a) The asymmetry (A.15) requiring a reversal of nucleon polarization 
normal to the reaction plane remains the same whether the “other” particle 
(photon) is polarized circularly or linearly at 45”( 135”) to the reaction plane or not 
polarized at all. While, T-invariance relates-(4.15)-only A(P,, , k&J to the 
recoil nucleon polarization normal to the reaction plane with an unpolarized 
initial state, the relation (A. 15) shows that that recoil polarization is related also to 
the corresponding cross-section asymmetries for some speciaP nonzero polariza- 
tions of the “other” particle; these special polarizations behave as “inactive 
spectators.” 

(3b) A corresponding statement holds in the case of the asymmetries (A.16) 
requiring a reversal of photon polarizations normal (or parallel) to the reaction 
plane; the initial nucleon may be unpolarized or polarized in the reaction plane; 
T-invariance relates-(4.16)-only A( fP1 , 5,) to the final state photon polariza- 
tion normal (or parallel) to the reaction plane with an unpolarized initial state. 

To obtain 0(0,2)/0(0,0), it is not necessary to use photon polarizations which 
are circular or linear at 45”(135”) to the reaction plane; an unpolarized photon 
beam would do; this supplements the remark (2b) above. Similarly, initial nucleon 
polarizations in the reaction plane do not go beyond an unpolarized target in 
determining ~(1, O)/a(O, 0); this supplements the remark (2a) above. 

(4) Under M-purity, the asymmetries (A.17)-(A.20) vanish [7], leaving 
(A.15), (A.16), and (A.21) as the only nonzero independent ones; these occur in 
Eqs. (4.29)-(4.32) for yN -+ yiV and (6.5)-(6.8) for yN + ViV. 

I5 Here, for example, this is not true for photon polarizations normal to the reaction plane. 
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