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The dearth of solvable models for eie- annihilation often reduces one to excessively 
qualitative considerations, leaving obvious dynamical questions open. We discuss 
here various aspects of chain-emission models that can be cast into solvable form. In such 
models the virtual photon decays into a link (a pion, for example) and some state 
(e.g., an off-shell vector meson) which decays by sequentially shedding further links. 

Topics include the scaling behavior in such models (including how it is broken near 
w = 0), neutral/charged distributions, the effect of internal quantum numbers, and, 
in a particularly simple version of the model, the two-particle distributions. In particular, 
we show how a large neutral to charged energy ratio can arise. Finally, we discuss variants 
on such models arising from possible variety in the links of the chain, (i.e., multichannel 
effects and the nonlinear effects arising from the branching of a chain into chains. 

1. INTRODUCTION 

It is customary to approach the dynamics of multiparticle production processes 
through the construction of models that embody definite physical pictures of the 
dynamics. Some time ago, a vector meson resonance tree graph model was proposed 
to explain the multipion e+e- annihilation cross sections in the low q2 region [l]. 
However, this model lacked a suitable mathematical framework to extend it in a 
tractable way to larger q2. We discuss here a simplified version of this model that 
can be described in terms of solvable equations and from which a number of 
detailed dynamical questions can be answered. With simple tractable models one 
can learn piecemeal about the physics; hopefully one can learn lessons that may 
apply in wide classes of models and might even reflect general features of a satis- 
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factory theory of the dynamics in question. Ideally, models for e+e- annihilation 
should also apply to deep inelastic lepton-hadron phenomena; there is a wide- 
spread belief that the two classes of processes are related. On the other hand, we 
believe that it is useful to construct less ambitious models for e+e- processes alone. 
The present model may be able to shed some light on the continuation from 
timelike Q2 = s to spacelike Q2, but it is not with this aim that we discuss it. 

We wish to describe here a class of models for efe- annihilation based on the 
idea of chain emission. For example, the virtual photon is imagined to couple to a 
hadron system of low spin and isospin Z = 0 and 1. This system decays by emitting 
a hadron or hadron cluster (e.g., a pion or a meson resonance) and recoiling as a 
system of the same character but different mass. This process is repeated until the 
decay is complete and only stable mesons populate the final state. The essential 
feature that makes such a linear chain model tractable is the assumption that the 
hadron system remains in some sense the same during this decay process (we will 
make this more precise later). Restricting ourselves to the especially simple case of 
single pion emission, we can depict this decay as in Fig. 1. The hadron system 
that forms the backbone of this decay chain should be nonexotic (I = 0, 1 for pion 
emission) and should not make large excursions in spin in the course of the decay. 
We might mention here a nice lesson arising from the model with alternating 
Z = 0, 1 states: the neutral to charged energy ratio can be large. 

Further, we can imagine that transition to high spin systems is inhibited by 
angular momentum barriers. If, for illustrative purposes, we imagine the system 
to be a heavy vector state starting at large mass and J = 1 on a Chew-Frautschi 
plot, then this assumption amounts to saying that the system cascades down in 
mass remaining near the .Z = 1 line as it emits mesons. The system can be either 
an on-shell state or one off its mass shell (e.g., a pn meson with p2 = Mn2 or an off- 
shell p meson with p2 > mD2). In most of this paper we shall make the simplest 
assumption possible, i.e., that the system keeps fixed spin (J = 1 when we need 
spin properties). We shall see that relaxing this condition leads to some classic 
coupled-channel effects. 

Remaining with our example, we can see that the hadron spectra in the final 
state depend on the way in which this hadron system migrates in mass on the 
Chew-Frautschi plot-in particular, it depends in the average jump length in mass 
per emitted hadron. We can imagine two extremes. In one, the hadron system 
jumps on the average a fixed or nearly fixed mass interval at each emission step, 
The final state hadrons then have large multiplicity and low momenta that do not 
grow or do not grow rapidly as the mass of the initial system is increased (though 
the mean momentum does not tend to remain constant for single particle emission 
on account of angular momentum effects [2]. In the other extreme, we imagine 
that on the average the system makes a jump that is a fraction of the distance in M2, 
separating it from the edge of the Chew-Frautschi plot. In this case, the mean 
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hadron momentum tends to grow with the mass of the initial system (the e+e- CM 
energy) and the multiplicities tend to grow slowly. A classification of these 
behaviors in a simple version of such models with fixed spin J = 1 has been given 
in [2]. We shall concentrate here on the second case, in which the model has a rich 
structure and for which we found the lessons from the model most interesting [3]. 

An important ingredient in the model-indeed, the one that turns the preceding 
remarks into a mathematically defined form-is the assumption that there is an 
ordering on this linear chain so that on taking the cross section for Fig. 1 we get 
the integral equation corresponding to Fig. 2. On iteration, this generates rainbow 
diagrams without crossed links. We do not feel that relaxing this ordering assump- 
tion (analogous to that in the multiperipheral model) would change the physics in 
an essential way, though it would vastly complicate the analysis. With our assump- 
tion, we can do a great deal (see [2] and [3]). Considering e+e- -+ h + anything, 
where h denotes the detected hadron, we can write an integral equation for the 
single particle distribution function in the form of Fig. 3 and also an equation in 
the form of Fig. 4 for the two particle distribution functions. All this holds for a 
chain with or without spin; when we need spin properties we shall consider a “bare 
bones” model where the hadronic system keeps J = 1. 

The equations of the model can be reduced to algebraic form by standard 
Mellin-transform methods. Choosing that solution corresponding to our picture 
of large jumps on a Chew-Frautschi plot, we find that the total efe- annihilation 
cross section has a power behavior, the power being promoted over that for 
the terminal process e+e- + h, + h, to P. As the CM energy + co for fixed 
nonzero w = 2&/(~)~/~, the single particle distributions scale in the variable 
w (Feynman scaling). A significant lesson here lies in the fact that for small w 
scaling is violated at any finite s. Moreover, the multiplicities in the model 
grow logarithmically in s, but the coefficient of this logarithmic growth is not given 
simply by integrating the asymptotic scaling function down to the lower kinematic 
limit 2~~,(s)-‘/~. This result seems quite general for such models and conflicts with 
a very popular bit of folklore. The model allows one to study sum rules for the 
moments in w of the structure function and thus to study, for example, the way in 
which the cross section approaches its asymptotic form. For further details we 
refer the reader to [3]. 

Some of the most interesting lessons from the model concern its isospin structure 
and the distributions of neutral and charged particles. The simplest version (our 
bare bones model with I = 0 or Z = 1) would correspond to pion emission with 
alternating isospins along the chain (p-like and w-like states). Since the photon is 
usually assumed to be dominantly isovector in character, the initial transition of a 
heavy isovector state to a pion and an isoscalar state leads to a neutral pion carrying 
off a large fraction of the CM energy. By using the energy conservation sum rule 
we can find an expression for the ratio of the energy carried off by neutral pions to 
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that carried off by charged pions in this simple model. This ratio can be as large as 
two in such models; put differently, the slopes of neutral and charged pion spectra 
can be dramatically different. A related lesson is that without special effort, models 
that give a ratio of the number of neutral to charged pions asymptotically equal 
to 4 only approach this value logarithmically (i.e., as l/(N;‘,). It is also possible to 
discuss neutral/charged correlations (e.g., the mean number of neutrals for fixed 
numbers of charged particles) and SU, in the context of such models. 

Different models, which give Feynman scaling asymptotically for single-particle 
distributions, can give quite different results for two-particle correlations. For this 
reason we consider the latter quite important. We discuss this in terms of the bare 
bones model with spin and isospin. Particularly nice features arise when we insist 
that of the two detected hadrons, one be fast (wr ---f 1). The distribution of the 
second detected particle is given in terms of the single particle inclusive distribution. 
It is possible to determine the normality of the system recoiling against the fast 
hadron. Finally, note that the model has no transverse momentum cutoff: this is 
unlike the sitution in parton models. 

Our main aim in this work has been pedagogical. For this reason we have con- 
fined most of our concrete discussion to the bare bones model already mentioned: 
a J = 1 chain with pion emission and alternating isospins (p, w-like states), leaving 
out either spin or isospin or both when inclusion of such effects would clutter the 
discussion to no advantage. Nevertheless, we would like to emphasize that our 
horizion is broader. We believe that such models can be extended to include 
radiation of particles other than pions (or pseudoscalar mesons in the SU, versions) 
and to allow for some migration in spin of the hadronic system in the course of the 
chain decay. We will also consider the role played by nonlinear terms in the cascade, 
which we will show to have a unitarizing effect in the model. 

