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Because of the suitability of yN --f +N for studying the Pomeron, we systematically 
investigate the tests for Pomeron factorisation possible in this rather clean reaction, 
particularly from the more feasible experiment which measures the &density-matrix, 
and also an experiment measuring the recoil nucleon polarisation; the complete set of 
initial polarisation configurations has been considered. 

For any two-body parity-conserving process, a simple consequence of factorisation 
is M-purity which asymptotically corresponds to purely natural or purely unnatural 
parity in the crossed channel. Factorisation tests, therefore, include M-purity tests, 
but M-purity does not necessarily imply factorisation. 

For the &decay density-matrix we give all the possible factorisation tests, and show 
that our tests are exhaustive. A separate measurement of the recoil nucleon polarisation 
is shown to complement adequately the information obtained from the &decay density- 
matrix in the factorising case. 

For the +-density matrix, some of the M-purity tests refer to dominant amplitudes 
and persist even if s-channel meson-helicity-conservation (which is experimentally true 
approximately) holds exactly. These tests should be easy to perform. The tests which 
invoke factorisation more crucially than only M-purity do not persist in that manner; 
these refer to the helicity nonconserving amplitudes. However, factorisation for such 
small amplitudes could be advantageously tested here, because of their being masked 
by the large amplitudes elsewhere. 

The factorisation tests for the &density-matrix can be used to distinguish a pure 
Regge pole type Pomeron from (a) an M-pure “cut-pole mixture” type Pomeron or an 
M-impure (hence nonfactorising) “cut-pole mixture” type Pomeron and also (b) a 
factorising “cut-pole mixture” type Pomeron or a nonfactorising “cut-pole mixture” 
type Pomeron. Here we have taken departure from relative reality of all amplitudes as 
the defining criterion for a “cut-pole mixture.” Such tests would require polarised photons 
and/or targets. 

* Present address. 
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Present yN --+4N data are not adequate enough to allow firm conclusions about 
Pomeron factorisation, though they do indicate M-purity for the Pomeron, corresponding 
to pure natural parity. This is consistent with Pomeron factorisation, but M-purity is 
only a necessary consequence of factorisation. Better and more yN + QN data are 
needed to get a more complete picture of Pomeron factorisation. 

1. INTRODUCTION 

The Pomeron is not yet fully understood. In particular, Pomeron factorisation 
has not been experimentally well established, though there are indications for 
it.l If the Pomeron is some mixture of a Regge cut and a pure Regge pole, it may 
or not factorise; in general, it would not. Tf it is a pure Regge pole, Pomeron 
factorisation would hold. 

The present work is encouraged by the importance of the question of Pomeron 
factorisation, by the hope that yN -+ $N is a good laboratory to study the 
Pomeron, and by the feasibility of the appropriate yN -+ $N experiments in the 
near future. Whatever information one may obtain from other sources, it seems 
very natural to appeal to yN + $N before one gets a complete picture of the 
Pomeron. 

A. Some Existing Tests of Pomeron Factorisation 

Pomeron factorisation has been found to be good, within experimental errors 
in single particle inclusive distributions. 2 Using Mueller’s generalised optical 
theorem, these tests refer to zero momentum transfer where, in general, Regge 
cut-effects are expected to be the smallest. 

A model analysis of proton-proton scattering up to a laboratory momentum of 
500 GeV/c in and near the forward direction indicates [5] only minor (at the 
0.1% level) deviations from factorisation. A direct experimental answer would 
require polarised protons, and this has been done [6] so far at relatively low energies 
(in the few GeV region) where non-Pomeron contributions are expected to be 
significant. 

At nonzero momentum transfers, 3 Pomeron factorisation tests have been 
attempted for ratios of differential cross sections [l, 2, 81 of the type 

dcr(Ap + Ap)/do(Ap -+ Ap*) = Independent of A, (1.1) 

1 For reviews, see for example [l, 2, 31. 
2 For a review, see for example [4]. 
S The importance of Pomeron factorisation tests for large momentum transfers has been em- 

phasized in [7]. 
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for a given s and t where s is the total c.m. energy squared and I, the squared 
momentum transfer variable; A is some projectile (nf, p, for example) and p* is 
some nulceon resonance supposed to be a diffractive excitation of the proton p. 
These tests, done in the energy region below 30 GeV, are generally consistent with 
factorisation being satisfied though the experimental errors are often large.” 

Unfortunately, some difficulty lies in unambiguously identifying the resonance 
p* taken to be a pure state in Eq. (1.1). Another point is that in the cases tested 
so far, other (non-Pomeron) contributions are not a priori negligible. Also, results 
from very different experiments may have to be used in certain cases; this brings 
in further difficulties. A somewhat formal point is that though Eq. (1.1) is a 
necessary test of factorisation, it does not test the full implications of factorisation 
for the reactions in question; the test in Eq. (1.1) is sensitive to the factorisation 
property of primarily those helicity amplitudes which dominate the cross sections 
in (1.1); even large nonfactorising contributions in the weaker amplitudes5 would 
not significantly affect (1 .l). This calls for factorisation tests for separate 
amplitudes; that may be too ambitious, especially for resonances p* which are not 
even uniquely identifiable. A similar remark about insensitivity to contributions 
from t-values where do is relatively small would apply to tests of the type of 
Eq. (1.1) integrated over t. 

If the Pomeron factorises, it would asymptotically have a purely natural or a 
purely unnatural parity (see Section 3). The results of polarised proton-proton 
scattering [6] in the few GeV range are consistent [9] with a dominant natural 
parity exchange which could be due to Pomeron factorisation, but the assumption 
of Pomeron dominance may be safe only at much higher energies for this process. 

B. Why Test Pomeron Factorisation in yN -+ #JN? 

It is desirable to have Pomeron factorisation tests which are comparatively free 
from the preceding worries. The reaction yN + 4N may provide the needed 
possibility because of the following reasons: 

(a) The only resonance in question (the 4 meson) is relatively easy to identify. 
(b) It is believed [IO, 1 I] that yN + +N gets contributions from only Pomeron 

exchange. This is empirically indicated [lo, 121 because of a decoupling of 
the I$ meson from systems (in particular, the secondary trajectories like 
to, 4 2 p,...; N, A,...) which are commonly regarded as being built up from 
only nonstrange quarks. Within the quark model, this decoupling is natural 
[l I] because the r$ is built up as a hX system from only the strange quarks. 

