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We present the formalism of a field theoretic many-channel model for the electro- 
magnetic form factors of the nn, the I& and the nw system. The main attractive 
force, which generates the p-meson, is derived from the nucleon box diagram witJ phe- 
nomenological strong vertex corrections. Propagator self-energy corrections are derived 
from the Ward identity. Long range forces are introduced through the pion exchange 
coupling between the 71~ and pe channel. The photon is coupled minimally to pion& 
kaons and nucleons, with subtractions performed at large spacelike momenta. The model 
is solved in the framework of the Bethe-Salpeter equation. 

Three different versions are considered which lead to slightly different pion form factors. 
The version giving the best nn phase agrees best with the data in the space-like region. 

1. Introduction 

The electromagnetic form factors of elementary particles in the time like region 
will provide us with much information about strong interaction dynamics. It could 
be for instance that the pion form factor (f.f.) turns out to be dominated by many 
res&ance poles [l-3] or that it shows, shortly after the p-bump, the same smooth 
power_fall off as in the space like region or that it does so, if at all, only beyond e.g. 
the NN threshold. This detailed behaviour will clarify many questions. This is espe- 
cially true if we do not consider theoretically just one isolated form factor but try 
to understand, at moderate energies at least, several channels like 7771, ~TW and NN 
as a strongly coupled system in the spin-l state. Then all these f.fs. are mutually de- 
pendent. The unique possibility to study the production of these states in e+e- 
collisions in a pure spin state makes it worthwhile to devote much effort on theo- 
retical models which incorporate the multichannel aspect. Phenomenological at- 
tempts (without detailed “dynamical” assumptions) have been undertaken several 
times [4-A]. 

Of course in the energy region** 4s < 2 GeV the p-meson (and possible higher 

* On leave of absence from Institut fiir Theoretische Physik der UniversitLt Stuttgart. 
** We denote the photon four-momentum by P and use P2 = s = W2. 
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vector mesons) will have a dominant influence on the pion f.f. F,(S). Therefore a 

reasonable model for the p-meson has to be the starting point, and we do not believe 

that a knowledge of the arr scattering phase shift alone can substitute this for the 

following reason. Since there is little hope that the p can be described as a predomi- 
nantly elastic rrrr state [7], the use of the Omries formula [S-lo] which is based on 

analyticity and elastic unitarity, can hardly be justified. It is tempting to describe 

the p-meson as a resonance (or bound state resp.) between more elmentary consti- 
tuents, and as those we take rrrr, Kl? and NN states*. We shall make the assumption 

that the dominant forces which these constituents feel, are not usual one-particle 

exchange forces for the various elastic scattering amplitudes, but are exchange forces 
which lead from one channel to another (“non-diagonalforces”). It has been pointed 
out in ref. [l 1 ] that when one considers only the err and the NN channel in the 
framework of the Bethe-Salpeter equation (BSE), one finds a p-meson which is im- 
mensely broad. If in addition to the rrrr channel one takes into account those states 
which contribute to the pion self-energy, the situation is improved considerably. 

These self-energy effects can be determined self-consistently [12] from the Ward 
identity once the electromagnetic vertex of the pion is calculated off-shell with the 
help of the BSE. The p-width can be reduced further if one couples also the ~TW 
channel to the p, mainly because of the special energy dependence of the rrrr + 7rw 
transition amplitude [ 121. 

It remains however impossible to explain a p-width of 140 MeV without stretching 

the strength of the nap coupling beyond acceptable values. In principle it is not sur- 
prising that the restriction to a finite number of channels will cause a too large 
coupling of the resonance to the channels under consideration, i.e. a too large nn 
width. We may simulate the coupling to neglected channels by increasing the dressed 
pion propagators beyond the value dictated by the Ward identity. 

Another possibility of improving our model with respect to the p-width is indi- 

cated by the use of chiral invariant rrN Lagrangians for the calculation of the nucleon 

p,‘-;_s II P 
p3=+--9 2 

kl / p2 
\ 

+ ’ k2 

/ ! 

Fig. 1. Nucleon-loop contribution to the m Bethe-Salpeter kernel. Propagators and vertices are 
dressed ones. 

* We also shall consider now and pe states which is reasonable as long as they can be regarded 
as corrections. 
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loop [13-l 51 (we recall from ref. [ 1 l] that the nucleon loop of fig. 1 is considered 
as the main driving force in the ~71 channel). These Lagrangians possess quadrilinear 

couplings, which drastically change the ener,,g behaviour of the loop as compared 

to the result of standard pseudoscalar coupling. Of course due to divergences one 

cannot really calculate a resonance with this Lagrangian as a pole in the strong 
coupling constant*. However, it is plausible that similar modifications in the nucleon 

loop might arise from pion exchange insertions inside the loop which do not destroy 
the renormalizability. We shall introduce such changes in the kernel of the BSE for 

717~ scattering on a phenomenological level. We think that the p-width can finally be 
explained with reasonable modifications. 

The non-diagonal forces between the OTT, 7~0 and Ni channels are of short range 

nature. Long range forces, which are especially important at energies below the 
p-mass, are introduced into the model by the one-pion exchange force between the 
7177 and ,OE force. After one iteration this leads to the box contribution of fig. 2a, 
and we also included the crossed box diagram of fig. 2b as a force in the’nn channel. 

