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Abstract: A simultaneous analysis of low-energy (W < 2 GeV) data for the reactions n p > K°A
and K ~p — 7°A has been made using the hypothesis of two-component duality combined
with fixed-t dispersion relations. Results are presented for the =*An and N*AK couplings,
The low-energy amplitudes are used to evaluate FESR integrals and lead to large EXD
breaking for the K3y — K heliaty flip amphitudes.

1. Introduction

At low energies, 1nterest 1n the reactions 1N > KA and KN = 7A stems mainly
from the information that can be deduced on the spectrum (1.e. masses and total
widths) and couplings of N* and Z* resonances. In the S = —1 channel extensive
phase-shift analyses have been made [1] and there 15 considerable agreement on the
form of the spectrum for the more important resonances, although their couplings
are less certain. For the S = 0 channel, the spectrum is known from analyses of 7N
scattering, but the N* couplings to KA are very poorly known because lack of data
has hindered phase-shift analysis [2]. The alternative approach of the 1sobar model
[3] assumes resonance saturation for both the real and imaginary parts of the partial
wave amplitudes, and although the latter hypothesis 1s probably a reasonable ap-
proximation, the former is almost certainly not. This follows from the fact that
whereas the 1maginary part of a resonance 1s a local effect, the real part vanishes at
resonance, and 1s non-negligible some distance from the zero position. These anal-
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yses [3] also, 1n practice, do not treat correctly the important Born terms (an arbi-
trary form factor 1s used to suppress them), and the resulting N* couplings are likely
to be unrehable

In the situation where there exists considerable imnformation on the spectrum of
N* and Z* states 1t 1s of interest to explore other methods of determining their
couplings A very promusing approach 1n this respect 1s to use fixed-s dispersion re-
lations and the two-component duality hypothests [4]. The latter asserts that at low
energies the imaginary parts of inelastic two-body amplitudes (1.e those for which
pomeron exchange 1s forbidden 1n the 7-channel) are resonance domunated, and 1s
supported by evidence from 7N [5] and KN [6] scattering Fixed-7 dispersion rela-
tions then enable the real parts to be calculated without additional assumptions
about the low-energy imaginary parts The resulting parameterization, by exploiting
the constraints from the crossed channel, 1s very economical In practice the method
can be used to extract resonance couplings directly from data, given the resonance
spectrum. The resulting amplitudes have fixed-# analyticity by construction. (Am-
plitudes constructed from conventional phase-shift analysis will not necessanly have
this property.) Quantitatively satisfactory results have been obtamned from analyses
of m™p = 7°n [7],vp ~ 7N [8] and yp > K* A [9] data.

At high energies line reversed pairs of reactions provide information on the hy-
pothesis of exchange degeneracy (EXD). At present there 1s little firm evidence on
this hypothesis for the K{,(890) and K%(1400) pair [10]. A rehiable evaluation of
finite-energy sum rules (FESR) could help here, but for overall consistency it 1s
essential that the low-energy amplitudes used as input should also fit the low-energy
data. Thus, 1f resonance saturation 1s used for the imaginary parts in the FESR
integrals then these imaginary parts alone should fit the low-energy data. The out-
put amplitudes from our low-energy analysis will conform to this requirement.

In sect. 2 we discuss briefly the fixed-t dispersion relation formalism for
7N - KA and KN — 7A, and describe the resonance parametrization used. In sect 3
we list the data fitted, and 1n sect. 4 we discuss the fit to the data and the output
low-energy amplitudes. In sect. 5 we evaluate FESR mntegrals and comment on the
implications of the results for K{ — K4 EXD and high-energy models. Our conclu-
sions are summarized in sect 6.

2. Formalism
2.1 Fixed-t dispersion relations

We work with the usual spin-0 — spin-} mvariant amplitudes 4 and B, and denote
those for 7" p > K°A by A_ and B_, and those for the crossed reaction K°p —n+ A
by A, and B, . We choose the ‘baryon first’ phase convention of Levi-Setti [11] and
the Particle Data Group [12], so that our meson state phase factors [13] are differ-
ent to those of Field and Jackson [14]. Therefore our invariant amplitudes are con-
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sistently of the opposite sign to those of ref. [14]. In terms of the vanable
v=1 (5 —u) crossing takes the form

A, )=-A_(-v,1), B.(v,t)=B_(—v,1).

