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o (e+e - - ,  hadrons) is calculated from tile Dyson form of the photon se•energy. For 
tile vertex of the elementary constituents the Nakanishi representation is used. A regulari- 
zation scheme for the Nakanishi spectral function is taken from perturbation theoretic 
considerations. With simple assumptions about the spectral function, the renormalizabili- 
ty of the theory leads to the asymptotic form o (e*e -~ hadrons) ~ const/s. The constant 
depends on the anomalous dimension of the propagator. The transition to the asymptotic 
region occurs rather slowly. No jets are expected in the final state and the elementary con- 
stituents need not appear in the final state to an appreciable fraction. 

1. Introduction 

Field theories which are asymptot ica l ly  free, predict  that  the total  e+e - annihila- 

t ion cross section into hadrons,  o (e+e - --' h) is propor t iona l  to the pure QED cross 

section o (e+e - ~ H+/l ) (i.e. shows scaling) wi th  a specified propor t iona l i ty  con- 

stant [1 ] R .  We feel, however ,  that the high m o m e n t u m  transfer behaviour  o f  known  

e lec t romagnet ic  form factors does scaicely suppor t  the idea that the in teract ion of  

the hadronic const i tuents  is not  singular at short distances. On the contrary,  the pro- 

ton fornr factors and even more the pion-form factor [2] suggest a singular interac- 

tion [3]. The case of  asymptot ica l ly  nonfree models  has already been dealt  with by 

Gribov et al. [4] with quali tat ive arguments.  Fur the rmore  there is Wilsons short dis- 

tance expansion [5], where scaling follows f rom the canonical  dimension o f  the 

current  and the existence of  the unit operator .  Similar arguments  [6], however ,  for 

the Callan-Gross integral in deep inelastic ep scattering, based on the energy-momen-  

tum tensor,  lead to the equal i ty  o f  the Callan-Gross integrals for neut ron  and pro ton ,  

contrary to exper ience  [7]. Finally we want  to ment ion  the scale invariant mode l  o f  

Polyakov [8]. There the cross section o (e+e  ~ hadrons)  is described by a sum of  
"b ranch ing"  diagrams, and scaling follows f rom tile assumption that  tile sum over 

* On leave of absence from Fachbereich Physik, Universit//t Marburg, Marburg, Germany. 
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Z1 

Fig. 1. Photon self-energy 
diagram. 

Fig. 2. Diagram leading to the 
patton model. 

II 
Fig. 3. Modified parton model 
diagram. 

all diagrams introduces no extra s-dependence (s is c.m. energy squared). There seems 
to be no control for this. 

Our approach will have the same basis as that of ref. [4]. We shall consider the 
case where there is one (or a finite number of) fundamental spin-zero fields with a 
local coupling to the photon. Then the total cross section o(e+e - ~ h) is given by 
the absorptive part of the diagram in fig. l ,  which is the Dyson form of the complete 
photon self-energy contribution [9] apart from a seagull term and from subtractions. 
The vertex and the propagators of  the particle are taken as renormalized. Therefore, 
a cut-off dependent renormalization constant Z 1 (A 2) has to be included. Our first 
main assumption is that Z I ( A  2) vanishes * like a power for A 2 ~ o~. In this limit the 
absorptive part of  the indicated propagators in fig. 1 will not contribute to o (e+e ~ h), 
since the integral over the loop momentum must be divergent in order to cancel 
Z 1 (A2). This is to be contrasted with the parton model assumption [10] that the 
absorptive part of  the propagators in the diagram in fig. 2 is relevant for o (e+e - ~ h), 
with well-known and unpleasant consequences for the hadronic final state. Also a 
modified version of  the parton picture [1 1 ], namely fig. 3, leads, if not to jets,  to 
unwelcome constituent pairs in the final state. 