In the next section we discuss the model divested of even the complexities of 
spin and isospin. This exhibits the dynamical features clearly. We also comment on 
the case with spin. The added complexities of isospin and SCJ, are discussed in 
Section 3 along with the attendant effects on neutral/charged distributions. In 
Section 4, we start to relax the condition that there be only one hadron system 
along the decay chain by studying a simple variation with two different types of 
decaying states in the context of a model without spin. In Section 5, we face up to 
the full complexities of spin and isospin in a case where it has most to teach us: two- 
particle inclusive distributions. We also discuss the effects of the isospin structure 
of the bare bones model on two particle correlations. Finally in Section 6 we 
consider what happens when multipronged tree graph contributions are added to 
the cascade. which leads to nonlinear terms in the basic equations describing the 
chain emission or cascade mechanism. 
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2. BASIC DYNAMICS OF THE MODEL 

1. We have already described the model in a qualitative way. In this section 
we obtain the equations of a particularly simple version. This will allow us to 
discusses the physical features of chain emission models with a minimum of 
technical encumbrances. The rest of the paper will consist of elaborations on the 
bare bones model. The essential lessons on the dynamics remain the same as in this 
section. We will repeat here many of the points of [3], to which we refer the reader 
for technical details on the model with spin. 

The photon spin and isospin are ignored here and we assume that the hadron 
system decays into only one type of particle. The decay chain for the emission of 
n-particles is shown in Fig. 1. The coupling of the photon to the initial hadron 

----&---&--------+---- 
FIG. 1. The decay chain. 

system can be absorbed into the definitions of the vertices and we will not indicate 
it explicitly. Two types of vertices enter: one for the radiation of a single particle 
and one for the terminal decay into two particles. The precise form of this last link 
plays no essential role. 

2. Hereafter, we will consider not the cross section for e+e- + hadrons 
but rather the absorptive part of the scalar current correlation function, 

p(s) = CW4 C I<H I 40) I @I2 S(Q - PH> (2.1) 
H 

Summing up the contribution of Fig. 1 to p(s) and using the ordering principle 
mentioned in the introduction, we arrive at the integral equation depicted in 
Fig. 2; this generates rainbow diagrams on iteration. Writing ( plp2 1 j(O)1 0) = f(s), 

k 

FIG. 2. The integral equation for p(s). 

the first term contributes p 1 f 1”/47r(~)~/~. The second involves the radiation vertex 
(k; H - k [j(O)] 0) = 4rg(s, s’)(H, -k /j(O)1 0) where s = Q2, s’ = (Q - k)2. 
Bothfand g are understood to contain the outermost propagator and the coupling 
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to the photon if the hadron system is thought of as an off-shell single-particle 
state (a restriction we do not need to make). The integral equation is easily worked 
out to be (ignoring masses throughout): 

where 11 = s’/s; X is for later convenience; and 

K(s, s’) = (1 - q) s I g(s, s’)12 = ( 1 - 7) h(s, 9s) 

The inclusion of spin would change the precise form of K, but nothing else. Of 
course, we would then have to deal with two structure functions for the once- 
inclusive reaction. Physically, K represents the probability that a system of squared 
mass s will decay into one of squared mass s‘. 

3. We can now proceed to the single-particle inclusive reaction e+e- ---f h + 
anything. If we hold one momentum fixed and sum over all others then the cor- 
responding integral equation is that shown in Fig. 3. The differential structure 
function is defined by 

k 

FIG. 3. The integral equation for one-particle inclusive production 

The first term is just the product of the vertex squared and the function p at 
s’ = (I - UJ) S, where w = 2p . Q/S = ~Z%/(S)~/” (Qz = S) is the scaling variable 
for the detected particle. The second term is more involved. As in (2.2), a phase 
space integral over 71 = s’/s appears. In addition, there is an integration over the 
relative angle of p and k. This played no role in (2.2). After changing variables to 
w’ = 2p . (Q - k)/.C2 and paying close attention to the limits of integration, one 
finds F(s, co) = dpjdw satisfies the integral equation 

OS, w) = Fo‘o(s, w) + x j-f g $ so”;” d?, -q . h(s, 7s) F(y, w’) (2.4) 

where 
Fo(s, w) = 4wh(s, (1 - w) s) p((l - w) s) 
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4. The above complications are present in increased degree in the equation 
for the two-particle inclusive distributions in e+e- --+pr + pz + anything. One can 
check that iteration of the equation depicted in Fig. 4 generates the correct set of 

k 

bl 
FIG. 4. The integral equation for two-particle inclusive production. 

rainbow diagrams. The relevant invariants are now or = 2p, * Q/Q2, 
w2 = 2p, * Q/Q2 and qlz = (pl + pJ2/Q2. The equation for the two particle 
distribution function H(s, w1 , w2 , 7rz) is 

H(s, ~1 , w2 , rl12) = H;’ + Hd2’ + h j dw,’ d j $ +f$ j dv 
w1 Wl 

x qA-l"W) &, qs) H(qs, w', wz't 7112) P-5) 

where 

Hd” = hh(s, (1 - wl) s) F((1 - wl) s, w2) 

H;) = &(s, (1 - w2) s) F((1 - c+) s, q) 

2 1 + rl WI w2 

1+17 27 A = det wl w; “6’ w2’ . 
7712 

% w2' 32 0 

(2.6) 

5. The solutions to these equations depend on the behavior of the vertex 
h(s, 7s). The model so far is general and can incorporate different behaviors for this 
vertex. To be definite, we want to concentrate here on the case where the vertex 
scales, 

e, rls) = 44 (2.7) 
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and is a function of 17 alone. This is certainly the simplest choice for the dimension- 
less function h(s, 7s): it depends only on the dimensionless ratio 7, We shall see 
that this leads to scaling in w for the structure function F(s, w). Assumption (2.7) 
has a simple physical interpretation. It corresponds to long jumps on the Chew- 
Frautschi plot of finite mean length in dimensionless units, independent of the 
value of s with which one starts the decay of the hadronic system. 

Substituting (2.7) into (2.2) and (2.4) and defining the Mellin transforms 

B(j) = 1 Cc ds s-l-$(s) 
1 

(2.8) 
P(j, () = jlrn ds s-l--j J-o1 doJ f.I-l+~F(s, co) 

we have for p^(j), 

(2.9) 

The asymptotic behavior of p(s) is determined by the largest j = IX(~) for which 
1 - AK(&)) = 0, in which case 

(2.10) 

Since /Z(T) is not known, it is difficult to say anything about the power a(h). Of 
course, we have assumed that 01 leads the singularity of go . Otherwise p would 
have the same s-dependence as p,, . It is well-known that in the case with 
spin [where a(~) - s -If(s)] an increasing p(s) is not compatible asymptotically 
(s 2 4 x 104 GeV2!) with one-photon e+e- annihilation [4], and even causes 
problems for Q.E.D. at high but attainable energies [5]. This is really an 
experimental question, and we merely note that it may be interesting and useful 
to imagine models where the large s behavior of p(s) is not constrained and 
in which the dynamical origin of the energy dependence can be traced out at least 
in principle. 

6. Proceeding similarly with F(s, w) we have: 

(2.11) 

595/92/2-10 
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(The precise form of @ depends on the definition of F(.s, w); cf. Appendix to [3]). 
The Mellin transform of F,,(s, W) factorizes 

13o(.L 8 = iv) m, 4) (2.12) 

where H(j, 5) does not interest us here; it has singularities only in the left half plane 
for both j and e and it decreases in the right half plane. Now, (2.11) will have a 
pole atj = cu(h) and in the limit s + cc and w fixed and nonzero this will lead to a 
factorization of F(s, w), i.e. 