The coupling of the photon to the various channels introduces only few addi- 
tional problems. We assume that pions, kaons and nucleons act as bare constituents 
with minimal e.m. couplings, and we have to perform subtractions for their divergent 
vertex diagrams. The divergences are logarithmic due to a balance of vertex and 
propagator modifications, which we introduce in the nucleon loop. 

In sect. 2 we describe the mentioned modifications of the nucleon loop and the 
subtraction for the e.m. vertices. In sect. 3 the coupling of the nw channel to the p 
will be discussed together with the question of normalization of the nay vertex. In 
sect. 4 we present the calculation of the pe loop. Since the pe clrannel causes great 
difficulties for solving the BSE equation, we shall discuss the detailed method of 
numerical solution elsewhere. Thus sect. 5 contains only the numerical results for 
the 7771 phase shift and the pion f.f., which after the inclusion of the PE channel 
compare favourably with the existing data. The discussion and an outlook follows 
in sect. 6. 
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Fig. 2. (a) PE loop contribution to the m-r Bethe-Salpeter kernel. The internal propagators are 

free ones. (b) Crossed pe-loop contribution to the nn Bethe-Salpeter kernel. 

* In the quoted papers the pole is generated by the replacement 1 +g2 * l/(1 - g’). 
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2. Nucleon loop contributions to the pion form factor 

in this section we want to discuss the force in the 717~ channel which is responsible 
for the p resonance. As summarized in ref. [ 161, the direct rrrr interaction 
L, = x : (n . x)2: is not a good candidate as far as can be judged from the low order 

calculations performed so far. Derivative Lagrangians like [ 13-I 51 L, = -fz : (a,n)*f12 : 

lead to unbypassed difficulties in higher orders and in the e.m. current, and UP to 
second order do not seem to produce a resonance. Consequently we shall concen- 

trate here on the force provided by the nucleon loop contribution to the 7171 irre- 
ducible amplitude shown in fig. 1. Repeating the essential results from refs. [11,12], 
its properties are the following: Calculated in y5 theory with g2/4n = 14.5, it gives 
an attractive potential which is too large by more than an order of magnitude to 
give a p-meson at the correct mass. We proposed to weaken the strong interaction 
by introducing phenomenological hadronic vertex functions which decrease for 
growing space&e momenta. However we do not intend to convert the model into 
a superrenormalizable one, since this would probably lead to finite e.m. form factors 
at infinite momentum transfer. Therefore we shah work (as it is recommended any- 
how) with dressed propagators for pions and nucleons, which compensate the fall- 
off of the strong vertex functions at large off shell momenta. We shall arrange the 
relative strength of both modifications such that e.m. vertex diagrams are still loga- 
rithmically divergent. Fortunately the pipn propagator can be calculated from the 
Pion em. vertex by the Ward identity, and as found in ref. [12] the model can be 
used to determine both quantities by an iteration procedure. Therefore no new un- 
known parameters enter. In principle the same could be done with the nucleon 
Propagator, but for simplicity we shah assume that the self energy effects in both 
Propagators are identical. There remains the question how different parametrisations 
of the vertex will affect predictions for the form factors, once a mass parameter in 

the vertex is adjusted to give the correct p-mass. It is clear a priori, that a stronger 

decrease in the vertex will partly be compensated by stronger self-energy contribu- 
tions in the propagator. 

Let us start with a discussion of the partial-wave projection of the nucleon loop 

of fig. 1 in the presence of vertex- and propagator-modifications. We restrict the 
nNN coupling to a pure pseudoscalar term and write for the vertex with nucleon 
momenta pi and pj (setting pf - Ill* = pi with M = nucleon mass) 

Ysr,(P,* Pjl = Ysl(l - Cni + “j + (Pi - Pjl2 - H2)/Af) . (2.1) 
The cut-off parameter A! will be chosen to fit the p-mass. For the pion and nucleon 

propagators we take the ansatz (u = pion mass) 

A’(p2 p2) = , 
p2-p*-10/i; ’ + c di 

p2 - p* - A; i i=3,4 p* _ P2 - @ 
9 (2.2) 

S’(p) = (.ig +M) A’( p*, M*) . (2.3) 
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The ansatz (2.3) was made for simplicity, as stated above. Simple power counting 
with (2.1) and (2.2) requires 6 = j if the model should not be superrenormalizable. 
The parameters Ai and di shah be fixed [12] by adjusting (2.2) to the numerically 
integrated pion vertex for spacelike off-shell momenta and for s = 0. When we cal- 
culate the spin trace for the nucleon loop, we shall find terms proportional to 7~2 
and 7r4. Their contribution to the rrrr p-wave amplitude vanishes for free vertices 
and propagators in the loop, and we believe that they are rather small in the pres- 
ence of the modifications (2.1) and (2.3) as long as A; SM2, i = 1, . . . 4. We further- 

more neglect nucleon d-wave contributions, and then the p-wave projection of the 
loop is* 

X I@;, cos a, q, s) a’(~;. M2) A’(& M2) , (2.4) 

with 

+ (k; + k; - 2k10k30) i$(k,) (2,031 (2.5) 

-(kfk; tkzk; + 27573 -(k; +k?;)nj -(k; +k&) &(kl)&(k& 

We have abbreviated 

with z = cos (pI, ki). The loop momenta p1 and p3 (see fig. 1) in the c.m.s. are given 

by 

PlO(30) =TiW-iqcosa, Ip,l = Ip,l = q sin Q . (2.7) 

For pointlike vertices and free propagators the &kj) reduce essentially to Legendrc 
functions of second kind. For moderately large -kF 5 M2, the dominant term in 

I(kz, cos a, q, S) is the first one, which arises from the contraction of p2 and p4 
in the spin trace, It consists out of an attractive, explicitely s-dependent part and 
the likewise attractive “contact” terms proportional to nI and 7r3 which have little 
s-dependence. The relative strength of these two components of the nrm-potential 
enters strongly into the p-width, as the s-dependent term favours a narrow, the con-. 
tact terms a broad resonance. 

