PHYSICS LETTERS

REMARKS ON NEW MESON STATES

S. KITAKADO^{*}, S, ORITO^{**} and T.F. WALSH Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany

Received 28 November 1974

We discuss some of the phenomenological consequences of the assumption that the new meson seen in e^+e^- and hadron collisions is the lowest spin one state containing a charmed quark and the corresponding antiquark.

There has been much recent interest in the possibility of new hadronic degrees of freedom associated with extensions of the quark model – e.g. to SU(4) [1,2] or to SU(3) × SU(3)' [3] symmetries. The new quantum numbers are charm and color, respectively. There exists a body of phenomenology concerning the new hadronic states associated with these enlarged quark models [1-7].

In this paper we shall discuss the production of charmed mesons in e⁺e⁻ collisions, attempting to avoid overlap with the extensive work of Gaillard, Lee and Rosner, to which we refer the reader for material not covered here [6]. The SU(4) quark model is fixed by adding a fourth Q = 2/3, I = S = 0 "charmed" quark to the usual set q = u, d, s [1-7]. One can add components i = 1, 2, 3 to each quark so as to take or der 3 parastatistics into account (sometimes called color) [3,9]. Besides the usual gg states, there are new pseudoscalars $D^+ = c\bar{d}$, $D^o = c\bar{u}$, $F^+ = c\bar{s}$, $\eta_c = c\bar{c}$ as well as D⁻, D^o, F⁻, completing a 15 + 1 of SU(4) [1, 7]. There is a similar set D^* , F^* , \overline{D}^* , \overline{F}^* of vector mesons as well as scalars D_s , F_s , ϵ_c . In the usual quark model classification these are ${}^{1}S_{0}$, ${}^{3}S_{1}$ and ${}^{3}P_{0}$ states; higher ones should exist as well.

We shall discuss the new meson states; when we require masses we shall assume that the new state seen in pp $\rightarrow e^+e^- + X$ and $e^+e^- \rightarrow$ hadrons, $\mu^+\mu^-$ is the $\phi_c^{\pm 1}$, $m_{\phi_c} = 3.1$ GeV.

I. The ϕ_c (3.10 GeV): This state has a γ - ϕ_c coupling $f_{\phi_c} = (3/2\sqrt{2}) f_{\rho}$ where $f_{\rho}^2/4\pi \sim 2$. Then $\Gamma(\phi_c \rightarrow e^+e^-) \approx 26$ keV; this can only be an estimate,

** Permanent address: Max Planck Institute, Munich, Germany.

since SU(4) is badly broken in masses, and perhaps in couplings. If a cc̄ state did not mix at all with qq̄ via strong interactions, then $\Gamma(\phi_c \rightarrow \text{hadrons})/\Gamma(\phi_c \rightarrow e^+e^-)$ should be of order R where $R = \sigma(e^+e^- \rightarrow \text{hadrons})$ $\times (\sigma(e^+e^- \rightarrow \mu^+\mu^-))^{-1}$. A larger ratio would suggest $q\bar{q} \leftrightarrow c\bar{c}$ mixing (fig. 1). If the ϕ_c is produced singly in hadronic processes then it must mix with $q\bar{q}$, but it may do so very weakly. Such mixing is very small for ss̄ \leftrightarrow (uu, dd̄) and may be much smaller for $c\bar{c} \leftrightarrow q\bar{q}^{+2}$. A very small $\Gamma(\phi_c \rightarrow \text{hadrons})$ need not contradict the charm origin of the ϕ_c .

The ϕ_c is an SU(3) singlet, so if the $c\bar{c} \leftrightarrow q\bar{q}$ mixing conserves isospin the final states with an even number of pions are disallowed $(\pi^+\pi^-, \pi^+\pi^-\pi^+\pi^-, \text{etc.})$, but K^+K^- is allowed. Absence of 4π state would prove $I_{\phi_c} = 0$ and that $c\bar{c} \leftrightarrow q\bar{q}$ conserved *I*. We also have