(2.13) 

In other words, the model leads to scaling in the variable w. This follows, of course, 
only so long as the singularities of (1 - X@(j, 5))’ lie to the left of a(X). This is the 
case for w + 0, as is most easily seen by noting that a singularity to the right of 
a(h) for p(j, 5) would, by integrating the energy sum rule 

2/J(s) = J df.IJ wF(s, w) (2.14a) 

produce a contribution to p(s) growing faster than s*; the multiplicity is given by 
the sum rule 

(n) p(s) = s dw F(s; w). (2.14b) 

For o = 0, inspection of (2.11) shows that 1 - X@(j, 1) = 1 - AK(j) so that the 
integrand develops a simple pole at < = 1. This singularity leads tof(w) - w-l as 
w + 0, with a coefficient proportional to (EKB/@)-~. If we integrate this singular 
scaling function down to the kinematic minimum 2rn/(~)l/~ in expression (2.14b) 
with F(.s, W) replaced by of, we get a logarithmic increasing multiplicity with 
the coefficient proportional to (a@/a&l. The multiplicity is in fact logarithmic and 
is given exactly by (2.15a): 

(2.15a) 

h2> P(S) = (A $)” P(S) (2.15b) 

where p(s) is an implicit function of h through CL@). 
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Inserting the asymptotic behavior of p(s) we find 

(n>, = Ahins + 1.. 

Using ha+9 = -(Aaq~p+l and Eqs. (2.9) and (2.11) we see that the coeffi- 
cient of the w-l term in f(w) and the coefficient of the exact expression for the 
multiplicity are in general unrelated to one another. Physically, this is becausef(w) 
contains a singularity not present in F(s, w), which vanishes at the lower kinematic 
limit for any finite s. The multiplicity is built up by the rapid increase of F(s, w) at 
smaller and smaller values of w as s increases. The progressive development of this 
singularity continues even after scaling has been established at any finite w. The 
result is that one cannot interchange the scaling limit and the integral in (2.14b), 
and to the conclusion already mentioned. This comment should apply to al1 chain- 
emission models and indicates that in any scaling model with increasing multi- 
plicity one must be careful in discussing the multiplicity sum rule; see [3]. 

7. The singularity that appears in the integrand of (2.13) can be exhibited in 
another way by using the energy sum rule (2.14a) and carrying out the < integra- 
tion. Since H(j, 5) decreases in the right half plane, we can pick up the pole in f 
generated by this integration to find 

c+im dj f?(j) H(,j, 2) 
2p(s) = .T,& 27Ti s’ 1 -- X@(j, 2) (2.16) 

Since the singularity of (1 - X@(j, 2)))l lies to the left of that in p(j), it contributes 
the nonleading term to p(s). Some algebra suffices to show that the coefficient for 
this term is negative, i.e., the cross section approaches its asymptotic limit from 
below. 

From the preceding discussion it is evident that the scaling behavior is broken 
for small w, since this is where the singularity inf(w) is being built up as s increases. 
For any finite s, we expect F(s, o) to rise from zero at w = 2m/(s)li2 reach a 
maximum at some w and then decrease toward w = 1. This maximum steadily 
increases in height with s and moves to smaller and smaller w, so that the region in 
w for which F(s, W) scales increases with s. For some qualitative pictures refer 
to [3]. Note here that a breaking of scaling for small w and finite energies emerges 
from quite different approaches and is probably a feature of any model of e+e- 
annihilation [6-81. 

8. The behavior as w + 1 is of considerable interest. From (2.13) we see 
that at w = 1 ,f(l) = 0; the rate of decrease as w -+ 1 is determined by how rapidly 
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H(j, t) decreases as 5 + co in the right half plane. This corresponds to the simple 
observation that as w + 1 only the driving term survives. An interesting feature of 
the bare bones model with spin is that as w 4 1 the transversality of the coupling 
(it has the spin structure of the pwrr vertex [3] asserts itself, leading to 

where VL and VT are the conventional longitudinal and transverse structure 
functions for the once inclusive process. A very similar point will recur in Section 5. 

3. MULTIPLICITIES AND INTERNAL SYMMETRIES 

1. So far we have studied some dynamical features of chain-emission models. 
Most of what we have to say in this section is based on the isospin structure of the 
bare bones model. For some of this discussion it would be useful if we could make 
some statement about the dispersion (n2> - (n)Z or, equivalently, about f2 = 
(n(n - 1)) - (n)2, since it is interesting to see whether the distribution is broader 
or narrower than a Poission (f2 > 0 or (0). From (2.15) we can calculate the 
dispersion which, up to terms increasing as In s is [2]: 

ah 
(n2) - (n)2 = (n) + X2 -&In s 

where (Kc”) = PKEkP) 

One can readily verify that K’ < 0 (see Section 2) and K” > 0, so that the distribu- 
tion is narrower or broader than Poission depending on whether 2(K’)2 - KK” is 
positive or negative. For small h we expect h2a2cu/ah2 to be small compared to the 
coefficient of (n), X&@X so that the distribution is approximately Poission. For 
the large h limit, note that for a simple example with h(9) = constant one has a 
distribution that becomes narrower than Poission for large h. 

2. There are many interesting features to the bare bones model with isospin. 
One of these is the ratio of the numbers of neutral and charged pions. It is well 
known that for an isoscalar photon of odd charge conjugation this ratio (nC = 
4, + n,-1 is <no>l(nc> = ii averaged over all charge configurations at fixed N 
(a recent discussion with references: Ref. [9]). We can use this to find (n,)/(n,) for 
an even number of pions N = (n,) + (n,) so long as we use the bare bones model. 
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This is because an isovector photon, after radiating a single neutral pion, gives rise 
to an I = 0 hadronic system. This decay then yields (n,)/(n,j = 4 and it is easy to 
see that for even N, (n,)/(n,) = (N + 2)/(2N - 2) and, taking account of the 
expected 3 : 1 isovector: isoscalar ratio we have (now averaged over N): 

2(N) -t 3 
4(N) - 3’ (3.2) 

Of course, we have implicitly assumed that (N) is large and the distribution broad. 
Otherwise the N variation produced by the isovector: isoscalar ratio would cause 
(3.2) to oscillate as (N) increases. 

What appears significant is that (n,)/(n,) approaches its expected asymptotic 
value of $ only as l/(N) N (In s)-I. A more rapid approach to the limit would 
require a more complicated isospin structure, at least in the context of chain- 
emission models. It is perhaps worth mentioning that we expect more general chain 
emission models to yield (n,)/(n,) -+ 4 as s -+ 00, so long as the radiated particles 
and those along the chain do have conventional isospin and do not have isospin 
violating decays. The situation is quite different when we treat the ratio of the 
energies carried off by neutral and charged pions. 

3. More interesting than (n,)/(n,> in our bare bones model is the ratio of 
neutral to charged energies, This is also what is most easily inferred from experi- 
ment. Just as in our preceding argument, where the enhancement of (n,)/(n,> 
above l/2 came from the first no radiated along the chain (for an isovector photon), 
so here the only source of asymmetry in the energy distribution among neutral and 
charged pions arises from the first radiated no. The entire effect is then due to the 
fact that in the model with alternating isospins the isovector photon must dispose 
of its isospin by emitting a r” before it can give rise to an I = 0 recoil system. Let 
the first no carry off a fraction (1 - ;i) of the CM energy as s -+ 03. It is easy to 
convince oneself that the remaining pions recoiling against this first one share the 
remaining energy equally, so that (E,) = +(s)l/” (1 + ;i). Then we have (E,) = 
$(s)l’” (1 - +j) + $(~)l/~ (1 + 7j) and 

(Eo) f<- =- 
( 1 

2-q 
(E,) +1 1+qG2 (3.3) 

This argument can easily be made more precise. In fact, we can obtain an expression 
for +j. First, note that the above argument directly corresponds to the decomposi- 
tion of Fig. 3 for an isovector photon. The first term on the right in the figure is 
driving term in the integral equation, Foil (a is the charge index), and the second we 
shall call F;& . Clearly Foa vanishes unless 01 = 0; F&, is independent of 01. We now 
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take over the normalization for the case with spin [3], as we wish to make 
a numerical estimate. Now the energy sum rule reads (note the definition of F) 

pL’J1 
c( 2(47T)2 P 0 

dw w2(Fo + 3F,nt) = 1 (3.4) 

From this we can express the integral over Fint in terms of that over F. , but the 
latter is known. In the spin 1 case it is 

and so 

F. = (47~)~ hw2(1 - co) h( 1 - w) ~((1 - w) s) 

Jb’ da, w2Fo(s, w) = ; [ 1 - X l1 dq ~+Q(I - T# IT(~)] (3.5) 

Finally, we have 

111 ~_ 
2(4+ P s o 

dw w2Fi,t = ; (1 + +j) 

? = (s,’ d’~ “1’+~(1 - d3 W)/(jol d7 ++=(l - n)” h(?)) 

(3.6) 

The extra (1 - q)” in (3.6) is due to extra momentum factors arising from the 
pun vertex in the case with spin. 