* There is a misprint in eq. (13) of ref. [ 111. The factor 2 in front of n1k3 in the formula (2.5) 

was omitted there, but was present in the numerical calculations. 
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It has been proposed by Lehmann 1131 to calculate the nucleon loop with the 
help of the phenomenological Lagrangian due to Gursey [17]. This Lagrangian has 
terms like 

(2.8) 

which in first order just cancel the contact terms of the y5 interaction. Neglecting 
other derivative terms in the Gursey Lagrangian, the description of the p-wave phase 
is reasonable. But the second-order contribution of (2.8) leads to the diagram of 
fig. 3 for the pion f.f., which requires two subtractions. We therefore shall look for 
I another mechanism which reduces the contact terms (anticipating the usual difficul- 
ties with the p-width!). Let us consider pion exchange inside the loop, fig. 4. For 
moderate k; we expect the leadin 

s 
term in the spin trace to arise again from the 

contraction of p2 and pg. At s = ki = 0, i = 1, . . . . 4 we find from this term for the 
p-channel 

whereas with the same approximations one has for the simple loop 

(2.9) 

(2.10) 

The relative factor -g2/8n2 = - 2.2 between these diagrams is of course reduced 
by the combination of vertex and propagator modifications which will lead for 
off-shell momenta around --M2 to an effective coupling constant geff (see sect. 5) 
with 

2 
g&f -- 
8n2 

&g2~_0.73. ’ 
3 8n2 

(2.11) 

Thus a substantial part of the loop potential at s i 0 is cancelled by the repulsive 
one pion exchange. We think that the reduction expressed by (2.11) is too strong, 
since higher order contributions will reduce it. A’ simple calculation shows, that the 
linearly s-dependent term in I(@, cos ol 4, s) (eq. 2.5) is only weakly modified by 

Fig. 3. Unrenormalizable pion vertex diagram due to the Lagrangian of eq. (2.8). 
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Fig. 4. Fig. 5. 

Fig. 4. Sixth-order loop diagram for the HIT Bethe-Salpeter kernel. 

Fig. 5. Bare-nucleon current contribution to the pion e.m. form factor. 

diagram fig. 4. In view of the uncertainty of any estimate like (2.9) we shall modify 
the contact terms in the potential by a free parameter X, which will be used to fit the 

p-width precisely. We replace 1&f, cos o, 4, s) by 

I’($, cos c4 4, s) = (s 2 h(7r1 + n3)) f Ik,l Ik,l &(kl) &)(&) 

+(s- nl -q k2 f k; - 2k,Ok,O) &(kJ !@k;) ’ 1 (2.12) 

- (kfk; t k;k; + 27573 - (k; + k& -(k; +&l)!&(kl) 6&k3). 

It will turn out, that X has a big influence on the high-energy behaviour of the pion 
f.f. We expect h to be somewhat smaller than 1. 

We now turn to the coupling of the photon to the rrrr, ti and NH state. We shall 
assume that there is a bare coupling of the form e(kl - kz),, to the pion and kaon 
and of the form icy,, to the isovector nucleon current. The lowest-order contribu- 
tion of the nucleon current to the unrenormalized pion vertex function shown in 
fig. 5 is given by (using the notation 2.6): 

F:(O) (s, kt, k$ = 2 $ + f’ d cos a sin Q 7 dq q3 A’( pt, M2) A’( pz, M2) 

71 -1 0 

- 2 2 1 X same integral 
47r .2 s=()k; = k; ‘82 . (2.13) 

Note the same suppression factor h in front of the contact terms as in eq. (2.12). 
We regard this again as a crude approximation of diagrams with pion exchange as in 
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Fig. 6. 
i 
Fig. 7. 

kg. 6. Higher-order nucleon current contribution. 

Fig. 7. Iterated diagram for the pion e.m. form factor. 

fig. 6. The subtraction point i2 was not taken z2 = p2, as this leads to a divergence 
of the ladder series for the pion vertex. We choose “k2 = 100 M2 with the conse- 

quence that all iterated diagrams for the pion vertex are small at large momenta. 
We then obtained very good convergence of the ladder series. The iterated diagram 

with a pion current (shown in fig. 7) needs two subtractions. We write down the 
first subtraction for the nucleon vertex explicitly, considering a diagram with n 
nucleon loops (we shall denote the contributions to F, from the nucleon current 
by Fk and from the pion current by FE): 

,, F;b’d (s, kf, ki) = --& 4 $-, ]I d cos o sin or j dk k3 M’,i(ki, ki, kf, k$ s) 
ll 1 -1 0 

X 1 k,l A’(k;, p2) A’(k;, p2) F;(nmp n-1) (s, k;, k;) 

+ 2F’(O)(s, kf, ;;)$$ 4 +I 
n s dcosa sinol s dk k3 

r -1 0 

(2.14) 

X 1 k, I &O(k3) A’(k;, /_I~) A’(k;, /_t2) F;cn4 ‘-I) (s, k2 k2) 3’ 4 
I 
s=()p;=p~=/p 

- same expression for s = 0, kf = ki = k2, 

with* 

k 
30(40) 

=$W+ikcoscr, Ik,l= lk41=ksino. 