4 For a review of the corresponding tests at higher energies, see for example [3]. 
5 Such amplitudes may become relatively important at “dips” of the differential cross section; 

see also [7]. 
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Though this decoupling6 is not mathematically rigorous,’ it is experimentally 
supported. Thus, one expects the other contributions (like f” exchange) to be 
very much weaker here than elsewhere in hadronic reactions. In that sense, one 
need not go [13] to extremely high energies to perform Pomeron factorisation 
tests in yN -+ +N. In fact, this reaction has been previously suggested [l, 2, 
3, 10, 11, 131 as a very good place to study the Pomeron. 

(c) One can perform Pomeron factorisation tests within the single reaction 
yN -+ +N, so that problems due to data coming from very different experi- 
ments do not arise. 

(d) Since all the external particles are now well defined, factorisation tests 
in yN -+ c$N are feasible for separate amplitudes; one can therefore test 
Pomeron factorisation also for the nondominant amplitudes. 

In fact, existing data on yN -+ 4N already indicate several features for the 
Pomeron, but as reviewed in [2], more and better data are needed to allow firm 
conclusions about, for example, (i) its slope, (ii) its being s-channel helicity 
conserving, (iii) its being a purely natural parity system, and (iv) the phase of 
the forward yN -+ c$N amplitude. 

C. Our Attempt, and Plan of the Paper 

The total number of independent functions needed to know the complete set 
of yN + $N amplitudes decreases if factorisation holds. This puts constraints 
on the final state density matrix; we are interested in these constraints for various 
initial polarisation configurations because this density matrix contains all the 
experimental information. 

At present, #-meson decay density-matrix data [14] are available at 9.3 GeV/c 
and (2.8 and 4.7) GeV/c as an average over the -t region (0.02-0.8) (GeV/c)2 
for unpolarised target and linearly polarized photons; the errors are rather large. 
In the energy range 4.6 to 6.7 GeV/c these data are available [15] for unpolarised 
photons and nucleons in the range 1 t 1 < 0.3 (GeV/c)2. It would be interesting 
to have all the Pomeron factorisation tests for the general case of the final joint 
density-matrix with the initial photons and nucleons also polarised in complete 
generality. The measurement of this joint density-matrix seems to be a remote 
experimental possibility; it requires target and recoil nucleon polarisation infor- 
mation. However, we shall see (subsection 4.B) that in the factorising case, the 
joint density-matrix does not carry information beyond the &density-matrix 

g An extension of this decoupling to other &like systems $’ is interesting. For +’ systems having 
even charge conjugation (e.g., & = f’ (1514), Jp = 2+, ZG = 0+) the cross section for yN + Q’N 
should be very small because (unlike the case f = 4) even the Pomeron coupling is forbidden 
here by C-invariance, others being forbidden as for yN + 4N. 

7 There is, for example, a nonzero branching ratio for + -+ 3rr decay. 
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and (separately) the recoil nucleon polarisation. Since polarised targets are already 
being used for other reactions, we shall give Pomeron factorisation tests for the 
situation when the &meson decay angular distribution is observed and the polari- 
sation of the final nucleons is summed over, the photons and the target being 
polarised in generality. We shall also discuss the consequences of Pomeron 
factorisation for recoil nucleon polarisation, the photons and the target nucleons 
being polarised in generality. 

We mention four classes of factorisation tests. The first two classes, (A) and (B) 
follow because factorisation and parity conservation imply M-purity [16] which 
relates amplitudes having reversed meson (or nucleon) helicities (see Section 3). 
Asymptotically (to leading order in s), M-purity means pure normality in the 
t-channel. The types (A) and (B) follow also if only M-purity holds, but no separa- 
bility of the helicity amplitudes into meson and nucleon vertices. In that sense, 
the classes (C) and (D) may be regarded as stronger tests of factorisation. The 
type (C) results from the separability of the joint density-matrix into a meson and 
a nucleon part, a lack of correlation between the two types of particles. This 
relates the density-matrices for different polarisation configurations. The type (D) 
results from a decrease (due to factorisation) in the number of independent 
functions needed to describe a given polarisation configuration, and relates 
different density matrix elements (otherwise independent) within that configuration. 
Tests of all the four types (A), (B), (C) and (D) occur when the +-decay distribution 
is measured and the initial state is completely general; Pomeron factorisation tests 
for this configuration are given in subsection 4.A where we also prove that these 
tests are exhaustive for that configuration. Subsection 4.B shows that if Pomeron 
factorisation holds, a measurement of the recoil nucleon polarisation adequately 
complements the information obtainable from the configuration discussed in 
subsection 4.A. A knowledge of the complete set of meson and of nucleon vertex 
functions does not, therefore, require a measurement of the correlations between 
the final nucleon and the +-meson. In that sense, a measurement of the joint 
density-matrix of the r$N final state is not obligatory. 

Section 5 is devoted to the “practical meaning” of the tests of Section 4: which 
of the tests are easy; which ones refer to small amplitudes; how can the tests 
help to distinguish between a pure Regge pole and a mixture of a Regge cut and 
a Regge pole. 

Though the errors on the relevant density-matrix elements [14] are rather large, 
one may regard the Pomeron in yN -+ 4N as s-channel helicity conserving to 
a zeroth approximation [17]; this refers to the meson vertex; see also [15]. There 
are indications for approximate s-channel helicity conservation also at the nucleon 
vertex in TN-scattering [17, 181. In subsection 5.A is treated the case of a purely 
s-channel helicity conserving Pomeron, to see which of the Pomeron factorisation 
tests of subsection 4.A are for small amplitudes. Since s-channel helicity conser- 
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vation is experimentally only approximate at the meson as well as at the nucleon 
vertex, we consider separately the cases of helicity conservation at only the meson 
vertex, at only the nucleon vertex, and at both the vertices. 

Tests in Section 4 hold when the helicity amplitudes factorise, but no restriction 
is placed on the phases of the amplitudes. The corresponding case of the relative 
reality of all the helicity amplitudes arises for a pure Regge pole, and is considered 
in subsection 5.B. The results of Section 4 are more general, and apply when 
factorising cut contributions may also be present. Several of the tests of sub- 
section 5.B allow one to make a distinction between a pure pole and a cut-pole 
mixture of different types. The case of a pure Regge pole when the beam and 
target are unpolarised has been considered also in [19]. 

In Section 6 an attempt is made to confront the tests of Section 4.A with experi- 
ment. As the tables below show, tests of the types (A) and (C) require polarised 
targets. Half of the type (B) tests and the type (D) can be applied for unpolarised 
targets, but the class (B) tests only M-purity and the class (D) requires photons to 
be polarised in generality. Since the available8 &meson density-matrix data are 
for only unpolarised targets and linearly polarised photons, one can hope to 
confront only the class (B) with experiment. Unfortunately, the errors are rather 
large, but one test of this class shows that the Pomeron is unlikely to have unnatural 
parity, if it has pure normality; this conclusion is not9 surprising [16,20]. Better and 
more data are needed to allow more useful statements about Pomeron factorisation. 

