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Abstract: A simultaneous analysis of low-energy (W <~ 2 GeV) data for the reactions zr-p -* K°A 
and K-p ~ n°A has been made using the hypothesis of two-component duahty combined 
with flxed-t &sperslon relanons. Results are presented for the Z 'An and N*AK couphngs. 
The low-energy amphtudes are used to evaluate FESR integrals and lead to large EXD 
breaking for the K~ - K~ hehcxty flip amphtudes. 

1. Introduction 

At low energies, interest m the reactions 7rN ~ KA and KN -+ nA stems mainly 
from the reformation that can be deduced on the spectrum 0.e. masses and total 
widths) and couplings of N* and ~* resonances. In the S = - 1  channel extenswe 
phase-shift analyses have been made [1 ] and there xs considerable agreement on the 
form of the spectrum for the more important resonances, although their couplings 
are less certain. For the S = 0 channel, the spectrum is known from analyses of nN 
scattering, but  the N* couphngs to KA are very poorly known because lack of data 
has tundered phase-sluft analysis [2]. The alternatwe approach of the isobar model 
[3] assumes resonance saturation for both the real and imaginary parts of the partial 
wave amphtudes, and although the latter hypothesis Is probably a reasonable ap- 
proximation, the former is almost certainly not. This follows from the fact that 
whereas the imaginary part of a resonance is a local effect, the real part vanishes at 
resonance, and xs non-negligible some distance from the zero position. These anal- 
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yses [3] also, in practlce, do not treat correctly the lmportam Born terms (an arbi- 
trary form factor is used to suppress them), and the resulting N* couplings are likely 
to be unreliable 

In the situation where there exists considerable information on the spectrum of 
N* and !;* states it is of  interest to explore other methods of  determining their 
couplings A very promising approach in tins respect is to use fixed-t dispersion re- 
lations and the two-component duahty hypothesis [4]. The latter asserts that at low 
energies the imaginary parts of  inelastic two-body amplitudes (1.e those for which 
pomeron exchange is forbidden in the t-channel) are resonance dominated, and is 
supported by evidence fr.)m nN [5] and KN [6] scattering Ftxed-t dispersion rela- 
tions then enable the real parts to be calculated without addmonal assumptmns 
about the low-energy ~magmary parts The resulting parameterlzatlon, by exploiting 
the constraints from the crossed chalmel, is very economical hi practice the method 
call be used to extract resonance couphngs directly from data, given the resonance 
spectrum. The resulting amplitudes have fixed-t analytlclty by construction. (Am- 
phtudes constructed from conventmnal phase-shift analysis will not necessarily have 
tins property.) Quantttatlvely satisfactory results have been obtained from analyses 
of zr-p ~ lr°n [7], 7P --" irN [8] and 7P -~ K +A [9] data. 

At high energies hne reversed pairs of reactions provide lnformatmn on the hy- 
pothesis of  exchange degeneracy (EXD). At present there is little firm evidence on 
this hypothesis for the K~¢(890) and Kit(1400) pair [10]. A rehable evaluanon of 
finite-energy sum rules (FESR) could help here, but for overall consistency it is 
essential that the low-energy amplitudes used as input should also fit the low-energy 
data. Thus, if resonance saturation is used for the imaginary parts in the FESR 
integrals then these imaginary parts alone should fit the low-energy data. The out- 
put amphtudes from our low-energy analysis will conform to tins reqmrement. 

In sect. 2 we discuss bnefly the fixed-t dispersion relation formalism for 
7rN -~ KA and KN -+ hA, and describe the resonance parametnzatlon used. In sect 3 
we hst the data fitted, and in sect. 4 we discuss the fit to the data and the output 
low-energy amphtudes. In sect. 5 we evaluate FESR integrals and comment on the 
lmphcations of  the results for K~ - K~ EXD and high-energy models. Our conclu- 
sions are summarized in sect 6. 

2. Formalism 

2.1 Fcred-t  dispersion relations 

We work with the usual spin-0 - spln-~ lnvarlant amplitudes A and B, and denote 
those for 7r-p - K°A by A_ and B , and those for the crossed reaction K°p ~;r+A 
by A+ and B+. We choose the 'baryon first' phase convention of  Levl-Setti [1 1] and 
the Particle Data Group [12], so that our meson state phase factors [13] are differ- 
ent to those of  Field and Jackson [14]. Therefore our invariant amplitudes are con- 
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sistently of  the opposite sign to those of  ref. [14]. In terms of  the variable 
v - ~ (s - u) crossing takes the form 

A+(v, t) = - A _ ( - v ,  t) ,  B+(v, t) = B_(-v ,  t). 