Just as an example, take h = constant; then 71 = (2 + ot)j(6 + CX) = 3/7 for 
01 m I (i.e., p rising linearly with s). Again including an isoscalar contribution of 
l/3 the isovector we get (E,)/(E,) RS 0.9 Of course, this is only a crude guess 
since we really know nothing about h(q); however, generally q < 1. 

It needs to be emphasized that in this model (E,)/(E,) is energy independent 
once the energy is high enough that Feynman scaling is established and ij is energy 
independent. (E,)/(E,) cannot rise indefinitely. From our discussion of the bare 
bones model, this is clearly a general feature. 

4. We now see that in chain-emission models the behavior of TO and T+ 
spectra can be quite unlike. In the simple model we have been discussing we expect 
a substantial difference that reaches a maximum in the vicinity of u - 7. At low 
energies this might simply appear as a rr” momentum distribution, which is flatter 
than that for charged pions. At high energies one should see a hump in F”’ - F”’ 
Also, note that as w -+ 1 the driving term dominates so that 

(3.7) 
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There is a well-known relation in the quark parton model, 6’“’ = F”+ [9]. This 
arises because in the t-channel of the process yn” - y+ (one of whose discon- 
tinuities gives F”) only q 4 states of I ,( 1 can appear. In chain-emission models 
there is no such constraint, one can have I = 2 and FBD # Fn+ in general. Put 
differently, the difference arises because the fragmenting states are octets and not 
triplets as in the quark parton model..If one regards this feature of the bare bones 
model with distaste and, out of regard for conventional dual ideas, imposes 
Z < 1 and Fro = Fm+, the the chain must be more complicated and involve &-like 
states. The isospin can then no longer alternate as in our bare bones model. 

We want to emphasize that the observation of a large FFno/Fnf ratio at w f 0 has 
strong implications for the isospin structure of the chain in any model of this 
type; the bare bones model offers an explicit lesson on this point. 

5. A considerable advantage to chain-emission models is their similarity to 
models already familiar in hadronic processes. We want to consider here the 
neutral/charged correlations for the bare bones model, where the situation is 
particularly transparent. We can then see qualitatively how more general chain- 
emission models will behave from their hadronic analogues. The distribution of 
neutral and charged pions is (N = n, + n,) [lo]: 

w% , n,) = PJ(% > %I (3.8) 

where P, is the probability to produce N pions; and r is the branching ratio of this 
state into n, neutral and n, charged pions. The above are normalized by 

C r(n, , n,> = 1 
%I,% 

n,+n,=N 

It is easy to separate N even (isovector photon) and N odd (isoscalar photon) so as 
to take account of the isovector/isoscalar ration, and we will not do this explicitly. 
Two useful quantities are the probability to produce n, charged particles, summed 
over neutrals, and the mean number of neutrals given that the number of charged 
particles is fixed, 

P(n,) = C Ph , 4 

(3.9) 

Clearly, the physics lies in PN and I’(n, , n,). P, depends on the detailed dynamics 
of the model; I’@, , nc) depends on the isospin structure of the chain, as we can 
demonstrate by considering the bare bones model. 



354 CRAIGIE AND WALSH 

We can calculate r by noting that the last three pions on the chain always consist 
of two charged and one neutral. A p-like state elsewhere in the chain gives (in pairs) 
T&O, n+?r-, and CT+ with equal probability. The number of such p-like links 
(except the last) is 

m = (N - 4)/2 for N even 
m = (N - I)/2 for N odd. 

Writing the number of charged pions as n, = 2 + 2k (k = 0, l,...) a straight- 
forward combinatoric argument gives 

r(n, 9 %> = (;)“-” (;)” k, (;; k)! (3.10) 

i.e., we have a binomial distribution by pairs of charged particles. In obtaining this, 
we have ignored the channel with only two charged pions. Because of the decreasing 
pion form factor this channel should be ignorable. 

From (3.9) and (3.10) we can calculate P(Q) and (no),c if PN is known. Since it is 
not, we shall just make some comments, ignoring the question of the isovector/ 
isoscalar ratio. 

(i) If PN is a Poisson, then the binomial character of r(n, , n,) leads to P(n,) 
also being a Poission distribution and +z,),~ = (no). Even if Qz, , n,) is binomial 
only in pairs, one arrives at the approximate equality Qz,),~ = (no). 

(ii) If PN is much narrower or broader than a Poisson, then correspondingly 
P(nJ is also. This need not be the case in general. In fact the situation is quite 
different, when collective effects play a role (e.g., when the isospin bounds are 
saturated or nearly saturated (111). For the chain model distribution much narrower 
than a Poission leads to (u,),~ decreasing as ~1, increases, because no + n, = 
N N (N) (for a narrow distribution) On the other for broad distributions +z,),~ 
tends to increase as n, increases [3]. 

Of course, this only holds if I’ is binomial or approximately so. If the radiated 
particles are meson resonances or clusters, then the presence of such clustering is 
reflected in the behavior of, e.g., +z,),~ , which then tends to rise as a function of 
n, even for a Poisson distribution. The variety of behaviors possible indicates that 
it is of some importance to try to separate PN and Qz, , n,). This may be difficult 
experimentally, but it is necessary if one is to disentangle the dynamical and 
isospin structure arising from any model-not just chain emission models. 

6. There is no dimensional scale in the model (such as the pT cutoff in the 
parton model), so it may be that at very high energies the production of heavy 
particles is not disfavored. This makes it interesting to consider the model with 
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SU, included. We will do this for the simple case where one has an octet electro- 
magnetic current and pure octet hadron states, including both the radiated particles 
(the pseudoscalar octet) and the chain states (C = -vector-meson octet-like 
states). The current propagator is diagonal in the SU, indices and we can take the 
radiation vertex to be pure D-type, the driving term in Fig. 3 now being F-type. For 
the driving term in the inclusive structure functions we will have a D-type coupling. 
For the notation, see Ref. [12]. 

There are now eight PA&), a = I,..., 8. We need to solve for Bern = & + &&, 
given the usual SU, classification of the electromagnetic current [12]. The ia 
satisfy the algebraic equation 

A = Boa + h c KJbPb 
b 

(3.11) 

where 

K(.i)ab = c (darb)2 Ko(.i) T 
Writing these equations out, we see by inspection that 

After which one is left with three equations 

@AK, + 3) b3 + (2X,, - 9) ,& = - 186, 
(8X& + 3) ,iS3 + (7xK, - 12) ,& = -276, 

(AK, - 3) p3 + 3XK,,;, + AK,,;, = -9&, 

which can be solved without trouble to yield 

The solution for the Mellin transformed current-correlation function is then 

iLLi> = 4P”d.i) 
1 - h VG(.i) 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

which involves nothing more than a resealing of h and fj,, , and only changes the 
eigenvalue equation for a(h). 
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7. Incorporating SU, for the inclusive structure functions is a bit more 
involved. Just note that by the same method as above we have for a current of 
index y an inclusive structure function F,” to radiate a particle of type a and 

(3.16) 

where 

Quite independent of any model we expect the U-spin relation Fnf = FKi to be 
satisfied. To obtain further relations it is necessary to solve (3.16). 

We can obtain some useful relations for the region w + 1 by remarking that the 
driving term dominates in this limit. We have already used this feature several 
times, and will do so again. Eq. (3.16) then simplifies to the first term, and apart 
from FK+ = Fs+ (U-spin), the other particle ratios are given by Clebsch-Gordon 
coefficients for D-coupling, 

(3.17) 

One can even get a ratio q’/K+ = 4/5 in this limit, if the 7’ is pure SU, singlet but 
one uses the nonet dij, . 

In dual or quark parton models the above relations are lower bounds [6, 13, 141. 

4. MULTICHANNEL EFFECTS 

1. We now consider some modifications to the bare bones model. Our aim 
is to see what changes this introduces in the results of the preceding sections. 
Principally, we are interested in seeing what happens when we relax the assumption 
that the decaying hadron system keeps J = 1. For example, imagine that the 
system carries out a random walk in J as it decays. By virtue of the scaling property 
of the model and the logarithmic multiplicity, the number of jumps on a Chew- 
Frautschi plot only grows as In s does and we expect that a random walk in J 
during the decay will lead to predominantly low J values. It seems worthwhile to 
simplify the problem by considering a decay chain in which all particles have even 
G-parity and the spin is replaced by some other label. For technical reasons, 
which will become obvious, we also restrict the problem to one with only two 
decaying states. Thus, imagine that the initial state (which we call p) can radiate a 
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G = + pion, p + pr, make a transition p + AZ- (or the reverse), or that the 
particle A can radiate, A + AT. The vertices are characterized by couplings 
A, , p, and A, , together with associated vertices Kl , Ku , and K2 as in Section 2. 

