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We derive isospin bounds for two particle correlations in e+e- + 7 + Nn, discuss the physical significance of satu- 
ration of the upper bound and present various multiplicity distributions for this case. 

Recent e+e- annihilation experiments do not seem to agree well with popular preconceptions. Noteworthy in 
this respect is the behaviour of the total CM energy into charged particles, EC. Most naive considerations lead one 
to expect that the final state would consist principally of pions and that the number of neutral pions is about half 
the number of charged pions. If the mean n0 and .* momenta are the same this leads to Ec/Etot = 2/3. Experimen- 
tally one observes that Ec/Etot - l/2 or Eneutral /E - 1 at the highest energies [ 11. If one assumes that the final c 

state consists mostly of directly produced pions, for which there is some experimental evidence, then one can en- 
tertain two extreme alternatives. Either neutral pions carry off more energy on the average than the charged pions 
[2] (“energy crisis” [3]) or there are simply more of them (population explosion). At present one is restricted to 
considering possibilities which account for Ec/Etot, and trying to find experimental checks which might help to 
clarify the situation. We will fuc here on the second possibility that there are many neutral pions present, saturating 
or nearly saturating the isospin upper bound of [4]. We shall argue that this is not so unlikely as has been generally 
believed. 

Assuming that one photon annihilation is responsible for the observed effect and that the photon has odd charge 
conjugation and isospin Z = 0, 1 only, we will first consider rigorous results following from isospin conservation 
and Rose statistics for pions, and extend the isospin bounds to the two particle correlations. Then we shall consider 
some interesting consequences of saturation or near saturation of the upper bounds and, finally, we shall comment 
on the physical significance of the bounds *. 

Using the methods of Chacon and Moshinsky [6], we can reduce the average number of neutral and charged 
pions for fixed N = (no) + (n,> as well as the averages hii = (ninj - Giini> (i;j = +, -, 0) to the form of matrix ele- 
ments of an isotensor operator Q, and its square. Namely [61, 

(no) = *(<Q,> +N) , (n,) = $(N- i(Q,)) , (1) 

and 

ho0 = + UQ;, + (2N- 3)(Q,) +N(N- 3)) , 

h++=#(Q;,-+(2N-3)(Q,>+N(N-3))) h+_=~{$(Q2,)-N(Qo)tN2}. 

The calculation of <Q,> and (& ) requires information on the Nn states. These are labelled by representations 
[N] = [Nl, N2, IV31 of the permutation group S, corresponding to a Young tableau with three rows of lengths 

* Much of this stems from work of Pais [S] , A different method for deriving bounds is due to Chacon and Moshinsky [ 61, who 
use results of Elliott [ 71. Bounds using isospin sum rules have also been derived [ 81. 
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Figs. l a - c .  Average number of  neutral versus average number  of  charged pions (1 a); average number of  n ° as a function of  n c for 
N =  10 (1 b) and the charged multiplicity P(nc) = o (nc)/Crto t as a function o f n  c for N = 10 (1 c) for the symmetrized wave func- 
tion (solid lines) and the unsymmetrized wave function (dashed lines). 

N 1 , N  2, N 3 where N = N  1 + N  2 + N  3 and N 1 ~>N 2 ~>N 3. The Young tableaU [N] contains the isospin content and 
Bose symmetry of  the Nrr states [5]. The effect o f  Qo on these states has been given by  Elliott [7] resulting in the 
matrix elements 

(Qo)l=° = o; (Q2)l=° = ¢(/912 + / 9 2 - / 9 1 / 9 2  + 3 iv1) ,  (3) 

and 

(Qo)l = 1 = s2,. 
- ./~1 -N~2 - 3 N~I odd, N~2 odd 
2 N 1 - N2^+ 3 N 1 odd, N 2 even 
- N 1  + 2 N  2 N 1 even, N 2 o d d  