* This representation with -1 < cos OL S +l is valid only for s < 4~‘. 

(2.15) 



60 F. Gutbrod, U. Weiss/Pion fovm factor 

A similar expression holds for F, ‘(n?r,n)(s, kf, ki) with M > 0. We shall include the 
kaon current everywhere by the replacement in eq. (2.14) 

~‘(ki, p2) A’(k$ p2) -+ A’(k$ p2) A’@$ p2) + iA’(k$ mg) A’(k$ mi) . (2.16) 

The final expression for the pion f.f. in the nucleon ladder approximation is now 

(2.17) 

with 

F”(“” ‘1 (s, kt, k;) = 1 , ?r (2.18) 

F’(nlT30) (s, k$ k;) = FL(‘) (s, kf, k;) , 71 

as given by eq. (2.13). 

(2.19) 

The renormalization constants .Z,(i2) and Z,(i2) could be determined separa- 
tely by considering the nucleon isovector form factor simultaneously with F,, but 
we simplify the model and set 

Z*(?) = Z&2) , (2.20) 

determined now by 

FJO, lr2, p2) = 1 . . (2.21) 

Other assumptions like Z,,(k2) = 3Z,(k2) change F,(s, p2, ~2) by less than 1%. In 
the following we therefore shall not make any difference between Fi(nn~n) and 
F”cnnj n, and define the renormalized contribution of n loops to the pion f.f. ac- 
c&ding to 

Fz’ (s, k;, k;) = Z(F;(nnT n, (s, k;, k;) f F;(7nrpn) (s, kf, k;)) . (2.22) 

In the following sections we shall discuss the coupling of the nn-state and of the 
photon to other channels, especially to rro and to ,ee. 

3. The 11w channel 

It has been shown in ref. [12] that the influence of the rw intermediate state in 
the p-channel is rather important since it provides an attractive force which is strongly 
increasing with s due to the magnetic rrwp coupling. This effect reduces the p-width 
drastically. We shall derive the rrrr -+ rrw amplitude again from a nucleon loop ne- 
glecting an magnetic coupling of the w to NN. Furthermore we shall assume the 
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Fig. 8. (a) Nucleon-loop contribution to the rr + nw transition amplitude. 
loop contribution to the nn -f nw transition amplitude. 

(b) Crossed-nucleon 

same vertex correction for the c3NN 7, vertex as for the nNN y5 vertex. In contrast 
to the rrn scattering case, both the uncrossed and the crossed nucleon boxes of fig. 8 
contribute here. Since the crossed diagram of fig. 8b is harder to calculate than the 
uncrossed one, we restrict ourselves to the evaluation of fig. 8a. For small external 
momenta lkfl <M2, is I < M2 it follows from crossing symmetry that the two dia- 
grams are identical. Since we shall treat the wNN coupling constant as a free param- 

eter anyhow, this implies that we should work with an effective coupling bigger than 
the (unknown) physical one. From fig. 8a we get (with 2 directions for the internal 
momenta) for the invariant amplitude (e,(w) = polarisation vector of the w) 

(3.1) 

Here we have setp5 =pl and have used the definition of rs(pi, pi) of (2.1). By 
parity conservation there is only one independent helicity amplitude of spin and 
isospin 1, which we take as (X = o-helicity) 

M;z (s, k;) = &MT&, k;, h = 1) - M,&“k2; X = - 1)) (3.3a) 

_ g3gwNN 128 
+1 

(4r7Q2 
z WMiK,IiK,l~ dcosrusinay d cos (Y sin 01 s m dq q3 

-1 cl 0 

X (&,(kl) &(k3) - ii2(kl) e”,(k,)) A’($, M2> A’Cp;, M2) . 
(3.3b) 

This amplitude will serve as an off-diagonal kernel for the two-channel (viz. the 
rrrr and the rro channel) BSE. 
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Let usnow discuss the diagonal forces in the nw-channel. Since the nucleon loop 
yields in this case many terms which are not easy to estimate, we shall concentrate 
on the p-exchange diagram fig. 9. It may be in some sense dual to the nucleon loop 
as p-exchange in 7~71 scattering was to the nucleon loop [l 11. The amplitude is, fol- 
lowing the pwn coupling of ref. [18]: 

Mw,(ki, h,, h3) = -g,“w, r ]e2(h2) * e&$1 ($ . k4 k, ’ k, - k,* k, k, . k4) 

(3.4) 

tk .e(h)k -e (h)k Sk] ’ 3 222 33 14 
(kl - k,)’ - mp” ’ 

The projection into the helicity state defined by (3.3a) turns out to be small com- 
pared to the nn-interaction, whereas the non-diagonal amplitude M$A is of the 
same magnitude as the latter. Thus we shall neglect the direct nw interaction in the 
BSE. 