We do not think it necessary to include the spin explicitly but we might mention 
that if our G = + pion were pseudoscalar, the p had J = 1 and the A J = 2, then 
all the vertices would involve the same type of spin factors, which can be removed 
explicitly from the problem. The extra kinematic factors coming from the spin of 
the A are included in the explicit form of KP,2. 

Hopefully, this two component example can give us some insight into the 
features of chain emission models when multiple spin transitions are allowed. 

2. If we assume that all the vertices scale, just as in the case treated in 
Section 2, we can write down the expression for the Mellin transformed p directly 
by summing over all possible configurations in Fig. 5, 

(4.1) 

FIG. 5. The decay chain with two states p and A. 

where K is the same as that introduced in Section 2, with A replaced by A, , A,, p. 
The cross section for production of N = n + no pions is given in terms of the 
transform of p,(j), which is a homogenous function of A,, A,, and E.L of degree n. 
The combinatoric problem to be solved lies in the calculation of the C& . Once this 
is done, we can get (n) and (n2), from the expressions (p = p(s, X, , X, , p)) 

<n> p = (h, + + AZ & + P +, p 

a 2 
(n2) p = (hl + + 4 7& + CL -,) p 

(4.2) 

just as we did in Section 2 for the less complicated case treated there. 
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3. The calculation of CG,. can be carried out by constructing the generating 
function of the problem [ 151. To do this, we need to keep two rules in mind. The 
vertices A, and AZ are not allowed to be adjacent, and there can only be an even 
number of p-vertices separating two identical sets of A, or A2 vertices. The factors 
taking account of the identity of all the A, vertices, etc., have already been included 
in (4.1). 

Constructing the generating function requires some patience. It turns out to be 

G(X1X2d = (1 - $(l - /L) (1 l-+1:,‘,:,) 
x 

PI = 1 ” p2 1 _ x2 
Pu2 Al A++- 

1 - /AZ 1 - A, 
x P2 x [2]=---L++-2- 

1” $ 1 - A, 1 - /..? 1 - A, 

(4.3) 

and Cs, is now obtained by differentiation: 

= Gb-m-r.~)((), 0, 0). (4.4) 

Now, we can go back to (4.1), writing it as a Taylor series, 

from which we see at once that 

4. The asymptotic behavior of p(s) is determined by the leading poles of bci>, 
which are in turn given by the zeros of the denominator g-l&K, , h2K2, AK,), 

g-1 = 1 - [1][2] (4.7) 

with [l] and [2] as in (4.3). Now we want to introduce a simplification by choosing 
K1 = K2 = K, = K. Then the leading singularities are given by (a = a(A)), 

g%K(4 A2K(4, pK(aN = 0 (4.8) 
where 

1 -AK(a)= 0 

determines LX(A) if X is given by a solution of (4.8) with K replaced by l/h. 

(4.9) 
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From (4.3), (4.8), and (4.9), it is a simple matter to see that h is a solution of the 
eighth-order polynomial 

P(A) = (X2 - $)[(A - A,)2 - S2] 

- p2tw0 - %A - &I - 8) + p(& + @(A - A, + 811 (4.10) 

x Nhl + WA - 4 + 6) + p&l + s)@ - Al - 811 

where 2h, = hz + h, , and 28 = X, - X2 . We now choose h, < h, and note that 
I’&) < 0, I’(&,) > 0, P(X,) < 0. Thus, in the interval between h, and h, we have 
two solutions (Fig. 6) which we denote by h* , h, < X- < X, < Xq < A, . 

12 11 

FIG. 6. Sketch of the polynomial P(A). 

From the preceding, we see that the presence of two channels leads to a classic 
split-level problem. We will refer to 01+ and 01~ as the up and down solutions. Then 
p(s) is given by 

PCS, A, 3 A2 9 pl = HP, t P-l (4.1 I) 

where pi = C&s a+ with A&(& = 1. This solution has the expected properties: 
(i)ash,,h2-,X(S-tO)wehaveX+-th_andC+-tC_;(ii)as~~O,hl~X,and 
C, -+ C- . We will not need the C+ in the following discussion. 

5. From (4.2), the asymptotic mean multiplicity can be calculated to be 

(n) = &(n+ + n-) - $(n+ - n-)(1 - S-(a+-or-)) (4.12) 

where n* = (h &x/ah)+ Ins. From this we see that the multiplicity increases more 
slowly than Ins at finite energies. This is because the second term above is negative. 
We can see this by noting that h&/ah increases monotonically (see Section 2) in X, 
leading to n, > n- . Physically, there are two modes contributing to the total 
multiplicity, which is depressed at nonasymptotic energies by the presence of the 
second component n- . Asymptotically this component dies away and (n) ---f (n, :.. 
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The most interesting effect of the coupled channels lies in the dispersion or the 
behavior offi = (n(n - 1)) - (IZ)~. We have, parallel to the result in Section 3: 

+p) - +)2 = (12) + (A2 -f$)Av in s + $$= h+ - a->” (4.13) 

where 

We see that the presence of two channels tends to broaden the distribution at non- 
asymptotic energies. This is again what we might have expected: there are two 
components at different nk and this makes the overall distribution in n broader 
than for each component alone. Of course, at asymptotic energies 

p = p+ = +c+sa+ 

(n) = n, = X g _ 
( ) A-A+ 

“62 = (x2 %)I:, * 

(4.14) 

Clearly, the inclusion of a second component will modify some of the conclusions 
in Sections 2 and 3, as long as the energies are not truly asymptotic. This depends, 
of course, on dynamical details (the exact values of 01+ and K.). Before, we had 
leading @) dependence for p(s) and now it is split, as in (4.11). We can have 
distributions much broader than those in the single-component case, clearly, 
adding more components would accentuate this. However, we expect the qualita- 
tive features discussed in Sections 2 and 3 to be restored at sufficiently high energies. 

5. TWO-PARTICLE INCLUSIVE DISTRIBUTIONS 

1. We shall now turn to the two particle inclusive process e+e- + +(PJ + 
&3(P,) + H for which we can obtain some useful lessons from the spin and isospin 
dependence of the bare bones model. The kinematics of the twice inclusive process 
has been treated elsewhere [16, 171. We shall refer to Ref. [17] for the necessary 
details and simply cite the material we require. The dynamics is contained in the 
hadronic tensor 

%:<PI 3 pz 9 Q> = ;llr; c %Q - PI - p2 - PH) (0 / J,(o) 1 +(p,), I’, H) 
H 

x <+VJ, +V’J, H I JdO) I 0) (5.1) 
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We shall need the decomposition of this into invariant amplitudes, which reads 

i=l 

g 
WY - Q”Qv/Q2; ly' = P1,"ly; (54 

P2”P2’; ry = (1/2)[rj,9~” + P,?J; 

(i/2)[Iy9,” - &“P,“]; pi“ = Pzu - (P . Q) Q”/Q2. 

We will not need r, ; it is only measurable when longitudinally polarized e’me- 
beams are available. The invariant functions Wf depend on the kinematic invariants 

w1 = 2P,. Q/Q”; w, = 2P,. Q/Q2 

rl12 = (Pl + p2j2 
Q2 

= WlW2 - 
( 

4m2 112 
W12 - ___ Q2 j ( 

4m2 II2 (5.3) 
w22 - (2” i cos 812 

or equivalently using the missing mass Ma2 = (1 - ur - u2 + r),,) s. 

2. A complete discussion of this process is beyond our aims. We will restrict 
the discussion to the case where one hadron (sayp,) has w1 = 1. Then we consider 
the dependence on w2, cos 8,, , the angular variables, and isospin. This will 
demonstrate the usefulness of stuying this kinematic region. 

As an example, we might mention that already in the single particle inclusive 
case near w B 1, one can obtain information on the normality [n = P(-)” where 
P is the parity] of the system recoiling against the hadron with w m 1, This is the 
limit where one has two body 7~ + X form factors, and one can see from the parity 
rules of Ref. [ 181 that a system X of even normality cannot have a sin2 0 component 
in the single particle distribution; a system of odd normality can. We shall see that 
a similar situation also occurs here for the two particle inclusive reaction (Fig. 7a) 
where we measure the angular dependence of P, with respect to PI as axis. This is 
analogous to what occurs in inclusive electroproduction e + H + e’ + H’ t X 

a) / 
b) ‘\ 

FIG. 7(a) The two-particle inclusive driving term near w1 = 1. (b) Diagram for single-particle 
inclusive electroproduction. 
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in the current fragmentation region, where definite normality in the Reggeon 
channel (Fig. 7b) has implications for the helicity amplitudes of the process and 
thus also for the angular dependence (azimuthal terms like those in Eq. (5.7) 
below [ 19,201). 