Dispersion relations forA_+ and B_+ may be obtained by using a contour consastlng of  
the real axis iRe v l <  v c and a circle of  radms I vl = v c. They are 

Vc Im A+(v', t) Vc 

,f ,f -+ Re A_+ (v, t) = ~ dr '  vT-v' - n- 
I)+ I)_ 

f d v '  A , +_11 +A v,t) 
2hi 

PC 

1 i c  ImB+(vt't) I f c +  dv' 
Re B+_ (v, t) = ~ dr' v' T- v 7n 

v+ v _  

B+ (v', t) 
_1_1 f dr' ~ + BP(v, t) 

+ 27ri v - v - ' 
v C 

where 

v = ~ [ ( N + / / ) 2 - - ½ g 2 + l t l  , 

Im A _(v', t) 
dr '  t p i p  

Im B_ (v', t) 
t p+_p  

(2.1) 

(2.2) 

= 1  1 + l t ]  v+ ~ [(A +/ / )2  _ ~ ~2 , 

~2 = K  2+/ /2  + N  2 + A 2  , 

and K, # , N  and A are the masses of  the kaon, plon, nucleon and lambda, respective- 
ly. The pole (Born) terms in (2.1) and (2.2) are given by 

-+AP(v't) = ( 2 t  ~ N - A  GTrNNGKNA' + 2Z--A-NG*rAzGKNx4 v x +¼t~-v 
- 4 v N +st v 

1 

BP(v, t) = -2 v N + ¼t  +- v 

1 G~rAX GKNZ 
+ -  

2 v x +¼t~v ' 

where 

v, = ¼(2M 2 - ~ ) ,  i=  N, 1S , 

and the G's are couphng constants in the normalization and 'baryon first' phase con- 
vention of  Levl-Settl [11]. They are related to the usual [ 15] charge-independent 
couplings g by 
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G1rNN = v~g~rNN , GIrA~" = gnA~ ' 

GKN A = gKNA ' GKN Z = V'2gKN ~ • (2.3) 

To evaluate eqs. (2.1) and (2.2) for those cases where convergence is obtained as 
Uc -+ oo requires a knowledge of  the imaginary parts for v' > v c. Expectations based 
on the assumed dominance of  K~  - K]~ exchange at high energies suggest that not 

all the dlsperszon relations will converge, and m at least one case we would need a 
model for the entire amplitude on the circle I v'l = v c For  simplicity, we have 
treated both cases in the same phenomenological way by representing the high- 
energy part of  the dispersion relation by an integral over a small number of  'pseudo- 
resonances' [8] of  fixed masses W R > 2 GeV (i.e. above the region of  fi t ted data), 
but variable couplings. The consistency of  this procedure is discussed In sect. 4. 

The low-energy Imaginary parts are expressed as sums of  resonances of  fixed 
masses and widths but free couphngs (the necessary partial wave decomposit ions 
are given in ref. [14]), and it is these couplings, together with those of  the Born 
terms and the 'pseudo-resonances' ,  that are the parameters of  the model. 

2. 2. Resonance  paramemza t to n  

The general resonance formula we use for the imaginary part of  a partial wave 
amphtude is 

! 
(r, rl)  ~F 

lm f/~+_] (W) (2.4) 2(k kj)  (WR W): + (it):  

where W = x/s; W R IS the mass of  the resonance of  total width P and partial width 
Pi, P / i n t o  channel t, t ,  and kt,  k 1 are the c.m. momenta  in the two channels. 

To achieve the correct threshold behavlours at each of  the thresholds we have 
inserted simple barrier factors into the widths. However, since these are not  ex- 
pected to play a significant role above the resonance energy, we have set them equal 
to unity for all W ~ W R. We distinguish two cases. (1) a resonance occurring between 
two thresholds (e.g. the Pl lN(1470),  which lies between the 7rN and KA thresholds), 
and (li) a resonance lying above the highest threshold (e.g. the F15 2~(1910), which 
lies above both  the ~rA and KN thresholds). The appropriate modifications to the 
partial widths for the vanous regions m both cases are obtained by analync continu- 
ation, and are given in table 1. We take the momentum dependence of  the total  
width to be that o f  the lowest mass channel. Using the results of  this table i t  is 
straightforward to show that the con tnbut ion  of  a resonance to lm A_+ and Im B± is 
a real continuous function having the required threshold behaviours at both  thres- 
holds. 
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Table 1 

Forms used for i‘I(kl) and ‘i(kI) m eq. (2.4), assuming that the threshold for channel 1 IS below 

that for channel J 

Resonance between thresholds I 1 Resonance above both thresholds 

regon r, rJ regon r r 1 I 

k, > klR Y, TJ k, > klR 

kJ > lkJRI 
i 

kJ > klR 
71 7, 

_ -- - 

Centre-of-mass momenta at the resonance energy W = WR are denoted klR, kJR, and the moduh 

signs Imply that the momentum hds been analytlcdlly continued below the channel threshold. 
PIhe quantities y,, yI are real coupling constants. 