We now turn to the description of the electromagnetic nw-vertex. This is, together 
with the no77 vertex, traditionally explained by baryon loops [19,20]. We calculate 
it from diagram fig. 10 where the blob denotes the renormalized isovector nucleon 
vertex. Within our approximations we have two contributions to the latter, namely 
the bare nucleon current denoted by (a) in fig. 11, and the full pion current denoted 
by (b) in fig. Il. The pion current will also contain contributions from the ~TW inter- 
mediate states, given below in eq. (3.12). The nay form factor Frwr defined by 

( no, w Ii,(O)1 0 > s ieF,Js, kt, kz) epolpr kt Pp eT(w) , 

receives a contribution from the bare nucleon current like 

(3.5) 

ggwNti 1 
F(O) (s, k;, k;) = 8.Z,($2)T ,zM 

gG)“/ 

X i’ d cos 0 sin 0 i dq q3 Go(kl) A’( P:, M2) A’($, M2) . 

(3.6) 

-1 0’ 

The f.f.s F, and Fwwr obey now coupled BSEs which under the neglection of sub- 
tractions are written formally (suppressing integrations and constant factors) 

F 
TWY 

= F;?, t M’,;(A’@‘) A’@‘) + 0.5A’(m;) A’(m;)) F, , (3.7) 

tM’1)(A’(~2) a’(/~~) + 0.5A’(nz;) A’(+)) F, (3-S) 
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1 

Fig. 10. 

Fig. 9. p exchange diagram for the ri~w scattering amplitude. 

Fig. 10. Nucleon loop for the nwy e.m. vertex. 

The coupled equations are solved by iteration. 
We now exhibit the subtractions in eq. (3.7) explicity. The diagram fig. 1 lb in- 

volving the pion f.f. with M - 1 loops requires a subtraction inside the loop: 