Dispersion relations for 4, and B, mwy be obtained by using a contour consisting of
the real axis |[Re v| <p_ and a circle of radius |v| = v_. They are

1fu ImA4,(',1) o ImA_(V, 1)
+ = _ | e
ReAd,(v, 1) - dv e = dv O
vy v_
A (V t)
1 P
t o Ja—r"" s 40,1, 2.1)
C
VC v 4
ImB, (', t) ¢ ImB_(v,1)
1 AT A e 4
Re B, (v, t)——f dv’ ST ;rf dv Sty
v_
B (V t)
! f ———+BYw, ), (2.2)

where

v =3 [((V+w? —3Q+31],
v =LA+ - bR 44

Q =K2+/.12+N2+/\2,

and K, u, N and A are the masses of the kaon, pion, nucleon and lambda, respective-
ly. The pole (Born) terms in (2.1) and (2.2) are given by

e APty Ty AGnNNGKNA_2E_A—NG1rAEGKNE
A \ vyttt 4 vy 5TV

>
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where

v, =12M? - Q), i=N, %,

and the G’s are coupling constants in the normalization and ‘baryon first’ phase con-
vention of Levi-Sett1 [11]. They are related to the usual [15] charge-independent
couplings g by
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GoNN =\/§g7rNN’ Gray =8&rax >
GKNA 8KNA > Gxns =V2Ekns - (2.3)

To evaluate eqs. (2.1) and (2.2) for those cases where convergence 1s obtained as
v, — °o requures a knowledge of the imaginary parts for v' > V.. Expectations based
on the assumed dominance of K3, — K4 exchange at high energies suggest that not
all the dispersion relations will converge, and 1n at least one case we would need a
model for the entire amplitude on the circle |v| = v, For simplicity, we have
treated both cases in the same phenomenological way by representing the high-
energy part of the dispersion relation by an 1ntegral over a small number of ‘pseudo-
resonances’ [8] of fixed masses Wy > 2 GeV (1.e. above the region of fitted data),
but vaniable couplings. The consistency of this procedure 1s discussed 1n sect. 4.

The low-energy 1maginary parts are expressed as sums of resonances of fixed
masses and widths but free couplings (the necessary partial wave decompositions
are given 1n ref. {14}), and it 1s these couplings, together with those of the Born
terms and the ‘pseudo-resonances’, that are the parameters of the model.

2.2. Resonance parametrization

The general resonance formula we use for the imaginary part of a partial wave
amphitude is

™

Ir,r) ir
2(k,k,)% (We — W2 + (T2

Im f(W) = (2.4)

where W =+/s; Wy 1s the mass of the resonance of total width I" and partial width
r; I‘] mto channel 1,7, and &, k} are the c.m. momenta in the two channels.

To achieve the correct threshold behaviours at each of the thresholds we have
inserted simple barrier factors into the widths. However, since these are not ex-
pected to play a significant role above the resonance energy, we have set them equal
to umty for all W= Wy . We distinguish two cases. (1) a resonance occurning between
two thresholds (e.g. the P;;N(1470), which lies between the #N and KA thresholds),
and (1i) a resonance lying above the highest threshold (e.g. the F 15 2(1910), which
lies above both the mA and KN thresholds). The appropriate modifications to the
partial widths for the vanous regions in both cases are obtaned by analytic continu-
ation, and are given in table 1. We take the momentum dependence of the total
width to be that of the lowest mass channel. Using the results of this table it 1s
straightforward to show that the contribution of a resonance to Im 4, and Im B, is

a real continuous function having the required threshold behaviours at both thres-
holds.
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Table 1
Forms used for I"(k,) and I‘] (k]) in eq. (2.4), assuming that the threshold for channel ; 1s below
that for channely

Resonance between thresholds —\[ Resonance above both thresholds
T
region E, [‘] ‘ region r, I‘]
k> kR, Y, k> kR
Y Y
R . R t H
k] >lkj | o k] > /‘I
k, > kR YLk, < kR K, \ 2041 k, |20+
R, iR R (—E) Ky
k/ <Ik] | ) ]— ; k/7 f»k] k, k/
kl > k[R X y(zlk/l)ZlH kl < klR s ( kl )2I+l 7(1[/(]' 20+1
R i 7 R [ D 7
Tyl <1k, lk]Rl k1< K sz ]R
k, < kR ke k, < kR Ky 2L
k1> kR 7’(7{) KA k1> kR 7’(*‘) '
|]!>I/I k, 1]l> ; sz

Centre-of-mass momenta at the resonance energy W = Wg are denoted klR, k R, and the moduli
signs tmply that the momentum has been analy tically continued below the channel threshold.
The quantities v,, v, are real coupling constants.