For the electromagnetic vertex of the consti tuent field we shall use the Nakanishi 
spectral representation [12, 13], which is known to hold in perturbation theory 
without kinematical restrictions to any momenta *. Our physical assumption will be 
that the spectral weight function is as smooth as possible in its variables, being re- 
stricted primarily by Z 1 (A 2) -+ 0 for A 2 ~ oo. The power of  the integral representa- 
tion is to connect different kinematical regions in the vertex, thereby admitting the 
use of  the Ward identity to calculate the propagators in fig. 1 from the vertex. We 
shall find that a simple assumption on the spectral weight function will lead to scal- 
ing. The approach to scaling will be very slow, however, depending on the anomalous 
dimension of  the fundamental field. Simple weight functions, which take into account 
the power decrease of  the on-shell form factors, will give asymptotic  values of  R 

i for a spin-zero field). An advan- larger than the canonical value (which is R (oo) = a 

* This is equivalent to the required fall-off of the vertex function. 
# Contrary to the Deser-Gilbert-Sudarshan representation [ 14, 12 ]. 
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tage of  this approach is, that there need not appear constituent pairs in the final state 
to an appreciable amount, as the latter is determined solely by the absorptive part 
of  the vertex. This may conventionally be dominated by high multiplicity meson 
states, if the constituents are fermions. Our considerations nevertheless do not apply 
to a heavy quark model [15], as the threshold for the cross section must be in the 
order of  the constituent mass. 

There seems to be little experience how to obtain the Nakanishi spectral function 
for more complicated diagrams, and therefore our assumptions about its "smooth- 
ness" cannot be checked in perturbation theory. Nevertheless we think that its vir- 
tues, namely to connect R (s) with on-shell and off-shell vertex functions and the 
propagator, deserve more attention. 

In section 2 we derive R (s) in terms of  the spectral function under the assump- 
tion ZI (A  2) -+ 0 for A 2 -+ ~o. In sect. 3 we consider special classes of  spectral func- 
tions and specify the regularization scheme in terms of  a cut-off in the spectral func- 
tion. In sect. 4 we discuss generalizations and compare the approach to scaling with 
the trend of the experimental data. 

2. Relation between R (s) and the spectral function 

The total cross section is given by the absorptive part of  the photon propagator 
or, to lowest order in e 2, by that of  the photon self-energy tensor Iluv. Thus R (s) 
can be obtained from [4] 

Im Iluv - guy + v ] - ~  R (s) , (2.1) 

where q2 = s. In case of  one fundamental scalar field with charge 1 one has [9] 

II = - i Z I ( A 2 )  {" d4k (2k A((k+½q)Z)Pv(k , q )  A ( ( k  l q ) 2 )  2 g u v A ( k 2 ) )  
uv a (2rr)4 

(2.2) 

the vertex renormalization constant being given in terms of  the renormalized propa- 
gator A (k 2) by 

/ -  dk 2 |m A(k 2) (2.3) Z71 (A2) = _ ~1 

0 
M1 quantities in (2.2) and (2.3) have to be defined by a regularization scheme depend. 
ing on the cut-off parameter A 2. We shall assume limA2 ~ ~ Z 1 (A 2) = 0, such that 
llu~ is of the form 0 times ~ .  The vertex function Pv can be written as 

-- ~q) , (k  + ~q)2)  + q v G ( S ,  , ( k  + , ( k - ~ q )  ~q)2) (2.4) Pv(k  , q )  = 2 k v F ( s  , ( k  1 2 1 2 

from which G can be eliminated by using the Ward-Takahashi identity 
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qVr(k, q) = A  l( (k  +½q)2) _ A l((k _½q)2)  . (2.5) 

In the c.m.s. (where q = 0) we then get from (2.1) to (2.5) 

4ZI  ( A 2 ) l f d k o f d l k l l k l 4  1 2  R ( s ) - - -  Im F(s , ( k  :q) , (k  + ½q)2) 
r r 2 s  

X A ( ( k  ½q)2 )A( (k+½q)2 )  , (2.6) 

where the seagull term has been omitted since it is real. In order to evaluate (2.6) we 
shall use the Nakanishi spectral representation [12, 13] for F which with a suitable 
choice of  variables reads * 

F(s, (k - ½q)2, (k + lq )2 )  = Z I ( A  2) 

l l ( 2 . 7 )  

+ f f dX / dK ~p(/3, X,t¢) 
0 0 0 (1 - /3 ) s  + 13[(I X)(k -½q)2+X(k+½q)2] -K+ie  " 

For a given choice of  the weight function ~ different regions of  the variables of F are 
connected, and therefore ~ also determines the propagator A via the Ward identity.  
In sect. 3 the regularized ~ will be specified in such a way that the assumed power 
behaviour Of Z l ( A  2) is provided. In this section we use (2.7) only to account for the 
analytic properties of  F.  