A convenient summary of our main points is in Section 7 taken together with 
the tables. The following Section 2 is devoted to our definitions and notation. The 
factorisation tests of subsections (4.A.l), (4.A.2) and (5.A) for the $-meson 
density-matrix are collected in tables. 

2. NOTATION AND DEFINITIONS 

We shall work with s-channel helicity amplitudes f:a’(s, t) throughout. The 
symbols pu , i are the four momentum and the helicity of the target nucleons, 
P’ 
w”rfte 

i’ those of the recoil nucleons; for the photons (vector mesons) we 
k, , a(k,‘, a’). The invariants s and t are defined by s = -(p + k)2, 

t = -(p’ - p)“. Aslo in [16, 21, 221 the polarisation of the photon beam and that 
of the target are described by the conventional helicity representation of the spin 
density-matrices: 

(2.1) 

* There are no recoil nucleon polarisation measurements at present. 
9 See also footnote 19. 
lo These references may be consulted for further information about our general formalism. 
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and 

PN = HI + r * G) = & 5 (“0, ) (2.2) 
lL=O 

where the “four-vector” notation implies PO = co = 1, u. is the unit matrix and Q 
represent the three Pauli matrices. The vector 

P = 1 P I{-cos 24, - sin 254 O> 

describes linearly polarized photons with an angle 4 between the polarisation 
vector E = (cos 4, sin 4, 0) of the photons and the production (xz) plane; P, 
corresponds to circular polarisation. For the target, the parameter &(&J is trans- 
verse polarisation in (normal to) the production plane and & is the longitudinal 
polarisation. The unnormalized joint density-matrix of the vector meson-nucleon 
final state is 

i’Y,a’B 
fN’,V (2.3a) 

The unnormalized density-matrix P;‘~ of the vector meson and p$’ of the final 
nucleon are obtained by summing over, respectively, the recoil nucleon helicities 
and the vector meson helicities: 

i ’ j ’ 
PN’ = 

(2.3b) 

(2.3~) 

The normalisation of the helicity amplitudes is provided by the differential cross 
section 

da/d0 = (27r/E*)’ tr pN’,V , (2.4) 

E* being the photon energy in the c.m. system. The polarisation of the recoil 
nucleons is described by polarisation parameters ci’ (i = 1, 2, 3) analogous to 
& of Eq. (2.2): 

&’ = (2 Re pG:)/tr pj,,’ ) 

52’ = (-2 Im pG7)/tr pN’ , (2.5) 
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We shall expand the density matrices in terms of the polarisation parameters 
of photons (P,,& , m # 0) and target nucleons (5, , n # 0); for example, 

pu(Pm, 5,) = ~$4 0) + Pmpdm 0) + LP,@, 4 + JJmSnp&, 4, (2.6) 

where p,(O, 0) = pV(P,, , 5,) is the vector meson density-matrix for the unpolarised 
case. The indices m and n will always refer to photon and nucleon polarisation com- 
ponents, respectively. It is not necessary to consider polarisation mixtures since all 
the relevant information is contained in coefficients like pJm, n) (m = 0, 1, 2, 3 
and n = 0, 1, 2, 3) of Eq. (2.6). Only the unnormalised density-matrix can be 
written in this form; the normalised density-matrixll 

~dp,, , 5,>/tr p,(p, , 5,) 

is not a simple polynomial in the initial polarisation parameters; similarly the 
recoil polarisation ci’ of Eq. (2.5) is not a simple polynomial in P,,, and 5, . We 
shall, therefore, use unnormalised polarisation parameters 

(2.7) 

which can be expanded as 

k’<Pm , 5,) = %i’(O, 0) + P,,&‘(m, 0) + L%i’(O, 4 + p&%i’(m, n>. (2.8) 

The quantity li’(P,, 5,) is the experimentally measured ith component of the 
recoil nucleon polarisation, 

(i’ * (du/dQ) = (2n/E*)’ [i’, (2.9) 

where, as on both sides of Eq. (2.4), the arguments (Pm , 5,) of ci’, of do/&r and 
of [i’ are implied. 

Experimentally, the angular distribution W of one of the pseudoscalar mesons 
from the decay of the vector meson is [21] 

WV*, +*> - WdJW’, 4) 

= (3/4?r){+(pz+ + pi-) sin2 I!?* + pz” cos2 19* 

- sin2 tY*[Re pi- cos 2~j* - Im pz- sin 24*] 

- (l/2/2) sin 2B*[Re@z” - p”;-) cos c$* - Im(pz’ - pt) sin $*I}, (2.10) 

I1 Schilling et al. [22] use a normalisation independent of the initial polarisations pzB ITheirs = 
p$Tm, Wtr ~~(0, O)lours . 
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where the angles (8*, 4*) of the decay product and Q = (6, 4) are measured in 
the vector meson rest system and the overall c.m. frame, respectively, [21]; the 
arguments (P, , 5,) for W, &r/&J and p16 are again implied. Equation (7) of [21] 
is another way of writing (2.10). 

3. ASYMPTOTIC PURITY OF NORMALITY AS A CONSEQUENCE OF FACTORISATION 
AND PARITY INVARIANCE 

Factorisation of s-channel helicity amplitudes follows [23] asymptotically from 
the more conventional t-channel factorisation, or may be postulated [24] separately. 
The s-channel factorisation 

ff:‘(s, t) = ya’&, t) rifi(s, 2) (3.1) 

implies that asymptoticaily one has either purely natural or purely unnatural 
parity contributions in the t-channel. This holds for any factorising contribution 
in any two body process, but we shall indicate the proof for only the elastic-like 
reaction yN -+ $iV. This statement becomes interesting if the exchanged system is 
more general than a pure Regge pole. 

Parity invariance gives [25] 

p;a = (-)i’--i-n’+o: &d* 
(3.2) 

Using (3.1) in (3.2) for amplitudes with the same meson helicities but different 
nucleon helicities, and taking ratios, one gets 

rmip-il(-)i’-i . r,,, = A4 = Independent of (i’, i), (3.3a) 

and similarly, 

y-E,-a/(->“‘-” * 3/a,= = N = Independent of (a’, a). (3.3b) 

Changing i + -i and i’ + -if, (3.3a) gi ves M = l/M, M = f 1. Similarly 
N = l/N = il. Using (3.3a) and (3.3b) in (3.2) gives MN = 1, M = N = il. 
Writing 

Eq. (3.3a) gives 

(3.4a) 

[(r;i - r~~~)/(-)i’-i]/(->i’-i . (r;i + r,;,) = M = +1 or -1, 
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which holds only if either r;i or r:i vanishes. Similarly, either ~5~ or ~2, vanishes, 
where 

r:m = Y=‘a i (-f” y-u’% * (3.4b) 

Moreover, because M = N, 

both r:i and 7:. vanish for M = -1, 
and 

both rETi and yTN vanish for M = + 1. 