- ^{#1} H. Schopper (public communication) and MIT and SLAC preprints (submitted to Phys. Rev. Lett.). If the ϕ_c is a $c\bar{c}$ state the quadratic mass formula in refs. [6, 7] gives the masses cited in the text. The baryon masses all lie above 4.5 GeV. We presume that the ϕ_c is a $J \approx 1$ hadronic state. The alternatives available at present are $c \approx$ color and $c \approx$ charm. We discuss charm. The two possibilities are distinguished by their multiplet structure and their decays ($c \neq 0$ states decay weakly and colored states electromagnetically [8]). The ϕ_c might in the color case be a degenerate pair of states in an SU(3) × SU(3)' (1, 8) representation. There is now rumored evidence for states above 3.1 GeV in e⁺e⁻ annihilation..
- ^{*2} It would be the same if SU(4) were exact and the mixing an SU(4) singlet [6]. Suppression of Γ (Had) compared to the estimate of ref. [6] might indicate SU(4) breaking for couplings. The suppression of Γ_{had} and $\Gamma_{e\overline{e}}$ indicated by the experiments of footnote \pm^1 might arise naturally in case (i) discussed in the text, which implies via duality that f_{ϕ_C}/m_{ϕ_C} and not f_{ϕ_C} should approximately obey SU(4) symmetry.

^{*} On leave of absence from Institute of Physics, University of Tokyo, Komaba, Japan

Volume 56, number 1

Fig. 1. Production and $c\bar{c} \leftrightarrow q\bar{q}$ mixing decay of the ϕ_c .

 $\sigma(\overline{K^{o}}, \overline{K^{o}}) = \sigma(K^{+}\overline{K}^{-}) = \sigma(\pi^{+}\rho^{-})$ if the mixing preserves SU(3). In many pion final states, $\langle n(\pi^{o}) \rangle = \langle n(\pi^{+}) \rangle$ and the charged pions carry off 2/3 of the CM energy. If the hadronic decay proceeds as in fig. 1, then we expect the final state to look like that in $e^{+}e^{-} \rightarrow$ hadrons at a nearby energy – apart from the fact that 1/3 of the events should have a KK pair, versus 1/6 for $e^{+}e^{-} \rightarrow$ hadrons nearby. Multiplicities and momentum distributions should look similar. Apart from the KK fraction, this would hold also for electromagnetic mixing. It might even hold for a color ϕ_c if the decay were by mixing and not via γ emission. For the charm case, the ratio $\Gamma(K^+K^-)/\Gamma(\text{Had})$ should be, in order of magnitude only $\sim |F_K(S = m_{\phi c}^2)|^2 \sim 10^{-2} - 10^{-3}$.

A vital question concerns J = 1 (daughter) recurrences of the ϕ_c . The mass formula can read

$$m_{\phi_c(k)}^2 = m_{\phi_c}^2 + \mathcal{M}^2 k \tag{1}$$

with (i) $\mathcal{M}^2 \approx (\alpha')^{-1} \approx 1$ GeV² and (ii) $\mathcal{M}^2 \approx m_{\phi_c}^2$ as extremes. The fact that normal and strange particle: seem to lie on parallel trajectories speaks for the former. For the latter: if the higher (radially excited) ϕ_c average in some sense the charm contribution to R =10/3 - 2 = 4/3, then this is roughly $\frac{12\pi^2 m_{\phi_c}^2}{f_{\phi_c}^2}$ $\times \mathfrak{M}^{-2}$ is the spacing. For $f_{\phi_c} \sim f_{\rho}$ this implies $\mathfrak{M}^2 \sim m_{\phi_c}^2$; a $c\bar{c}$ potential of radius $\sim m_{\phi_c}^{-1}$ would also lead to a spacing $\mathfrak{M}^2 \sim m_{\phi_c}^2$ ⁺³. In case (i) there would be a $\phi_c(k)$ every ~200 MeV above 3.1 GeV. In the latter case, the states are at 4.4 GeV and 5.3 GeV, etc. It may be that the odd k states are missing [10]. We should remark that the radially excited states may have very small production cross sections in hadronic reactions. They (unlike the ϕ_c) should decay strongly to charmed hadrons if $m_{\phi_c(k)} \gtrsim 4.3$ GeV; otherwise they are narrow. They might even remain narrow above the charm threshold, since high radial excitations may

nearly decouple from the low D and F states. This feature might also hold for a colored ϕ_{c} .

We also expect J = 2 cc̄ states (analogous to $f' = s\bar{s}$) which can be produced in $\gamma\gamma$ collisions or as one of a pair (e.g. $\phi_c f_c (J = 2)$) in e⁺e⁻ annihilation. These J = 2 states may have substantial branching ratios to $\gamma\gamma$ if m_{fc} is below the charm threshold. The $\gamma\gamma$ collision cross sections are hard to estimate, and we prefer to go on to