3. Data 

For the S = 0 channel, n-p --f KOA, we have fitted all available differential cross 

section (dcs) and polarlzatlon (P) data for W L 2 GeV (this corresponds to 
k, 2 1.6 GeVjc), and 1 t 1 < 1 GeV2 The range m t IS based on a conservatrve estl- 
mate of the range of vahdlty of the relevant partial wave expansions. The data were 
taken from ref. [16], and consist of 307 dcs, 81 P and 84 P X dcs measurements. 

In the S = -1 channel, K”p + 7r+A, there are essentially no data available. The 
lsospm related channel K-p + noA has, however, been extensively studied, and so 
we have used data for this reactlon. Since the sum total of data available for 

K-p + noA far exceeds that for n-p + KOA, and m order that the S = ~ 1 data 
shovld not dominate the solution, we have restricted ourselves to the representatlve 
data of ref [ 171, which consists of 9 16 dcs, 294 P and 104 P X dcs measurements. 
More S = - 1 data can be included when they can be balanced by more experiments 
on 7~-p + KOA. The total number of data pomts is 1786. 
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4. Low-energy amplitudes 

The low-energy Input spectrum used is shown in table 2 The criterion used to 
select the 2;* spectrum was that It should include all states listed as 'two star' and 

above in the Particle Data Group tables [12] with respect to the 7rA decay channel 
The N* spectrum decaying into the KA channel is much less understood, and we 
have selected all N* resonances with an overall ' two star' or better status. The 

masses and total widths are as given in ref. [12]. For the 'pseudo-resonances' we 
made no serious attempt to identify them with actual particles, but have included 
some which have been suggested in recent analyses [12, 19]. 

For a set of couplings for the Born terms and the resonances, the imaginary parts 
of A+ and B+_ were obtained by the usual pamal wave series, and the real parts 
found by evaluating the dispersion relations (2.1) and (2.2) The couplings were 
varied to fit the data described in sect. 3. Numerous solutions have been investigated 
using as initial estimates for the couplings values obtained from phase-shift analyses 

[1,2,  19, 20], as well as predictions from symmetry schemes [11, 14, 19, 22]. The 
overall best solution has x2/NDF = 2.28, and gwes a good representation of the 
data, comparable to other energy-dependent fits to more than a single channel. As 
examples of the quality of the solution we show in figs. 1 and 2 fits to a sample of 

the data in each channel. A breakdown of the final X 2 by channel and data type is 
shown in table 3. 

Table 2 
Input spectrum of N* and S* resonances used In the flxed-t dispersion relations 

N* resonances 2" resonances 

resonance mass total width resonance mass total wLdth 
(MeV) (MeV) (M e V) (MeV) 

Pll 1470 240 P13 1383 36 
al l  1530 70 D13 1670 50 
D13 1520 120 Nil 1750 65 
Dis 1672 142 Dis 1765 120 
Fxs 1688 127 P~3 1840 100 
S~x 1706 140 F15 1910 70 
D~3 1730 130 Pll 1926 185 
PII 1783 250 D~ 3 1940 200 
P13 1864 335 F17 2030 135 
F17 1990 200 

Di'3 2046 243 P~3 2070 100 
G17 2184 275 G17 2100 100 

HI 1| 2210 100 
H19 2220 260 P~ 2290 150 

'Pseudo-resonances' used to parametexase the high-energy region are shown below the dashed hne 
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Fig. 1. Fits to sample differential cross section and polanzanon data for n-p ~ K°A. 

l 

The couplings of the low-energy resonances (I~zPj) ~ and the Born terms G i G  1/47r 

are given m table 4. Following Levl-Settl [11] the partial widths include all charge 
modes and are related to the amplitude at resonance t~l, usually quoted m phase- 
shift analysis [12], by 

1 

(V~I]) ~ = 41 r ' ,  

while the couplings G~ are related to the usual [15] charge-independent ones by eq. 
(2.3). The errors are estimates of how much each parameter can be varied to pro- 
duce a change in ×2 of 2.5%, after reminimising on the remaining parameters. (A 
change much greater than this begins to produce qualitative differences in the solu 
tion.) A point of importance for what follows is that in all solutions the couphngs of 
the Born terms and the P13 2;(1385) were always found to be well within the errors 
quoted. 