In order to simplify (2.6) we note that the condition Z 1 = 0 means that the integral 
diverges since R (s) is finite for finite s. We first study the analytic properties of  its 
integrand in the complex k 0 plane. For the propagators it is clear from the Lehman 
spectral representation that there is a pair-of poles for each one of  them, moving with 

k 2 (and the mass), the paths starting at lx/s +- (m ie) and --Jx/s +- ( m -  ie) respec- 
tively as demonstrated in fig. 4. From (2.7) it is seen that the vertex contributes a 
further pair of  poles, the positions of which are given (in the c.m.s.) by 

~[(ko + ( 2 X - l ) ~ / s ) 2 - k 2 - ( 1  X (1 - -X) ) s ]+s - -K  +ie=O 

as illustrated in fig. 4. For k 2 > s m 2 the propagator poles no longer cross the line 
1 S Re k 0 = (1 - 2X) 7X/ ,  and thus, for such a value o f k  2, the Wick rotation about the 

point k 0 = (1 2X) ½x/s no longer will pick up propagator poles. On the other hand, 
a value k 2 > s m 2 can be used as the lower limit of the Ik I- integrat ion without 
changing the result, since the contribution from below this value will vanish ~ for 

* Tile usual form is l l 1 

K S1Z1--$222 ,';32"3 0 0 0 0 
2 1  6 2 6  b If asymptotically the propagators behave as ( l / k )  - and the vertex as ( l / k )  with 6 > 0 

(see sect. 3) one gets [ 1/kol 2(2-6) for the behaviour of the integrand which is sufficient for a 
finite k o integration. 
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A 2 -+ oo due to Z1 (A2). Now putting k 0 = ir cos X + (1 - 2 ) , )  lx/s and Ikl = r sin X, 
for large r the x-integration can be performed and we get 

3/ lim Z l ( A 2 ) ~ n s  d r2 r4 (A(  r2))2ImF(s ,  r 2, r 2 ) ,  R (s) = (2 .8 )  
A2--~ ~ 2 

rmin 
where, r 2 .ram > Ik 12in > s - m 2. It should be stressed that, since A (--r 2) is real, only 
hn F(s, - r  2, - r ~  contributes. 

For the further evaluation of (2.8) the Nakanishi representation is only needed 
for the special case where the denominator of (2.7) does not depend on X which 
means that we can use 

1 ? 
f ( s ,  k 2,k 2) = Z I ( A 2  ) + / ~d~  dK f(~,  K) , (2.9) 

0 0 ( 1 - ~ j s + ~  l ' : 2 - K + i e  

from which Im F(s, - r  2, - r2 ) ,  a,~d via F (0 ,  - r  2, r 2) resp. F(0 ,  m 2, m 2) also 
A(--r  2) and Z I (A  2) can be obtained. It is to be remarked that also the on-shell form 
factor F(q  2, m 2, m 2) is described by (2.9). In the case of  lm F(s, --r 2, - r  2) we get 

1 
h n F ( s , - r  2 , - r  2 ) = - r r  ? / 3 d / 3 0 ( s  Kmin( f l ) - ( r  2 + s ) / 3 ) f ( / 3 , ( 1 - ~ ) s  r2/3) . 

0 (2.10) 

The form (2.10) thus determines the s-dependence o f R  (s) and it will be seen to be 
important for the occurrence of scaling. 

3. Special Nakanishi weight functions, regularization and R (s) 

We now have to make assumptions on the Nakanishi weight function, focussing 
our attention to asymptotically non-free theories, i.e. the vertex function 
F(0 ,  k 2, k 2) is supposed to vanish for k 2 -~ ± ~ .  The simplest example for this is a 
power law for the unregularized vertex 

I 
I 

I 
I 

- I  ~ ~ 0 (1-2X)[ 1 : 

Fig. 4. Path of the propagator and vertex poles in the complex k o plane. Units are ~/s.  
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F(O, k2, k2) -1 -~ - ( _ ~ )  for k 2 - + -  + ~  (3 . l )  

The exponent 6 gives the anomalous dimension of the propagator, which behaves 
as 2x (k 2) ~ ( 1 / - k 2 )  1-6 for k 2 -+ -+ ~.  We restrict ourselves to 0 < 6 < 1. 