3. Data

For the § = 0 channel, 77p -~ K°A, we have fitted all available differential cross
section (dcs) and polarization (P) data for W S 2 GeV (this corresponds to
Kiab <16 GeV/c), and {¢| <1 GeV2 The range n ¢ 1s based on a conservative esti-
mate of the range of validity of the relevant partial wave expansions. The data were
taken from ref, [16], and consist of 307 dcs, 81 P and 84 P X dcs measurements.

In the S = —1 channel, Kop - T A, there are essentially no data available. The
1sospin related channel K~ p - 7°A has, however, been extensively studied, and so
we have used data for this reaction. Since the sum total of data available for
K~ p = 7°A far exceeds that for 77 p - K°A, and 1n order that the S = —1 data
shovld not dominate the solution, we have restnicted ourselves to the representative
data of ref [17], which consists of 916 dcs, 294 P and 104 P X dcs measurements.
More S = —1 data can be included when they can be balanced by more experiments
on 7~ p —~ K°A. The total number of data points is 1786.
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4. Low-energy amplitudes

The low-energy input spectrum used is shown 1n table 2 The cnterion used to
select the Z* spectrum was that 1t should include all states listed as ‘two star’ and
above 1n the Particle Data Group tables [12] with respect to the mA decay channel
The N* spectrum decaying mto the KA channel 1s much less understood, and we
have selected all N* resonances with an overall ‘two star’ or better status, The
masses and total widths are as given 1n ref. {12]. For the ‘pseudo-resonances’ we
made no serious attempt to identify them with actual particles, but have included
some which have been suggested 1n recent analyses [12, 19].

For a set of couplings for the Born terms and the resonances, the imaginary parts
of A, and B, were obtained by the usual partial wave series, and the real parts
found by evaluating the dispersion relations (2.1) and (2.2) The couplings were
varied to fit the data described 1n sect. 3. Numerous solutions have been investigated
using as 1mtial estimates for the couplings values obtained from phase-shift analyses
[1,2,19, 20], as well as predictions from symmetry schemes [11, 14, 19, 22]. The
overall best solution has x2/NDF = 2.28, and gives a good representation of the
data, comparable to other energy-dependent fits to more than a single channel. As
examples of the quality of the solution we show 1n figs. 1 and 2 fits to a sample of
the data 1n each channel. A breakdown of the final x2 by channel and data type 1s
shown 1n table 3.

Table 2
Input spectrum of N* and £* resonances used 1n the fixed-r dispersion relations
N* resonances £* resonances
resonance mass total width resonance mass total width
(MeV) (MeV) (MeV) (MeV)
Py, 1470 240 Pi3 1383 36
S11 1530 70 Dis 1670 50
D3 1520 120 S 1750 65
Dis 1672 142 Dys 1765 120
Fis 1688 127 Pi3 1840 100
S11 1706 140 Fis 1910 70
Di3 1730 130 Py 1926 185
Py 1783 250 Di3 1940 200
Py3 1864 335 Fis 2030 135
Fiq 1990 200
Di3 2046 243 PYs 2070 100
Giq 2184 275 Gyq 2100 100
Hj 14 2210 100
Hio 2220 260 P 2290 150

‘Pseudo-resonances’ used to parametense the high-energy regiton are shown below the dashed line
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Fig. 1. Fits to sample differential cross section and polarization data for n~p — KA,

The couplings of the low-energy resonances (FZI‘])% and the Born terms G, G, [4n
are given 1n table 4. Following Levi-Sett1 [11] the partial widths include all charge
modes and are related to the amplitude at resonance #,,, usually quoted in phase-
shift analysis [12], by

r,r) =¢,r,

1y

while the couplings G, are related to the usual [15] charge-independent ones by eq.
(2.3). The errors are estimates of how much each parameter can be varied to pro-
duce a change in x2 of 2.5%, after reminimising on the remaiming parameters. (A
change much greater than this begins to produce qualitative differences in the solu
tion.) A point of importance for what follows is that 1n all solutions the couplings of
the Born terms and the P} 3 X(1385) were always found to be well within the errors
quoted.

