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It is shown in the framework of scale invariant models that a simple ansatz for the ano- 
malous dimensions allows us to determine the experimentally observed variation with Q 
of the one-charged particle inclusive cross section. 

Our calculation sheds no light on the behaviour of Oha d with Q since we have worked 
with the inclusive cross section normalized to the experimentally measured aha d. 

It may sound odd to check experimental predictions of scale invariant theories 
for the one-particle inclusive spectrum when the safest prediction of these models 
Ohad ~ Q-2  seems to be ruled out by the CEA-SPEAR data [1,2]. We feel however 
that at the present stage of the game any hint that at least some predictions of "con- 
ventional" theories are compatible with the data could be useful. 

We consider the one-charged particle inclusive distribution which we assume to 
be isotropic and given mostly by charged pions in agreement with experiment [2]. 
We thus deal with only one structure function. 

It is useful to define the distribution 

h(y, Q2)= _ 1 do 
ncOha d dy ' (1) 

where y = In (Q/2E), E is the pion c.m. energy and n-c is the average multiplicity of  
charged pions. The function h (.v,Q 2) satisfies the sum rules: 

: h ( y , Q 2 ) d y  = 1, 

0 

* On leave from the Tel-Aviv University. 
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Fig. 1. The distribution h(y, Q2) defined by eq. (1) at Q = 3 and 4.8 GeV. The data are from 
ref. [2]. 

f 
0 

e - y  h(y,  Q 2 ) d y  = 2~c/E c, (2) 

where ~cQ represents the fraction of  energy carried by charged pions. From the ex- 
perirnental data for (1/ahad) do/dx (x = 2p/Q, p is the magnitude o f  the pion 3-mo- 
mentum) we can determine h(x,  Q2). Unfortunately there are no data for 0 < x  < 
0.1 and 0.8 < x  < 1. We have thus extrapolated by eyeball the cross sections to x = 
0 and x = 1, knowing that da/dx should be zero for both o f  these values. In this 
way we have obtained nc = 3 for Q = 3 GeV and ffc = 3.7 for Q = 4.8 GeV. Had we 
taken the quoted numbers [2] for the average multiplicity h- = 3.7 + 0.4 and res- 
pectively ff = 4.2 -+ 0.4, our conclusions would remain unaflCected as we have 

c 2 
checked. The function h (v, Q ) for Q = 3 GeV and 4.8 GeV is shown in fig. 1. 

Knowing the function h(v, Q2) at Q = 3 GeV we will try to determine it theo- 
reticall~ at Q = 4.8 GeV. Since we are looking for the variation of  the function 
h ~ 2 (y, Q ) with Q at fixed y ,  we have not considered the data at Q = 3.8 GeV since 
in this case the variation ofh(v ,  Q2) with respect to the Q = 3 GeV or Q = 4.8 GeV 
data would be smaller and the effect would drown in the error bars. 

Scale invariant theories, among which we include Polyakov's informal bootstrap 
scheme [3], ¢4 field theory with an eigenvalue [4] and branching processes [5], pre- 
dict the following sum-rules for the function h (y, Q2): 

o o  

lim f e-nY h(y,  a 2 ) d y = Z ( n ) e  -~(n)k, (3) 
Q2~** 0 

where k = k(Q 2) and asymptotically k = a in (Q2/M2). (a is an unknown constant 
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and M is an unknown mass scale). The function 6(n), related to the anomalous di- 
mensions and the short-distance behaviour of the model, is an increasing function 
of n, vanishes at the origin and limn._, ~ 6(n) = finite [6]. Z(n), which depends on 
the long distance behaviour of the theory, is unknown and satisfies only the con- 
straint Z(0) = 1. In the class of  models we consider the average energy per particle 
increases like a power of Q2 : 

~cQ ~ (Q2)~-a,S(1) 
~ -  • ( 4 )  

¢ 

We use Parisi's trick [7] to compute the variation with Q2 of the function h(y, Q2) 
for a given value o fy .  Taking the derivative with respect to k in eq. (3) and using 
the convolution theorem for Laplace transforms we have: 

Y 
O__hh = f A(y - y')h(y', Q2) dy', (5) 
Ok 

0 

where 
o o  

f e -ny A(y) dy = - 5(n). (6) 
0 

In this way we got rid of the unknown function Z(n) and the variation o f h  with Q2 
is given by hand  the anomalous dimensions only. We make the approximation 

3h3k__k rl 6h(y,Q 2 ) 6 Q  2 - k 1 h(y'Q2=23)-h(y'Q2=9)14 ' (7) 

where k '  = dk[dQ 2 is an unknown constant. 
The experimental values of 5h/6Q 2 are shown in fig. 2. It is interesting to note 

that the shape of the function 6h(y, Q2)/6Q2 looks very much like the predictions 
of scale invariants theories [6] for electroproduction (the correspondence is 
h (y, Q2)_, v W 2/~,  y ~ In ¢0 = In (2mv/Q 2)): it starts with negative values and 
changes sign. 

In order to use eq. (5) we have to know h(y, Q2 = 9) and 8(n). We approximate 
h(y, Q2) at Q = 3 GeVby a Gaussian: 

h (v, Q2) =~--ono e-tY-Y)2/2°2' 

with ff = 1.3 and o = 0.6. The simplest model that we can think of for the anoma- 
lous dimensions which satisfies the above mentioned constraints is 

~(n)= 1 -x--C-fin ' (8)  
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Fig. 2. The variation 8b/SQ 2 computed  from the data presented in fig. 1. The solid curve is the 

result o f  our model.  

where 3, is a free parameter. The expression (8) for 8 (n) can always be multiplied 
by a factor which we incorporate in k. With the choice (8) for 8 (n) we have 

~ 0 , )  = - 8 0 , )  + x e - x y  (9 )  

and the integration (5) can be done analytic/flly. Taking X = 3 and normalizing at 
y = 0.9 (since we don ' t  know k') we obtain the curve shown in fig. 2, which can be 
considered an excellent fit to the data. 

We would like to warn an enthousiastic reader about several points. First, had 
we normalized h0' ,  Q2) (see eq. (1)) not to aha d but to Q-2  we would have found 
total disagreement with experiment. In case asymptotia has not yet been reached 
for aha d it seems reasonable to proceed in our way and thus satisfy the sum rules 
(2) at any Q2. It is also important to stress that eq. (5) has been obtained from 
eq. (3) under an assumption of  uniformity for the right hand side of  eq. (3). This 
may not be a bad assumption if we consider the overall trend of  the data the way 
we did and don ' t  specialize to some asymptotic domain. 

It could be that the excellent agreement between our theoretical curve and the 
data shown in fig. 2 is an accident, but we have considered it worth mentioning 
in the hope that it will be confirmed at SPEAR II and thus revive interest in scale 
invariant models for e+e - annihilation. 
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