If  we write, for A 2 = ~ ,  the spectral function in (2.9) in the form 

-flf~o (/3, K) = g (/3, •) , (3.2) 

we conclude from (2.9) that the condition for (3.1) to hold is 
1 

f d f lg( /3 ,~) l (  ~ (3.3) 0 < [  
0 

We shall consider only the special case that g(CJ, K) is independent of  K except for 
small K, i.e. we set 

g(/3, to) = h (/3) 0 (K - Kmin(/3)) . (3.4) 

The weight function of the regularized vertex depends on the somewhat arbitrary 
way of regularization. We shall deduce its form from that of the regularized triangle 
diagram fig. 5, where the propagator of  the exchanged gluon is regularized according 
to Pauli and Villars [16] with a mass A. The weight function in (2.7) for the triangle 
diagram [13] then gets the form, with A >> m, 

~0(/3, 9~, K) const I5 ( - K - ( / 3 2 ( 1  - X) X + ( 1  - / 3 ) / 3 )  
/32(1 - X )  ~+(1  -/3)/3 

m 2 A 2 

(3.s) 
from which one finds that f(fl, K) = f l  dX ~.o(/3, ~, K) agrees with the unregularized 
function f~(/3, K) for K < flA 2, and vanishes for K N/3A 2. We shall replace this transi- 
tion by a step function 

f (/3, to) = foo(/3, K) 0 (A2/3 - K). (3.6) 

In the following we shall assume that (3.6) provides generally a suitable regulari- 
zation scheme. We now have to express A ( - k 2 ) ,  Z 1 (A 2) and Im F(s, - r  2, - r  2) by 
f(/3, K), where 

- / 3 f ~ ,  K) = h (t3) 0 (A2/3 - K) 0 (K - ~min(/3)) " (3.7) 

Since 

F(0 ,  m 2, m 2) = 1 , (3.8) 

independently of  A 2, we obtain from (2.9) in the case A 2 >> m 2 
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Fig. 5. Triangle diagram. The gluon propagator to be regularized is denoted by G. 

1 ? /3 ~ 1 A 26 
ZI (A2) ~ f d~ h ~ )  .~, d~: ~:8+----] = J (3.9) 

0 ~A Z 

with J -- f l  dJ3 h (/3). With the substitution x -- K/r213 (2.9) becomes in the region 
r 2 ~ K rain 

r 
e~r2 

F(0,  r 2, r 2 ) ~ Z l ( A 2 ) + j r  -28 dx t (3.10) 
0 (x + 1)x 8 

Then the Ward identity gives 

r 2 A2/r '2 
2x-l(--r2)~ - J  (r2/8A28 + f  dr'2r '-28 f dx 1 ) (3.11) 

a 0 ( x  + 1) x 8 ' 

where ~¢min "~ a ,~ r 2. Finally, for Im F(s ,  - r  2, - r  2) we obtain * from (2.10) with the 
special form (3.7) 

Im F ( s , - r  2, - r2)  = ns 0 (1 tCmin(0) r2 ] 
r2(1+8) \ - s r 2 + A  2- / 

1 - ~¢ min(0)/s 

\ r  2 
rZ/(r 2 + A 2) 

This is valid for r 2 >> s ~> Kmin(0 ). Now we put the pieces together in (2.8) and have 

R (s) = lira 3J j7 dr2r 2(1 6)A2(-r2) 
a z ~  ~ 46A 26 

r 2 . 
m l n  

( K m i n ( 0 )  s t.2 r 2 )  1-Kmin(O)/s +12  f ( s Y) ( 1 ~ - ~  6 7  X0 1 -  J d y h  , (3.13) 
r2/(r 2 + A 2 ) 

* We have made the substitution 13 = (s/(r 2 + s))y. 
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where r2mm >2> s (and s ~> •min(0)) and where A(--r  2) is given by (3.11). It is easily 
seen that the r-integral in (3.13)with respect to r runs effectively up to r 2 _< A 2. 
Thus, since the cut-off parameter has to cancel out, and because A( r 2) behaves as 
( l / r2 )  1-6 for r 2 below A 2, the second integral in (3.13) has to become a constant 
for s ~ r 2 ~ A 2. This requires 