The most recent reviews [19, 20] of KN — wA partial wave analysis conclude
that the D3 Z(1660), S;; Z(1750), D;5 Z(1765), Fy5 Z(1915) and F;; 2(2030)
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Fig. 2. Fits to sample differential cross section and polanization data for K p — nCA,

Table 3
Breakdown of the Xz /N data by channel and data type for the final solution listed 1n tables 4 and
5
Channel DSC P P Xx DCS Total
no. of data 307 81 84 472
7 p—K°A 5
x*/N data 2.6 2.0 3.48 2.66
_ no. of data 916 294 104 1314
K7 p—a°A 5
x* /N data 2.4 1.68 1.21 2.15
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Table 4 .

Values of the couplings (T, 1‘,)3 =1, 1" at resonance in MeV, and of the Born couplings GlG]/41r
(dimenstonless) from this analysis compared with values used in recent FESR evaluations [14,
18], and estimates from phase-shift analyses (see text)

State This calculation Ref. [14] Ref. [18] PSA

N(938) -17.6 £ 6.8 -24.1 —-24.1

P11(1470) —-71.1+16.3 —40 —-40

S11(1530) —-48.4 + 15.0 5.5 3.8

D;3(1520) ~ 91+ 38 - 1.2 - 7.2

Dy5(1672) - 4.8+ 0.9 - 2.2 0 or 4.8 -3+ 3
N* Fs(1688) ~ L1t L1 - 1.2 0 — 2+ 2

S11(1706) -25.0+ 46 —41.6 24,7 —29+ 4

D13(1730) 34+ 2.5

P11(1783) ~374+ 9.6 13.5 6.1 —34+ 8

P13(1864) —2232:11.2 -18.1 - 86 34+ 7

F17(1990) — 42+ 6.6

£(1189) - 7.+ L9 - 57 - 5.7

Pi3(1383) 211 £ 115 17 27

D,3(1670) 0.9 3.0 5 6.8 3¢ 1

S11(1750) - 7.8 50 -20 -23 ~ 91+ 4

D;5(1765) “3L1+ 5.7 -27 -75 —42+ 10
* P{3(1840) 122+ 7.8 410 24

F15(1910) - 61+ 39 - 49 ~15.1 —~ 9+ 3

P;,(1926) —31.3:22.0 —24 -36 —24 to +11

D;3(1940) -30.5+13.9 -39.28 —26.4 - 81to—40

F17(2030) 26.3: 71 34 - 7.8 36+ 4

) Ths state was actually omitted in most of the calculations of ref, [14],
Phases and normalizations have been changed to agree with the Levi-Sett1 conventions {11]
where necessary.

resonance parameters are reasonably well established We therefore list 1n table 4 the
couplings for these five resonances from Van Horn’s analysis [21], as given 1n table 7
of ref [19].

The three remaining above-threshold states, P;3 Z(1840), P{; 2(1926), and
Dy Z(1940) have considerable associated background, and we list ranges for thetr
couplings from refs. [12, 19]. There is much less information on N* resonance para-
meters from #N > KA partial wave analyses [2], and we give average values for the
couplings of the D5 N(1672), F;5 N(1688), S;| N(1706), P;; N(1783), and
P13 N(1864). In addition, solution B of Lovelace and Wagner [2] contains a
Dy3 N(1730) with a coupling ¢tT" = 15 MeV.

Information on the couplings of the below-threshold states is, of course, much
less direct, and comes almost exclusively from SU(3) fits [11, 12, 19] to decay rates,
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Table 5 1
Values ot the couplings (1‘,[‘])2 = tl] " at resonance (1n MeV) for the ‘pseudo-resonances’

N* resonance x* resonances

state coupling state coupling

D13(2046) 9.3 P{3(2070) 23.9

G1+(2184) 15.4 G17(2100) -27.6

H14(2220) - 7.2 Hy 11(2210) -12.0
P13(2290) 30.0

or higher symmetry estimates. This 1s the source of the values quoted 1n refs. [14]
and [18] and of their Born term couplings (calculated from SU(3) with a =

D/(D + F) = 0.6). The least rehable of the SU(3) estimates are those for the Sq1
N(1530) and Py N(1470). In particular, for the former, the most recent SU(3) fits
[12,19] give 1T" =~ —2 MeV, while SU(6)y, fits [22] ncluding mixing with the Sy,
N(1706) give tI" =~ —30 MeV. The latter 1s 1n agreement with our own estimate (see
table 4).

The agreement between our results and those from phase shift analysis 1s very
encouraging Also our values for the P;3 Z(1383) and Born term couplings are 1n
remarkably good agreement with SU(3) considering the difficulty of including these
large pole terms properly in 1sobar models [3]. The direction of SU(3) breaking for
the Born couplings 1s even such as to reduce the coupling to a value close to that
obtained 1n the most reliable of previous phenomenological estimates [15,23].
Also shown 1n table 4 are values of the couplings used 1n two recent FESR evalua-
tions [14, 18], which we will comment on in sect 5 below.