II. The η_c (3.01 GeV): We assume that this I = 0 pseudoscalar is pure $c\bar{c}$. The relation to the states of Gaillard et al. [6] is

$$\eta' = \eta' \cos \theta + \eta_c \sin \theta$$

$$\theta = 30^\circ.$$
 (2)

$$\eta_c = -\eta' \sin \theta + \eta_c \cos \theta$$

The assumption of a pure $\eta_c = c\bar{c}$ means that the SU(3) singlet η' has $\Gamma(\eta' \rightarrow \gamma \gamma) \approx 6$ keV; the SU(4) singlet η' chosen in ref. [6] would have a $\gamma\gamma$ width $(5/3)^2$ times larger. In the Han-Nambu model the factor is 4 [11], even for the usual SU(3) singlet η' . We have assumed here that the ratios of the matrix elements to $\pi^{0} \rightarrow \gamma \gamma$ are given by quark charge counting. If we do the same for $\eta_c = c\bar{c}$, $\Gamma(\eta_c \rightarrow \gamma\gamma) \approx 300 \text{ keV}$ and this leads to $\gamma\gamma$ production cross sections $\sigma(e^+e^- \rightarrow e^+e^-\eta_c) \sim 0.5$ nb at $\sqrt{s} = 8$ GeV. If $c\bar{c} \leftrightarrow q\bar{q}$ is small, a major decay mode could be $\eta_c \rightarrow \gamma \gamma$ and the state could be found in the $\gamma \gamma$ mass distribution for $\sigma(e^+e^- \rightarrow \gamma + \gamma + missing energy)$. The η_c could also be produced via $\phi_c \rightarrow \eta_c \gamma \rightarrow 3\gamma^{\pm 4}$; we estimate $\Gamma(\phi_c \rightarrow \eta_c \gamma) \sim 30$ eV. The state could also be produced in e⁺e⁻ annihilation at higher energies – especially through $\eta_c \gamma$ decay of the $\phi_c(k)$ states – where phase space is less critical. For the η' of ref. [6], the branching ratios of the $\phi_c(k)$ to $\eta' \gamma$ may be substantial.

Amusingly, there may be a 0⁺ ϵ_c state at 3.1 GeV which could also be produced by (and decay into) $\gamma\gamma$. This can be separated from the η_c by measuring $\sigma_{\parallel} - \sigma_{\perp}$ [12] in $\gamma\gamma$ collisions, since even (odd) normality states contribute positively (negatively) to $\sigma_{\parallel} - \sigma_{\perp}$. This ϵ_c state can also be produced via $e^+e^- \rightarrow \phi_c(k) \rightarrow \epsilon_c \gamma$.

Some of these remarks may even hold for the case of colored ϕ_c , η_c , ϵ_c . The disadvantage here is our ignorance of the expected spectroscopy.

⁺³ This has also been noted by M. Krammer (private communication).

^{‡4} Suggested by H. Joos.

Fig. 2. R_{AB} for (a) $AB = F\overline{F^*} + F^*\overline{F} + D\overline{D^*} + D\overline{D^*}$, (b) $AB = F^*\overline{F^*} + D^*\overline{D^*}$, (c) $AB = F\overline{F} + D\overline{D}$, (d) A guess at the multibody cross section.

III. D(2.13 GeV), F(2.18 GeV), D*(2.26 GeV), F*(2.30 GeV): These states can be pair produced in e^+e^- annihilation: D^+D^- , $D^0\overline{D}^0$, F^+F^- , F^+F^- ..., F*+F⁻, etc. The thresholds are close together for all these states. Well above threshold a gap in rapidity will develop between the charmed pairs; this gap will be filled by multibody states containing ordinary mesons and the two body channels will decrease rapidly in importance.

It seems worthwhile to attempt a crude estimate of the cross sections for these two body states near threshold. Besides the importance of multibody states far above threshold, higher $\phi_c(k)$ would lead to gigantic enhancements. These may be localized unless $\Gamma(\phi_c(k) \rightarrow D\overline{D}...)$ are large. For a threshold estimate we neglect the higher ϕ_c and assume dominance of the form factors by ρ , ω , ϕ , ϕ_c . If we assume that SU(4) can be used for the couplings f_V , $g_{VD\overline{D}}$, etc. – i.e. that the major breaking of SU(4) is in masses – then we find that the cross sections depend mainly on the contribution of the ϕ_c to the form factors and writing $R_{AB} = \sigma(e^+e^- \rightarrow AB)/\sigma(e^+e^- \rightarrow \mu^+\mu^-)$ we have $R_{F^+F^-} = R_D + D^- = R_{D^0\overline{D^0}} =$

$$=\frac{1}{4}\left(\frac{2}{3}\right)^{2}\left(1-\frac{4m^{2}}{s}\right)^{3/2}\left(\frac{m_{\phi_{c}}^{2}}{s-m_{\phi_{c}}^{2}}\right)^{2}.$$
 (3)