As to isospin, we can compare isospin (charge) correlations between one particle 
of definite charge at w1 m 1 and another of the same or different charge as a 
function of oZ . 

In all of this we shall stay with the bare bones model, where the hadron system 
keeps J = 1 and we have 7 emission with alternating isospins along the chain. 

3. We concentrate now on w 1 M 1 because of the vast simplification it brings: 
only the first term in Fig. 4 is relevant, the others being suppressed by powers of 
1 - w1 [3]. We have already remarked on this in the single-particle inclusive case. 
Here it means that we can forget many of the complications of the two-particle 
inclusive process. We have a factorization property from Fig. 4: for w1 M 1, the o2 
distribution is given entirely in terms of structure functions for the single particle 
inclusive reaction with a current of different isospin from that of the photon. For 
the moment we shall suppress the isospin, writing 

w:“(pl , P2 , e> = I m, (1 - 4 4” G?YLx’B’V’ 

x Q~PlBQor’P~‘WVy~P2, Q - P,) (5.4) 

where F(.s, (1 - wr) s) is the invariant vertex and 

WV2 , Q’> = ( g”” - Q’Q’/Q2) WdQ’2, 4 + p2‘92” W2(Q’2, ~2) (5.5) 

The results are most transparent of we write them in terms of helicity structure 
functions defined in the lab system with z-axis along p1 and x-axis lying in the plane 
defined by and the e+e- collision axis. Then we define 

HAA, = +;:W;$ (5.6) 
where 

E&@ = fl/dZ(O, 1, fi, 0); E$ = (0, 0, 0, 1). 

Now take the angle of p1 with respect to the beam axis (the e- momentum, say) 
to be ~9 and take the vector p2 to lie in a plane defined by p2 and p1 and rotated by 
an angle 4 with respect to the x - z-plane. Then the cross section reads [17]: 

d% -= 
dv3 d3R 

(5.7) 
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where 
d3a -= 
do3 

32~(112~,~, H . 
32 n ’ 

a = u, L, I-, I 

and 

Hti = $(H++ i- H-J; HL = H, ; HT = H+- ; H, = Re H+, (5.8) 

do3 = dw, dw, d cos k&n ; d3R = d cos 6 d& (5.9) 

Now we simply calculate from (5.4) obtaining 

H++ = / F(F(s, (1 - ~1) s>l” sp~“(W, + &p&-Wt) 

H+- = I F(s, (1 - WI) s)l” ~PI~($P;TW,) 

H+, = 0 . 

Ho, = 0 

(5.10) 

where IV; = Wi ((1 - OJ S, wz’), with w2’ the scaling variable for the system 
recoiling against particle 1 (we already used this in Section 2). It is given by 

%’ = W‘J 1 - &LJI(l - cos e,,) 
1 - wi (5.11) 

4. Now we can see that-there is a great simplification in (5.7), most of the 
terms being zero, 

d% - 3 (1 + co? 0) $C$ + i sin2 0 cos 2+ J$$ 
d3u dR3 w,+l 4 

(5.12) 

Additionally, we can note that PST = &J&)‘/~ sin 19~~ so as to see that for w2 + 0, 
H+- -+ 0 also. Eq. (5.12) is a consequence of the normality structure of the initial 
pion emission vertex in Fig. 7a. It depends only on the fact that the recoiling 
mesonic system has even normality. We can check this for an n = +system of spin 
f (polarization vector eel “.*J) which has a vertex proportional to 

which leads to the same structure as the above. This result changes, however, when 
we change the normality of the vertex. The n = -vertex which gives a sit? 0 
component to the single particle inclusive distribution is 

595/942-11 
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and we can veritfy by a straightforward calculation that H++ , H+- , and H+, are 
proportional to (1 - w$)~, while Ho, survives as w1 --+ 1. 

Ho, > H++ 9 I H+- I , I H+, I (5.15) 

5. We see from the preceding that two particle inclusive distributions can 
be used to study the spin structure of the vertices in chain emission models. 
Extending this observation, we can obtain a test of the general idea of such models 
as we have formulated them. This class of models rest on the assumption that the 
system recoiling against a pion has low spin (J = 1 in the bare bones model). For 
the case, w1 + 1 it is useful to carry out a Lorentz transformation to the rest frame 
of the recoil system and then consider the angular distribution of particle 2 in this 
frame (the z-axis is still parallel to pr). The azimuth?1 dependence is contained 
already in (5.7) and the discussion above. If we define 0 to be the angle between pZ’ 
and the z-axis in the rest frame of the recoil system, then clearly*the polar angle 
dependence in this frame cannot be of very high order in cos 8, since we have 
assumed that the decaving system has small J (again, J = 1 in the bare bones 
version). It is evident that sharply peaked distributions (along the z-axis) would 
not be consistent with any model where the intermediate J is restricted. 

A second remark follows directly on this one. Since for fixed w1 and s + co the 
mass of the recoil system grows proportional to [(l - wl) s]l12, the limitation of J 
and the scaling property in w2’ for the decay of this recoil system lead unavoidably 
to the conclusion that the model cannot have bounded momenta transverse to p1 . 
At low energies there might appear to be a cutoff in transverse momentum, because 
the rapidly falling w2’ distributions (they must vanish for w2 -+ 1) may be expected 
to lead to falling distributions transverse to p1 , as inspection of (5.11) will show. 
Asymptotically, however, the mean PT perpendicular to p1 must grow 
asymptotically proportional to (1 - w1)li2 (s)~/~. This depends critically on our 
assumption that the spin of the cascading hadron system remains small, and is a 
test of that feature of the model. This is quite unlike the situation in parton models, 
where PT is bounded and in the rest frame of the system recoiling against pi there 
must therefore appear a marked peaking of the distribution of p2’ parallel and 
antiparallel to p1 . Moreover, we expect that for a rapid PT cutoff the azimuthal 
dependences in (5.7) will all vanish at large s [17] (see, however, Ref. [21]). Physi- 
cally, the azimuthal dependences in chain emission models (e.g., H+- # 0 for a 
pure n = + recoiling system) are due to the fact that the recoil system has J > 1 
and is transversely polarized. The azimuthal dependence is then a reflection of the 
angular distribution of the decay of this polarized system. In the spin one half 
parton model, such asymmetries vanish because of the rapid PT cutoff. 

The preceding remarks would be altered if we allowed the recoiling hadron 
system in the model to have large J; the distributions would then become peaked 
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from the decay distribution of the high-J system. We wish to indicate briefly how 
this could occur, and point out that such a phenomenon can be put in a general 
context, a timelike analogue of the Mueller-Regge discussion of the inclusive 
distributions yV + h + h’ + X [19]. In that case, one starts with a t-channel six 
point function and carries out a generalized Sommerfeld-Watson transformation 
and introducing a helicity-pole limit. We wish to take over the apparatus of 
Ref. [19] to the case at hand, where Q2 is time-like and so are two of the three 
Reggeon t-values (i.e., we assume that one can cross from one region to the other, 
preserving at least the functional form of the multiregge expansion). In this way, 
we obtain for the helicity structure functions the following expression (understood 
to be a local average in (1 - or) s): 

[ 
1 - w2 1 

th((l-q)s) 

x l--r- w2 + &J~WZ(l - cos 61,) 

x F(a, -a, Mz2, (I - wJ s, (1 - wr) s, t, = 0) (5.16) 

The expansion is a helicity-pole limit of Figs. 8a 8b; t, = I, = (1 - wJ s. F is a 
reggeon inclusive decay distribution and the quantity in square brackets is the 

;;,g-jsdj~ cbA+qIA 
i2m2 \\. p2 / ‘. P2 

a) b) 

FIG. 8. (a) The crossed channel six-point function, in which we have indicated the partial 
wave decompositions of the rry channels with channel invariants t, and fz. (b) The time-like 
Mueller Regge diagram, which we have assumed can be got from (a) by crossing. 

asymptotic variable (a t-channel azimuthal angle, see Ref. [19]). If we now assume 
that the residue scales, i.e. 