X lk,l [A’(k;, n2) A’(k;, /.L~) + 0.5 A’(k$ m;) A’(k;, VZ~)] Fr-I) (s, k;, k;) 

- ~~~Js, k:, ki); $ 1 j1 d cos o sin o r 

(3 09) 

dk k3 I k, I e”O(k3) 

?l -1 0 

x [A’(k$ p2) A’(k:, n2) + OSA’(k;, $) A’(k;, &)I FF-l’ (0, k;, k;) s=. 

p; zp”,4s 

where (3.6) has to be inserted and the kinematics of eq. (2.15) is used. Here F$)is 
the nth iteration of eq. (3.8). We are facing a difficulty here which we cannot resolve 

al b) 

Fig. 11. Separation of the nw-y e.m. vertex according to eq. (3.7). 
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at the moment. It is to be expected that with our simplifying assumption (2.18) the 
nucleon vertex in fig. 11 is not properly renormalized, i.e. the sum of (3.6) and (3.8) 
does not necessarily add up to the diagram fig. 10 with F,(O, M2, M2) = +. On the 

other hand, there are other baryon loop contributions to the nay vertex besides 

the nucleon loop, and our model cannot be too reliable here. Therefore we consider 

the loop of fig. 10 as an effective summation of more diagrams and do not insist on 
a proper normalization of F1(O, M2, M2). Since we are mainly interested in a realistic 
admixture of the ~-IW channel to the nrr-state, we adjust g,NN to yield [21] 

Of course gwNs should not deviate too much from the VDM value [22] 

2 
gwNN 1 g2, 
-=4G =4.6+0.5. 

4rf 
(3.11) 

Since we neglected a direct 7~ + rrw amplitude, the rr~ intermediate state contri- 
butes only internally in the pion f.f. in fig. 1 lb. The contribution of the rrw inter- 

mediate states to F,(s, kt, k$) is without subtractions (see fig. 12 and the last term 
of eq. (3.8)) given by 

This term vanishes like s for s -+ 0. 

Fig. 12. Contribution of the rw intermediate state to the pion e.m. form factor. 
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4. The pe loop as a long range force in the w channel 

Due to our general idea that non-diagonal forces are dominant in the 7-t-n channel 

we consider the exchange of two pions via PE intermediate states as the leading long 
range force contribution in the p-channel. The total pe loop contribution to the in- 
variant zrr amplitude of fourth order is given by the two s-channel box diagrams of 
fig. 2a and the two u-channel box diagrams of fig. 2b. Unfortunately, the u-channel 

box contribution cannot be evaluated in analogy to the nucleon box calculations, as 
it involves four-particle intermediate states in the s-channel. Therefore, these dia- 
grams (and also those of the s-channel box) are evaluated by use of dispersion rela- 
tions in t for fixed s. The s-channel box amplitude has only a “right-hand” cut given 
by the two pion intermediate states, whereas the u-channel box has also a “left-hand” 
cut given by the PE intermediate states. This method of calculating the, diagrams, 
however, is only applicable in the energy range where the anomalous singularities of 
the triangle diagram, obtained by contracting one of the p or E propagators, are not 
on the physical sheet [23]. The corresponding condition is e.g. k! + k$ < 2($ + ,LI~). 
The most disadvantageous case is that k2 and k4 are on their mass shell, which arises 
from picking up the propagator poles in the Wick-rotated Bethe-Salpeter equation 
above threshold. Then we have (4s - /.L)~ < rnz t p2, which is an upper energy bound 
for the applicability of our method. 

Throughout our calculation we put mp = m, =.m. The sum of the two diagrams 
of fig. 2a and the two diagrams of fig. 2b gives the invariant amplitude 

2 2 

Mp,(ki) = -2 4n z Ald4q 
gpnn gm~ m 

IT2 

w~ereml=m3=mandm2=m4=p. 

Its) and I@) are the isospin factors of the s-channel boxes and u-channel boxes, 
respectively, i.e. I@) = 2, Ic”) = 1. The coupling constants g,, and g, are related 
to the total widths of p + rrrr and E -+ zv by 

(4.2) 

The spin terms RcS)(ki, q) and R(“)(kfF 4) are defined according to 

R(“(kj,4)=Xl(kj)t81k Ilk 1 cos6’ 1 3 13+nl +7T3 

tR2(k3, k4)n2 +Rz(kl, k2)n4 d-n 71 
m2 2 dY 

(4.3) 
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Rykj, q) =R1(k$ +8lkJ Ik,l cos e 13t”;+n; 

tR2(k2, k+r; +R2(kl, k&r& tL 71’ R’ 
,2 2 4’ 

where RI and R2 are functions of the external momenta 

R, (ki) = k; t k; t k; + k4” - 4k,,k,0 - 4k2,k40 - 4,u2 + 2m2 

R2(kj, kl) =-$(2p2 - 2m2 - ki” - k;), 

(4.4) 

(4.5) 

(4.6) 

‘2 and pi is the abbreviation rri = p; - W$ (T: = pi - mf). For the s-channel boxcon- 

tribution the terms which are proportional to 7r2 and 1r4 can be dropped because 
they only contribute to s-waves. For the u-channel box contribution, however, only 
the term proportional to rrb - rri can be dropped. Mp,(ki) is evaluated by writing 
down a dispersion relation in t for fixed s with a “right-hand” cut contribution 
and a “left-hand” cut contribution. We obtain the expression 

X [(R,(k$ + Xlk,l Ik,l cos 013)(2~~)(t’) -UC!;)(i)) 

+ 2KT)(t’) + 2Kyqt’) +Kl)(t’) +K$-)(t’)] 
(4.7) 

t 
s 

1 &z7 
du’ - 

4m2 u’-u 2v/u’ 
[(R,(kj) t8ikll tk,l COS~~~)KI;~)(U’) 

+R2(k2, k&+-)(d) tR2(kl, k4)$)(u’)l , 

where K$‘) and KT) are defined according to 
I 

KC+) = & JdClq $ , i 
i 

K;)=&sdL$&-,, 
1 1 

(4.8) 
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The integrals occurring in the “right-hand” cut contribution are evaluated in the 

t-channel c.m.s. with the momenta p2 and p4 kept on their mass-shell, whereas the 
integrals occurring in the “left-hand” cut contribution are evaluated in the qchannel 

c.m.s. with the momenta p1 and p3 kept on their mass shell. With the t-channel 
kinematics 

(4.9) 

k,,, = & (t + k; - k;b k,, = &(k; - k; - t) , 

and the cosines 

fT12-J.12 - kf + 2p2&,, p2 +k; - rn2 +2p20k20 
z1 = 

21p211F 1 ’ z2 = 7ln_I Irk-1 3 
‘1’ _“Z “-2 

k;+k$-s 

z12 = 2lk,l I 

one obtains the explicit form 

KiJ)(t)=Ki-j(t) = 2,k1, ,p ,1nz, 
22 2 

(4.10) 

(4.11) 

(4.12) 

(4.13) 

where 

a* = (zl t z2)2 - 2(1 + Z12)’ b, = -z2(z1 + z2) + 1 +I z12 , 

c =z;-1, D, = dbG* . 
(4.14) 

Similarly with the u-channel kinematics 