This M-purity [ 161 implies that the amplitudeP 

(3.5a) 

(3.5b) 

_I I 
?I;,” = &a’ + (-y-i yl’, (3.6a) 

and 
u:p = fd _ (q-i f42’ (3.6b) 

vanish for M = - 1 and M = + 1, respectively, and are the surviving ones for 
M = + 1 and M = -I, respectively. In the factorising case, Eq. (3.6) becomes 

i’a’ 
nioi = yaj,r;i = frr’ar;i , M= +1, (3.7a) 

and 
i’o’ %x G yoljrrrzzi = Sr;,r,r;, , M= -1, (3.7b) 

where the second equalities in (3.7a, b) have used Eq. (3.5). From their definitions, 
(3.6a, b), the n- and u-amplitudes correspond [26] asymptotically (to leading order 
in s) to pure normality in the t-channel. For yN ---f @V, M = + 1 (- 1) means 
natural (unnatural) parity exchanges. 

While factorisation leads to M-purity (which asymptotically is purity of t-channel 
normality), the converse is not true. Also, of course, testing M-purity does not 
test the full content of factorisation. 

4. CONSEQUENCES OF FACTORISATION FOR THE VECTOR MESON DENSITY-MATRIX 
AND FOR THE RECOIL NUCLEON POLARISATION 

A. The Unnormalised Density-Matrix of the $-Meson 

1. Consequences of M-purity. As shown above, factorisation implies M-purity 
which corresponds, asymptotically, to purity of normality in the t-channel. The first 

I* Using parity invariance (3.2), one can replace (-)*‘-‘fop’ in (3.6) by (-p’-ef::;&’ so that 
one can reverse either the nucleon or the meson helicities. 
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class (A) of factorisation tests follows from the vanishing of interference terms 
between the M = + 1 and the M = - 1 amplitudes. For the expansion coefficients 
of the unnormalised density-matrix of the +-meson, this gives 

P%v 4 = 0, for n = 1, 3. (4.1) 

This means that the density-matrix p*(P, , I,) is independent of the target polari- 
sations II,,, in the production plane. Since some of these coefficients vanish due to 
parity-invariance, and some others are not measurable from the +-decay angular 
distribution [21], this gives only 24 conditions for the measurable coefficients: 

pt’(m, n) = pz’(m, n) = Re pz-(m, n) = Re(pz’ - &)(m, n) = 0, 

(A) (4.2) 
Im p:-(m’, n) = Im(p;t’ - &)(m’, n) = 0, 

for m = 2 or 3, n = 1 or 3 and m’ = 0 or 1. 
The other coefficients are linear (incoherent) mixtures [21, 221 of M = +I 

and M = - 1 contributions. This gives [16] the class (B) of factorisation tests 

(B) _ P~~(L 4 -= p;+(lP n> Re pz”( 1, n) 
p!fKA 4 

= Re ,CU, n) 
Re p;-(O, n> p;+(O, n) = - Re pzO(O, n) 

= M= l/M, 

(4.3) 

for n = 0,2. 
These eight relations refer to unpolarised (m = 0) and linearly polarised (m = 1) 

photons, and to unpolarised (n = 0) targets or targets polarised perpendicular to 
the production plane (n = 2). In fact, one may determine M from the (B) type tests. 

2. Further consequences of factorisation. The separability (3.1) of the helicity 
amplitudes into a mesonic part and a nucleonic part makes the density-matrix 
also separable: 

the same property holds for the matrices P,,+ and pv . This has the consequence that 

p$“(m, 2)/pi”‘(m, 0) 

= Independent of (oL’, /3’) and of the photon polarisation m, (4.5) 
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giving rise to the class (C) of factorisation tests: 

((3 pt”h 2) pZ+h 2) _ Re d-h, 2) Re do@, 2) 
pf+(m, 0) pO,o(m, 0) Re pt-(m, 0) Re pt”(m, 0) 

Im pt(m’, 2) Im pz”(m’, 2) 
Im pf-(m’, 0) - Im p;“(m’, 0) ’ 

for m = 0 (or 1) and m’ = 2 or 3. (4.6) 

Combining (4.6) for m = O(1) with (4.3) gives (4.6) for m = l(0) so that only one 
of the two m values in (4.6) gives independent tests; this is indicated by the brackets 
around m = 1 in (4.6) which, in all, provides seven independent tests for 
unpolarised targets and those polarised normal to the production plane, for 
appropriate photon polarisations (m and m’). We shall take m = 0 in (4.6). 

The tests (4.2, 3, 6) are summarised in Tables Ia, b, c. 

TABLE Ic 

Contents same as for Table Ia, but for Tests of Type (C) 

Type of test; 
Equation Tests in the general case Tests in the case of helicity-conservation 

P:+(m 2) P”u”(W 2) (C); -=-= Re Pi-@, 2) 

Pv++h 0) P;(m, 0) Re pv+-h 0) 
Nucleonic: Coefficients with n = 2 van- 
ish, leaving no test of the type (C). The 

(4.6) 
Re P%% 2) Im p:-(m’, 2) 

= Re pu+O(m, 0) = Im pV+-(m’, 0) 

Im p:O(m’, 2) 

= Im pp(m’, 0) ’ 

m = 08, 

112’ = 2 or 3 

Need unpolarised targets and those 
polarised normal to the production 
plane. 

Total no. of (independent) tests = 7 

same, of course, holds for ‘%lP’ 
helicity-conservation. 

Mesonic: Combined with the two tests 
for the “mesonic” case of Table Ib, 
Eq. (5.1) leads to pu++(O, 2)/p,++(O, 0) = 

Im pi-(2, 2)/Im pz-(2,0) which is the 
only surviving relation out of those 
in the previous column. No independent 
test of the type (C), therefore, remains. 

Total no. of (independent) tests = 0 

& See subsection 4.A.2 for m = 1 which is not independent of m = 0. 
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The last class (D) of factorisation tests results because within a given polarisation 
configuration, factorisation decreases the number of the necessary independent 
functions. We list in Table Id these three independent tests for the simplest con- 
figuration, i.e., for unpolarised targets. These tests require the coefficients p$(m, 0) 
for all m. If data for one (say m = 3) photon polarisation do not exist, one may use 
the (D) type tests to estimate the values of the corresponding coefficients assuming 
factorisation and using data for all the other three m values. 