The values of the couplings of the ‘pseudo-resonances’ are given 1n table 5.
Although we have not tried to identify these with physical states (table 5 1s pre-
sented solely that the amplitudes to be discussed below can be reproduced) we have
checked that the resulting high energy contributions to the low-energy region, and
the total 1imaginary parts near the cutoff v = v.are both consistent with expecta-
tions from high energy models To do this we have used the models of Loos and
Matthews [24], Irving et al. [25], and Field and Jackson [14], and to calculate the
contributions to the low energy region we have evaluated the contour integrals 1n
egs. (2.1) and (2.2). We find that the ‘pseudoresonances’ give total contributions
whose order of magnitude 1s consistent with the contour ntegrals, and whose total
Imaginary parts near v = v are also qualitatively consistent with those of the high-
energy models.

In figs. 3 and 4 we show the low-energy amplitudes 4. (v, t) and B, (v, 1), the
former defined by



340 R.C.E. Devenish et al., tN — KA and KN — nA

T T T T ecacsssnales
i r - - 1/'\ """""
| 20[ .-. I\\ Il
- N
=~ ! ﬁfﬁ
1 0 - RN 1 ) -+— }
M NV
L o N
\
-20+
1 —sor ReA(t=0)
I I ! —_—___——T—_——I—-
2 3 4 3 4
50 —
! s(Gevy | ' ,
2 T3 . 1oF T s(GeV)
T 1 T 2 3 4
} } t
-50r- B _10-
150k ms.(t=0) | 3T
- o _50F ImA’_(t =0)
1 1 1 L 1 1
T T T T T T
50~ . 1 20+ AN
e L | ot es -
T t RN IO
_ 0 \ ) L |
5ok - . | .
L 4 -20r
L ReB.(t=-05) | i
150 iok
} _60F ReA'(t=-05)
4
] 1 1
| @ 2 3 4
s(GeV) -
50L 4 20 }r s(GeVY
4 ﬁ\ 3 4
i 0 t t :
sl \/ | L
-20+
150k ImB.(t =-05) 1 -sof imA(t=-05)
1 i 1 i 1 1 1

Fig. 3. Values of 4’ (v, #) and B_(», 1) for t = 0 and —0.5 GeV? 1n umits GeV = 1. The various
contributions are (———)N*, (—-—.— y£*, (...)Born, (—)total. The physical threshold 1s
denoted by T.



T T ' ~N
[ /
| ,\\ //*\/ A
2001 ReB.(t=0) 4 L \JI ~o .
p 1 | M
. A —_____7™ SN\ |
I 1 ok cevseee |
200 1 -sok - 7
.-. L ) ReA’,(t:O) ..
:y | ; s
2 3 4 t i f
100 F ! s(GeV)? - 2 3 £
2 3 4 20t t s(Gev)? 7
t t T | T 4
2 3
-100f 1 © < %
-20 7
.300F ImB, (t=0) ] - i
-40F ImA(t=0) )
1 1 L [ L : ;
200} 1
0
-200} ]
0 i
-50F .
- ImB, (t=-05) T - ImA(=-05) 1
_100+ 1 4T |
[ L L L L I

R.C.E. Devenish et al., nN — KA and KN — nA

341

Fig. 4. Values ofA',r(v, tyand B (v, t) fort = 0and —0.5 GeV? in units GeV = 1, The various
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Table 6
Individual contributions of physical region resonances to the integrated cross section compared
to data

Resonance Mass py (approx) oplres) ap(n7p—KOA)
(MeV) (GeV/c)
0.904 0056 + 0.015
D5 1672 1.0 0.036 0.56 = 0.04
Fis 1688 1.03 0.003 0.73 +0.03
Si1 1706 1.06 031 0.899 = 0.06
N* D{; 1730 1.11 0.012 0.58 + 0.034
Pi1 1783 1.205 0.181 0.29 = 0.05
Pi3 1864 1.36 0.061 0.3 =0.05
Fi7 1990 1.62 0.01 0.21 =0.025

op(K"p— 7OA)

0.293 52 +09
D13 1670 074 0.009 243 0,38
S 1750 0.91 0.15 3.4 +0.3
Dis 1765 0.94 1.97 2.9 +0.24
Pis 1840 1.1 0.233 1.69 *0.15
£* Fis 1910 125 0.147 ~125 0.1
Py 1926 1.29 0.178 ~1.2  +0.08
D13 1940 1.32 0.288 1.12 +0.14
Fig 2030 1.52 0.758 ~1.15 0.06

The data are taken from CERN/HERA 72-1 and 2 or 18 1n mb

' _ t w (A—N)(uz—Kz)}
A+ ’ =l - — A+ s [— B+ >
+00 [ (A +N)2:| O RN 2A +N)? - [)(4.1)

for t = 0 and —0.5 (GeV)2. These amplitudes are essentially the 7-channel helicity
amplitudes [14], and have been calculated using al/ the states of table 2.