p;(j =? 1d4 lp\l =&Lz7, IkJ=dkR, 

kzo=-I-(k;-k;-u), k4,,=L(kf-k;-u), 
wu 24 

(4.15) 
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and the cosines 

in2 t k; - p2 + 2p& k,, m2 +kj + 2p30k40 - p2 
vz = 

2&l Ik,l ’ 
v4 = 

2lp;l ‘#t&J ’ 

(4.16) 

k; tk;-s-ut2k20k4,, 

‘24 = 2Ik,l Ik41 
> 

one finds the result 

v2 +l 
K;-)(u) = ’ In - 

2lpjl Ik,l U2 -I’ 

v4 -I- 1 
K:-)(u) = ’ In - (4.17) 

21pjIIk4i ‘4-l’ 

K&)(u) = 1 rln(u+b-D)(b+D) 

41k21 I~,I lp;12 D (a +b +D)@-D) ’ 
(4.18) 

* 

with 

a = (I+ - ~4)~ - 2(1 - Vet), b = (v2 - v4) v4 + 1 - v24 , 

c=v; -1, D=JbG. 

Performing the J:= 1 projection of eq. (4.7) we finally obtain 

(4.19) 

X [(R &) (Xg(t’) f I@(?)) t 3Kr)(t’) + 3K$+)(t’)) Q#,,) 

+: l’+I’$ (2+ (t’) +K;;%‘)) (Q,&,> +2Q,(w,))l (4.20) 

[(&(kJK&)(u’) +R2(k2, k3)@(u’) +&(k> k4)$ku’))Bl(wUJ 

where wi’ and wu, are defined according to 
I 

w~=~,~;,~ ,(2k,,k,,+t’-k~-k~~> 
1 3 

wU,=2,k1,,k ,(2k10k30+k7Ztk42--s-u’). 
1 3 

(4.21) 
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As input in our Bethe-Salpeter kernel we use eq. (4.20) with the vertex modifica- 
tions 

(4.22) 

These modifications due to the resonance wave functions are justified from our 
model for the p, an,d we speculate that the errrr vertex is similar to the prr?r vertex. 

As we are interested in the long range character of the pe-loop we do not consider 
propagator modifications of the exchanged pions and use vertex functions which 
are independent of the internal momenta. 

We shall assume that the pe-loop diagrams are coupled to the photon via the 
dressed pion propagators and the renormalized pion vertex as shown in fig. 13. Due 

to the vertex corrections (4.22) the diagrams fig. 13 are finite and do not need an 
internal subtraction, but they have to be subtracted nevertheless for k; = k$ = k2. 

Thus we obtain for the pe-contribution to the unrenormalized pion form factor with 
n nucleon or pe-loops 

Ff’p n, (s, k;, k;) = _ _!- _!_ i’ 
47r3 ‘k’ -1 

dcosasinar mQa3 s 
0 

4 

(4.23) 

x Ik,l A’(k;, p2) A’(k$ p2> F$+‘)(s; k;, k;) 

- Same expression s__o, q -3 42 ’ 

Here F@-l) is the (n - 1)th iteration of eq. (3.8) with the substitution 

&fit) + M,‘,1,’ + ti1) 
PE . (4.24) 

Fig. 13. Contributions of the PE intermediate state to the pion e.m. form factor. 
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5. Numerical results 

We have solved the coupled integral equations (3.7) and (3.8) by numerical iter- 
ation and subsequent “Padbisation” of the Born series for F,(s) s Fn(s, ,u2, ,u2). 
Due to the mentioned limitations in s for the dispersion representation of the pc box 
diagram, we have restricted the calculation to the interval 

-Wl2 <S’<W12 
P P' 

(5.1) 

There we have calculated F,(s) at 10 roughly equally spaced points Si (i= 1, . . . . 10) 
with a relative accuracy of the order of 10p5. We have extrapolated F,(s) to values 
of s outside this region, following a suggestion of ref. [24], with a generalized effec- 

tive range expansion 

5 a,kz +z b,kF+l f(kJ +ck; f(kJ 

F*(s) = n=” 3 (5.2) 

3 

Nb 

n=O 
a;ky + c b; ky’ f(k,) f c’k; f(kw) 

n=l 

with 

k, = dm. km =dsm, 

f(k) = In (( W + 2k)/( W - 2k))/W, (5.3) 

a; = 1 . 

The coefficients a0 to c’ are determined by a least square fit of (5.2) to the 14 “data” 
points Fn(si) (i = 1, . . . . IO), including Im F,(s). The extrapolation is stable within 
10% for lF,,(s)12 in the ranges < 3 GeV2. The details of this method will be pub- 
lished elsewhere. 

In the following we shall discuss three dynamically different versions. First of all 
we neglect the pe loop and work only with the coupled rrn and rro channels. The 
width of the p-meson is adjusted through the parameter h in eq. (2.12). This is 
version A. In order to illustrate the effect of other inelastic channels on the form 
factor, we speculatively add a short range pe contribution in the same way and 
strength as the KK-contribution in eq. (3.8). In this version B we need a somewhat 
larger value h than in A. Finally in version C we include the PE loop, keeping also 
the short range part of version B. We now shall present the results for the 77~~ p-wave 
phase shift, the e.m. pion vertex F,(O, q2, q2) and for F,(s) both in the spacelike 
and timelike region for the versions A, B and C. 

I’,,& A. The values of the cut-off parameter At and the propagator param- 
eters d,, A; etc., for X and for J&H /47r are given in table 1. The resulting value 
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Table 1 
Values of the hadronic cut-off mass At, the suppression factor h, the propagator parameters 
da . . . A”,, the coupling constant g,m, the vertex constant lF?rwrl and the mfl p-wave scattering 
length in the three different versions A, B and C explained in sect. 5. 

A; h 

CM22 

dz 
2 

A2 d3 A”3 d4 
2 

*4 &N% ‘Fmq’ a: 

Of21 (M2) (M2) 4n Cm:) CIJ-7 

A 2.55 0.61 0.0043 2.12 4.0 88.5 0 0 19.9 1.93 0.021 
B 2.39 0.66 0.0043 2.12 4.0 88.5 0 0 19.9 1.87 0.023 
C 2.11 0.65 0.0045 2.72 6.8 99.5 0.1 1.1 21.1 1.77 0.048 

for F, ,,(O, p2, m:) is shown in the same table. As expected, we need a wN6 
coupling constant larger than the VDM value (3.11) by about a factor 2 for ad- 
justing Fnwy, due to the omission of the crossed nucleon box fig. 8b. In fig. 14 

we show the vertex function FJO. k2, k2) for spacelike k2, together with the ratio 

RA(k2)=a(k2). 
A’(k2) 

(5 *4) 

This ratio agrees with the integrated form of the Ward identity 

k2 

A(k2) j- dk12 F,(O, kt2, kf2) = R,(k2) (5.5) 
/J2 

within 2%. It is reassuring, that F,(O, k2, k2) does not differ drastically from the 
hadronic vertex (2.1) with AT = 2.55 M2, which allows vaguely a consistent picture 

for all vertices. 

F,(ok2k*) I I 
----- A-B 
___ c 

R,(k*) 
F,(o k2 k*) 

I I I I I I,, / I, I, I,,, I,,, _@’ ’ 
0 1 5 10 

W*) 

Fig. 14. E.M. pion vertex function FJO, k2, k2) and ratio R(k2) = A(k2)/Af(k2) of free to re- 