3. Completeness of the above tests. In order to prove that the above tests 
(4.2, 3, 6) and those of the class (D) are exhaustive, one recalls that one starts [21] 
with 48 measurable coefficients p$(m, n), and there are, in all, 42 factorisation tests. 
Out of these, there are 32 tests for M-purity (types (A) and (B)) and 10 further tests 
for factorisation (types (C) and (D)). There are, therefore, only six independent 
coefficients which may be taken to be, for example, 

Re d-(0, 01, Im d-(2, O), Im d-(3, 01, 

Im pz”(2, 0), Im pz”(3, 0) and Im $(3, 2), 
(4.7) 

which allow, for the factorising case, a reconstruction of the full pV matrix using 
the tests given above. 

The above empirical counting has to be matched by the corresponding dynamical 
counting in terms of the available amplitude parameters. The necessary independent 
meson vertex functions are y++ , y+- and yo+ and the corresponding nucleon 
functions are r,, and r+- . For an unpolarised target, only the combination 
G = ] r++ I2 + 1 Y+- I2 is relevant, corresponding to a sum over all nucleon 
helicities. One, then, obtains five independent amplitudes corresponding to the 
five13 independent real bilinears (each multiplied by G) formed out of the meson 
vertex functions. One can check that the five coefficients in (4.7) for an unpolarised 
target correspond exactly to these five independent bilinears multiplied by G. Going 
over to a polarised target, the only14 additional information needed is the 
combination 

H = Im(r++r:-) (4.8) 

of nucleon vertex functions needed for it = 2 (target polarisation normal to the 
reaction plane), the other values of n (= 1, 3) being eliminated by (4.1). Since in 
the factorising case, 

pfh 2)/&‘%, 0) = 2WG (4.9) 

I3 The three magnitudes 1 y++ I, I y+- / and I y,,+ 1 and the corresponding two relative phases 
between the three meson vertex functions provide the relevant five significant quantities out of 
which the five independent meson bilinears are formed. 

I4 The remaining nucleonic bilinears I r++ I2 - 1 r+- I2 and Re(F++rT-) do not appear in p. 
and are obtainable from the recoil nucleon polarisation, Section 4.B. 
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one needs only one further coefficient to provide the necessary dynamical para- 
meter H; this is the sixth (n = 2) coefficient in (4.7). Thus the empirical and the 
dynamical countings agree. 

In the above discussion, we took M to be known from outside the system. 
Otherwise, the additional parameter M should be included among the dynamically 
independent ones. The two countings would still match because (4.3) provides 
eight relations minus the knowledge of M; a similar remark would (equivalently) 
apply to the tests (D2), (D3). In fact, if the Pomeron factorises, present data 
indicate that M = + 1 should hold [2]; see also Section 6. One may also determine 
M from (4.3) at a particular kinematical (s, t) point, and use it elsewhere. 

B. The Recoil Nucleon Polarisation 

Recoil nucleon polarisation provides the remaining (nucleon) vertex functions, 
and together with pv gives the complete set of independent amplitudes in the 
factorising case. We show below that there are, in the factorising case, 
only two independent components of this polarisation providing information 
beyond pu ; these components correspond to the two nucleon vertex function 
(I r++ I2 - j r+- 12) and Re(I’++I’,*_). A measurement of recoil nucleon polari- 
sation is much harder than that of pv ; we have included the present subsection 
mainly for completeness. 

Out of the 48 expansion coefficients ti’(m, n), i = 1, 2, 3 of the unnormalised 
recoil polarisation, Eq. (2.8), parity invariance leaves only the following 24 non- 
vanishing: 

i- 1,3: m = 0 or I, n = 1 or 3; 111 = 2 or 3, 17 = 0 or 2; 
(4.10) 

i _ 2: m=2or3, n=lor3; m-Oorl, n=Oor2. 

The four relations [21], due to parity invariance, 

t2’(m’, n’) = 2 Re pz-(m, ?I) - p:.‘(m, n) (4.11) 

m’ i m, n’ F n; m’ or m = 0 or 1, n’ or n = 0 or 2 further reduce the number of 
lj’(m, n) which go beyond p”,” to 20. 

To consider implications of factorisation for the remaining coefficients ci’(m, n), 
one notes the equivalent of the tests (4.1) of the type (A) 

ti’(m, n) = 0, for m = 2 or 3, (4.12) 

which makes 12 further coefficients vanish leaving only [;,,,(m. n) where 

595/9+9 



332 DASS AND FRAAS 

m = 0 or 1, II = 1 or 3 for examination. Out of these eight coefficients, the 
equivalent of the tests (4.3) of the type (B) gives, form = 0 or 1, 

L’(m, 3) = ML’(m, 11, (4.13a) 

L’(m, 1) = -ML’(m, 3), (4.13b) 

further reducing the independent coefficients for consideration to only ci’(m, n) 
where m = 0 or 1, n = 1 or 3, i = 1 (or equivalently, 3). Thus given pV and M 
purity (which is only one consequence of factorisation), one has only four coeffi- 
cients to test factorisation with. These four coefficients require target polarisation 
in the production plane. Factorisation, Eq. (3.1), further relates the two m values: 

L’(L 4 = L’@, n)[tr pdl, Wr pdo, Ql, (4.14) 
or 

L’U, 4 = L’(O, 4, for n = 1 or 3 

(and similarly for i = 3) leaving only two independent nonvanishing coefficients 
which may be taken as li’(O, n), IZ = 1 or 3, i = 1 (or, equivalently, 3) requiring 
(final and initial) nucleon polarisations in the production plane, for unpolarised 
photons. These coefficients 

~JO, 1) = WI r++ I2 - I r+- I”) . L, 

cl’(O, 3) = -2M . Re(I’++I’*_) * L, 

L = I Y++ I2 + I y+- I2 + I yo+ I27 

(4.15) 

provide the two remaining nucleon vertex functions which did not appear in pv , 
the factor L corresponding to a sum over mesonic helicities. 