For the real parts of the 7~ p - K°A amplitudes (fig. 3) the main feature 1s a
strong cancellation between the £*’s (of which the dominant contribution 1s the
P3(1383)) and the Born terms. The cancellation 1s almost complete in B and pro-
duces a negative background to the N*’sin 4" Of the N*’s, the below threshold
P1(1470) gives the largest contribution to both the real and imaginary parts. We
agree with the results of Lovelace and Wagner [2] that the S;;(1706) and Py,(1783)
provide the biggest physical region effects. The P|3(1864) 1s also quite important.
The ‘importance’ of a resonance n the physical region can be judged from table 6
where we show the contnbution of individual resonances to the integrated cross
section compared to data.

The cancellation between the Born terms and the £*’s 1s also apparent in the real
parts of the K°p — n* A amplitudes (fig. 4), particularly in 4'. The background from
the N*’s is small, Of the Z*’s again the below threshold state P;3(1383) provides
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the dominant contribution to both real and 1maginary parts. As can be seen from
fig. 4 and table 6 the physical region states are more important 1n this channel,
particularly the D;5(1765) and F,(2030).

The breakdown of the amplitudes discussed above and the results in table 6 show
quite clearly the power of the fixed-r method in being able to calculate the back-
ground.

5. Finite energy sum rules

Using our amphitudes we now examine the behaviour of the low-energy FESR
integrals. We work at fixed f with invanant s-channel amplitudes f, . (v, t) defined by
- v —
fu=A+t 30 B, fi_ =4 (5.1)
These are proportional, to leading order in s, to the s-channel helicity amplitudes.
Combainations corresponding to the exchange of K¥; and K5 quantum numbers 1n
the #-channel are

AV=_l4,+4), AT=—j4,-4)), (5.2)

(similarly for BY>T) and to ensure that we have a function which is odd under
crossing we define (dropping helicity indices)

FVY T, n=v" VT 1), (5.3)

where for K¥;(K%) exchange # = O (1). The low-energy parts of the FESR integrals
are then

1

Vr+k+1

where the Born terms have been formally included in the integral. We will comment
on the choice of the branch point 7 below

The idea of evaluating the L’s 1s that they contain informatton on F(v, t) for
v < vy. In the cases where Regge-pole behaviour F(v) ~ v® sets 1n for the imaginary
(real) part for v > v, k = 0(1) yields information on Im F(Re F) for v > v;. Wedo
not necessarily expect all the amplitudes to be well approximated by Regge-pole
forms. Without a specific model we cannot deduce detailed features at high energes.
Nevertheless general features, such as the presence of fixed-¢ zeros, the order of
magnitude of F, and also roughly what 1ts phase 1s, should be deducible. These have
implications for general questions such as the peripherality of tensor exchanges, and
the validity of EXD.

To perform the integrations in (5.4) we need the amplitude in the unphysical re-
gion. For £ = 0 we need only Im F; for k = 1 we need Im F for v2 <72 and Re F
for v2 > 52, We have chosen to use the conventional Legendre series expansions for

IARYINIE f dv Im{(@? — vz)%kFV’T(u, 0}, (5.4)
0
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the extrapolations. The convergence of these are, strictly speaking, very limited, and
governed by the boundaries of double spectral functions. The effective boundaries,
however, are given by box graphs with resonance intermediate states, and since these
are far from the region of interest 1t is reasonable to use Legendre series expansions
for Im F out to at least —f = 1 GeV2. For Re F the convergence is still, in principle,
limited to || S (u + K)2, the lowest asymptotic limit of the boundaries of the box
graphs. For this reason we have chosen to work with the branch point ¥ = v (¢)
where vy (1) 1s the largest of the v values at the physical boundarnes of the two reac-
tions 7N - KA and KN - 7A. This ensures that we need Re F only 1n the physical
region.