0 <  I h ( 0 ) l < ° °  . (3.14) 

If (3.14) would not hold, the theory were not renormalizable. From (3.13) and 
(3.14) we then have 

R ( s ) =  lim 3Jh (0 )  / -  dr2 r2(1-6) A2(_r 2) 
A 2 ~  46A 26 d 

r 2 . 
m m  

(1 Kmin(0) r2 1-~minf0)/s 
J ,31 ) X 0 

\ 
r2/(r2+ A 2) 

Now (3.15) shows that for s >> Kmin(0 ) the ratio R no longer depends on s, i.e. one 
has scaling. Furthermore, it is seen that this constant value asymptotically is ap- 
proached as (I/s) 1-6, i.e. with the same power with which the propagator decreases. 
This remarkable connection, initiated by the condition (3.14) for the finiteness of 
R, in terms of the spectral function means that one has the same behaviour for 
f i + 0 a s  for K ~ .  

R (s) has been calculated numerically since the expression (3.15) with (3.11) is a 
threefold integral. In fig. 6 it is plotted for the case h (/3) = const. For other functions 
one has to divide these values by f l  d/3 h(~)/h(O) as can be verified using (3.9), (3.11) 
and (3.15). 

It is interesting to note that qualitatively the same and quantitatively not too dif- 
ferent results are obtained by evaluating (2.8) in a somewhat naive way. Namely, 
inserting (2.3) into (2.8), in the absence of  a cut-off one has the quotient of two 
integrals diverging as functions of  their upper boundaries. Assuming identical vari- 
ables for these boundaries one can apply de l'Hospital's theorem to get 

3 r4 A2(--r 2 ) 
/~(s) =4ss lira - - - - - -  Im F(s, -r  2, - r  2) . (3.16) 

rZ-+~ - Im A(r 2) 

In the absence of  a cut-off one obtains from (2.9) and (3.4) for k 2 -+ -+ oo 

F(O, k 2, k 2) ~ sin 67r ' 

and for r 2 ~ 
1-Kmin(0)/s 

_ r 2  ' r2 ) ~  1 1+6 
I m F ( s ,  - ( ~ ) 7 r s h ( 0 )  0f d Y ( l Y _ - ~ ) 6 .  (3.18, 
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0.3 

0.2 

3.1 

0.0 

- R (sJ 
R (~) 8 = 0.4 

 =0.6 

//~v / / 

Fig. 6. R (s) for one spin-zero constituent and for h (e) = const. X CEA results [ 17] times 0.02. 
+ SPEAR results [18] times 0.02. 

Then one has for k 2 ~ -+ oo 

i ~l-a  ( 1 - 8 )  s in&r 

Inserting (3.18) and (3.19) into (3.16) then gives 

(3.19) 

h t ~ o a  - 3h(0) 6(1 - 6 )  7r 
(3.20) 

4 J  sin 6n 

For comparison with (3.15) we note that  for h (/3) = const, one gets respectively from 
(3.20) for 6 = 0.4 and 0.8 the values 0.595 and 0.641 for /~  (oo), which are thus about 
2 to 4 times larger than the ones shown for R (co) in fig. 5. 

Concluding this section we remark that the basic conditions (3.3) and (3.14) for 
more general weight functions are replaced by 

0 < I lim /3f(~, K) I < ° °  (3.21) ' 

as the renormalizabili ty condit ion.  (3.21) can be obtained by introducing the expan- 
sion 
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-15f(15, K)-- ~ g~ (15, n) 15 6l 
l,n 

from which for 8 = min 8n and 6' = min 6~ it follows that 6 = g' .  

(3.22) 

4. Discussion 

In sect. 3 we have shown that under the condition (3.4) with h(15) = const and 
6 ~ 0.6 one obtains an asymptot ic  value R (co) close to the pointlike value R(oo) = 
= ~. The approach to scaling is, however, rather slow for this value of/5 and for larger 
ones. For instance, for ~ = 0.6 at ~/s/~Cmi n = 5 only about 0.4 of the asymptotic  value 
is reached. Before a quantitative comparison with experiment [17, 18] can be made, 
three points have to be investigated further: 

(a) The assumption h(15) = const is certainly too simpleminded. More generally we 
have 