The fact that the recoil nucleon polarisation and pa cover all the meson and 
nucleon vertex functions is not surprising because, in the factorising case, the most 
general observable (the joint density-matrix of the +nucleon final state) is given 
in terms of pv and pN’ . The expansion coefficients of this joint density-matrix are 

.1 ‘I , * 
py,*i a (m, a) = $Jz’“’ - Kii’, 

JiL’“’ = Ya’abn)aB YLh 7 (4.16a) 
_I ., 

Ki3 = r&y lyj ; 

while the density-matrices pN’ and pv are given by the expansion coefficients 

p;!‘(m, n) = aK:j’ 1 Jz, 

n 
(4.16b) 

p”,“‘(m, n) = $JG’“’ . 1 Kz, 
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so that 

p~;‘;‘“‘(nl, n) = p$‘(m, n) . pf(n7, nyx, 

.k! = tr P,v,&?z, n) = tr phi(m, n) = tr p&, II) = i c J;; c Ki 
Y 1 

where, as in (4.1, 12), 

; Kc = 2 J;; = 0, for n = 1 or 3, tn := 2 or 3. 
a 

333 

(4.16~) 

(4.16d) 

The relation (4.16~) shows that, in the factorising case, pjV’,V contains no infor- 
mation beyond pN’ and pV . 

5. PRACTICAL MEANING OF OUR FACTORIZATION TESTS 

In order to see how feasible our tests are experimentally, we consider in 
subsection 5.A the simplifications that result if s-channel conservation holds for 
(a) the mesonic helicities, (b) the nucleonic ones, and (c) both the nucleon and the 
meson helicities; experimentally, there are indications for this conservation of 
mesonic helicities [14, 151 in yN -+ $N, and of nucleonic heticities [ 181 in nN 
elastic scattering, at least as a rough 1171 approximation at the 20 y0 level. 
Factorisation tests which persist even in the case of helicity conservation would, in 
actual practice, be easier to perform experimentally because these tests would refer 
to the dominant yN + +N amplitudes. The other tests which exist only when 
helicity conservation does not hold refer to small yN - I$N amplitudes; 
factorisation properties of these small amplitudes are better studied through the 
density-matrix than through the spin-averaged differential cross section where 
the large amplitudes mask them. 

In subsection 5.B we shall see which of our tests can help one to distinguish 
between a pure Regge pole type and some mixture of a pole and a cut-type 
Pomeron. For this purpose, we consider the case of the relative reality of all 
amplitudes, as should hold for a pure pole type Pomeron. 

Since the present section is a “feasibility study,” we shall consider factorisation 
tests for only the &decay density-matrix for a generally polarised initial state, 
i.e., the tests of the types (A)-(D) of subsection 4.A. 

A. s-Channel HeIicity Conservation 

Since pV (the quantity under study in this section) involves a summation over 
nucleon helicities, conservation of s-channel mesonic helicities will be seen to 
be much more powerful than that of nucleonic ones. Our results are presented in 
Tables Ia, b, c, d corresponding to the tests of the types (A), (B), (C), (D), respec- 
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tively. The completeness of the tests can be easily checked in the case of helicity 
conservation also. 

Conversation of mesonic s-channel helicity gives 

and 
Im $(2, n) = - Re pi-(1, n), n = 0, 2, (5.1) 

Re p:-(2, n) = Jm pi-(], n), n= 1,3, 

without any reference to factorisation or M-purity. 
Similarly, nucleonic helicity conservation gives 

faVa(m, n> = 0, for n = 1, 2, 

(5.2) 

(5.3) 

without invoking M-purity or factorisation. For nucleonic and mesonic helicity 
conservation, only the n = 0 part of (5.1) is nonvanishing. Equations (5.1)-(5.3) 
are, of course, only some of the consequences of helicity conservation. 

The tables show that for mesonic (or mesonic and nucleonic) helicity conser- 
vation, the only tests are for M-purity which, of course, may hold even without 
factorisation. Because of the experimental [ 14, 151 indication for mesonic helicity- 
conservation in yN -+ &V, it would, therefore, be relatively difficult to perform 
tests of the types (C) and (D) which test factorisation more crucially than the types 
(A) and (B). On the other hand, testing factorisation for the small (helicity- 
nonconserving) amplitudes relevant to the types (C) and (D) would be feasible 
through pa(m, n) and almost impossible through the overall cross section. 

For the case of full (mesonic and nucleonic) helicity-conservation, M-purity 
tests of the type (A) require longitudinally polarised targets, and have not yet 
been performed. The only (M-purity) test15 of the type (B) 

Re pz-(1, O)/pz+(O, 0) = A4 (5.4) 

requires only unpolarised targets and linearly polarised photons. Data [14] indicate 
(see Section 6) that M equals +l if (5.4) holds, though the errors are large. In 
fact, this is the only remaining test for unpolarised targets, and the ones of type (A) 
are the only ones for polarised targets if full helicity-conservation holds. 

B. Relative Reality of All Amplitudes 

For a pole type Pomeron, the amplitudes would all have the phase of the signa- 
ture-factor, and therefore be all relatively real. In distinguishing between a pole 
and a cut of various types, one should of course, note that, by definition, a pole 
is not only M-pure, but also factorising. 

Out of the coefficients ptB(m, n) and p$(m’, n) occuring in the M-purity tests 

IS This test is valid also if only mesonic or only nucleonic helicity is conserved. 
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(4.2) of the type (A), relative reality leaves only the eight with m = 3, n = 1 or 3 
nonvanishing. Since a pole is M-pure, vanishing or otherwise of any of the 24 tests 
of type (A) does not give any crucial information beyond M-purity; of course 
M-impurity would hold for only the nonfactorising cut-type component of the 
Pomeron. 

The n = 2 coefficients p$(m, n) of the tests (4.3) of the type (B) vanishl” because 
of relative reality, their vanishing being, therefore, an evidence for a pole-type” 
Pomeron. If these do not vanish, the tests (4.3) would distinguish an M-pure cut 
component from an M-impure cut component being present in the Pomeron. 
The n = 0 coefficients of (4.3) do not go beyond testing M purity. 

The coefficients ptB(O, 2) of also the test (4.6) of the fype (C) vanishl’ for relative 
reality, their vanishing, therefore, provides evidence for a pole-type Pomeron. 
The coefficients Im pz-(2, 2), Im pi”(2, 2), Im p53,O) and Im p53,O) in (4.6) 
also vanish for relative relaity. Then, factorisation requires also Im p:-(3, 2) and 
Im pt’(3, 2) to vanish; this is also clear from the internal consistency of (4.6) 
and the vanishing of p”,B(O, 2) in that equation. Again, therefore, the vanishing of 
Im p:-(3, n), of Im pz”(3, n), n = 0 or 2, and of Im pz-(2, 2) and Im p;t”(2, 2) 
is evidence for a pole type Pomeron. If these coefficients (and similarly &(O, 2)) 
in (4.6) do not vanish, the corresponding tests in (4.6) would distinguish a 
factorising from a nonfactorising Pomeron of the “cut-pole mixture” type.17 

NO essential change occurs in the type (D) tests for the case of relative reality; 
there are some simplifications because the coefficients Im PT.-(3, 0) and Im pz”(3, 0) 
now vanish. The simplified tests are 

(DI)‘: [p,L+(O, 0)12 = [pZ+(l, 0)l’ + Pm ~32, 011’. 