The quantities LX:I were evaluated using as input the low-energy solution of
table 4, i.e. choosing the cutoff v; to exclude the ‘pseudo-resonances’. (The low-
energy couplings are much better determined than the high-energy ones.) In practice
this corresponds to taking v = v (W = 2.14 GeV). In making this evaluation, Re F
under the FESR integral 1s obtained from the fixed-# dispersion relations using the
full spectrum of table 2. Thus 1s to ensure consistency with the amplitudes obtained
from fitting the low-energy data. The results for & = 0 are shown by the solid lines
on fig. 5. Also shown 1s an error corridor obtained using the errors given in table 4,

LY LY
20+
20~ =
[
0 * KX XXX XXX X 0 “
x x x XXX
20+ —
_20}4 —
| | | ]
0 -05 -10 0 -05% -10
t (GeV)?

Fig. 5. Values of LY’I(t, k). The sohd lines give the central values and error corndors for k = 0
evaluated with the cutoff corresponding to W; = 2.14 GeV. The circles show the effect of 1n-

creasing the cutoff to Wy = 2.50 GeV. The crosses denote the values of L for k = 1 using W,

2.14 GeV. Units are GeV = 1,
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assuming them to be uncorrelated. While this 1s undoubtedly incorrect quantitatively,
1t should give a qualitative measure of the relative uncertainties. The results for &k = 1
are shown by the crosses The errors (not shown) are large because of cancellations
in the real parts.

In an EXD Regge pole model, the imaginary parts of both flip amplitudes would
have single zeros at a(t) = 0, which for

a(t)=0.35 +0.82¢ , (5.5)

(the trajectory ;{?ssmg through the K3, and K} masses) s at r ~ —0.4 GeV2. Both
the flip terms L;I(t, 0) do indeed show single zeros, but closer to £ = —0.6 GeV2,
1.e. near the position implied by penpherality, or the dual absorption model [26].
This 1s consistent with the fact that i both cases the N* and Born contributions are
very small, and the ¢#-dependence is essentially that of the £* resonances (although
in the case 0fL+T_ (¢, 0) the zero 1s moved in from t = —1.0 GeV?2 by cancellation
between the Z*’s and the other contributions). The most important *’s are the
Py3 Z(1383), D5 £(1765), F15 2(1910), and the Fy; £(2030), all of which in-
dividually exhibit a peripheral zero at £ ~ —0 5 (GeV)?. The quantities LY’T_(I, 1)
however, also show single zeros which 1s unexpected in any model

Duality and EXD predict that the S = —1 amghtude is real at high energles, which
1n our convention (see eq. (5.2)) implies that L," (¢, 0) and L+T_(t, 0) should have
opposite signs, whereas our results show that these two quantities have the same
sign throughout the entire ¢ range Thus the imaginary parts of the flip amplitudes,
while consistent with a peripheral picture [26] are not consistent with the hypothe-
sis that they are dominated by EXD Regge poles. This conclusion has also been
reached by Vanryckeghem in a recent evaluation of FESR integrals for hypercharge
exchange reactions [27]. The EXD breaking 1s in the same direction as suggested by
data at higher energies [10].

To check whether this conclusion is dependent on the cutoff position we have
also evaluated the integrals for & = 0 including the ‘pseudo-resonances’. Thus we use
vy =y, =v (W =2.5GeV). The results are shown by the circles in fig. 5, and do not
change our previous conclusions. This suggests that amplitude analyses which have
been made under just this EXD assumption [25] should be re-examined It 1s inter-
esting that a similar conclusion regarding EXD breaking in the low-energy domain
for p — A, exchange helicity flip amplitudes has been obtaned 1n a recent analysis
of FESR integrals for KN scattering [28]. This latter analysis also finds a zero in the
real part of the tensor flip amplitude at ¢ ~ —0.6 GeV?2 (but finds a double zero
the real part of the vector amplitude and no zero in the imaginary part of the tensor
amplitude). For the nonflip terms, L+\i (r, 0) shows a strong absorption zero [26] at
t~—-0.1 GeV? with a suggestion of a second zero at larger ¢ values, but the errors
are very large there. L+V+(t, 1) 1s very small and shows no zeros. L+T+(t, 0) also shows
evidence for a zero at small ¢, but equally valid interpretations are two closely spaced
zeros, or possibly a double zero at ¢ ~ —0.4 GeV2. Since LL(Z‘, 1) has a single zero
at t ~ —0.5 GeV2, the latter interpretation is consistent with the ‘no-compensation’
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mechamsm [29]. However, the structure 1n L+T+(t 0) 1s not very stable as the cutoff
is increased, and so any 1nterpretation 1s open to question. In both non-flip terms
LV T(z‘ 0) there are strong cancellations between the Z*‘s (mainly the Py 5 2(1383))
and the Born terms, with the resulting 7-dependence largely that of the N* reso-
nances. At small ¢ the important N*’s are the S;,(1530), Pil(1783) and P;3(1864)
At large ¢ these are replaced by the D;5(1520) and D15(1672)