The most recent reviews [ 19, 20] of KN ~ 7rA partial wave analysis conclude 
that the Dt3 2;(1660), $11 2;(1750), D15 ~(1765), F15 Z(1915) and F17 Z(2030) 
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F:g. 2. Fits to sample differential cross sectlon and polarization data for K p -,  rr°A. 

Table 3 

Breakdown of  the x2/N data by channel and data type for the final solutaon hsted m tables 4 and 
5 

Channel DSC P P × DCS Total 

no. of data 307 81 84 472 
-n--p --* K°A 

x2/N data 2.6 2.0 3.48 2.66 

no. of data 916 294 104 1314 
K - p  ~ n°A 

xZ/N data 2.4 1.68 1.21 2.15 
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Table 4 1_ 
Values of the couphngs (F/I'I) 2 = tit 1" at resonance m MeV, and ot the Born couplings GIG]/4rr 
(dimensionless) from this analysts compared with values used in recent FESR evaluatmns [ 14, 
18], and estimates from phase-shift analyses (see text) 

State This calculatmn Ref. [14] Ref, [ 18] PSA 

N(938) -17 .6  +- 6.8 -24.1  -24.1  

N* 

Pl1(1470) -71.1  +- 16.3 40 - 4 0  
$11(1530) -48 .4  ± 15.0 5.5 3.8 
D13(1520) 9.1 + 3 8 - 7.2 - 7.2 
DIs(1672) - 4 .8± 0.9 2.2 0 o r 4 . 8  
1'1s(1688) - 1,1 +- 1.1 1.2 0 
S~1(1706) - 2 5 . 0 +  4 6  41.6 24.7 
D~3(1730) 3 4 ±  2.5 
Pi1(1783) -37.4+- 9.6 13.5 6.1 
P13(1864) 22 3 +- 11.2 18.1 - 8.6 
t"17(1990) - 4 2 +- 6.6 

- 3 -  + 3 
2 -  + 2 

- 2 9  +- 4 

34 +- 8 
34 + 7 

~(1189) - 7.1+- 1.9 - 5.7 5.7 

2* 

Pt3(1383) 21.1 +- 11.5 17 27 
D13(1670) 0.9 -+ 3.0 5 6.8 3 -+ 1 
$11(1750) - 7.8-+ 5.0 - 2 0  - 2 3  - 9-+ 4 
D15(1765) -31.1+- 5.7 - 2 7  -75  ~ , 2  +- 10 
P~3(1840) 12.2+- 7.8 4 t o  24 
Ft5(1910) - 6,1+- 39  - 4.9 -15.1 - 9+ 3 
Pl1(1926) 31.3 +- 22.0 - 2 4  -36  - 2 4  to +11 
D13(1940) -30.5+- 13.9 - 3 9 . 2 a )  26.4 - 8 t o - 4 0  
F17(2030) 26.3 + - 7 1 34 7.8 36 + - 4 

a) This state was actually omitted m most of  the calculations of ref. [ 14]. 
Phases and normMlzanons have been changed to agree with the Levl-Settl conventions [ 1 t ] 
where necessary. 

r e s o n a n c e  p a r a m e t e r s  are r e a s o n a b l y  wel l  e s t a b h s h e d  We t h e r e f o r e  h s t  m tab le  4 t he  

coup l ings  fo r  t h e s e  five r e s o n a n c e s  f r o m  V a n  H o r n ' s  ana lys i s  [21 ], as g iven In t ab le  7 

o f f e r  [19] .  

T h e  t h r e e  r e m a l m n g  a b o v e - t h r e s h o l d  s t a t e s ,  P13 ~ ( 1 8 4 0 ) ,  P11 Y.(1926) ,  and  

D13 Y.(1940) have  c o n s i d e r a b l e  a s soc i a t ed  b a c k g r o u n d ,  and  we hs t  ranges  for  the i r  

c o u p l i n g s  f r o m  refs .  [12,  19]. T h e r e  is m u c h  less I n f o r m a t i o n  o n  N* r e s o n a n c e  para-  

m e t e r s  f r o m  7rN ~- K A  p a m a l  wave  ana lyses  [2],  a n d  we  give average values  fo r  t he  

c o u p h n g s  o f  t h e  D15 N ( 1 6 7 2 ) ,  F15 N ( 1 6 8 8 ) ,  S l l  N ( 1 7 0 6 ) ,  P l l  N ( 1 7 8 3 ) ,  and  

P13 N ( 1 8 6 4 ) .  In a d d i t i o n ,  s o l u t i o n  B o f  Love lace  and  Wagner  [2] c o n t a i n s  a 

D13 N ( 1 7 3 0 )  w i t h  a c o u p h n g  t ["  ~ 15 MeV.  