(D2)‘: Um pT°C2, WI2 = +p30, O)[p:+(O, 0) f MpXl, 011, (5.5) 

Re p:O(O, 0) = ( p;+(O, 0) - M 1 m pt-(2, 0) - pl+(l, 0) 
I 
M 

(D3)‘: 
M Im pf0(2, 0) I p;+(O, 0) - M Im p;-(2, 0) + p;+(l) 0) ’ 

which should hold for a pure pole type Pomeron. If these tests are not satisfied, 
a “cut-pole mixture” typel’ Pomeron is indicated; factorisation for this mixture 
can be tested by the more general tests (Dl), (D2) and (D3) given in Table Id. 

The “feasibility” of the tests of this subsection can be studied exactly as in the 
preceding subsection 5.A. 

I5 One should remember that exact nucleonic helicity conservation also gives a similar result 
(5.3), but experimentally this conservation is only approximate. 

I7 We are excluding the somewhat accidental possibility that “relative reality” would hold 
also for cuts. We regard departures from relative reality of all amplitudes as the defining evidence 
for cuts, and then test for M-purity and factorisation of these cuts. 
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6. COMPARISON WITH DATA 

The final state density-matrix data are for only the +-meson decay density- 
matrix (a) for unpolarised photons and targets [15] and (b) for linearly polarised 
photons and unpolarised targets [14]. For the case (a), one can show that there are 
no factorisation tests.le For (b), tests of the type (B) are the only ones possible; 
one may also try to estimate the coefficients p*,“(3,0) using these data and assuming 
factorisation in the form of the (D) type tests. 

The 9.3 GeV data, which is an average over the range 0.02 < 1 t / < 0.8(GeV/c)‘j, 
inserted in the (B) type tests (4.3) gives, for n = 0, 

-0.08 5 0.12 -0.18 f 0.13 0.44 f 0.15 0.20 f 0.11 
= = 0.00 f 0.07 = -0.14 f 0.09 0.50 f 0.035 -0.01 f 0.06 My (‘l) 

where we have used the relation’l 

d$ iTheirs = I-%%% O>/tr p& O)/Ours (6.2) 

of our notation to that of [14, 221. Because of the rather large errors in (6.1) 
one cannot draw a firm conclusion, especially since the data are an average over 
a large t-range. However, the thirdls (and to a lesser extent, the second) ratio does 
indicate that if the Pomeron is M-pure (which is necessary for it to factorise), 
it has A4 = + 1. Of course, all the four ratios in (6.1) can be regarded as consistent 
withA = +I. 

The tests of the (D) type could be used to estimate the expected Im pz-(3,0) 
and Im pzO(3,O) using data [14] for linearly polarised photons, and assuming 
factorisation (for comparison with future data for circularly polarised photons). 
Unfortunately, the errors are large; for example, the value [14] of Im pf:r violates 
the positivity bound in Table 2 of [22] on it, even if one allows a one standard- 
deviation error. From the relation (Dl), therefore, one can only say that 
Im &(3,0) is very small. Similarly, the relation (D3) is rendered ineffective. 
The relation (D2) does not involve Im pfel and gives 

[Im &(3, O)]” < 0.012 (6.3) 

normalising to tr p,(O, 0) = I, and if the errors are interpreted literally to mean 
that a quantity quoted as x f y lies between x + y and x - y. From (6.3) also, 

I8 This situation is not changed even if (separately) the recoil nucleon polarisation is also 
measured. In fact, the only nonvanishing coefficient L’(O, 0) is already given, Eq. (4.11), by 
p;a(m, n). Using [16] M-purity (4.3), one gets t’(O, 0) = M tr p,(O, 2). 

I8 This is confirmed also by the more accurate measurements [20] of the asymmetry Z; see 
[14] for definition of Z and for further references. See also footnote 20. 
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keeping in mind the large errors, one can only say that / Im pt’(3,O)l is expected 
to be small. 

In summary therefore, present dataZo indicate that the Pomeron is M-pure 
with M = + 1. Better and more data are needed to make more useful statements 
about Pomeron factorisation. 

7. SUMMARY AND DISCUSSION 

Because of the suitablity (see the Introduction) of yN -+ $N for studying the 
Pomeron, we have considered testing Pomeron factorisation in this reaction, 
assuming that the Pomeron is the only driving force for yN + $JV. This assumption 
is very natural in the conventional quark model, and is supported by data. Even 
conservatively speaking, the energy at which Pomeron dominance is expected in 
yN + I$N should b e much lower than that in other reactions. Hence one need not 
go to extremely high energies for testing Pomeron factorisation in yN --) $N. 
We have listed in detail (subsections 4.A.l and 4.A.2) the possible tests for the 
more feasible experiments measuring the $-decay density-matrix, and also shown 
(subsection 4.B) how a measurement of the recoil nucleon polarisation adequately 
complements the r&density-matrix information in the factorising case. 

A simple, but quite important, consequence of factorisation of helicity ampli- 
tudes is M-purity as defined in Eqs. (3.6). This holds for any type of a driving 
mechanism (including arbitrary mixtures of cuts); M-purity corresponds to purely 
natural or purely unnatural parity exchanges in the crossed channel, to leading 
order in s. M-purity is a necessary (but not sufficient) consequence of factorisation, 
but of course, it could hold without any reference to factorisation. 

Factorisation tests, therefore, are of two categories: M-purity tests and secondly, 
those testing the separability, Eq. (3. I), more crucially. To the first category belong 
the types (A) and (B), while the second category includes the types (C) and (D) 
for the +-density-matrix; see subsection 4.A. These tests were shown in sub- 
section 4.A.3 to be exhaustive if only the &density-matrix is measured. As 
summarised in Tables Ia, b, c, d, various types of target and photon polarisations 
are needed for the different tests. 

The question, “Which of the above tests are easy to perform experimentally?” 
was considered in subsection 5.A by using the experimentally indicated [14, 15, 
17, 181 criterion that amplitudes which do not conserve s-channel helicity are 
comparatively small. Some of the M-purity tests (of the types (A) and (B)) persist 
even for helicity conservation, and therefore, refer to dominant amplitudes. These 

20 The asymmetries PO and Z mainly depend on the ratio Re pt-(I, O)/p,t+(O, 0) and do not 
provide really independent [16] tests of M-purity, because of (4.3). 
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tests should be easy to perform in contrast to the ones of the types (C) and (D). 
If mesonic helicity is exactly conserved, there are no tests of the types (C) and (D) 
left. These latter types which test factorisation more crucially than the other two 
types, therefore, refer to nondominant amplitudes. This is not purely discouraging, 
however. Factorisation for such small amplitudes would be almost impossible to 
test in the overall cross section wherein the large (s-channel helicity-conserving) 
amplitudes would dominate them. The reaction yN --f +N, therefore, provides 
a change to study Pomeron factorisation even for these small amplitudes through 
the $-density-matrix. 