1 

(s) = R (s, h (/3) = const) h ( 0 ) / f  dfl h (t3) . (4.1) R 
0 

Now from the fact that  the nucleon form factors decrease faster than ( l /Q2)  ~ with 
0 < 6 < 1 for Q2 ~ oo we can deduce the following property of h (15) without  looking 
into specific models: 

f d15h(.[3) = 0  . (4.2) 
0 

If this condition would not hold,  the on-shell form factor F(q 2, m 2, m 2) as given by 
(2.9), (3.2) and (3.4) would behave as ( 1 / - q 2 )  ~ for q2 ~ _+ co. It ~ o u l d  be noted that 
this slow fall-off, which comes from large K-contributions in (2.9), cannot be com- 
pensated by a non-asymptotic  contribution in (2.9), since a finite K-interval leads at 
most to F(q 2, m 2, m 2) ~ (1/q 2) in [q21 for q2 _+ _+ 0% if h(1)  is finite. 

We have taken smooth functions h ~ )  with one zero such that  (4.2) holds. For 
such functions the correction factor in (4.1) was of  the order of  2 to 5. With a de- 
tailed model  for the form factor one may improve such estimates in the following 
way. If one expands F(-Q 2, -r  2, - r  2) in a power series around Q2 = O, then for 

large r 2 the expansion coefficients are given hv moments  of  h (15), namely 

F(_Q2,_r2,_r2) = ~ ( ~ ) 8  n~=O ( n - 1  +6)(_Q2~n 
= \ r 2 ] 

1 

o 
Such an expansion may turn out to be easier to be handled than a direct calculation 
of  the absorptive part of the vertex. 
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(b) What is the value of  Kmin(0 ) in realistic hadron dynamics? Strictly speaking, 
from the support properties [12] of  the spectral function it follows that Kmin(0) can 
be as low as 4m 2 if one considers, for example,  nucleons as constituents. However, 
more realistically one has to ask where the spectral function begins to give an appre- 
ciable contribution.  Then one has to realize that the nN coupling constant g2/4n -- 14 
is in effect only if the energy is large enough to overcome the baryon mass in the 
propagators,  which in case of  the annihilation diagrams in fig. 7 means that the 
spectral fimction essentially begins Io contribute at about 1 GeV 2. In fig. 6 we have 
therefore tentatively compared the experimental  results [17, 18] using Kmin(0 ) = 
= 1 GeV 2. 

(c) Finally one has to decide on number,  charge, and spin of  the fundamental  
constituents. Conservatively one may work with 4 charged fermions (p ,  2; +, 2; , ~--)  
and 2 charged bosons (~+, K+). This multiplies our curves in fig. 6, including the cor- 
rection factor of  a) ahd a factor 4 for spin ~, by a factor of about 30 to 90. Thus, 
dividing the experimental  results [17, 18] by 50 is reasonable for a tentative compari- 
son in fig. 6. It is seen that the data come close to the curve for 8 = 0.6. 

An important  result was that,  due/~o the Z 1 = 0 condit ion,  no contributions from 
the consti tuent legs in fig. 1, i.e. no je ts  occur. Applying this condit ion now to the 
relation between vertex and off-sh~ll scattering amplitude in fig. 8 one similarly con- 
cludes that the absorptive part of the vertex is given by the absorptive part of  the 
off-shell scattering amplitude.  The main contributions to the latter may be those 
from the low-mass high-multiplicity meson exchanges and not  from baryon-antibary- 
on intermediate states since incoming consti tuent baryons are infinitely far from the 
mass shell. 

It is to be noted that the constituents in fig. 1 cannot be massive quarks with 
M 2 ~ oo since for each/3 > 0 with h(/3) 4 : 0  the cut of the propagator starts at 
min(Kmin(/3)//3 ), and on the other hand, it has to do so above the particle mass. Thus, for 

M 2 fixed s with Kmi n ~ the cross section vanishes. 

The authors are indepted to K. Symanzik for a stimulating discussion. One of  us 
(W.K.) wishes to express his gratitude to H. Joos, H. Schopper, K. Symanzik and G. 
Weber for the kind hospitali ty extended to him at DESY. 

Fig. 7. Baryon annihilation diagramswith multi- Fig. 8. Equation relating vertex and off-shell 
meson exchanges. The propagators are dressed scattering amplitude. 
ones. 
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