For exact SU(4), $R_{D^0\overline{D^0}} = 0$ [6]. We can now do the same for the pseudoscalar-vector and vector-vector

Fig. 3. μ^+/h^+ ratio as a function of $x_F = 2p/\sqrt{s}$ assuming 40% of all events have charmed particles with nonleptonic branching ratio 10%. The charmed particles are taken to be at rest, and we have assumed that $s d\sigma h/dx_F$ scales for $x_F \gtrsim 0.2$. We choose $\sqrt{s} = 5.5$ GeV.

states. For the former we take the dimensionless couplings equal to $g_{\rho\omega\pi}/m_{\rho}$ times SU(4) factors and for the latter we use VDM for the charge form factors, arbitrarily setting $F_{\rm M} = F_{\rm Q} = 0$ [13]. The results are shown on fig. 2.

If our estimate is at least correct as to order of magnitude, the contribution of charmed states to R away from $s = m_{\phi_c(k)}^2$ may be small until well above threshold. In this connection we might remark that the whole energy scale involved in the production of charmed states may be stretched by a factor $\sim m_{\phi_c}^2/m_{\rho}^2$ over that familiar from low energy e⁺e⁻ annihilation (case (ii) mentioned above).

Of course, the best place to look for these charmed mesons is at $s = m_{\phi_c(k)}^2$ provided $m_{\phi_c(k)} > 2m_{charm}$. From the mechanism of fig. 1 we expect in general for such states that $\Gamma(D^0 + \chi) = \Gamma(D^+ + \chi) = \Gamma(F^+ + \chi)$, and similarly for the other $C \neq 0$ mesons in $\phi_c(k)$ decay.

If we take the optimistic view that not too far above threshold the charmed states occur in about 40% of the events, then several comments become appropriate. First, about half the events would contain $K\overline{K}$ pairs (this is well known [6]) and, second, the inclusive direct μ^+/h^+ ratio offers a distinctive signature for charmed particles. If we assume that the semileptonic and leptonic branching ratios amount to $\approx 10\%$ averaged over D and F mesons (D*, F* $\rightarrow \gamma D$, γF should dominate), then the rapid rise of the μ -spectrum with energy and the so far observed rapid drop Volume 56, number 1

of the charged hadron spectrum lead to a dramatic increase of the μ/h or e/h ratio with particle momentum. See fig. (3), obtained under the simplifying assumptions that the charmed hadrons are at rest and that $s d\sigma^h/dx_F$ scales for $x_F \ge 0.2$. Lastly, there is a small (0.4%) probability for the final state to contain a μe pair. All these features should be enhanced at a high mass $\phi_c(k)$.

This discussion leaves a number of problems untouched, mostly unrelated to e^+e^- annihilation. However, we should remark that the experimental behavior of R below the charm threshold at 4.3 GeV is unexplained [14]. Neither is the observed monotonous behavior of the K/ π ratio up to 4.8 GeV, unless charm production really is small. The $\phi_c(k)$ can contribute to R away from $s = m_{\phi c(k)}^2$ via $e^+e^- \rightarrow \phi_c(k) + \gamma$. Whether this is related to the missing energy problem and the rise in R is unclear, as the $\phi_c + \gamma$ contribution depends sensitively on $f_{\phi c(k)}$. For $f_{\phi c(k)} \sim f_{\rho}$ the effects are substantial.

If the ϕ_c is invoked as a source of large p_T , μ and e, the problem of its production in the case of a small $q\bar{q} \leftrightarrow c\bar{c}$ mixing is acute. In taking the μ/π ratio at large p_T , the mixing cancels between production cross section and $\mu^+\mu^-$ branching ratio. It then seems as if each $\phi_c(k)$ contribution to the μ/π ratio is comparable to, say, the ϕ -contribution.