The question, “Can these tests reveal further information related to Pomeron 
factorisation?” was considered in subsection 5.B by considering the special case 
of relative reality of all amplitudes, as is relevant to a pure pole-type Pomeron. 
Since the density-matrix pv simplifies for this relative reality, it was found that useful 
distinction17 between a pole Pomeron, an M-pure “cut-pole mixture” Pomeron 
and an M-impure (and hence nonfactorising) “cut-pole mixture” Pomeron could 
be made by considering some tests of the type (B) requiring a target polarised 
normal to the production plane. Similarly, distinctionl’ between a pole Pomeron, 
a factorising “cut-pole mixture” Pomeron and a nonfactorising “cut-pole mixture” 
Pomeron could be made by considering some tests of the type (C) requiring 
unpolarised targets and targets polarised normal to the production plane; this 
remark holds also for the (D) type tests which require only unpolarised targets. 

Present data give some indication for M-purity (with M = i-1) of the 
Pomeron (its having a purely natural-parity character) especially [20] at small 
momentum transfers -t N 0.2 GeV2; see also Section 6. While M-purity is 
required by factorisation, it does not prove factorisation. More and better data 
are needed to confirm this M-purity, as embodied in tests of the types (A) and (B), 
and also to confront with experiment the types (C) and (D) which test factorisation 
more crucially. One could get a more complete picture of Pomeron factorisation by 
measuring also the recoil nucleon polarisation, but only the $-density-matrix 
can already give a lot of information. 

In conclusion, we repeat that because of the rather clean nature of the reaction 
yN -+ +N, and b ecause of its being a good laboratory for investigating the 
Pomeron, it is only natural to appeal to this reaction before one hopes to get 
a complete picture of Pomeron factorisation. Some of the relevant factorisation 
tests are relatively easy; others are not so easy. Those of the latter variety refer to 
nondominant amplitudes which may be “uniquely” studied in yN -+ +N, as noted 
above. The importance of the question of Pomeron factorisation justifies an 
experimental investigation of the tests presented in this paper. 



POMERON FACTORISATION AND REACTION yN+ $N 339 

ACKNOWLEDGMENTS 

This work was started when one of us (GVD) was at DESY and finished when at the Rutherford 
Laboratory. He is thankful to both the institutions for their hospitality. The other author (HF) 
should thank DESY for financial support during several stays at Hamburg. We are thankful 
to many colleagues in DESY and at the Rutherford Lab for their interest. 

REFERENCES 

1. G. C. Fox AND C. QUIGG, Ann. Rev. Nucl. Sci. 23 (1973), 219. 
2. D. W. G. S. LEITH, “Proc. XVI Int. Conf. High Energy Phys.” (J. D. Jackson and A. Roberts, 

Eds.), Vol. 3, p. 321, National Accelerator Laboratory, Batavia, Illinois, U.S.A. 
3. D. W. G. S. LEITH, Diffractive processes, in “Particles and Fields-1973,” American Institute 

of Physics Conference Proceedings No. 14, p. 326. (H. H. Bingham, M. Davier and G. R. 
Lynch, Eds.), New York, 1973. 

4. CHAN HONG-MO, Duality and the Regge approach to inclusive reactions, Rutherford 
Laboratory Report RL-73-062, T. 62, July 1973. 

5. C. BOURRELY, J. SOFFER, AND D. WRAY, Nucl. Phys. B77 (1974), 386; Nucl. Phys. B91 
(1975), 33. 

6. E. F. PARKER et ul., Phys. Rev. Letters 31 (1973), 783; J. R. O’FALLON et al., 32 (1974), 77: 
R. C. FERNOW et al., Phys. Letters 52B (1974), 243. 

7. J. PUMPLIN AND G. L. KANE, Phys. Rev. Letters 32 (1974), 963. 
8. P. G. 0. FREUND, Phys. Rev. Letters 21 (1968), 1375. 
9. F. HALZEN AND G. H. THOMAS, Phys. Rev. D10 (1974), 344. 

10. V. BARGER AND D. CLINE, Phys. Rev. Letters 24 (1970), 1313. 
11. P. G. 0. FREUND, Nuouo Cimento 48A (1967), 541; H. Joos, Phys. Letters 24B (1967), 103: 

K. KAJAN~IE AND J. S. TREFIL, Phys. Letters 24B (1967), 106. 
12. D. S. AYRES et al., Phys. Rev. Letters 32 (1974), 1463. 
13. D. W. G. S. LEITH, Diffractive processes in the (5-40) GeV energy range, SLAC-PUB. 

1330, November 1973, Supplement to ref. [3]. 
14. J. BALLAM et al., Phys. Rev. D7 (1973), 3150. 
15. H. J. BEHREND et aI., Photoproduction of +-mesons at small t-values, Contribution (No. 389) 

to the XVII Intern. [Conf. on High Energy Physics, July 1974; DESY Report 75/05 
March 1975. 

16. G. V. DA% AND H. FRAAS, Ann. Phys. (N.Y.). 88 (1974), 554. 
17. G. CHADWICK et a/., Phys. Rev. D8 (1973), 1607. 
18. G. H~~HLER AND R. STRAUSS, Z. Physik 232 (1969), 20.5; A. DE LESQUEN et al., Phys. Letters 

40B (1972), 277; G. C~ZZIKA et al., Phys. Letters 4OB (1972), 281. 
19. M. G. DONCEL ef al., Phys. Rev. D7 (1973), 815. 
20. H. J. HALPERN et al., Phys. Rev. Letters 29 (1972), 1425. 
21. H. FRAAS, Nucl. Phys. B71 (1974), 314. 
22. K. SCHILLING et al., Nucl. Phys. B15 (1970), 397; Big (1970), 332 (E). 
23. G. C. Fox AND E. LEADER, Phys. Rev. Letters 18 (1967), 628. 
24. I.. VAN HOVE, Ann. Phys. (N. Y.) 66 (1971), 449. 
25. M. JACOB AND G. C. WICK, Ann. Phys. (N.Y.) 7 (1959), 404. 
26. G. COHEN-TANNOUDJI, PH. SALIN, AND A. MOREL, Nuovo Cimento 55A (1968), 412. 