(Q2)I= 1 =~gs 

5/92 +5/92 +/91/92 +21/91 + 12/92 - 9 /91 °dd, iV2 °dd 

11/912 + 5 / 9 2 -  11/91/92 +33/91 - 12/92 - 9  /91 odd, /V2 even 

5/9~ + 1 1 / 9 ~ -  11/91/92 +9/91 - 27 /91 even, /92 odd 

(4) 

where/91 = N1 - N3, /92  = N2 - N3" By an exercise in fortitude like that required to find the bounds for (no)/  
(n c) [4], we get for hoc = ho+ + h o_ ,  hcc = 2h++ + 2h+_ the following bounds: For I = 0, hence N odd, 

- hoo ~< 3 ( N - 3 )  a N 2 3 N + k  < ~ _ _ . ~ .  <<--g N > ~ 5  (5) 
4 N  2 - 6 N  + k hcc 8 N -  14 

where k = 0 or 8 according as N / 3  is an integer or not. For I = 0 one has (Qo) = 0 which implies that hoc = 2hcc - 
hoo, hence hoo/hoc is not independent of  (5). For I = 1, hence N even, one gets 

hoc 3 N  2 - 9 N  + 2 1~ 2 N 2 - 9 N + l O + k <~ <~ ~ <~ - -  

2 3 N  2 - 2 N -  18 + k  hcc 4 N  2 -  5 N - 9  

2 N  2 - 5 N + 2  hoo 3 N  2 + 5 N  + 2 

hcc 4 N 2 - 5 N - 9  , 12N 2 - 2 N -  9 

(6) 

where N ~> 4 and k = 0 or 8 according as N[2 is odd or even. The important point for us is that the upper bounds 
in (5) and (6) are saturated by the same partition [ N -  2, 1, 1 ] which gives the upper bound for (no)/(n c) = 
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Fig. 2. Prong distributions as a function of ,~ for the symmetrized (solid lines) and unsymmetrized (dashed lines) wave functions. 

(3N - 2) / (2N + 2) and the lower bound of  the prong inequalities of Pais [9]. A large (no)/(n c) then implies large 
correlations among neutrals. 

Let us investigate the consequences o f  assuming that the upper bound is saturated and that the dynamical me- 
chanism is such that the partition [ N - 2 ,  1, 1 ] gives the dominant contribution. We can now obtain more detailed 
results than are possible in the general case. For example if [ N - 2 ,  1,1] alone is present 

I t  (N+ 1) Neven  
h+_-h++= [-gN N o d d  ' (7) 

which averaged over N could provide useful information on the average number of  particles from measurements 
involving charged particles only. Further, the probability to observe n o neutral and n c charged pions is (N = 

n o + Re) 

P(no, no) = PNFIN_2,I,1] (no, nc) , (8) 

where PN is the probability distribution for producing N pions and FIN ] their branching ratio with 
Zno,ncP[N 1 (n o, no) = 1 at fixed N. Now the P[N--2,1,11 can be calculated with the state vector realisat'ion SS to 
be discussed below or with the methods o f  [5]. 

[ ( N - 4 ) ( N - 6 )  ...no] 1 . 3 . 5  ... (n o - 1) 
F[N'-2,1,1] (n° '  nc )=  5 - 7 . 9  ... ( N -  1) (N  even) 

[ ( N -  3) ( N -  5) ... (n o + 1)] 1 . 3 . 5  . . . (n o - 2 )  
FIN-  2,1,11 (n° '  nc) = 1" 3 . 5  ... ( N -  2) 

where the square bracket is to be replaced by. 1 for n o > N -  4. 
Defming the average of a function f ( N ) b y  

=go ~ f(N)+gl ~ f (N) ,  
N = odd N=even 

(N odd) 

where g0(gl )are  the isospin weights for I = 0 ( I=  1), satisfying go + gl  --" 1, g0,1 >~ 0, we can calculate with the 

(9) 