An interesting effect may occur in $e + p \rightarrow e' + \phi_c$ + X and $\nu(\overline{\nu}) + p \rightarrow \nu(\overline{\nu}) + \phi_c$ + X. For deep inelastic ep scattering, we estimate the ϕ_c fraction to be

$$\frac{\sigma_{\rm T}(\phi_{\rm c}+{\rm X})}{\sigma_{\rm T}({\rm tot})} \sim 0.01 \, \left(1 + \frac{Q^2}{m_{\rm o}^2}\right) \left(1 + \frac{Q^2}{m_{\phi_{\rm c}}^2}\right)^{-2} \tag{4}$$

where $\sigma_T^{tot}(Q^2) \approx \sigma_T^{tot}(Q^2 = 0)(1 + Q^2/m_o^2)^{-1}$, $m_o^2 \approx 0.4 \text{ GeV}^2$ (4) is obtained from photoproduction estimates of ϕ_c production [4]^{± 5}. The ϕ_c fraction thus increases with Q^2 for $Q^2 \leq m_{\phi_c}^2$. The same rough estimate should hold for the ϕ_c fraction in neutral current events if the weak neutral current has a significant vector contribution. The fraction of $\mu^+\mu^-$ in neutral current events is just the above fraction times the $\mu^+\mu^$ branching ratio. The above estimate is consistent with the observed dimuon fraction for a branching ratio of a few percent [15].

Lastly, we emphasize that the observation of a ϕ_c does not by itself tell one whether c = charm or c = color; observation of the other states is essential. Some of what we have said about the ϕ_c , η_c , ϵ_c may hold if c = color. Of course, it may be that something totally unexpected occurs, with the companions of the ϕ_c and its radial excitations unrelated either to color or charm.

For similar duality considerations and further references thereto, see ref. [16].

Stimulated by rumor, we note that for the charm model, decays like $\phi_c(k) \rightarrow \phi_c(k')$ + hadrons (k' < k)should have widths of the same order of magnitude as $\phi_c(k) \rightarrow$ hadrons via the mechanism of fig. 1, since a similar disconnected duality diagram is involved. The (uncharmed) hadrons in such a chain decay form a SU(3) singlet. Note further that via Zweig $\phi_c(k)$ $\neq \phi_c(k') + \eta'$ unless the η' of ref. [6] is chosen, in which case this is a strong decay. By contrast to the case of pure $c\bar{c}$ states, the $C \neq 0$ higher excitations should all be broad.

References

- Z. Maki, Prog. Theor. Phys. 31 (1964) 331, 333;
 Y. Hara, Phys. Rev. 134 (1964) B701;
 D. Discher and S. Chaham, Phys. Lett. 11 (1964) 2
- J.D. Bjorken and S. Glashow, Phys. Lett. 11 (1964) 255. [2] S.L. Glashow, J. Illiopoulos and L. Maiani, Phys. Rev.
- D2 (1970) 1285, and many more cited in ref. [6]. [3] Y. Nambu and M.Y. Han, Phys. Rev. 10D (1974) 674.
- [4] C.E. Carlson and P.G.O. Freund, Phys. Lett. 39B (1972) 349.
- [5] G. Snow, Nucl. Phys. B55 (1973) 445.
- [6] M.K. Gaillard, B.W. Lee and J.L. Rosner, Fermilab 74/86 THY.
- [7] M. Nakagawa and H. Nitto, Prog. Theor. Phys. 49 (1973) 1322; M. Kobayashi, M. Nakagawa and H. Nitto, Prog. Theor. Phys. 47 (1972) 982; T. Hayashi, E. Kawai, M. Matsuda, S. Ogawa and S. Shige-eda, Prog. Theor. Phys. 47 (1972) 280, 1998. These papers are based on the Niu particle, whose mass implies $m_{\phi_{\mathbb{C}}} \sim 3$ GeV! See K. Niu, E. Mikumo and Y. Y. Maeda, Prog. Theor. Phys. 46 (1971) 1644.
- [8] R.N. Cahn and J. Ellis, SLAC-PUB-1334.
- [9] M. Gell-Mann, in Proc. XVI Intern. Conf. on High High energy physics, Chicago-Batavia, 1972.
- [10] M. Böhm, H. Joos and M. Krammer, submitted to Phys. Lett. B.

^{±5} This estimate is based on $f_{\phi_{\mathbb{C}}} \sim f_{\rho}$; moreover $q\bar{q} \leftrightarrow c\bar{c}$ coupling suppressed with respect to $u\bar{u} \leftrightarrow s\bar{s}$ could lead to a suppression of the pomeron- $\phi_{\mathbb{C}}$ coupling beyond that in ref. [4].

Volume 56, number 1

- [11] H. Suura, T.F. Walsh and B.L. Young, Lett. Nuovo Cim. 4 (1972) 505.
- [12] H. Terazawa, Rev. Mod. Phys. 45 (1973) 615.
- [13] G. Kramer and T.F. Walsh, Z. Physik 263 (1973) 361.
- [14] B. Richter, plenary session talk at London Conf. 1974.
- [15] D. Cline, Intern. Conf. on Neutrino physics, April 1974.
- [16] D. Schildknecht and F. Steiner, DESY 74/55.