Overall the results for the non-flip terms (i.e. LH(I 1) small, the ‘cross-over’
Zero m L++(t 0), and the zero structures in L+T+) are 1n agreement with the ampli-
tude analysis of Irving et al. [25] at 4 GeV/c despite the fact that the latter authors
used input assumptions for the flip amplitudes which are contradicted by our FESR
results. This is not too surprising because both in [25] and here the flip amplitudes
have a zero near ¢ = —0.5 GeV2. As the flip amplitudes must also vamsh in the for-
ward direction they are not important for |¢| < 0.6 GeV2. (See also [25] fig. 8
where experimental bounds are shown for the modulus of the physical flip amph-
tude and comment on p. 586).

Finally, we compare our results with those obtamned 1n two previous FESR anal-
yses [14, 18]. In the paper of Field and Jackson [14] FESR’s for the imaginary parts
of the amplitudes A" and B (the former defined 1n eq. (4.1)) were evaluated in a
narrow-width approximation using the input parameters of table 4. These amplitudes
are directly related to ¢-channel helicity amplitudes. By assuming unit slopes (1
GeV—2) for the K% and K% trajectores and defining oV (¢), (aT(£)) to be zero at
the position where the sum rule for Im BY, (Im 4'T) vanishes, the trajectory func-
tions were obtained. The vector and tensor pole residues then follow from sum rules
for Im A"V>T and Im BV-T. Exchange-degeneracy 1s claimed for the B (¢-channel flip)
residues, but the A’ (z-channel nonflip) residues differ by a low-order polynomual.
However, the trajectories, which exhibit approximate EXD, are found to have very
low 1ntercepts a(0) =~ 0.15. Repeating the calculations of Field and Jackson with
our parameters (without the narrow-width approximation) could give oV (0) ~ aT(0)
0.4 a result much closer to the EXD trajectory of eq. (5.5). However 1n view of the
large errors on the integrals we do not consider such a method to be reliable. The
results for the sums A4'Y>T are qualitatively similar to those for LY’E(I, 0). There is
some evidence for EXD in the sums for BY-T in that they have oppostte signs. The
errors are large, particularly on BT,

Argyres et al. [18] also examine FESR’s for the imagimary parts of A hypercharge
exchange reactions using s channel amplitudes. They present a solution which ex-
hibits approximate EXD for the flip amplitudes. Thus is achieved, however, only by
choosing unphysical values for the couplings of some of the low-energy resonances,
in particular for the important D5 Z(1765) and F;; Z(2030) (see table 4). This
agan 1llustrates the importance of using an input solution which actually repro-
duces the low-energy data.
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6. Conclusions

We have used fixed-r dispersion relations and duality to determine the Z* Am and
N*AK couplings from data on the reactions 7~ p > K°A and K~ p = 7°A. Where
comparable our results are in agreement with previous phase-shift analyses (see refs
[1,2]). We also give information on the important below threshold resonances and
the Born term couplings. Our results are summanzed 1n tables 3 and 4 By using
dispersion relations we are able to calculate the backgrounds.

Using these couplings we have evaluated low-energy FESR intergrals for ampli-
tudes asymptotically proportional to s-channel helicity amplitudes. The results are
summarized 12 fig. 5. In particular we find no evidence for exchange degeneracy 1n
the flip amplitudes. This 1s 1n contrast to two recent amplitude analyses [18, 25]
where just such an assumption was made. In particular 1n ref, [18] EXD 1s enforced
for the low-energy integrals by adjusting the resonance couplings. As can be seen
from table 4 1n many cases their values lie outside the range that we have determmed
from the low energy data. In view of the size of the errors on the FESR imtegrals we
also consider 1t most unreliable to determine the trajectory parameters from the
positions of the zeros of the mtegrals as was done 1n ref. [14].
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for hospitality during various stages of this work. We thank F.T. Mezere, F. Elvekjaer,
C. Michael, R.C. Johnson, A.T. Davies, J.L. Petersen and D.G. Sutherland for dis-
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