IQ, (1 - 4 s) - sy P((l - w,) S) 

as s -+ co, w1 fixed, and further that a(t) is linear in t, we see that the cos 8r2 
distributions entering (5.16) are strongly peaked forward and backward, when 

1 - iJJ2 
1 - Wl - w2 + +JJp2(1 - cos e,,) 91 
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Expressed in terms of Pk = p2 sin t& , we find that as s + co, 1 > (1 - o,), 
(1 - WI - wZ) > 0, the transverse momentum distributions are contained in a 
factor 

exp -2i~’ 
i 

41 - 4 
1 - WI - w2 pL2 1 

provided pL2 < (1 - w1 - w2) s. 
The model discussed in this section, either Reggeized or in its simple fixed spin 

version may be the relevant mechanism for this kinematic region, independent of 
the main details of the cascade mechanism, since the integral or iterative term 
vanishes as w1 + 1 mainly for kinematic reasons. It is therefore also worthwhile to 
consider the role played by isospin, which we discuss next, and is independent of 
the spin issue. 

6. When we consider the isospin dependence of the bare bones model, we see 
that it predicts marked charge correlations for w1 + 1. Let us first consider the 
isovector component of the photon. By referring to Fig. 9a one can readily see that 

(1) WLT = 0 and WF!l is nonzero to leading order in 1 - w1 , and is 
independent of P(a, /3 = +, -, 0). 

a) bl 

FIG. 9. Diagrams for two-particle charge correlations with o1 w 1. 

‘Similarly, referring to Fig. 9b, one has for the isoscalar photon case 

(2) w.20 m W;:,9s,, --(I for w2 = 1 or w2 w 1 - w,(cos 8,, = 1) 

Putting this together with an isoscalar/isovector ratio of l/3 we find for the 
region wI = 1: 

(3) Woe > W&p for all w2 and t3 = +, -, 0. 
(4) Woo > W”+ > W+- for o2 M 1 or 1 - w1 (cos or2 = 1) 
(5) W++ = W-- w W*O m 0 for w2 w 1 or 1 - w1 (cos 8,, = 1). 

(3)-(5) imply marked differences in do/da1 dw, for the different charge configura- 
tions. We illustrate this schematically in Figs. lOa,b, and c, where we compare 
% B = (0, +I, c+, -1 and (+, +), plotted as a function of the variable G2 = 
sign(cos 0) w2 . 
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Cl 
FIG. 10. Qualitative picture of the distributions in O2 = sign(cos B)w, for a pion of definite 

charge at w1 M 1. 

We have considered the bare bones model here because it shows is a clear way 
how charge correlations can tell us about the isospin structure of the chain. The 
same arguments can be repeated for other chains of different isospin structure. We 
reiterate the remark in Section 3 that the above reflect the octet character of the 
recoiling system. By contrast, one cannot have such dramatic effects in the parton 
mode1 where the fragmentating states are triplets (quarks) [6, 22,231. Of course, 
statements like W++<< W+- as wl, w2 + 1 are a reflection of the suppression of 
exotic states in the missing mass and are presumably independent of the model. 

6. NONLINEAR EFFECTS 

So far we have discussed the linear chain mode1 and its variations. We remarked 
in the introduction that such a mode1 can be understood as an extension of the low 
energy production of states like TKIJ, allowing the w to go off shell as Q2 increases. 
A similar fate could occur to low energy processes like efe- + p+p-. The p mesons 
being allowed off-shell as the CM energy increases. This branching into two off- 
shell states introduces nonlinearities into the original model. Besides this possi- 
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bility, note that the entire model would look suspicious if U(A) could become 
arbitrarily large; if we were not dealing with a two-point function, one would 
supsect the model of being in some sense non-unitary for large a(h). 

Some time ago, Polyakov [24] showed that one could rewrite the discontinuity 
equation for the propagator in a form similar to unitarity equations. We will show 
here that the inclusion of nonlinear effects via a somewhat similar expansion (but 
with the linear chain as driving term) leads to a constraint on the value of or(h). For 
small enough a(A) the nonlinear effects are of little importance at asymptotic 

,‘% 

+ 
q =)(=+ &p&+ + 

a) + 

b) 

\ 

+ 

X 
\ 

d) 

FIG. 11. (a) The equation describing the cascade with nonlinear terms. (b) The two pronged 
contribution. (c) The three pronged interference term. (d) An interference term involving a single 
pion. 
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energies. Therefore, there are conditions under which the linear chain model is 
stable against the introduction of such branching effects. 

The equations, including nonlinear terms, are diagrammed in Fig. 11. Note that 
the interference terms shown in Fig. lla have to be explicitly included, as they 
would not appear on iteration of the remainder. A new branching vertex appears, 
V(Q”, g12, Dam). This represents the amplitude for the initial state to branch into two 
similar states of masses (err z ) lj2 and (o,~)‘/~. For the two-propagator term shown in 
Fig. 11 b, we have 

p’“‘(s) = j g$ I V(Q2, Q12> (Q - Qd2)12 1 h2 p(u,‘) 27r S+(Ql’ - ~1~) 

‘r: J’ do,’ ,4uz2) 277 s+((Q - Q,>’ - ~2”) 

= s h2 h2 ~(~1~1 ~(a,~) I v<Q2, q2, u2")12 172(Q2, q2, 02”) (6.1) 

172(Q”. u12, ~2") = 4Q”, q2, u,~)/~xs is the two body phase space factor, where 
4Q”> u12, u2”) = e(h) W2(Q2, u12, u,~), h being the usual triangle function. 

Introducing Mellin transforms as in Section 2 and writing uiz = qis we can 
rewrite (6.1) as 

X 
s h 42 41, ~1, 772) &:2s2 I v(s, rl, s, ~I~s)I~. (6.2) 

The contours run from --ice to +ico to the right of all singularities. 
We shall study the case n1 , i2 > 0, in conformance with our practice of assuming 

dominance of the off-shell region in the equations. We further assume again a 
scaling law (p is a convenient scale factor) 

as s -+ c/3. Now we take the Mellin transform of P(~)(S) and find 

where 
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The corresponding analysis of the interference term Fig. llc is more involved. 
Written out in the same way as p@), 

P(~)(S) = J da12 da22 da32 p(a12) p(a23 ~(0~~) 

27r s+(Q12 - a13 27~ S+(Q22 - a2”) 2~. S(Q,” - as2) 

x v+(s, (Q2 + Q3)2, ~1”) v+((Q, + Q3)29 ~2~3 as21 

x WQ1 + Q2)2> a12, 02") Q, <Q, + Q2)2, 03~). (6.5) 

The reduction of the three-body phase space integral involves some algebra; we 
only state the result [25]. Introducing the scaled variables (Q2 = s): 

a: = QS (Q - QJ2 = (1 - pi) s 

and the cosine of the angle between the momenta of the legs 1 and 3 

2 = cos e13 = 2(p12 - 47j12)lj2 (p32 - 4r/32)1/2 

x (71 4 73 + hP3 - 1 + p1-t p3 + 723 

we have for the Mellin transform of P(~)(S): 

where, allowing for the other interference term, 

@f’ = Re 
Ii &dfz dr, 42 4-3 h2 - 47113 

x 8@,2 - 472) e(1 - 1 2 I) T+&;, 

x dsK1 - PA 71) &(772/(1 - PA Q/(1 - pJ) 

x M?l/(l - P3), rlzl(l - P3)) Ml - f3), 7j3q. (6.7) 

At this point it is appropriate to remark that we can treat a type of diagram not 
included in Figs. 1 la-c)(i.e., Fig. 1 Id), where the propagator is replaced by a pion 
and p V by AF, the pion radiation vertex) by setting as2 = mn2. In the model without 
spin, this leads to a kernel of the same general structure as (6.6) with j, + 0 and 
26 -+ S in (6.6). This will lead to a singularity to the left of that in (6.6), and to a 
contribution that decreases faster asymptotically in s than the interference term of 
Fig. 1 Ic. 
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From this we see that the Mellin transformed integral equation-including even 
complicated interference terms-will have the form 

+ - j, + (N - 1)” (6.8) 

We will not attempt to solve this, but instead will search for a condition under 
which the linear chain services as the asymptotically dominant contribution to 
p(s). An obvious precondition for this is that the sum in (6.8) make sense. To find 
the condition, we demand that B(j) have the same leading j plane pole as the linear 
chain itself (see Section 2): 

/xi) = j r($) + .‘. 