I n f o r m a t i o n  on  the  c o u p h n g s  o f  t h e  b e l o w - t h r e s h o l d  s t a t e s  is, o f  cou r se ,  m u c h  

less d i r ec t ,  and  c o m e s  a l m o s t  e x c l u s w e l y  f r o m  S U ( 3 )  f i ts  [11,  12, 19] to  d e c a y  ra tes ,  
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Table 5 ~ 
Values ot the couphngs (l'tF]) 2 = tt/I" at resonance (m MeV) for the 'pseudo-resonances' 

339 

N* resonance ?2* resonances 

state couphng state couphng 

D ~ 3 (2046) 9.3 Pi'3 (2070) 23.9 
G17(2184) 15.4 G17(2100) 27.6 
tt19(2220) - 7.2 HI 11(2210) -12.0 

Pi';(2290) 30.0 

or higher symmetry estimates. This 1s the source of  the values quoted in refs. [14] 
and [18] and of  their Born term couplings (calculated from SU(3) with a = 
D / ( D  + F)  = 0.6). The least reliable of the SU(3) estimates are those for the S 11 
N(1530) and P l l  N(1470). In particular, for the former, the most recent SU(3) fits 
[12, 19] give t F  --~ - 2  MeV, while SU(6)w fits [22] including mixing with the S l l  
N(1706) give tI" ~ 30 MeV. The lat ter  is in agreement with our own estimate (see 
table 4). 

The agreement between our results and those from phase stuft analysis is very 
encouraging Also our values for the P13 Y~(1383) and Born term couplings are in 
remarkably good agreement with SU(3) considering the difficulty of  Including these 
large pole terms properly in Isobar models [3]. The direction of  SU(3) breaking for 
the Born couplings IS even such as to reduce the coupling to a value close to that 
obtained in the most reliable of  previous phenomenological estimates [I 5 ,23] .  
Also shown in table 4 are values of  the couphngs used in two recent FESR evalua- 
tions [14, 18], which we will comment on in sect 5 below. 

The values of  the couplings of the 'pseudo-resonances'  are given in table 5. 
Although we have not tried to identify these with physical states (table 5 is pre- 
sented solely that the amplitudes to be discussed below can be reproduced) we have 
checked that the resulting high energy contributions to the low-energy region, and 
the total  Imaginary parts near the cutoff  v = u c are both consistent with expecta- 
tions from high energy models To do this we have used the models of Loos and 
Matthews [24], Irving et al. [25], and Field and Jackson [14], and to calculate the 
contributions to the low energy region we have evaluated the contour integrals in 
eqs. (2 .1 )and  (2.2). We find that the 'pseudoresonances '  give total  contributions 
whose order o f  magnitude is consistent with the contour integrals, and whose total  
imaginary parts near u = v c are also qualitatively consistent with those of  the high- 
energy models. 

In figs. 3 and 4 we show the low-energy amphtudes A'+_(v, t) and B+_(v, t ) ,  the 
former defined by  
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Table 6 
Individual contributions of physical region resonances to the integrated cross section compared 
to data 

Resonance Mass PL (approx) oT(res) OT(n- p --, K°A) 
(MeV)  (GeV/c) 

N* 

0.904 0 056 + 0.015 
Dis 1672 1.0 0.036 0.56 -+ 0.04 
FIS 1688 1.03 0.003 0.73 ± 0.03 
S~I 1706 1.06 0 31 0.899 ± 0.06 
D~3 1730 1.11 0.012 0.58 ± 0.034 
P~I 1783 1.205 0.181 0.29 -+ 0.05 
P13 1864 1.36 0.061 0.3 ± 0.05 
F17 1990 1.62 0.01 0.21 ± 0.025 

OT(K- p ~ ~°A) 

2* 

0.293 5.2 ± 0 9 
D13 1670 0 74 0.009 2.43 ± 0.38 
Sll 1750 0.91 0.15 3.4 ± 0.3 
Dls 1765 0.94 1.97 2.9 ± 0.24 
P~3 1840 1.1 0.233 1.69 ± 0.15 
FIs 1910 1 25 0.147 ~1.25 +- 0.1 
PII 1926 1.29 0.178 ~1.2 ± 0.08 
D13 1940 1.32 0.288 1.12 ± 0.14 
F17 2030 1.52 0.758 ~1.15 +- 0.06 

The data are taken from CERN/HERA 72-1 and 2 o T is in mb 

A + _ ( v , t ) = =  - t A ± ( v , t )  [ . A + N  
(A +N)  2 2(A +N)  2 J - (4.1) 

for t = 0 and - 0 . 5  (GeV) 2. These amphtudes are essentially the t-channel hehcity 

amphtudes [14], and have been calculated using a l l  the states of  table 2. 