normalized pion propagator, for versions A, B and C. 
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--_--- * 
--- B 

~ c 

T Ref.(26) 

Fig. 15. ?~m phase shift 6 i(x) for versions A, B and C. Data are from ref. [26]. 

-.-.- ($5 

-----_ * 

--- B 

-----C 

2 

Fig. 16. E.M. pion f.f. F,(s) in the space-like region for versions A, B and C. GS denotes the 
Gounaris-Sakurai formula refs. [9,10]. 
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Fig. 17. Same as fig. 16 in the p region. 

Since at least up to the 710 threshold (and possibly somewhat above) we have 

argF,(s)=argt~~~‘l(s)~6:(s), (5.6) 

we can extract 6 t(s) from our calculation. We show the effective range plot in fig. 15. 
It extrapolates to a scattering length 

I# (A) = 0.021 p-2 , (5.7) 

___- GS 

------ A 

----- 

------c 

Ref. 32 

Ret 33 

Ref.34 

001 
1.5 2 

GeW 

Fig. 18. Same as fig. 16 above the p region. 
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somewhat low compared to the current algebra value [25] al = 0.03~~. The phase 

shift does not agree well with that extracted [26] from the CERN-Munic experiment 

at 17.2 GeV. 
In figs. 16-18 we compare the resulting pion f.f. with the available data [27-341 

in the space-like region, resonance region and large time-like region. There is a slight 

tendency for a too strong decrease in the space-like region (fig. 16). The reverse will 
be true in version B, to which we shall turn now. 

Version B. The inclusion of another inelastic channel will of course reduce the 
p-mass and width with all other parameters kept constant. We therefore have to de- 
crease AT and increase h to retain the correct p properties, as seen in table 1. The 
effects on the vertex function and on Frw, are small. The phase shift 6 i(s) changes 
slightly such that the effective range curve fig. 15 has less curvature in the wrong 
direction. One obtains 

a;(B) = 0.023~-~ . (5.8) 

The deviations from the Gounaris-Sakurai curve in the space-like region (fig. 16) 
are now smaller than in version A, which is due to the increase in the parameter X. 
The same is true in the large s time-like region (fig. 18). 

(5.9) 

which leads with g&/4n = 2.5 to a value rms = 360 MeV. This value is somewhat 

low compared with the value of > 600 MeV in ref. [21], but on the other hand it 
leads to a s-wave scattering length somewhat larger than that extrapolated from the 
reaction [26] n-p -+ rr+rr-n, The effective range curve now obtains a definite down- 
ward curvature in agreement with experiment (see fig. 1.5). One finds 

a$) = 0.048/_F2 . (5.10) 

Since the long range component of the p-vertex function is enhanced by the pion 
exchange contribution, the vertex function F,(0,‘q2, q2) in fig. 14 drops faster than 
in version A with a corresponding downward shift in R,(q2). With the hadronic 
vertex function (2.1) and the resulting Ra(q2) we can define an effective coupling 
constant geff(k2) by 

g&(lc2) =g2Ra3(k2 - M2) (I- 3 ““,; M2))-2 . 

1 

(5.11) 
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Here all three-momenta of the vertex are taken equally far from the mass shell, which 
is reasonable at low energies. We obtain in version C 

&(-M2) = 0.32g2 , (5.12) 

which has been used in sect. 2. For large negative k2gzf#c2) converges to 0.25g2. 

The resulting pion f.f. is shown by a full line in figs. 16-l 8. It agrees well with the 

data in all three regions of s. The small shift of the peak position in the resonance 
region compared to version A is a consequence of the difference in the 7~1~ phase 
shift at low energies. 

6. Conclusions 

We have presented a model for the e.m. form factor of the pion which contains 
as unknown (or badly known) parameters a hadronic cut-off mass, a suppression 

factor for contact terms in the nucleon loop and the coupling constants gwNg and 

g E7m. Furthermore we tentatively have added a short-range rrn -+ pe coupling which 
has to be calculated from a contact term. The first two parameters are fixed by the 
p-mass and’width whereas gUNN is determined by Frwr, and g_ rather poorly by 
r mZ. A more consistent determination of gmn and of the short range an -+ pc part 
may be possible by considering the process y -+ pc in the same model. It is an ad- 
vantage of this model that all parameters, except X, are of a general nature, i.e. they 
appear in many other amplitudes or form factors. Since h is well determined by rP, 
we are close to a parameter free description of F,(s). We think that the model con- 
tains many important aspects of strong interactions, namely the presence of both 
long .range (of order p-l) and short range (of order M-l) forces, strong damping in 
vertex functions and increase in propagators and finally the coupling of many 
channels already at moderate energies. It is an essential improvement over a Bethe- 
Salpeter model proposed previously [35]. Future aspects on the theoretical side are 
the following: The higher-order corrections in the nucleon loop should be calculated 
more carefully not only because of the energy behaviour of the 7~rr potential, but 
also because of current conservation requirements. Both the use of dressed nucleon 

propagators and of damped meson nucleon vertices requires the inclusion of diagrams 
of the general form fig. 6. Strong violations of current conservation might ultimately 
destroy the possibility to renormalize the pion and nucleon form factors as in eq. (2.17) 
with positive renormalization constants 2, and ZN. Our results for the pion f.f. show 
significant deviations from a pure p-dominance expression [lo], however without 
higher vector mesons or strong cups as proposed by Renard [4]. The present experi- 
ments 132-341 support such deviations, but are inconclusive with respect to sizeable 
effects of various p’ or cusps. If such effects show up in further experiments, our 
model needs essential modifications. 
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