(10) 
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knowledge of  the branching ratios and a choice for PN the following quantities: The prong distribution o(n¢)/oWt 
-P(n¢)  = P ( N -  he, he), the mean number o f n  ° (no)nc as a function o f n  c defined by (no)ncP(nc) = noP(no, nc) 
= ( N -  nc)P(N-  nc, nc) and the total mean number o f  neutrals (~oo) = ~,ne(-~o)ncP(nc) [10]. In fig. 1 and 2 (solid 
lines) we present numerical results when gl /go = 3 is the usual SU(3)-value and when PN is a Poisson distribution 
with mean value N, corresponding to an independent emission of  the pions [11 ]. We want to call attention to the 
large two prong component P(2)  and the steeply falling (~oo)nc . The trend of  the prong cross section versus Ngiven 
in fig. 2 resembles that in the data [11 ]. We have checked using a Gaussian PN that these results do not depend sen- 
sitively on either the width of  the distribution or on go/gl" 

So far we have just seen what would happen if the isospin bounds were saturated. Is there any physics in this? 
We can demonstrate by construction that there is and, further, that the bounds are saturated not by weird isospin 
combinations but simply by long-familiar Bose condensation effects. 

Consider the hadronic decay of  the virtual photon which cascades down in mass by emitting I = J = 0 e-like 
mr-states of  low momentum plus an co or an wn ° state (necessary to get the correct total I) .  This is in the spirit of  
a linear thermodynamic bootstrap [12] or of  cascade (chain-emission) models [2]. The isospin wave functions of  

such a chain are ¢1 = 6o12 3 7r~ e56 . . .eN_l, N for N even and ~b ° = 6o12 3 e45 ... eN_l, N for N o d d  where 6o12 3 = 
(71" 1 X rt 2) -71" 3 and ei/= rti.rt i . For these states the branching ratios can be calculated to be 

I" l(no,nc)=(-~)(N-4)/2 [ ( N - - : ) / 2 ;  2k 

n c = 2 k  +2  = N -  n o (11) 

giving (no)/(n c) = (N + 2) / (2N - 2) ~ 1/2 for N ~ ~,  N even. If  the final pions have low relative momenta it is 
necessary to symmetrize the isospin states. In this symmetrization the ~o can be ignored as it is completely anti- 
symmetric and thus we can construct the properly symmetrized states ¢1 _- 6Ol 23 Srr4 e560 . . .eN_l~ forNeven,  and ¢0 = 
60123 Se45 " ' eN-1  N f o r N o d d  where S means symmetrization of  momentum labels among pions of  like charge. The 
branching ratios (9) can be directly calculated from the ~S by writing them in the charge basis and counting charge status 
using the binomial expansions for the product of  the e-mesons. As a result, the isospin upper bound is saturated. Mathe- 
matically this is because the ¢S are vectors belonging to the representation I N - 2 ,  1,1 ]. Physically this is because the pre 
sence of  the extra n o in ¢1 stimulates, through the symmetrization, the e-states to "decay" preferentially into neutral 
pion modes. Thus, saturation of  the upper bound is a kind of  Bose condensation effect. We demonstrate the con- 
sequences o f  this by showing in the figures the analogous results for the unsymmetrized chain (dashed lines). No- 
tice, in particular in fig. 1 a, the striking effect of  symmetrization. In contrast to the symmetrized case the results 
for the unsymmetrized chain depends on the width o f  the distribution PN" For instance, a narrow distribution 
gives the falling (no)nc but at the same time gives a smaller two prong component [13]. Much of  what we have said 
should be independent o f  the detailed dynamics for multiparticle production so long as the dominant low energy 
mr correlations are isoscalar and a 7r ° carries the photon's  isospin. We should remark that the effects discussed here 
many set in only for large iV; the symmetrized and unsymmetrized chains differ not at all for N --- 4 and minimally 
for N = 6. It appears to us that the unexpectedly large ratio Eneutral/E c can be explained by an excess o f  neutral 
pions with the mechanism we have discussed; the observed prong distributions are consistent with this; future expe- 
riments will decide the issue. 
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