For the real parts of  the n - p  -+ K°A amphtudes (fig. 3) the main feature is a 

strong cancellation between the Z*'s (of  which the dominant contribution is the 

P13(1383)) and the Born terms. The cancellation is almost complete in B and pro- 

duces a negative background to the N*'s in A '  Of the N*'s, the below threshold 

P11(1470) gives the largest contribution to both the real and imaginary parts. We 

agree with the results of  Lovelace and Wagner [2] that the S~1(1706 ) and P'11(1783) 

provide the biggest physxcal region effects. The P13(1864) is also qmte important. 

The ' importance '  of  a resonance m the physacal region can be judged from table 6 

where we show the contribution of indwidual resonances to the integrated cross 
section compared to data. 

The cancellation between the Born terms and the Z*'s is also apparent m the real 
parts of  the ~Op _+ n+A amphtudes (fig. 4), pamcularly in A' .  The background from 

the N*'s is small. Of the Y~*'s again the below threshold state P13(1383) provides 
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the dominant contribution to both real and Imaginary parts. As can be seen from 
fig. 4 and table 6 the physical region states are more Important in this channel, 
particularly the D15(1765 ) and F17(2030 ). 

The breakdown of the amplitudes discussed above and the results in table 6 show 
quite clearly the power of the fixed-t method m being able to calculate the back- 
ground. 

5. Finite energy sum rules 

Using our amplitudes we now examine the behaviour of  the low-energy FESR 
integrals. We work at fixed t with lnvarlant s-channel amplitudes f++(u, t) defined by 

+ 2v B 
f++ = A  A + N  ' f+_ - A  (5.1) 

These are proportional, to leading order in s, to the s-channel hellclty amplitudes. 
Combinations corresponding to the exchange of  K~ and K~ quantum numbers m 
the t-channel are 

- -  1 A V = - i ' ( A +  + A _ )  , A T = - ~ ( A +  - A _ )  , (5.2) 

(similarly for B v,T) and to ensure that we have a function which is odd under 
crossing we define (dropping hellclty indices) 

FV, T(u, t) -~ vn TV,T (v, t) , (5.3) 

where for K~(K~) exchange n = 0 (1). The low-energy parts of  the FESR integrals 
are then 

Pl 
= - - - -  _ l k  LV'T(t,  k) 1 f du Im((~2 u2) ~ FV,T(u, t ) } ,  (5.4) 

p ~ + k + l  0 

where the Born terms have been formally included in the integral. We will comment 
on the choice of  the branch point F below 

The idea of  evaluating the L's is that they contain Information on F(u, t) for 
u ~ Pl" In the cases where Regge-pole behaviour F(p) ~ u c~ sets in for the imaginary 
(real) part for p ) Pl, k = 0(1) yields information on Im F(Re F) for u .> Pl" We do 
not necessarily expect all the amplitudes to be well approximated by Regge-pole 
forms. Without a specific model we cannot deduce detailed features at high energies. 
Nevertheless general features, such as the presence of  fixed-t zeros, the order of  
magnitude of  F, and also roughly what its phase IS, should be deducible. These have 
implications for general questions such as the perlpherahty of  tensor exchanges, and 
the vahdity of  EXD. 

To perform the integrations in (5.4) we need the amplitude in the unphyslcal re- 
gion. For k = 0 we need only Im F; for k = 1 we need Im F for u 2 < ~-2 and Re F 
for p2 ) F2. We have chosen to use the conventional Legendre series expansions for 
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the extrapolations. The convergence of  these are, stnctly speaking, very limited, and 
governed by the boundaries of  double spectral functions. The effective boundaries, 
however, are given by box graphs with resonance intermediate states, and since these 
are far from the region of  interest it is reasonable to use Legendre series expansions 
for Im F out to at least - t  = 1 GeV 2. For Re F the convergence is still, in principle, 
limited to I tl ~< (/l + K) 2, the lowest asymptotic limit of  the boundaries of  the box 
graphs. For this reason we have chosen to work with the branch point V = Pb(t ) 
where Pb(t ) is the largest of  the v values at the physical boundaries of  the two reac- 
tions 7rN -+ KA and KN ~ rrA. This ensures that we need Re F only in the physical 
region. 