where r(j) is regular at j = a, and &I) is given by 1 - XK(ol) = 0 picking up the 
contribution of the rightmost poles in the sum in (6.8). we see that the condition 
we desire is that the remaining pole in the summation not lead that at j = a(h). so 

NC@) - (N - 1) 6 < CX(X) (6.9) 

i.e., 4.h) < 6. The singularities of the summation now lie to the left of a(h), and 
the eigenvalue condition for the linear chain determines the asymptotic behavior. 
The presence of the nonlinear effects is felt through the existence of a nonlinear 
equation for r(j) that can be read off from (6.8). If we assume that the singularities 
of (6.8) besides those at j = 01 are known. then the integral remaining after extrac- 
tion of the poles atj = a: in the sum can be absorbed into the driving term. Under 
these conditions, the equation for r(cu) simplifies to the point that we can argue that 
as cu(h) --, 6 the residue r(a) + 0, i.e., the linear chain decouples. This is most 
readily seen when the interference terms vanish (i.e., CD(~) = 0 N > 3). This is 
clear from the fact that the quadratic term in r(a) is multiplied by (a - 6)-l; 
iy - 6 corresponds to a solution T((Y) - 0. We have checked that the same occurs 
for a wide variety of Ansatze for @ (‘“). This indeed looks like a condition putting an 
upper limit on cu(h), a kind of unitarity condition. If this is unchanged when 
including other singularities than those which can be included into the driving 
term, we expect that for a(h) > 6 the nonleading terms will become the dominant 
ones. Presumably the branching process will then become the only relevant 
mechanism. 

For a(h) < 6, the main emission process is that due to the linear chain. The 
nonlinear effects arise at the end of the radiation process when the hadron system 
no longer has asymptotic masses (i.e., in the driving term). The particles in question 
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have low o, so that we have identified one more mechanism which ruins Feynman 
scaling at small w and nonasymptotic energies. 

We close by considering some of the qualitative differences between a linear 
chain model and a model where the branching process dominates. For this purpose 
we introduce the rapidity of the produced hadron 0 < y = ln[(E + p)/m] < 
ln[(s)‘/“/m] = Y. The chain model has a plateau of constant height for u-l du/dy as 
long as y > 2 and Y - y > 2. This plateau grows in length proportional to Y. At 
finite y 2 20-l du/dy can grow in height proportional to Y; we discussed this 
anomaly in Section 2. The region Y - y 5 2 is where the structure function falls 
rapidly in x corresponding to the fragmentation region in hadronic reactions. 
The behavior of u-l du/dy is similar in the parton model, but no anomaly occurs 
for y ,< 2 (see Figs. 12a and 12b). Branching models are quite different; they have 

y/y - i 
b) 

FIG. 12. (a) A reduced rapidity plot of the one-particle distribution for the chain emmission 
model for two very large values of Qz. (b) The corresponding plot expected for the parton model. 
(c) The corresponding plot for branching models. 
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been discussed by Polyakov [24], and, in a different form, by Rittenberg and 
Orfanidis 1261. Under certain assumptions u-l du/dy becomes proportional to a 
gaussian in y, the width growing as (Y)‘l”. Neglecting the width, the distribution 
is centered at J m (1 - C) Y where E is given in terms of the multiplicity growth, 
(n) a (Qz)‘j2 (see Fig. 12~). A power growth of it, E > 0, is typical for such 
models-independent of the precise form of u-l du/dy-as is the conclusion that 
KNO scaling holds, g,/o = (n)-l #(n/(n)). In the model of Ref. [26], the Gaussian 
form holds provided 1 y - j 1 is not too large. In general, then, the area under 
u1 du/dy increases as etY in such models. 

All these statements hold for large Y. In the linear chain (or parton) models one 
needs Y >, 5 - 6 for the full structure to appear; for branching models, similarly 
large Y should be necessary as the number of branches per event [proportional to 
pN in Eq. (6.8)] is proportional to Y. Such large values of Y correspond to 

(s)‘/~ >, 40-50 GeV. 

At presently attainable values of (s)l12 N 5 - 8, Y - 3 - 4 and most models can 
probably be made to look like the data, which shows a hump in y of 
width = 2 units [26]. 

At such low energies correlation measurements of the sort discussed in the 
preceding section may help to sort out the different physical mechanisms that might 
be responsible for e+e- annihilation. 

7. CONCLUSIONS 

We wish to recapitulate briefly what we have learned. We have studied chain- 
emission (cascade) models for e+e- annihilation. Such models lead for a power law 
behavior for the e+e- total cross sections, somewhat analogous to the multi- 
peripheral model for hadronic total cross section; however, in the latter case the 
power law is restricted by unitarity. Although a forward unitarity condition restric- 
ting the power is absent in e+e- annihilation, a unitarizing mechanism can be 
constructed. This was discussed in Section 6. The chain models lead to Feynman 
scaling, except in the limit w + 0, where it is broken in a well defined way. The 
multiplicity grows as In s, and an instructive feature of the models is that the 
coefficient of this logarithmic growth is not given simply by integrating the scaling 
function down to its lower limit. Since the model is solvable, it is possible to use the 
energy sum rule to study the approach of the cross section to its asymptotic limit, 
which is from below. These features have been discussed before [2, 31, but we treat 
them here to emphasize their generality. 

Since our main aim in this paper is pedagogical, we carried out much of the 
discussion for a simplified version of such models, in which the spin of the decaying 
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hadron system is fixed at J = 1 while it emits pions, the isospin of the hadron 
system alternating Z = 0, 1. We find that, although the ratio of neutral to charged 
pions approaches $ asymptotically, it only does this logarithmically in energy. 
More interesting, the alternating-isospin model offers an explicit example of how 
the ratio of neutral energy to charged energy (total) can deviate even at asymptotic 
energies from 4. We conclude that if, in fact, the neutral pions carry off much more 
energy on the average then the charged ones then the isospin structure of the chain 
is strongly restricted. Further information on the isospin structure of the model 
can be gained from studying the mean number of neutral pions for a fixed number 
of charged pions. Much more informative, however, is the behavior of the 
branching ratio of a state of fixed pion number into n, neutral and n, charged pions. 
This contains the isospin structure in a particularly clear form. We go on to 
mention briefly how one can incorporate SU, into the model. 

An important question in chain-emission models is whether they can be gene- 
ralized to include other states than appear in our simple example. We have demon- 
strated that this can be done in the case of SU, symmetry. A more important case 
is that in which the decaying hadron system that emits pions has spins other than 
the J = 1 of the simple model. We can claim no complete solution; instead we have 
studied the problem in a simple example where there are two states (e.g., with 
J = 1 and 2) with transition possible between them. This is a coupled channel 
problem, and we see that the features of the simple model with one state are 
recovered at very high energies. At lower energies there can appear corrections: 
number distributions can become broadened due to the presence of two 
components, etc. Considerations of this sort may also become important if one 
wishes to drop the assumption of alternating isospins which we have been using 
for illustrative purposes. 

We go on to study two-particle inclusive e+e- annihilation. Here the properties 
of the simple model show themselves most clearly. We study the particularly useful 
case where one hadron has large momentum w1 B 1. Then we find that the mean 
momentum of the second particle transverse to the axis defined by the first should 
grow asymptotically like (1 - wl) 1/Z s ( ) 1/2, i.e., there is no transverse momentum 
cutoff. However since the coefficient of the growth is small in the w1 - 1 region, 
large transverse momenta will only be seen at very high energies. The cross section 
for the second particle turns out to have an important dependence on the azimuthal 
angle about the direction of the first particle. This is unlike the situation in parton 
models with spin 4 partons and a transverse momentum cutoff. In fact, these 
azimuthal dependences have, in chain-emission models, useful information on 
the normality of the system recoiling against one fast hadron. As a byproduct of 
our discussion we note that it might be interesting to analyze the angular distribu- 
tion of particle 2 in the rest frame of the system recoiling against the first (fast) 
particle. This can tell us about the spin of the recoil system and would check a 
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fundamental assumption of the model: that the spin of the hadron system does not 
become large. We have also considered the possibility that the spin of the inter- 
mediate states are controlled by a regge trajectory in the time like region, in this 
case the spin grows slowly with s and a strong damping in p12 emerges. In the 
latter situation, which can be thought of as a time like Mueller Regge expansion, 
the normality and isospin relation remain the same and the main difference lies in 
the transverse distributions. 

In conclusion, we would like to thank those few who have actually read through 
to this point for bearing with us. 
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