V,T The quant i t ies  L %+ were evaluated using as input  the low-energy solut ion o f  

table 4, i.e. choosing the c u t o f f  v 1 to exclude the 'pseudo-resonances ' .  (The low- 

energy couphngs are much  bet ter  de te rmined  than the high-energy ones.) In practice 

this corresponds to taking u = u (W = 2.14 GeV). In making this evaluation,  Re F 

under  the F E S R  integral is obtained f rom the f ixed-t  dispersion relations using the 

full spec t rum of  table 2. This xs to ensure consis tency wi th  the ampli tudes obta ined 

f rom fi t t ing the low-energy data. The results for k = 0 are shown by the solid lines 

on fig. 5. Also shown is an error corr idor  obta ined using the errors given in table 4, 
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V , T  Fig. 5. Values of L+ _+(t, k). The solid lines gave the central values and error corridors for k = 0 
evaluated with the cutoff corresponding to W1 = 2.14 GeV. The circles show the effect of in- 
creasing the cutoff to W1 = 2.50 GeV. The crosses denote the values of L for k = 1 using W 1 = 
2.14 GeV. Units are GeV = 1. 
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assuming them to be uncorrelated. While this is undoubtedly  incorrect quantitatively, 
it should give a qualitative measure of  the relative uncertainties. The results for k = 1 
are shown by the crosses The errors (not shown) are large because of  caucellatIons 
In the real parts. 

In an EXD Regge pole model,  the imaginary parts of  both  flip amplitudes would 
have single zeros at a( t )  = 0, which for 

a(t)  = 0.35 + 0 .82 t ,  (5.5) 

(the trajectory passing through the K~ and K]- masses) is at t ~ - 0 . 4  GeV 2. Both 
the flip terms LV'T_(t, O) do Indeed show single zeros, but  closer to t = - 0 . 6  GeV 2, 
i.e. near the posit ion Implied by penpheralaty, or the dual absorption model  [26]. 
This is consistent with the fact that in both cases the N* and Born contributions are 
very small, and the t-dependence is essentially that of  the £* resonances (although 
In the case o fLY_( t ,  0) the zero IS moved in from t ~ - 1 . 0  GeV 2 by cancellation 
between the 2;*'s and the other contributions).  The most important  Z* 's  are the 

P13 E(1383),  D15 I£(1765), F15 Y.(1910), and the F17 2;(2030), all of  which in- 
dividually exhibit  a peripheral zero at t --~ - 0  5 (GeV) 2. The quantities LV+'T_(t, 1) 
however, also show single zeros which is unexpected in any model 

Duality and EXD predict that the S = - 1  am~htude is real at high energies, which 
an our convention (see eq. (5.2)) imphes that L+_ (t, 0) and LT_( t ,  0) should have 
opposite signs, whereas our results show that these two quantities have the same 
sign throughout  the entire t range Thus the imaginary parts of  the flap amplitudes, 
while consistent with a peripheral picture [26] are not  consistent with the hypothe-  
sis that they are dominated by EXD Regge poles. This conclusion has also been 
reached by Vanryckeghem in a recent evaluation of FESR Integrals for hypercharge 
exchange reactions [27]. The EXD breaking is In the same direction as suggested by 
data at higher energies [10]. 

To check whether this conclusion is dependent  on the cutoff  position we have 
also evaluated the integrals for k = 0 Including the 'pseudo-resonances' .  Thus we use 
v 1 = v c = v (W = 2.5 GeV). The results are shown by the circles in fig. 5, and do not 
change our previous conclusions. This suggests that amplitude analyses which have 
been made under just this EXD assumption [25] should be re-examined It as inter- 
estlng that a similar conclusion regarding EXD breaking In the low-energy domain 
for p - A 2 exchange hehcity flip amplitudes has been obtained in a recent analysis 
of  FESR integrals for KN scattering [28]. This latter analysis also finds a zero In the 
real part of  the tensor flip amplitude at t ~ 0.6 GeV 2 (but finds a double zero in 
the real part  of  the vector amplitude and no zero in the imaginary part of  the tensor 
amplitude).  For the nonflip terms, L+v+ (t, 0) shows a strong absorption zero [26] at 
t ~ - 0 . 1  GeV 2 with a suggestion of  a second zero at larger t values, but  the errors 
are very large there. L V ( t ,  1) IS very small and shows no zeros. LT+(t, 0) also shows 
evidence for a zero at small t, but equally valid Interpretations are two closely spaced 
zeros, or possibly a double zero at t ~ - 0 . 4  GeV 2. Since LT+(t, 1) has a single zero 
at t ~ - 0 . 5  GeV 2, the lat ter  Interpretat ion is consistent with the 'no-compensat ion '  
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mechamsm [29]. However, the structure m LT(t, 0) 1s not very stable as the cutoff 
is increased, and so any interpretation is open to question. In both non-flip terms 
L v'Tt" 0) there are strong cancellations between the Y~*'s (mainly the P13 2(1383)) + + \ / ,  

and the Born terms, with the resulting t-dependence largely that of the N* reso- 
nances. At small t the important Y*'s are the $11(1530), P;1(1783) and P13(1864) 
At large t these are replaced by the D13(1520 ) and D15(1672). 

Overall, the results for the non-flip terms (i.e. L+V+ (t, 1 ) small, the 'cross-over' 
zero m LV+(t, 0), and the zero structures m L+T+) are m agreement with the amph- 
rude analysis of Irwng et al. [25] at 4 GeV/c despite the fact that the latter authors 
used input assumptions for the flip amplitudes which are contradicted by our EESR 
results. This is not too surprising because both in [25] and here the flip amplitudes 
have a zero near t = -0 .5  GeV 2. As the flip amplitudes must also vanish in the for- 
ward direction they are not Important for Itl ~< 0.6 GeV 2. (See also [25] fig. 8 
where experimental bounds are shown for the modulus of the physical flip ampli- 
tude and comment on p. 586). 

Finally, we compare our results with those obtained m two previous FESR anal- 
yses [14, 18]. In the paper of Field and Jackson [14] FESR's for the imaginary parts 
of the amphtudes A' and B (the former defined in eq. (4.1))were evaluated in a 
narrow-width approximation using the input parameters of table 4. These amplitudes 
are directly related to t-channel heliclty amplitudes. By assuming unit slopes (1 
GeV -2)  for the K~¢ and K@ trajectones and defining av(t) ,  (aT(t)) to be zero at 
the position where the sum rule for Im B V, (Ira A 'T) vamshes, the trajectory func- 
tions were obtained. The vector and tensor pole residues then follow from sum rules 
for Im A'V,T and Im B V,T. Exchange-degeneracy is claimed for the B (t-channel flip) 
residues, but the A'  (t-channel nonflip) residues differ by a low-order polynomial. 
However, the trajectories, which exhibit approximate EXD, are found to have very 
low intercepts a(O) ~ 0.15. Repeating the calculations of Field and Jackson with 
our parameters (without the narrow-wadth approximation) could give aV(0) ~ c~T(0) 
0.4 a result much closer to the EXD trajectory of eq. (5.5). However m view of the 
large errors on the integrals we do not consider such a method to be reliable. The 
results for the sums A'V,T are quahtatwely similar to those for LV+'T(t, 0). There is 
some evidence for EXD m the sums for B v,T in that they have opposite signs. The 
errors are large, particularly on B T. 

Argyres et al. [18] also examine FESR's for the imaginary parts of A hypercharge 
exchange reacnons using s channel amplitudes. They present a solution which ex- 
hibits approximate EXD for the flip amplitudes. This is achieved, however, only by 
choosing unphysical values for the couplings of some of the low-energy resonances, 
in particular for the important DIS 2(1765) and F17 ~,(2030) (see table 4). This 
again Illustrates the Importance of using an input solunon which actually repro- 
duces the low-energy data. 
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6. Conclusions 

We have used fixed-t dispersion relations and duality to determine the Z*An and 
N*AK couphngs from data on the reactions n - p  ~ K°A and K - p  -+ n°A.  Where 
comparable our results are m agreement with previous phase-shift analyses (see refs 

[1,2]).  We also give lnformaUon on the important below threshold resonances and 
the Born term couphngs. Our results are summarized m tables 3 and 4 By using 
dlspersiou relations we are able to calculate the backgrounds. 

Using these couplings we have evaluated low-energy FESR lntergrals for ampli- 
tudes asymptotically proportional to s-channel heliclty amplitudes. The results are 
summarized In fig. 5. In particular we find no evidence for exchange degeneracy in 
the flip amplitudes. This is m contrast to two recent amplitude analyses [18, 25] 
where just such an assumption was made. in pamcular in ref. [18] EXD is enforced 
for the low-energy Integrals by adjusting the resonance couphngs. As can be seen 
from table 4 in many cases their values lie outside the range that we have determined 
from the low energy data. In view of the size of the errors on the FESR integrals we 
also consider it most unreliable to determine the trajectory parameters from the 
positions of the zeros of the integrals as was done in ref. [14]. 
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